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Using a Natural Constraint to Approximate Area and

Volume

Yongjian Ye1), Yiming Ye2) Xiang Zhang and QinShi Gao3)

Abstract. This paper presents methods to calculate the 2D area (or the 3D volume) enclosed by
a plane curve (or space surface) without analytical expression. One property of our methods is that
the error of the measurement is proportional to the square of the measuring unit when the unit is
small enough. Finally, we point out a property common to calculating area and volume using the
corresponding algorithm. This property can be used as a constraint to increase the accuracy of the
estimation.

1. Background

In many engineering �elds, we often need to calculate the area of a plane region or the volume of a
3D space region. Generally speaking, if we know the analytical expression of the curve bounding the
plane region, we can easily calculate the area of the region by integration. The same applies to the
calculation of the volume of a 3D region. But in many �elds, such as computer vision or surveying
and mapping, we often do not know the analytical expressions of the bounding curve for the plane
region or the bounding surface for the 3D region. In this situation, we must use other methods to
approximately calculate the area and volume. One simple method for calculating the plane area is the
\square grid method" [4] [7]. The \square grid method" has the following property: the error of the
\square grid" method is bounded by the length of the boundary of the region. Let l � 1 be the length
of the curve bounding the region in the number plane, A be the true area of the enclosed region, N be
the total number of integer points within the region (which is the approximate area obtained from the
\square grid" method), we have: j A�N j< l. Hua and Wang [4] also described three practical ways of
measuring the volume: the Baymah Formula, the truncated-cone method, and the trapezoid-method.
These volumetric methods are simple but the errors are large and not evaluated.

In this paper, we propose much more accurate and e�cient methods of measuring the area and
volume. One property of our methods is that the error of the measurement is proportional to the
square of the measuring unit when the unit is small enough. Another property is that our methods
can be arbitrarily accurate. That is, we can set the value of the measuring unit in order to make the
error of the measurement smaller than any given value �. At the end of the paper, we point out an
interesting property common to calculating the area of the plane region and the volume of the 3D
region.

2. Basic Propositions

Let G : ~r = ~r(t) be a curve, where t is the arc parameter belonging to [T1; T2], and ~r is the
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corresponding radius with respect to t. We shall say G satis�es the fundamental assumption if d3~r
dt3

exists everywhere and is uniformly bounded over t 2 [T1; T2],

Proposition 2.1 Denote by s and l the length of an arc of the curve G and the length of the corre-
sponding secant, respectively. Suppose G satis�es the fundamental assumption. Then the bound

s � l

l
� El2 (1)

holds if l is small enough. Here the constant E is given by
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and Kmax is maximum curvature on G.

This proposition is �rst proved in [6] and [9], where the authors derive an important property
in calculating the length of a space curve without analytical expression. However, the error of the
method is not evaluated, because the condition that s must satisfy for 2.1 to hold is unknown. By
careful analysis and calculation, we obtain the following result: the conclusion of Proposition 2.1 is
true if
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The above result will be used to evaluate the error of our methods in calculating the area and
volume. It can also be used to evaluate the error of the method in calculating the curve length
proposed in [6] and [9].

3. The Area

3.1. Propositions

Proposition 3.1 Let 
 be a region in the plane bounded by a straight line segment AB of length l

and a curve dAB of length P � l, where P is assumed to be a constant satisfying P > 2l. Then the
area of 
 is maximum when dAB is a circle arc.

Proposition 3.2 Consider a circle cut by secant AB into two arcs of length s and s
0

. Let the length
of AB be l. For l small enough, if s� l � Cl3 then s < s

0

, where C is a constant.

Proposition 3.3 Consider a circle with secant AB of length l (not the diameter). Let s be the length
of arc dAB, the shorter of the two arcs created by AB. Then the area A� of the region enclosed by AB
and dAB satis�es

A� < l

s
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Proposition 3.4 Consider a curve G that satis�es the fundamental assumption. Let dAB be an arc on
G, and AB be the corresponding secant line. Denote the length of dAB by s, the length of AB by l, and
the area enclosed by AB and dAB by A�. Then when l is small enough, A� � p

El3 uniformly on G,
where E is the same as in Propositional 2.1. Equality holds when G is a straight line: A� =

p
El3 = 0.

Proof:

When G is a straight line, we have A� = 0 and E = 0. Of course, A� =
p
El3 = 0.

Otherwise, from Proposition 2.1, 3.1, 3.2, when l is small enough that these propositions hold

and l <
q

2
E
), we have:
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Where li =j PiPi+1 j; lt =j PtP1 j; si =j dPiPi+1 j; st =j dPtP1 j
Theorem 1. Let Y (d) be the area measured by the improved square grid method with grid dimension
d. Obviously, Y (d) = Ad, and limd!0Y (d) = A0. De�ne Y (0) = A0. If G satis�es the fundamental
assumption, then the derivative of Y (d) at point d = 0+ is 0.
Proof:

Y
0

(0+) = limd!0+ j Y (d)� Y (0)

d
j� limd!0+

2d2
p
ES

d
= 0

Theorem 1 can be used as a constraint when increasing the accuracy of the area calculation.

3.3. Setting the Precision

The \improved square grid method" described in Section 3.2. is based on discretization of the plane
curve with line segments to approximately measure the area of the geometrical objects surrounded
by the curve. Thus, if the area exists mathematically, the approximation should improve as the such
discretization gets �ner. Hence computationally signi�cant results would be how small the error is
with the knowledge of computed values about the geometrical objects, e.g., the grid dimension d used
in the measurement. In the following, we give the relation that the grid dimension d should satisfy
when the measurement error is required to be less than �.

Suppose that the boundary G of a region satis�es the fundamental assumption. Let l be the length
of a secant line, s the length of the corresponding arc and M > 1 be a constant. Assume that when
l < l�, then s < Ml uniformly holds. For convenience, let M = 10. This is quite easily satis�ed, and
l� will not be too small.

Recall the proofs of the above propositions. It is obvious that, in order for the conclusion of
Proposition 4.1 to hold, l must satisfy:
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where rmin is the minimum value of the radius of curvature.
Obviously calculation of N requires knowledge of Kmax, l�, and the maximum value of the third

derivative of radius with respect to arc. In practice, if the value of these parameters can be calculated
or evaluated, then, the value of N can be calculated.

When the error in area measurement is required to be less than �, i.e., 2
p
ESd2 < �, then the grid

dimension d can be set to any value that is less than minf 1p
N
;
q

�

2
p
ES
g, where S is the length or an

upper bound of the length of the boundary of the region.

4. The Volume

4.1. Propositions

Consider a 3D region Z bounded by a closed surface. Let A be the cross section plane formed by
truncating Z with any plane, and let L be the boundary of A. Denote the diameter of A by dA, which
is the maximum distance between any two points of L.

In the following discussion, Z is required to satisfy the following condition: the closed plane curve
L
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Proposition 4.1 Consider a plane curve G satisfying the fundamental assumption. Let s be the
length of an arc on G, and l be the length of the corresponding secant. Let H be the maximum distance
from the arc to the secant. Then, when l is small enough, H � p

El2 holds uniformly on G.

Proposition 4.2 Let Z,A,L, dA have the same meaning as above. Suppose that region Z is such that
any L formed by truncating Z with any plane meets the fundamental assumption. Region Z is divided
by A into 2 parts. Let H be the maximum distance from the points on the surface of the smaller part
of Z to A. Then when dA is small enough, we have: H � pEsupd

2
A.

4.2. The Algorithm

Suppose the curve L obtained by truncating region Z with any plane meet the fundamental as-
sumption. The algorithm to calculate the volume of Z is as follows. Build a 3D grid from a large
cube that contains Z totally, where the length of the small grid cubes is d. The small cubes can be
grouped into three classes: (1) cubes totally contained in Z; (2) cubes partially contained in Z; and
(3) cubes outside of Z. Obviously, the volume of Z is given by

VZ= [the number of �rst class cubes] � d3 + [the region enclosed by Z and falling in cubes of the
second class].

The volume of the part of any second class cube that belongs to Z is calculated as follows.
Let S�1; S�2; :::; S�f be the surfaces formed by truncating the surface of Z with a cube. Generally,

f =1, but sometimes there may be many little surfaces. For any such surface S�i, its boundary
L�i is formed by the intersection S�i and the surfaces of this cube. Of course, L�i is a closed space
curve. Going along L�i counter-clockwise, we obtain the points P1; :::; Pg, where Pj(0 � j � g) is the
intersection point of L�i and a side of the cube. When g = 0, g = 1, or g = 2, we will not count
the volume that belongs to Z and that is enclosed by the appropriate part of the surface of the cube
and the corresponding part of S�i. When g � 3, connect the points P1, :::, Pg, P1 in sequence to
obtain a closed space polygonal line. Then connect P1 and P3, P1 and P4, ..., P1 and Pg�1 to obtain
a series of triangles 4P1P2P3;4P1P3P4; :::;4P1Pg�1Pg. Finally, the volume enclosed by S�i and the
corresponding surfaces of the cube will be replaced by the volume bounded by the plane surface formed
by this series of triangles and the corresponding surfaces of the cube.

We call the above method the \Cube Cutting Method".

Proposition 4.3 When the grid dimension d is small enough, the error � of the volume of Z in
any second class cube calculated with our \Cube Cutting Method" satis�es � � (9

p
Esup

p
3d3(T �

2)M + S0
�)6
p
Esupd

2. Here M is the number of the surfaces inside this cube, T is the number of the
intersection points of any surface with the side of the cube, and S0

� is the total area of the surfaces
inside this cube.

Proposition 4.4 Suppose the region Z satis�es the conditions above. Let �� be the error of the
volume calculated for Z with the \Cube Cutting Method". When d is small enough, we have: �� �
(9
p
Esup

p
3V �(T �� 2)M�+S)6

p
Esupd

2, where V � is the volume of the large cube containing Z, S is
the area of the surface of Z, T � is the maximum of T (in Proposition 4.3) for any second class small
cube, M� is the maximum of M (in Proposition 4.3) for any second class small cube.

Theorem 2: Suppose the 3D region Z satis�es the conditions above. Let Y (d) be the volume
calculated with the \Cube Cutting Method", where d is the length of the side of the small cubes of
the grid. De�ne Y (0) = V0, where V0 is the real volume of Z. Then the derivative of Y (d) at the point
d = 0+ is zero.
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4.3. Setting the Precision

We can calculate volume in a manner similar to that used for area as described in Section 3.3..
Here, we omit the details.

5. Calculating Area and Volume Using Natural Constraint

The function Y (x) de�ned in Theorem 1 and Theorem 2 gives the area or volume measured with
the grid dimension d = x. These theorem imply the natural constraint that Y

0

(x) = 0 at x = o+. In
this section, we illustrate how this constraint can improve the accuracy of the calculation of area or
volume.

For di�erent grid dimensions di, we can use the method illustrated in Section 3.2 to obtain the
corresponding estimates of area Ai and method illustrated in Section 4.2 to obtain the corresponding
estimates of volume Vi. Thus, we can get a series of ordered pairs: (xi; yi), 1 � i � n, where xi = di,
and yi = Y (xi) = Ai if the area is to be measured, or yi = Y (xi) = Vi if volume is to be measured. The
function Y (x) is interesting because when x = 0, it gives the exact area or volume of the geometric
object. If we can obtain the function Y (x), then the exact area or volume of the geometric object
can be obtained. This is not possible in general, so replace Y (x) by another analytic expression
which can be handled as if it were the original function. This is called analytic substitution. Two
considerations are involved in analytic substitution. First, what class of approximating functions shall
we use? Second, how shall we select the particular member of the class?

It is not easy to obtain a perfect class of approximating functions. We should use all the information
we know to determine the most promising class. One way of determining the class is to draw the points
(xi; yi) on the coordinate system and analyze the pattern of these points and use the class of functions
that can form a similar pattern. To select a particular member from the class, we need to answer
the following two questions. The �rst is \what samples shall we use in obtaining the function?". The
second is \How should we restrict the function class so as to get a better �t when x approaches 0?".
To select the samples, we should analyze the nature of the problem and �gure out where does the
information lie. Since we want to �nd the value of Y (0), we should use those samples where x is small
and approaching 0. But on the other hand, if x is too small, then the noise in the measurement will
prevent an accurate estimation from being made. In practise, such as the measuring of the area of
land or the volume of a smooth mountain, it is impossible to use the in�nite small grid dimension.
Because the work required to obtain a measurement of area or volume will increase dramatically as
the grid dimension decreases. Thus, we should obtain samples where x is small enough and the work
required to measure the area or volume with this grid dimension is not too labor intensive. Since our
task is to extrapolate the value of Y (0) based on the given samples, the properties of function Y (x)
at point 0 have a great inuence on the �nal result. Since Y

0

(x) jx=0= 0 is true for the measurement
of area and volume when the fundamental assumption is satis�ed, this property should be used in the
estimation of Y (x) and the �nal result for the area and volume calculation should be more accurate
in most cases when this property is used. We will illustrate the advantage of using Y (x) jx=0= 0 in
the analytic substitution in the following.

In general, the plane region or the space region can be in any form as long as the fundamental
assumption is satis�ed. In order to make the explanation and comparison easier, we only consider the
area calculation, and we use a circle as the plane region to illustrate the idea. The radius of the circle
is 116. Thus the exact area is 42251:9. This area will be used to compare the accuracy of di�erent
measurements. The di�erent dimensions d and the areas measured with these dimensions are listed
in the following table and will be used throughout the experiments.
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Dimension d 36 32 28 21 16 9

Area measured with d 36496:4 41472 41957:40 42051:2 42106:4 42220:8

5.1. Polynomial Extrapolation

Because of simplicity, polynomials are often used in the process of analytic substitution of a
tractable function y(x) for an intractable one Y (x). In general, high degree polynomials are not
suitable for extrapolation, only lower degree polynomials seem to be safer. Here we compare the
results of polynomial extrapolation when the natural constraint is used and when it is not used.

Suppose from the measurement we get n pairs of data (xi; yi), (i = 1; 2; : : : ; n). These data can
determine a polynomial of degree n � 1

y(x) = a0 + a1x+ : : :+ an�1x
n�1 =

n�1X
k=0

akx
k

by requiring y(x) to pass through the n points (xi; yi), (i = 1; 2; : : : ; n)

yi =
n�1X
k=0

akx
k
i

Let

� =

�������
1 x1 : : : xn�11

: : :

1 xn : : : xn�1n

�������
�a0 =

�������
y1 x1 : : : xn�11

: : :

yn xn : : : xn�1n

�������
Then

y(0) = a0 =
�a0

�
can be taken as the value of the area or volume.

When the natural constraint is used, the n pairs of data can determine a polynomial of degree n

y(x) = a0c + a2cx
2 + : : :+ ancx

n =
nX

k=0;k 6=1
akcx

k

by requiring y(x) to pass through the n points (xi; yi), (i = 1; 2; : : : ; n)

yi =
nX

k=0;k 6=1
akcx

k
i

Let

�c =

�������
1 x21 : : : xn1

: : :

1 x2n : : : xnn

�������
�a0c =

�������
y1 x21 : : : xn�11

: : :

yn x2n : : : xn�1n

�������
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Then

y(0) = a0c =
�a0c

�c

can be taken as the value of the area or volume. Since the constraint expresses more accurate infor-
mation about y(x), the area calculated by a0c should be more accurate in general.

The following table lists some results when two data points (xi; yi) and (xj; yj), or three data
points (xi; yi), (xj; yj), and (xk; yk), are used. Where no�C means the natural constraint is not used
and C means it is used. From the table we can see that generally the error of area calculated when
the natural constraint is used is smaller than the that when the constraint is not used.

.
Grid Dimensions Areano�C AreaC Errorno�C ErrorC
32; 21 43156:94 42489:32 905:04 237:4

32; 16 42740:79 42317:86 488:89 65:96

32; 9 42513:80 42285:12 261:91 33:22

28; 21 42332:60 42171:80 80:70 80:09

28; 9 42345:57 42251:14 93:67 0:75

21; 9 42348:00 42258:96 96:10 7:06

16; 9 42367:89 42273:75 115:99 21:85

32; 21; 9 42031:46 42221:53 220:43 30:35

32; 16; 9 42221:96 42265:85 29:92 13:95

28; 21; 9 42355:29 42276:65 103:39 24:75

5.2. Non-Linear Extrapolation

It frequently happens that polynomials cannot correctly express the function Y (x). In this situa-
tion, we need to �nd a non-polynomial function y(x) to replace Y (x). In this section, we consider the
class of y(x) when there are nonlinear parameters and linear parameters mixed together. In particular,
we consider the function y(x) in the following form:

y(x) = decx + anx
n + an�1x

n�1 + : : :+ a1x+ a0

Here, we assume that two estimations (x1; y1) and (x2; y2) are available and c = �1.
When the natural constraint is not used, we can determine two parameters. Thus y(x) = de�x+a0.

Let y(x) pass through (x1; y1), (x2; y2), then we have y1 = de�x1 + a0 and y2 = de�x2 + a0. Thus, we
can get the value of d and a0. Finally, we get the area

y(0) = d+ a0 =
y2e

�x1 � y1e
�x2 + y1 � y2

e�x1 � e�x2

When the natural constraint is used, we can determine three parameters. Thus y(x) = de�x +
a1x+ a0. Let y(x) pass through (x1; y1), (x2; y2), and let y

0

(0) = 0. Finally we can get the area

y(0) = d+ a0 =
y2(e

�x1 + x1)� y1(e
�x2 + x2) + y1 � y2

e�x1 + x1 � e�x2 � x2

Some of the experimental results are listed in the following. The results show that the error
calculated by using the natural constraint is smaller than the error calculated without it (Note, during
the experiment, the values of x1 and x2 are divided by 10 to avoid overow when running the C code.
This operation does not inuence the �nal value of y(0)).

.
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Grid Dimensions Areano�C AreaC Errorno�C ErrorC
28; 21 43386:46 42230:82 1134:56 21:07

28; 16 42949:26 42219:23 697:36 32:66

28; 9 42672:88 42272:75 420:98 20:85

21; 16 42660:96 42211:65 409:06 40:24

21; 9 42552:50 42291:60 300:60 39:70

5.3. Least Squares Method

The least-squares method of �tting a curve is frequently used when there are more conditions to
be satis�ed than there are parameters to adjust. Here we use the least squares method to extrapolate
the area. Since we only need to approximate the value of Y (0), the data points available are not
equally reliable. Typically, the data will be more reliable when the grid dimension approaches 0. Thus
we attach suitable weights wi to each data point. The closer the grid dimension is to 0, the more the
weight is attached. Suppose the function used is a second degree polynomial, then, y(x) = ax2+bx+c,
when the constraint is not used, and y(x) = ax2 + c, when the constraint is used.

When y(x) = ax2 + bx + c, we wish to minimize m(a; b; c) =
Pn

i=1fwi(y(xi) � yi)
2g with respect

to a; b; c. Di�erentiating m(a; b; c) with respect to a, b, and c and setting the results equal to zero, we
get three equations: 8><>:

a
Pn

i=1wix
4
i + b

Pn
i=1wix

3
i + c

Pn
i=1wix

2
i =
Pn

i=1wix
2
i yi

a
Pn

i=1wix
3
i + b

Pn
i=1wix

2
i + c

Pn
i=1wixi =

Pn
i=1wixiyi

a
Pn

i=1wix
2
i + b

Pn
i=1wixi + c

Pn
i=1wi =

Pn
i=1 wiyi

Solving the above equation for c, we can get the approximate value for the area.
When y(x) = ax2 + c, we wish to minimize m(a; c) =

Pn
i=1fwi(y(xi) � yi)

2g with respect to a; c.
Similar to above, we can get the following two equations:(

a
Pn

i=1wix
4
i + c

Pn
i=1wix

2
i =
Pn

i=1 wix
2
i yi

a
Pn

i=1wix
2
i + c

Pn
i=1wi =

Pn
i=1wiyi

Solving the above equation for c, we can get the approximate value for the area when the constraint
is used.

The table on the next page lists the experimental results of the above two method with di�erent
weights (w1; w2; w3; w4; w5; w6) assigned to grid dimensions (9; 16; 21; 28; 32; 36) respectively. We can
see that the accuracy is greatly increased when the natural constraint is used.

6. Discussion

Theorem 1 and Theorem 2 provided natural constraint when using our method to calculate area
and volume. This constraint can be used in practice to increase the accuracy of the measurement. It
is interesting to point out that a similar result can be obtained for the method proposed in [5] and [6]
for calculating the length of a space curve.

We describe the result here. Suppose OP is a space curve. We measure the length of OP with
the line segment l, obtaining a series of points P0; P1; :::; Pn; Pt, where PiPi+1 = l, for 0 � i � n, and
PnPt = l� � l. Let

Y (l) =j P0P1 j + : : :+ j Pn�1Pn j + j PnPt j= nl + l�

Of course when l approaches 0, Y (l) will be the length of the curve. Let S be the length of the
curve and de�ne Y (0) = S. We have the following result:

j Y 0

(l) jl=0+j= 0
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Weights (w1; w2; w3; w4; w5; w6) Areano�C AreaC Errorno�C ErrorC
(701; 701; 401; 401; 1; 1) 42284:66 42237:27 32:76 14:62

(751; 751; 421; 421; 1; 1) 42298:53 42236:79 46:64 15:10

(801; 801; 451; 451; 1; 1) 42292:86 42236:15 40:96 15:74

(771; 771; 401; 401; 2; 2) 42205:09 42246:99 46:80 4:90

(891; 891; 401; 401; 2; 2) 42220:50 42246:41 31:39 5:48

(741; 741; 461; 461; 2; 2) 42211:20 42245:14 40:69 6:75

(811; 811; 401; 401; 3; 3) 42134:80 42255:98 117:08 4:05

(851; 851; 451; 451; 3; 3) 42146:84 42253:46 105:05 1:57

(811; 811; 501; 501; 3; 3) 42149:78 42252:04 102:11 0:14

(791; 791; 551; 551; 5; 5) 42016:76 42266:64 235:11 14:74

(891; 891; 581; 581; 5; 5) 42056:78 42263:60 195:10 11:70

(1700; 1700; 411; 411; 2; 2) 42277:47 42245:22 25:57 6:67

(1100; 1100; 491; 491; 3; 3) 42189:13 42250:36 62:76 1:53

(1900; 1900; 401; 401; 4; 4) 42178:95 42257:99 72:94 6:09

(1600; 1600; 511; 511; 5; 5) 42129:79 42259:86 122:10 7:96
.
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