Visualizing the Iteration Space in PEFPT *

Qi Wang, Yu Yijun and Erik D’Hollander

University of Ghent
Dept. of Electrical Engineering
St.-Pietersnieuwstraat 41
B-9000 Ghent
wang@elis.rug.ac.be
Tel: +32-9-264.33.75
Fax: +32-9-264.35.94

Abstract. Sufficient and precise semantic information is essential to in-
teractive parallel programming. In this paper, we present a feasible imple-
mentation of the iteration space dependence graph and discuss relevant
technical problems. Moreover, we give a further prospect of interactive
loop optimization guided by the graph.

1 Introduction

In the past decade, high performance computing has become a critical technique
for scientists and engineers. Parallel processing is considered as the essential way
to speedup massive computational application, and large-scale parallel architec-
tures composed of microprocessors become a fashion. To exploit parallelism and
memory hierarchy effectively for these machines, the compiler must be able to
get data dependence precisely and distribute the computations among the pro-
cessors accordingly. Unfortunately, the results of recent research have been both
encouraging and disappointing[3,4]. One of principal drawback is the inaccu-
racy of current dependence analysis techniques: symbolic expression, procedure
calls, induction and reduction variables, and complex control flow, all of them in-
troduce conservative assumption, so as to invalidate the feasibility of parallelism.

A tradeoff is to provide an interactive programming or optimizing environ-
ment, sharing part of the responsibility with the user under the guidance of the
system, which the user can afford to. This compromise is accepted widely by the
user and the researcher. There have been much significant experiments in this
area, such as Parafrase-2[5] and Parascope[6].

1.1 Motivation

We devote ourselves to design a new programming environment — PEFPT[7] 2
(the Parallel Programming Environment for FPT, the Fortran Parallel Trans-
former), based on the research of FPT[7|, proposing to develop and integrate

* This work was supported in part by European Community under grant ITDC’94-164
and by the Ministry of Education, project CHIN9504
2 A joint project between the universities of Ghent(B) and Fudan(PRC)

series of meaningful tools and methods, and testing them through practice.

It is well known that most of the parallelism in a program dwells in loops,
and current parallel architectures also pay great emphasis on developing coarse-
grained parallelism.

Therefore, it is vital to exhibit loop-carried dependence information. Paras-
cope provides a table to show the dependencies between statements in different
loops. This allows the user to inspect and potentially remove false dependencies.
However, a table is not very elegant to analyze the parallelism on iteration level.
In PEFPT, we employ an iteration space dependence graph as a supplement
illustration for the user.

1.2 Data dependence

The analysis of precedence constraints on the execution of the statements is a
fundamental step in parallelizing the program.

There are four types of data dependence [1,2] between two statements, Sy
and Ss:

True (flow) dependence occurs when S; writes a memory location that Sz later
reads, and there is no Ss write this location between S; and S,.

Anti dependence occurs when S; reads a memory location that S later writes,
and there is no Sz write this location between S; and S,.

Output dependence occurs when S; writes a memory location that S, later
writes again, and there is no S3 write this location between S; and Ss.

Input dependence occurs when S; reads a memory location that S, later reads,
and there is no Sz write this location between S; and S,.

1.3 TIteration space and Iteration space dependence graph

Suppose I C R™, i1,...,i, are the iteration indices, (L1, U1),..., (Ln,Us) are
the respective loop bounds[1,2] and both L; and U; are linear functions of iter-
ation indices ¢1,...,%_1, so that the iteration space is:

I={(1, . in)|L1 <41 S Uy, .oy Loy oo o yino1) <in S Un(iy- o0y inm1)}

Moreover, the iteration space dependence graph of the loops is an itera-
tion space picture with dependence arrows, which draw from the point corre-
sponding to iteration I = (%1,...,%,) to the point corresponding to iteration
J = (j1,---,Jn) whenever there exist statements S;(I) and S2(J) in the loop
body such that S; dependent on Sy, where I # J.

2 Analysis of the iteration space dependence graph

A straight solution to get the dependence relationship between iterations is to
record all variable reference information occurred during the execution of the
loops, then to analyze them using the definition of dependence. For each read
operation, the iteration space is searched from this point until a write opera-
tion to the same memory location is found. If read and write are not in the
same iteration, a dependence results. It is a flow dependence if the write comes
lexicographically before the read, otherwise it is an anti-dependence.

Output dependence occurs when a write operation is followed lexicographi-
cally by another write operation.

2.1 Static analysis of the iteration space

At first, we implement such an idea in PEFPT using a strategy of static simu-
lated execution on the syntax tree. The user selects particular loops and gives
necessary data (especially the values of symbolic variables). Throught calculat-
ing all loop indices and array subscripts for each iteration on the lexicographic
order, we get a real iteration space with all reference information of variables.
Then the technique described above is used to get all dependence arrows between
iterations. In order to handle complex control flow, especially GOTO statements,
a powerful algorithm [7] exists within FPT, which converts GOTO statements
into structured code.

Sometimes nested loops have large iteration distances, and a loop body may
be very complex. In that case, the symbolic execution is time consuming and
becomes impossible when there are call statements in the loop body.

2.2 Runtime simulation

In order to solve these limits and deal with more general cases, we propose to in-
sert a marker for each variable reference in the source program. This marker will
store the read/write behavior during the execution. After running the program,
the required data are available.

The question is how to implement the marker to process the raw data quickly
at runtime, and to minimize the information records needed by the post-processor.

For each analysis variable, two integer shadow variables are declared with the
same dimension as the original: RS (read shadow) and WS (write shadow), each
element of them records the iteration ID which occurs last read/write operation
on this element. See the tracer algorithm in figure 1.

2.3 Generation of the test program

In order to generate the dependence test program automatically, we need do
more work and more information. We divide all process into five steps:

Initialization: For each variable A, declare two shadow variables: RsA and WsA, and
set RsA(d1,...,0m)=WsA(i1,...,im) = ¢

Input: For each reference site in the loop, give an instance of array A’s subscripts
S1,...,5m, enclosed in n-nested loops with indices I1,..., I,

IF it is a read operation do:
SET This_iteration = IS_Encode(I, ..., In)
IF WsA(S1,...,5n») = ¢ THEN
no dependence
ELSE
IF WsA(S1,...,Sm) # This_iteration THEN
There exists a flow dependence arrow from iteration
IS Decode(WsA(S1,...,5m)) to (I1,...,1In)
ENDIF
ENDIF
IF RsA(S1,...,5m) =¢ THEN
no dependence
ELSE
There exists an input dependence arrow from iteration
IS_Decode(RsA(S1,...,8m)) to ({1,...,In)
ENDIF
SET RsA(Si,...,Sm) = This_iteration
ENDIF
IF it is a write operation do:
SET This_iteration = IS_Encode(I, ..., In)
IF RsA(S1,...,5m) = ¢ THEN
no dependence
ELSE
There exists an ant: dependence arrow from iteration
IS_Decode(RsA(S1,...,8m)) to ({1,...,In)
ENDIF
IF WsA(S1,...,5m)= ¢ THEN
no dependence
ELSE
There exists an output dependence arrow from iteration
IS_Decode(RsA(S1,...,8m)) to ({1,...,In)
ENDIF
SET RsA(S1,...,5m)=¢
SET WsA(S:,...,Sm) = This_iteration
ENDIF

* IS_Encode and IS_Decode are functions that convert N™ = N, real iteration
address = an unique integer iteration ID.
* Just see scalar variable as one element array.

Fig. 1. Iteration dependence tracer algorithm

1. Prepare required syntaz information
Record all variable nodes of syntax tree, which appear in the selected loops
and belong to both read reference set and write reference set.

2. Generate runtime test program which is appended necessary function calls
Generate a call statement with necessary information for each variable node
on dataflow order. If there exists call statement in the loop body, we have to
duplicate this subroutine, treat it as a new one, then pass actual arguments
with their shadow variables together. In subroutine body, we do the same
thing and insert marker functions for all variable reference sites. Of course,
there are also need a few initialization and clean-up functions.

3. Compiler and run the program
Use normal Fortran compiler and predesigned library, we get an executable
program. Run it and record intermediate data in a temporary file, the data
like (iteration, iterationy, dependence kind, memory location).

4. Post process the first-hand data
By now, we get accurate flow and output dependencies. For anti dependence,
it is not as precise as the former. The cure algorithm see Figure 2.

5. Visualize iteration space dependence graph
Due to the complexity both on iteration space dependence graph itself and
presentation, we only show it in two dimensions within a predefined region.

Now, we illustrate it using a sample(see fig. 3).

For all records do:
If it is an input dependence from iteration I; to Iz, just insert it into a list.
If it is a flow dependence or output dependence, delete all elements in the
list which relate to this memory location.
If it is an ant: dependence from iteration I; to I, then retrieve all records
in the list which relate to the same memory location from J; to J2 , and
convert it to an anti dependence arrow from I; to Js.

Fig. 2. Post process of intermediate data

3 Experiments

In a sense, as compared with dependence graph, the iteration space dependence
graph (see fig.4 - 5) is more comprehensible to the user, which summarizes the
dataflow restricted relationship between iterations and gives a vivid picture of
the loop-carried data dependencies of a given nested loops. It should be more
easily accepted by the user.

PROGRAM gauss i H
REAL (100 100) <« Declare environment variables

INTEGER UPBOUND(10),LOWBOUND(10),UP,INNER and shadow variables.
COMMON /REGION/UPBOUND,LOWBOUND,UP,INNER
INTEGER r_fw_f

INTEGER r_a(100,100),w_a(100,100)

n=10 s
<« Initialization . The parameters mean
ca ISINT(.10,4,10) the display region of iteration space.
DO]=‘l.n
call RECISG(2,i,j) &
IF (i.ne.i) THEN
f=a(j,i)/a(ii)
call TESTFRE(L,i,j,r_a(},i),w_a(},i),1000,0,j+(i-1)*100)
call TESTFRE(L,i,j,r_a(i,i),w_a(i,i),1000,0,i+(i-1)*100)
call TESTFWR(L,ij,r_fw_f,1000,1,1) &
DOk =i+l TESTFRE / TESFWR = test for read/write
a(j,k)=a(j k)-fa(i,k)
call TESTFRE(l,-.;.r,au‘k),w,au‘k),woo,o‘ﬁ(krl)'wo(

[Record iteration instances

call TESTFRE(L,i,j,r_f,w_f,1000,1,1)
call TESTFRE(LiL1 2010w a01000.04+(c 134100) 6th parameter used for ISiDecod_e and IS_Encode.
call TESTFWR(Lij.r_a(K)W_a(j.k),1000,0,j+(k-1)*100) 7th parameter represents the variable address of the
ENDDO id_table.
ENDIF i . . .
ENDDO 8th parpameter is the subscript expression

ENDDO

call ISCLEAR()
END

[Cleanup function

Fig. 3. The source code of “Gauss” test program

PEFPT: dump.prg ISP
File Search Transform ¥iew Tool Help
1o PROGRAM gauss - i
2 REAL a(100,100)
H n=10
4: L]
[
7
8 .
EH
10:
11 - -
12:
13:
14: .
15:
16:
17: - - . . - >
F . L \%‘\\K&
] N S
19. a anti depend { 16, 16) =
20. & anti depend [16, 16) %
21, a flow depend { 16, 16} 13 . L]
22. a flow depend [16, 16) %
23. a flow depend [16, 16) %
24. a flow depend [16, 16) & .]
25. a flow depend (16, 16) §
26. a output depend ¢ 16, 16)) i
The selected region of iteration space 00 kO .
FPT Parser: Parsing = FLOW DEP
= TR
-+4:Show the iteration space of nested Do-loops.

Fig. 4. The iteration space dependence graph of ” Gauss” on variable £, consider loop
I and J with bounds (1,10) x (1, 10)

In order to help the user to understand the semantics and guide the user to
parallelize the loops, we not only distinguish between different dependencies by
respective colors, but also design a dependence filter to get a partial picture of
various types of dependencies on specific variables.

Generally, the user cannot violate and eliminate existent flow dependencies,
unless he adopts a new algorithm to rewrite the loops. However, the other depen-
dencies can be eliminated using appropriate techniques, such as scalar expansion
and variable privatization. In a way, it will simplify the graph and give more pos-
sibilities to parallelize the loops.

PEFPT: dump.prg il
File Search Transform ¥iew Tool Help

PROGRAM gauss
REAL a(100,100)
n=10

~h

1

=1,n

3.NE.1) THEM

14: f=ali,i)/ali.i)

15: DO k = i+1,n+1

16: a(j.kl=alj,k)-F*ali k)
ENDDO

£ B

anti depend
anti depend
flow depend
depend
flow depend
flow depend
flow depend 16)

26. a output depend € 16, 16) =----- C<,=,=

The selected region of iteration space is 01,10} 301,100 ki
FPT Parser: Parsing

~
I
(AN
-
o
E
mmmmmmms

%
b
.
-
B

QUTPUT DEP

] PR S

- Show the iteration space of nested Do-Toops.

Fig.5. The iteration space dependence graph of “Gauss” on variable “a”, consider

loop I and J with (1,10) x (1, 10)

Although there have already deposited many known techniques on loop trans-
formations for decades, which can result in better speedup through rearranging
or partitioning iteration space, most of them are only suitable for certain loop
models. Unfortunately, the compiler does not realize it easily by itself.

Moreover, in order to verify the correctness for certain case, most of them
need strict dependence information. For example, the premise of well-known
unimodular transformation is to get constant dependence distance vectors. It is
another barrier that there is no known optimal order in which these transfor-
mations should be applied. The iteration space dependence graph gives the user
more opportunities to play a part in optimization. Through the graph, the user
will easily find out some solution.

For example, see fig.4, the arrows represent the overwrites of scalar variable
f, it exposes the lexicography of the loops. The fig.5 tells the user that each
iteration on vertical direction does not exist restraint, all arrows cross left line
to right line. Therefore, the inner loop can be parallelized.

For more complicated cases, the user needs more sophisticated interactive
method to describe and perform desired rearrangement and partition. Unimod-
ular transformations are a potential area of interest here. E.g. the user composes
suitable unimodular matrix under the guidance of the graph, then the system
automatically calculates new loop indices and bounds.

4 Conclusion

Iteration space dependence graph is an attractive compiler information. It promises
the user new opportunities to exploit more parallelism, which are normally aban-
doned by the compiler for inaccuracy and complexity of analysis. In a way, the
method we implemented is effective and efficient, especially using runtime simu-
lation, which effectively avoids the drawback of dependence analysis we mention
before.

References

1. Michael Wolfe, “Optimizing Supercompilers for Supercomputers”, Ph.D. thesis,
University of Illinois, 1982.

2. Utpal Banerjee, “Dependence Analysis for Supercomputing”, Kluwer Academic
Publishers, 1988.

3. K.McKinliey, “Fvaluation Automatic Parallelization for Efficient Ezecution on
Shared Memory Multiprocessors”, ICS’94, pp.54-63, 1994.

4. W.Blume and R.Eigenmann, “Performance Analysis of Parallelizing Compilers
on the Perfect Benchmarks Programs”, IEEE Transaction on Parallel Distributed
Systems, 3(6), pp. 643-656, Nov. 1992.

5. K. Cooper et al.,, “The ParaScope Parallel Programming Environment”, Proceed-
ings of the IEEE, 81(2), Feb. 1993.

6. C.D.Polychronopoulos et al, “Parafrase-2: An Environment for Parallelizing, Par-
titioning, Synchronizing, and Scheduling Programs on Multiprocessors”, Inter. Con-
ference on Parallel processing pp. II-39-1148 1989.

7. F.B.Zhang “The FPT Parallel Programming Environment”, Ph.D. thesis, Univer-
sity of Gent, 1996.

8. Q.Wang, Y.J.Yu and E.H.D’Hollander, “Interactive Programming using PEFPT”,
Syllabus of the Parallel Computing Seminar, T.U.Delft, pp. 125-130 19986.

This article was processed using the L TgX macro package with LLNCS style

