
Conversation Machines for Transaction Processing

Wlodek Zadrozny, Catherine Wolf, Nanda Kambhatla, Yiming Ye

IBM T.J Watson Research Center,
30 Saw Mill River Road,
Hawthorne, NY 10532

{wlodz, cwolf, nanda, yiming}@watson.ibm.com

Abstract
We have built a set of integrated AI systems (called

conversation machines) to enable transaction processing
over the telephone for limited domains like stock trading and
banking. The conversation machines integrate the state-of-
the-art technologies from computer telephony, continuous
speech recognition, natural language processing and human-
computer interaction. Users can interact with these systems
using natural language to process simple transactions. We
are currently installing a prototype conversation machine at
a customer site (a large bank), while continuing research on
each of the modules mentioned above and their integration.

In this paper, we describe the architecture of conversation
machines and explain the design choices related to natural
language dialog design, speech recognition errors, and
human-computer interaction. We also discuss our experience
with the new “market-driven research” methodology
currently being tested at our company, of which the
conversation machines project is an example. Our
experience suggests that with this new methodology we can
build integrated natural language dialog systems, even when
working with error-prone recognition engines and imperfect
grammars, by designing the dialog flow to reduce the
likelihood of errors, and to enable quick error recovery. In
this process, having a customer allows us to make more
realistic design choices.

1. Introduction

In the past few years we have developed a set of integrated
artificial intelligence (AI) systems, called conversation
machines, that allow users to communicate with a
computer using spoken language; for example, to make
inquiries, pay bills or transfer money from a bank over the
telephone. Other tasks we have dealt with include stock
trading, fast food ordering, managing appointments in an
on line calendar, and payroll processing. All of these tasks
involve an integration of computer telephony interfaces,
continuous speech recognition, spoken language
understanding in small, but non-trivial, domains, and
huma n computer interaction.

In a new model of research at our company, we are

Copyright 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

installing a prototype Conversation Machine for banking at
one of the large American banks, while continuing research
on each of the afore-mentioned modules and their
integration. This system differs from other such systems in
the market with respect to
• the quality and range of the human factors engineering

in the system and
• the diversity of the number of sentences accepted by

the system (for instance, the natural language
grammar of our system accepts over 50 million
natural language queries, as opposed to a few
thousands for most such systems in the market).

We are planning to conduct trials with customers of the
bank in 2-3 months to continue the research on human
computer interaction issues and natural language dialog
issues.

The Conversation Machine for banking allows customers to
interact with their bank accounts by telephone, using
spoken language dialog. The customers can speak requests
in regular English, and the system performs the requested
actions, asking for additional information if necessary. The
customers can use any English phrase to request
information or perform an action without having to
remember a menu, as illustrated in the following three
dialog fragments:

I’d like to transfer some money to my checking
account.
To make sure I understand the amount of money to
transfer, please enter the amount…
3 5 0 0 0 #
I am about to transfer $350.00 from your savings to
your checking account. Do you want me to do it?
Yes.
Transfer completed. Your new savings balance is
$1011.00. Your new checking balance is $1100.67.

Pay my phone, insurance and electricity bills.
I am about to pay $224.00 for your phone, insurance,
and electricity bills. Do you want me to do it?
Yes.
I have paid your phone, insurance, and electricity bills.
Your new checking balance is $507.00.

Mastercard and insurance bills please.
Your MasterCard balance is $125.00. Your insurance
balance is $43.00. What else can I do for you?
Pay them.
…

In the next section, we describe the architecture and
components of a Conversation Machine. In section 3, we
discuss some of the tools we built to support research and
development on the Conversation Machine. We then
describe some of the lessons we learnt during the research,
design and field trials of the conversation machine and
present our conclusions.

2. Architecture of Conversation Machines

In this section, we describe the architecture of a
Conversation Machine and briefly describe its component
units.

2.1 Architecture of a Conversation Machine
Figure 1 shows a schematic block diagram of a
Conversation Machine (CM). A user interacts with the CM
using a telephone. A computer telephony interface (CTI)
unit answers the call and passes on the user’s speech
utterances to the continuous speech recognition engine. The
speech recognition engine parses the speech utterances into
sentences and passes them back to the CTI. The CTI then
sends the recognized sentences to the dialog manager (DM)
which, in turn sends the sentence to be analyzed by a
natural language processing (NLP) unit. The NLP unit
parses each sentence using either a construction grammar
or a semantic grammar and returns an attribute value list
called a semantic signature to the DM. (The details are
given below). The dialog manager then determines the
appropriate response to the user’s speech utterance based
on filled values of the semantic signature returned by the
NLP unit. This action/response is communicated to the CTI
unit which plays the corresponding prompts to the user
along with (if necessary) some information obtained from a
backend database (for instance, in response to a query
asking for checking balance). The central role of CTI in the

current system is due to the fact that it comes with all
necessary communication devices.

2.2 System components
 The Conversation Machine consists of four major
modules: a Computer Telephony Interface, a Continuous
Speech Recognition engine, a Natural Language Processing
unit, and a Dialog Manager. The modules communicate
through TCP/IP. The system is modular and runs on an
RS/6000 model 390 under AIX.

Computer Telephony Interface: We used the IBM
DT/6000, version 1.6 (to be replaced soon by version 2.1)
system for providing a computer telephony interface (CTI).
The CTI unit is responsible for
• answering a call by a user,
• sending the user’s utterance to the continuous speech

recognition engine,
• receiving a recognized sentence from the speech engine,

and sending it to the dialog manager, and
• playing appropriate prompts to the user as directed by the

dialog manager, by accessing the back-end database (if
necessary).

Continuous Speech Recognition: Our system uses IBM
Continuous Speech Recognition System for Telephony,
VT-Tel, which supports large vocabulary speaker
independent recognition. However, it works best if at any
point of a conversation the active vocabulary does not
exceed a few hundred words; therefore we have taken great
care to design a dialog manager in a way that minimizes the
active vocabulary at any point of conversation (by
designing separate grammars with constrained vocabularies
for nested subdialogs).

Natural Language Processing: We have built two
versions of the natural language grammars. In the first
version, the natural language grammars are represented as a
collection of constructions (Goldberg, 1995), i.e. data
structures where syntactic, semantic and pragmatic
information are combined in one record. This
representation has important computational advantages of
being general, compact and object oriented. We also used
semantic grammars designed to cover specific domains like
telephony banking. These grammars are specific, compact,
and easy to update and maintain. They can’t be reused for
new applications, but can be changed and updated by
people with very limited computational linguistic skills. For
space considerations, most of our discussion in this paper
will focus on the version of conversation machines that use
semantic grammars. For further information on
construction grammars, see (Fillmore et al., 1988),
(Goldberg, 1995), and (Jurafsky, 1992).

Dialog Manager: In our Conversation Machines, the
Dialog Manager (DM) controls the flow of the
conversation with a user. The DM is responsible for
analyzing each sentence, deciding the next prompt(s) to be

Computer

Telephony

I n t e r f a c e

C o n t i n u o u s

S p e e c h

R e c o g n i t i o n

D i a l o g

Manager

Natural

Language

Processing

Backend

Database

Conversation Machine

played, and the action to be taken, if any. Thus, the DM
works in the conversation-for-action paradigm, i.e. it tries
to find out which action to perform and what the
parameters of the action are for each user sentence (after
analysis by the NLP unit, in the form of a semantic
signature). In other words, the DM is a finite collection of
states and transitions plus a small number (<20) of global,
contextual variables that help determine the next state and
the utterance interpretation. If a whole utterance cannot be
interpreted within a given context, the largest sub-part that
makes sense is tried. Because of the possible ambiguities,
there is a small set of rules (5 clauses) expressing the
preferences in interpretation.

3. Building tools for the Conversation
Machine

In this section, we briefly describe the tools we have
developed for rapid development of conversation machines.

3.1 Speech grammar reviser
We have developed a speech grammar reviser- an
interactive tool for constraining the sentences accepted by
the speech recognition engine (Kambhatla and Zadrozny,
1998). Constraining the list of valid sentences reduces the
likelihood of a sentence being mis-recognized. This is
especially important for telephone based applications,
where the recognition accuracy is not very high. Thus, the
speech grammar needs to be both general enough to accept
a large variety of sentences about the given application
domain, and constrained enough to disallow all other
sentences. Developing such tight grammars manually is a
tedious and time consuming task. We have automated a
large portion of this task through the grammar reviser tool.

Given an initial version of a speech grammar in Backus-
Naur Form (BNF), the grammar reviser, in an interactive
session with a grammar developer, identifies counter-
examples, i.e. examples of sentences currently in the
grammar but not appropriate for the given application
domain. The grammar is then modified in such a fashion
that the counter-examples are no longer accepted by the
grammar. For each counter-example c, a parse tree is
generated. For each non-terminal symbol x in the parse tree
except for the TOP (or start) non-terminal, two new non-
terminals are introduced which generate
• all the substrings generated by x except for substrings

of c and
• the substring of c that x generates
respectively. The production rule that generated the
sentence c from the TOP non-terminal is modified such
that it no longer generates c. The above algorithm for
grammar revision is described in detail in (Kambhatla and
Zadrozny, 1998). Thus, a constrained version of the initial
grammar is generated for use by the speech recognition
engine.

3.2 Grammar Workbench
We used a grammar workbench developed at IBM TJ
Watson Research Center to develop and maintain semantic
grammars for our applications. The grammar workbench is
a GUI tool designed to create and maintain grammars along
with the corresponding dictionaries.

The dictionary is a list of all the words allowed by our
dialog system along with a set of semantic categories that
each word belongs to. For example, the following is an
item in the dictionary for our stock trading system:
 (cash *n_money ((tr (cash))) *n_accttype ((tr (cash)))).
Thus, the word “cash” belongs to the category *n-money
(as in “I want to withdraw some cash”) and also to the
category *n-accttype (as in “charge it to my cash account”).
The categories in the dictionary are carefully designed to
reveal the hierarchical ontology structure of the application
domain.

The grammar contains a set of production rules, each
consisting of a syntactic rewrite rule followed by its
corresponding compositional semantic translation rule. For
example,
((teens -> (*numtens *numones)) (((tr 0) (+ (tr 1) (tr 2)))))
is a rule in our stock trading system that combines elements
of two-word number names of category “*numtens” and
“*numones” such as “fifty six” to create 2-digit number
expressions of category “teens” such as “56” whose
semantic translation “(tr 0)” is calculated by a Lisp function
“(+ (tr 1) (tr 2))”, where “(tr 1)” and “(tr 2)” refer to the
semantic translations of “*numtens” and “*numones”
respectively.

3.3 Chart Parser
We use a chart parser to parse recognized sentences into
their semantic translations. For example, a sentence “what
is my checking balance” generates a semantic translation
“PROCESS = {[ACCTTYPE = {checking}, GETINFO =
{balance}]}, SEM_TYPE = {info}, SYN_TYPE={np}]”.
Since chart parsing is a standard NLP tool (see e.g. (Gazdar
and Mellish, 1989)), we will not discuss any of its internal
characteristics in this paper.

3.4 Linguistic to domain translation using
semantic signatures
We perform the mapping from the semantic translations
returned by the chart parser to a set of (domain specific)
actions for the dialog manager using semantic signatures.
The semantic translation of a sentence can be considered to
be a template, some parts of which are useful for
identifying the application domain topic, and other parts are
not. The parts that can be used to identify a domain topic
form a signature for this topic. For example, a semantic
signature for the domain topic “query about account
balance” is “PROCESS = {[ACCTTYPE = {*},
GETINFO = {balance}]}, SEM_TYPE = {info},
SYN_TYPE={np}]”. Thus, using semantic signatures, the

process of mapping sentences into domain meanings can
be divided into two stages. First, a semantic grammar maps
a large number of sentences about a given topic onto a few
semantic translations. Then, a specification of a few
(perhaps a handful) appropriate semantic signatures maps
these semantic translations onto domain topics. The
semantic signatures for an application are in a separate file.
Thus, whenever the grammar is changed to incorporate new
sentences to cover an existing action, only the signature file
needs to be changed. Also, the code for the dialog manager
module is reduced in complexity.

3.5 Dialog Manager Workbench
We built a workbench with a graphical user interface,
called the Dialog Management Workbench (DMW), for
building dialog managers. The DMW provides a high level
fourth generation language, specifically designed for
writing dialog managers. Code written in this language is
translated into Java by DMW. Thus, the DMW enables a
dialog manager developer to focus mainly on the flow of
the dialog without worrying about specific programming
language constructs that have no relation with the dialog.
For example, in our system, a developer need not know the
insides of a module that is used to extract the semantic
signatures and to map the signatures into the domain topic.
Another objective of the DMW is to force the dialog
developer to write the dialog manager in a modular fashion
such that the code is both readable and easy to modify. The
DMW facilitates three levels of module nesting. For
example, one of the modules in our stock trading system
(“Conversation Loop” module) consists of the following
states:
 “GetCustomerInputSentence”,
 “IdentifyDomainTopic”,
 “CheckAndHandleTopicParameters”,
 “ExecuteTopic”.
Each state of the above corresponds to a lower level
module that contains the flow of the dialogs for this topic.
For example, the “IdentifyDomainTopic” state contains
DMW codes that accepts an input sentence, sends the
sentence to the semantic parser, and obtains a domain topic.
Thus, the DMW enables a developer to rapidly write a
portable, modular and easy to read dialog manager.

4. What we learned

4.1 Guiding the user
As we developed the Conversation Machine for banking,
we were aware that the state of the art for both telephone
speech recognition, and natural language understanding was
inadequate to allow users to talk to the system in a
completely unconstrained way. The dialogs and prompts
we developed are intended to guide and gently constrain the
user to produce utterances which the system can
understand.

Guidance for the next step – The system provides
guidance for the next step at every stage. At the top level,
the prompt “What else can I do for you?” lets the user
know that the system is ready for the next request. When
the system has only partial information for a dialog, it
prompts the user for the missing information. For example,
if the system hears “Pay my bills” it will ask the user
“Which bills would you like me to pay?”. This allows the
user to proceed in small steps if desired, thus reducing the
disfluencies and consequent speech recognition errors
which often characterize long utterances (Oviatt, 1995).
This feature is also useful in the case where a recognition
failure has caused the Conversation Machine to miss some
information included in the original utterance. For
example, if a user says “Pay my phone bill,” and the
speech recognizer fails to recognize “phone” the system
will follow-up with “ Which bills would you like me to
pay?”. Thus, the user is guided to provide the missing
information without repeating the entire request.

Our system also provides guidance which is helpful if a
user is in a state inadvertently due to a mis-recognition. For
example, if the prompt described above is unsuccessful in
eliciting a valid response, the next prompt is “Which bills?
Please say electricity, phone, insurance, or MasterCard.
To cancel, say cancel.” Reminding users how to get out of
an unintended dialog can reduce frustration and help users
get back on the right track.

Feedback for state –An important principle for the design
of prompts in the Conversation Machine for banking was to
always provide feedback for state in each prompt. For
example, the prompt to enter the amount of money for a
transfer is “To make sure I understand the amount of money
to transfer, please enter the amount…”. The inclusion of
the phrase “to transfer” lets the user know that he/she has
entered the transfer sub-dialog. We were reminded of the
importance of providing feedback for state when testing an
earlier version of the system, which did not include this
phrase for the transfer dialog. When users, who had asked
to pay a bill, were in a transfer sub-dialog in error, they
assumed they were being asked to enter an amount for bill
payment. Only later in the dialog, did the mis-recognition
error become apparent. Providing feedback for state in
each prompt helps users detect errors and more quickly
recover from them.

Progressive prompting –Another technique we use to help
users recover from errors and avoid future errors is to give
progressive prompting based on strategies that are likely to
be successful and that users understand. As reported in
(Wolf et al, 1997), some strategies that people
spontaneously employed based on human-human
communication are more likely to be successful with the
Conversation Machine than others. Accordingly, our
progressive prompting provides increasingly more direction
with each consecutive error by suggesting generally
successful strategies (see also Yankelovich et al., 1995).

For example, after the first recognition failure at the top
level, the system simply suggests that the user “rephrase”
the request. After a second failure, the system suggests
using “short, simple requests.” In usability studies with
banking customers in the Fall of 1997, we found that this
suggestion typically results in success. Finally, if the user
is still unsuccessful, the system suggests the user try
specific phrases “like transfer funds from checking to
savings or….” The idea is to both suggest specific requests
and give examples of the style of request that will likely be
successful. In the near future, we plan to quasi-randomly
select the example phrases so that the user may be exposed
to a number of phrases in the course of a session or over a
number of sessions. Progressive prompting is also used
within sub-dialogs to guide the user to produce acceptable
utterances.

4.2 Dialog manager issues
We designed our dialog managers to be robust with respect
to ambiguous parses produced by the semantic grammars
and both random and systematic errors made by the speech
recognition engine.

For instance, to eliminate confusion resulting from random
speech recognition errors, we disallowed nested
conversations (e.g. asking for a checking balance in the
middle of a money transfer transaction).

It is hard to write a semantic grammar that does not
produce an ambiguous parse, even in a limited domain like
banking. For example, a user might ask our stock trading
system, “Yes, what is the current volume of IBM?”. This
sentence is unambiguous to a human operator. However, a
parser might generate two parses: ``[PROCESS = { [
ANSWER = {yes}] }, SEM_TYPE = {answer} ,
SYN_TYPE = {yesno} }], [PROCESS = {[GETINFO =
{ volume }, SECURITY = {IBM}] }, SEM_TYPE =
{info}, SYN_TYPE = {np}]". Here, each “PROCESS”
corresponds to a separate semantic interpretation of the
original sentence. The second parse tree is a representation
of the volume request, while the first parse tree is a
representation of a yes/no response to account for the “Yes”
in the beginning of the sentence. We can disambiguate the
sentence by mapping the duality of parses above to a
volume request using a special semantic signature.

We can consider both ambiguous parse trees and systematic
speech recognition errors (e.g. systematic substitution of
plurals for singulars) to be special signatures. A dialog
manager developer can write special semantic signatures to
map these onto unique appropriate actions. Thus we can
disambiguate from multiple parses and overcome speech
recognition errors by specifically incorporating error
conditions into the design of dialog managers.

4.3 Building the NLP component: a lesson in ease
of maintenance
As mentioned in the introduction, the conversation machine
system has two versions. The version based on construction
grammars is currently being deployed, and the version
based on semantic grammars, which was developed in
parallel, is being tested and will replace the other version in
the near future. There were two primary reasons for
switching to semantic grammars: the problem of
maintaining a construction grammar, and the issue of
availability of tools for construction grammar development
and maintenance. We realized that supporting and writing
new construction grammars would require higher skills
than the development group we are working with currently
has, and that our research team cannot officially undertake
customer support obligations. Therefore we were forced to
move towards semantic grammars, where linguistic
features are directly mapped onto domain meanings. It is
also easier to develop semantic grammar templates for new
domains (e.g. stock trading) because tools (e.g., a grammar
workbench) are already available to work with semantic
grammars.

The moral is that, though it is useful to employ the most
advanced natural language understanding technology for a
research prototype, the reality of providing system support
can force a project towards a simpler, less general, and
potentially more costly alternative, which allows the
company to move to market faster.

Furthermore, switching to a different technology can open
new engineering opportunities. We are currently
contemplating the use of machine learning in maintaining
and updating semantic grammars. If we are successful, the
new ML techniques may also be applicable to similar
problems facing construction grammars. This may
eventually allow us to move back to using construction
grammars for language understanding in commercially
viable dialog systems.

4.4 Recovering from speech errors
During the course of building conversation machines for
different domains, we used a multi-pronged strategy for
handling errors made by the speech recognition module.
The accuracy of speech recognition over the telephone at
the phoneme, word or even the sentence level is far from
perfect, even for the best engines. Thus, a good strategy for
error recovery is paramount. Our approach was a multi-
pronged one of constraining speech grammars, adding
pronunciation models and designing the dialog prompts to
enable quick and graceful recovery from errors.

We used the speech grammar reviser (described earlier) to
constrain the speech grammar and thereby improve the
recognition accuracy by limiting the number of possible
sentences that an utterance is potentially interpreted as. For
our banking domain, using an initial (over-generalizing)

grammar as a baseform, we obtained about a 30-40%
increase in recognition accuracy by constraining the
grammar to accept only valid domain specific sentences.
(Based on anecdotal evidence from 6 people who
demonstrate the system to visitors. A more rigorous test is
planned for this spring).

We added several pronunciation models for words and
phrases to improve recognition accuracy for certain key
words or phrases. For instance, for our banking application,
it is more important to correctly recognize “checking
balance” than “can you tell me” in a sentence “can you tell
me my checking balance”.

As mentioned earlier, we designed the dialog flow of our
conversation machines in such a way that it is easy for a
user to quit a transaction in progress, or to access help at
any point in the conversation. Also, successive unsuccessful
queries by a user result in the playing of more and more
helpful messages and eventually after three successive
unsuccessful queries, the user is automatically transferred
to a service representative.

For transactions where all these techniques (Section 4.4)
were used in tandem, we were able to obtain a first try
successful transaction rate close to 90%. In a study with 16
participants, 9 women and 7 men, ages 21-50, conducted by
an independent agency in fall of 1997. The participants
were given a standard set of 15 common phone banking
tasks. For different tasks, we obtained first try successful
transaction rates ranging from 22% to 90%, proportional to
the amount of tuning of the system using the techniques
mentioned above (Section 4.4). The methodology of the
trial is described in (Wolf et al, 1997). In addition, for a
demonstration system where the system was tuned
extensively using the above techniques, we obtained a first
try successful transaction rate close to 90% for all tasks
based on anecdotal evidence of 6 people who regularly
demostrate our system.

Thus, an important lesson here is that even with poor to fair
speech recognition accuracy, we can build a very useful and
successful system by using techniques like the one
described above.

5 Customer issues

Contributing to the challenge of creating a useable system
of considerable scope and complexity was the fact that we

that each component is perfect. In fact, in most situations, it
is impossible to guarantee this. This is true especially in
integrated AI systems, where most of the building blocks
are error prone. For example, both the continuous speech
recognition unit, and, to a lesser extent, the natural
language processing unit can produce errors. However, as
described earlier, these errors can be overcome to a large
extent by careful design and attention to the system
modules, the dialog flow and human computer interaction
issues, as illustrated by the following examples.
• Our system attempts to predict the user’s next

query/request and preemptively asks the user if she
would like the system to process the query/request.
This reduces the task of the speech recognition engine.

• The dialog and prompts in our system guide and gently
constrain the user to produce utterances which the
system can recognize and understand easily.

• Our system provides feedback about the current
transaction at each step of the conversation, to enable
users to detect errors, and quickly recover from them.

• Our system progressively prompts the user with
increasingly more direction with each consecutive
error by suggesting generally successful strategies.

We switched to using semantic grammars for our banking
system to enable rapid development and easy maintenance
of grammars.
• We add special semantic signatures for common mis-

recognitions and ambiguously parsed sentences (for the
given domain) to the dialog manager to make it more
robust.

• We use a speech grammar reviser tool to constrain the
speech grammar and improve recognition accuracy by
limiting the number of possible sentences that an
utterance is potentially interpreted as.

• We add several pronunciation models for words and
phrases which are more important for a given domain
topic than other words. For instance, recognition and
parsing of the phrase “checking balance” is paramount
to successfully handling any sentence which includes
this phrase for our banking system.

For the transactions for which we used all the above
techniques in tandem, we observed that users of our
telephone banking system obtained a successful transaction
rate close to 90%.

In future, we intend to work on developing machine
learning algorithms for automatically mapping semantic
signatures to domain topics, conduct research on allowing
nested dialogs in applications and build Conversation
Machines for larger domains.

We conclude that, with our new research methodology, it is
possible to build a very robust and useful natural language
dialog system, which integrates the AI technologies of
telephone speech recognition, natural language processing
and human computer interaction. We can overcome
deficiencies in any of the component modules by paying

careful attention to the dialog flow and mechanisms for
error recovery as outlined in this paper. In the process,
having a customer enables us to make more realistic design
choices.

References

C.J. Fillmore, P. Kay, and M.C. O’Connor. (1988).
Regularity and idiomaticity in grammatical constructions.
Language, 64(3):501--538.

G. Gazdar and C.S. Mellish (1989). Natural language
processing in Prolog: an introduction to computational
linguistics. Addison Wesley.

A.E. Goldberg. (1995). Constructions: a construction
grammar approach to argument structure. The University
of Chicago Press, Chicago, IL.

D. Jurafsky. (1992). An On-line Computational Model of
Sentence Interpretation. PhD thesis, University of
California, Berkeley, Report No. UCB/CSD 92/676.

N. Kambhatla and W. Zadrozny (1998). Automated
Grammar Revision Using Counter-Examples. IBM T.J.
Watson Research Center Technical Report.

Oviatt, S. (1995). Predicting spoken disfluencies during
human-computer interaction. Computer Speech and
Language, 9, 19-35.

Wolf, C. G., Kassler, M., Zadrozny, W., Opyrchal, L.
(1997). Interact 97 Conference Proceedings, 461-468.

Wolf, C. G. and Zadrozny, W. (1998). Evolution of the
Conversation Machine: A case study of bringing advanced
technology to the marketplace. CHI’98 Conference
Proceedings, to appear.

Yankelovich, N. (1996). How do users know what to say?
Interactions, 3.6, 32-43.

Yankelovich, N., Levow, G. A., and Marx, M. (1995).
Designing SpeechActs: Issues in speech user interfaces.
CHI ’95 Conference Proceedings, 369-376.

