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SUMMARY

I introduce a family of prior distributions over multivariate distributions, based on the use of a “Dirichlet
diffusion tree” to generate exchangeable data sets. These priors can be viewed as generalizations of
Dirichlet processes and of Dirichlet process mixtures, but unlike simple mixtures, they can capture the
hierarchical structure present in many distributions, by means of the latent diffusion tree underlying the
data. This latent tree also provides a hierarchical clustering of the data, which, unlike ad hoc clustering
methods, comes with probabilistic indications of uncertainty. The relevance of each variable to the
clustering can also be determined. Although Dirichlet diffusion trees are defined in terms of a continuous-
time process, posterior inference involves only finite-dimensional quantities, allowing computation to be
performed by reasonably efficient Markov chain Monte Carlo methods. The methods are demonstrated
on problems of modeling a two-dimensional density and of clustering gene expression data.
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1. INTRODUCTION
Unknown distributions are encountered when estimating the density of observed data and when
modeling the distribution of random effects or other latent variables. Exploratory data analysis
can also be viewed in terms of finding features of the data, such as clusters, that are useful in
modeling its distribution. A Bayesian model involving an unknown distribution requires a prior
distribution over distributions. For such a model to be useful in practice, the prior must be an
adequate approximation to our actual prior beliefs about the unknown distribution, and it must
be possible to compute the predictive distribution for new data with reasonable efficiency.

The Dirichlet process (Ferguson 1973) is a simple and computationally tractable prior for an
unknown distribution. However, it produces distributions that are discrete with probability one,
making it unsuitable for density modeling. This can be avoided by convolving the distribution
with some continuous kernel, or more generally, by using a Dirichlet process to define a mixture
distribution with infinitely many components, of some simple parametric form (Antoniak 1973;
Ferguson 1983). Such Dirichlet process mixture models are not always ideal, however, because
they use a prior distribution in which the parameters of one mixture component are independent
of the parameters of other components. For many problems, we would expect instead that the
components will be hierarchically organized, in ways analogous to the hierarchical grouping
of organisms belonging to various species. Even if no obvious hierarchy is present, modeling
a complex distribution by a mixture of simple distributions will require that each mode of
the distribution be modeled using many of these simple mixture components, which will have
similar parameters, and therefore form clusters themselves. Since Dirichlet process mixture
models don’t capture this hierarchical structure, inference using these models will be inefficient
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— it will take more data than it should to force the model to create appropriate components,
since the model does not “know” that these components will likely resemble other components.

The prior distribution over distributions I discuss here can be seen as a hierarchical gen-
eralization of Dirichlet process mixture models. The latent structure underlying the data for
this model is what I call a “Dirichlet diffusion tree”, whose terminal nodes (leaves) are the data
points, and whose non-terminal nodes represent groupings of data points in a hierarchy. This
latent tree structure generalizes the one-level grouping of data points into clusters that underlies
a Dirichlet process mixture model. For some problems, this structure may be merely a device
for obtaining a more suitable prior distribution over distributions. For exploratory applica-
tions, however, the latent diffusion tree structure may be of intrinsic interest, as it provides a
hierarchical clustering of the data.

Most commonly-used hierarchical clustering methods are not based on any probabilistic
model of the data. Williams (2000) discusses hierarchical Bayesian mixture models that are
similar in objective to the models described here, but which have a finite (though unknown)
number of components. Polya trees are another generalization of the Dirichlet process that
produces distributions that have hierarchical structure, and which can be continuous. However,
Polya tree priors have an unfortunate dependence on an arbitrary set of division points, at which
discontinuities in the density functions occur. Walker, et al. (1999) review these and other
related priors over distributions, including the “reinforced random walks” of Coppersmith and
Diaconis, which resemble the diffusion trees discussed here, but differ in crucial respects.

Inference involving Dirichlet diffusion trees will not be as computationally easy as inference
for simple Dirichlet process or Polya tree models, or as simple hierarchical clustering. Markov
chain methods are needed to sample from the posterior distribution over trees. I describe here
some techniques for constructing suitable Markov chain samplers, and demonstrate that they
work well in a simple two-dimensional density modeling problem, and on a more difficult
problem of clustering tumor cells based on gene expression data.

2. THE DIRICHLET DIFFUSION TREE PRIOR

I will define the Dirichlet diffusion tree prior over distributions by giving a procedure for
randomly generating a data set of n points, each a vector of p real numbers, in which the
data points are drawn independently from a common distribution drawn from the prior. The
procedure generates these random data sets one point at time, with each point being drawn
from its conditional distribution given the previously generated points, in a manner analogous
to the “Polya urn” procedure for defining a Dirichlet process prior (Blackwell and MacQueen
1973). Such a procedure will be consistent with the data points being independently drawn from
some unknown distribution as long as the distribution over data sets produced by the procedure
is exchangeable, since such an exchangeable prior on data sets is equivalent to a prior over
distributions by de Finetti’s Representation Theorem (Bernardo and Smith 1994, Section 4.3).

2.1. Generation of data points using a diffusion tree

Each point in a data set drawn from the Dirichlet diffusion tree prior is generated by following a
path of a diffusion process. Paths to different data points are linked in a tree structure, according
to when each path diverges from previous paths. Generation of these paths will be described
below by a sequential procedure, in which paths are generated for each data point in turn, but
we will see in Section 2.3 that the ordering of the data points is in fact immaterial.

The first data point is generated by a Gaussian diffusion process (ie, Brownian motion),
beginning at some origin, which I will here fix at zero. From this origin, the diffusion process
operates for a predetermined length of time, which without loss of generality can be fixed at
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one. If at time t, the process has reached the point X1(t), the point reached an infinitesimal
time, dt, later will be X1(t+ dt) = X1(t)+N1(t), where N1(t) is a Gaussian random variable
with mean zero and covariance σ2Idt, were σ2 is a parameter of the diffusion process. The
N1(t) at different times are independent. The end point of the path, X1(1), is the sum of the
infinitesimal increments N1(t), and is easily seen to have a Gaussian distribution with mean
zero and covariance σ2I . This end point is the first point in the data set.

The second point in the data set is also generated by following a path from the origin. This
path, X2(t), initially follows the path leading to the first point. However, the two paths will
diverge at some time, Td, after which the path to the second point is independent of the remainder
of the first path. In other words, the infinitesimal increments for the second path, N2(t), are
equal to the corresponding increments for the first path, N1(t), for t < Td, but thereafter, N2(t)
and N1(t) are independent. The distribution of the divergence time, Td, can be expressed in
terms of a “divergence function”, a(t). At each time t before divergence occurs, the probability
that the path to the second data point will diverge from the path to the first data point within the
next infinitesimal time period of duration dt is given by a(t)dt.
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Figure 1. Generation of a data set of four real numbers from the Dirichlet diffusion tree prior with
σ = 1 and a(t) = 1/(1−t). Diffusion time is on the horizontal axis, data values on the vertical axis.
The upper-left plot shows the path to the first data point (0.34). The upper-right plot shows the path to
the second data point (0.24) diverging from the first path at t = 0.86. In the lower-left plot, the path to
the third data point (−1.77) diverges from the first two paths at t = 0.35. In the lower-right plot, the
path to the fourth data point (−0.87) follows the path to the third data point until t = 0.88.

In general, the ith point in the data set is obtained by following a path from the origin that
initially coincides with the path to the previous i−1 data points. If the new path has not diverged
at a time when paths to past data points diverged, the new path chooses between these past
paths with probabilities proportional to the numbers of past paths that went each way — this
reinforcement of previous events is characteristic of “Polya urn” schemes. If at time t, the new
path is following a path traversed by m previous paths, the probability that it will diverge from
this path within an infinitesimal interval of duration dt is a(t)dt/m — note the division by m,
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which is another aspect of reinforcement of past events. Once divergence occurs, the new path
moves independently of previous paths.

Figure 1 illustrates the diffusion tree process for a data set of n = 4 data points, each a
single real number (ie, p = 1).

2.2. Probability of generating a given tree of data points
The probability of obtaining a given data set along with its underlying tree can be expressed
more easily if the details of the continuous paths taken are suppressed, leaving only the structure
of the tree (ie, how data points are hierarchically grouped), the times at which paths diverged,
and the locations of these divergence points and of the final data points. Figure 2 shows this
less-detailed representation of the example shown in Figure 1.
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Figure 2. The data x1, x2, x3, and x4 generated above and its underlying tree, with details of the paths
suppressed except at the divergence points a, b, and c.

The probability of obtaining a given tree and data set can be written as a product of two
factors. The tree factor is the probability of obtaining the given tree structure and divergence
times. The data factor is the probability of obtaining the given locations for divergence points
and final data points, when the tree structure and divergence times are as given.

The tree factor can be found without reference to the locations of the points, since the
divergence function depends only on t. The probability that a new path following a path
previously traversed m times will not diverge between time s and time t can be found by
dividing the time from s to t into k intervals of duration (t−s)/k, and letting k go to infinity:

P (no divergence) = lim
k→∞

k−1∏
i=0

(
1 − a(s + i(t−s)/k)[(t−s)/k]/m

)
= e(A(s)−A(t))/m

Here, A(t) =
∫ t
0 a(u) du. Using this formula, the probability density for obtaining the tree

structure and divergence times for the example in Figure 2 is found to be as follows:

e−A(ta) a(ta) × e−A(tb)/2 (a(tb)/2) × e−A(tb)/3 (1/3) eA(tb)−A(tc) a(tc)
Given the tree structure and divergence times, the data factor is just a product of Gaussian

densities, since the distribution for the location of a point that has diffused for time d starting
from location x is Gaussian with mean x and covariance σ2Id. Letting N(x |µ, σ2) be the
Gaussian probability density function, we can write the data factor for the example in Figure 2
as follows:

N(xb | 0, σ2tb) × N(xa |xb, σ2(ta−tb)) × N(x1 |xa, σ2(1−ta)) × N(x2 |xa, σ2(1−ta))
× N(xc |xb, σ2(tc−tb)) × N(x3 |xc, σ2(1−tc)) × N(x4 |xc, σ2(1−tc))
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2.3. Proof of exchangeability
To show that the procedure for generating a data set using a Dirichlet diffusion tree defines a
valid prior over distributions, we must show that the probability density for a data set does not
change when the order of the data points is permuted — ie, that the prior is “exchangeable”. I
will show this by proving the stronger property that the probability density for producing a data
set along with its underlying tree structure and the times and locations of the divergence points
is the same for any ordering of data points. Exchangeability follows from this by summing over
all possible tree structures and integrating over times and locations of divergences.

The probability density for a data set along with an underlying tree can be written as a
product of factors, each pertaining to one segment of the tree. (For example, the tree in Figure 2
has seven segments.) For each segment, (tu, xu) − (tv, xv), there is a factor in the probability
density that corresponds to the density for the diffusion process starting at xu to move to xv in
time tv−tu, which is N(xv |xu, σ2I(tv−tu)). The product of these factors is the overall data
factor in the density. Since the set of segments making up the tree does not depend on the order
of the data points, neither will this data factor.

A segment of the tree traversed by more than one path will also be associated with a factor
in the overall probability density pertaining to the lack of divergence of these paths before the
end of the segment. If such a segment ends before t = 1, there will be another a factor for the
probability density for one path to diverge at the end of this segment, along with factors for
the probabilities of later paths taking the branches they did. The product of such factors for all
segments is the overall factor relating to the tree structure. We need to show that this factor
does not actually depend on the ordering of the data points, even though it is expressed in an
order-dependent way above.

Consider a segment, (tu, xu)− (tv, xv), that was traversed by m > 1 paths. The probability
that the m−1 paths after the first do not diverge before tv is

∏m−1
i=1 e(A(tu)−A(tv))/i, which

does not depend on the order of the data points. If tv = 1, this is the whole factor for this
segment. Otherwise, suppose that the first i−1 paths do not diverge at tv, but that path i
does diverge at tv. (Note that i will be at least two, and that some path must diverge at tv, as
otherwise the segment would not end at that time.) The probability density for this divergence
is a(tv)/(i−1). Subsequent paths take one or the other branch at this divergence point, with
probabilities proportional to the number that have gone each way previously. Suppose that n1
paths in total go the way of the first path, and n2 go the way of path i. (Note that n1 ≥ i−1,
and n1 + n2 = m.) The probability that path j (with j > i) goes the way of the first path will
be c1/(j−1), where c1 is the number of paths that went that way before, which will vary from
i−1 to n1 − 1. The probability that path j goes the other way will be c2/(j−1), where c2 is the
number of paths that went the other way before, which will vary from 1 to n2 − 1. The product
of these branching probabilities for all j > i will be

n1−1∏
c1=i−1

c1 ·
n2−1∏
c2=1

c2

/ m∏
j=i+1

(j−1) =
(n1−1)!
(i−2)!

· (n2−1)! · (i−1)!
(m−1)!

= (i−1) · (n1−1)! (n2−1)!
(m−1)!

When this is multiplied by the probability density of a(tv)/(i−1) for path i diverging at time
tv, the two factors of i−1 cancel, leaving a result that does not depend on i, and hence is
independent of the order of the data points. This argument can be modified to handle the case
where a(t) has an infinite peak, allowing more than one path to diverge at the same time.
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3. PROPERTIES OF DIRICHLET DIFFUSION TREE PRIORS

The properties of a Dirichlet diffusion tree prior vary with the choice of divergence function,
a(t). I will investigate these properties here by looking at data sets generated from these priors.
I also investigate when the distributions produced are continuous and absolutely continuous.
More details on the properties of Dirichlet diffusion tree priors are found in (Neal 2001).
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Figure 3. Generation of a two-dimensional data set from the Dirichlet diffusion tree prior with σ = 1
and a(t) = 1/(1−t). The plot on the left shows the first twenty data points generated, along with the
underlying tree structure. The right plot shows 1000 data points obtained by continuing the procedure
beyond these twenty points.
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Figure 4. Two data sets of 1000 points drawn from Dirichlet diffusion tree priors with σ = 1. For the
data set on the left, the divergence function used was a(t) = (1/4)/(1−t). For the data set on the right,
a(t) = (3/2)/(1−t).

Divergence functions of the form a(t) = c/(1− t) have integrals that diverge only log-
arithmically as t → 1: A(t) =

∫ t
0 a(u) du = −c log(1− t). Distributions drawn from such

a prior will be continuous — ie, the probability that two data points will be identical is zero.
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These distributions will, however, show some degree of tight clustering, varying with c, due
to the possibility that divergence will not occur until quite close to t = 1. Figure 3 shows the
generation of a two-dimensional data set of 1000 points, drawn from this prior with c = 1. We
see here the hierarchical structure that the Dirichlet diffusion tree prior can produce — there are
not just multiple modes in this data, but further structure within each mode. This hierarchy is
more obvious in the data set shown on the left of Figure 4, produced from the prior with c = 1/4,
which has tighter clusters. As seen in the right of Figure 4, when c = 3/2, the distributions
generated are smoother, and do not exhibit any obvious hierarchical structure.

Priors with different characteristics can be obtained using a divergence function of the form
a(t) = b+d/(1−t)2. This divergence function can produce well-separated clusters that exhibit
a clear hierarchical structure, but with the points within each cluster being smoothly distributed,
due to the rapid increase in a(t) as t approaches one.

The distributions produced by a Dirichlet diffusion tree prior will be continuous (with
probability one) when the divergence function, a(t), is such that A(t) =

∫ 1
0 a(t) dt is infinite.

However, it does not follow that distributions drawn from such a prior will be absolutely continu-
ous, which is what is required for them to have density functions. I have investigated empirically
when Dirichlet diffusion tree priors produce absolutely continuous distributions by looking at
distances to nearest neighbors in a large sample from the distribution. For a distribution with a
continuous density function, the density in the region near where the two nearest neighbors of
a data point are located will be approximately constant. From this one can derive that if r is the
ratio of the distance to the nearest other data vector divided by the distance to the second-nearest
other data vector, the distribution of rp will be uniform over (0, 1). The empirical distribution
of rp for a large sample therefore provides evidence of whether or not the distribution from
which the sample came is absolutely continuous.

The empirical results I have obtained (Neal 2001) lead me to conjecture that Dirichlet
diffusion tree priors for p-dimensional distributions with a(t) = c/(1−t) produce distributions
that are not absolutely continuous when c < p/2, but which are absolutely continuous when c >
p/2. I conjecture that, in contrast, all Dirichlet diffusion tree priors with divergence functions
of the form a(t) = b + d/(1−t)2 with d > 0 produce absolutely continuous distributions.

4. MODELS BASED ON DIRICHLET DIFFUSION TREES

In practice, the smoothness and other characteristics of an unknown distribution will seldom be
known exactly, and it will therefore be appropriate to give higher-level prior distributions to the
parameters of the divergence function, allowing these characteristics to be inferred from the data.
The variance of the diffusion process for a variable would also usually be a hyperparameter,
which can adapt to the scale of that variable; different variables might well be given different
variances.

If the data were observed with some amount of noise, or the data values were rounded, it
would be appropriate to regard the Dirichlet diffusion tree as defining the prior for the distribution
of the unrounded, noise-free values, not for the data actually observed. For some problems, a
heavy-tailed noise distribution may be appropriate, to prevent outliers from having an undue
effect on the clustering. When the data is categorical, unobserved latent values can be introduced
that determine the probabilities of the observed data (eg, via a logistic model). The distribution
of these vectors of latent values could then be given a Dirichlet diffusion tree prior, indirectly
defining a prior for the joint distribution of the categorical values.

A model in which the amount of noise for each variable is controlled by a hyperparameter
may be useful even when there actually is no appreciable noise in the measurements, since with
such a model, some or all of the variation of some variables can be explained as “noise” that is
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unrelated to variation in other variables. If the posterior distribution for the noise hyperparameter
for a variable is concentrated near a large value, the model will have effectively learned that this
variable is not relevant to the clustering of data items.

5. MARKOV CHAIN SAMPLING FOR DIRICHLET DIFFUSION TREE MODELS

The finite representation of a Dirichlet diffusion tree shown in Figure 2 is used for Markov chain
Monte Carlo computations. The state of the Markov chain used to sample from the posterior
distribution will consist of at least the structure of the tree (the hierarchical organization of data
points) and the divergence times for non-terminal nodes. Depending on the model and sampling
method used, the Markov chain state may also include the locations of non-terminal nodes, latent
vectors underlying the data (eg, the noise-free values of observations), and hyperparameters
such as diffusion variances, noise levels, and parameters of the divergence function.

For models of real data without noise, the locations of terminal nodes are fixed at the data
points. For models with latent vectors, the terminal nodes are fixed to these latent vectors,
if they are represented explicitly. Neither latent vectors nor terminal node locations need be
represented explicitly when the data is modeled as having Gaussian noise, since their distribu-
tions conditional on the structure of the tree and the divergence times will be Gaussian, and
hence easily integrated over. The locations of non-terminal nodes can also be integrated over,
since their joint distribution given the data or latent vectors is Gaussian. This can be done in
time proportional to the number of data points, by exploiting the tree structure, as is done in a
similar context by Williams (2000). If non-terminal node locations are instead kept as part of
the Markov chain state, it takes only linear time to draw new values for them from their joint
distribution (conditional on the tree structure, hyperparameters, and latent vectors).

It is easy to sample for the diffusion and noise variance hyperparameters when divergence
times and locations for all nodes are known. Node locations can be temporarily sampled for
this purpose if they are not being retained in the state. Metropolis updates could be done for the
parameters of the divergence function, though I instead use slice sampling (Neal, 2003).
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Figure 5. Modifying a tree with a parent move. Divergence time is shown on the vertical axis, location
on the horizontal axis. Black circles are the terminal nodes.

The most crucial issue is how to sample for different tree structures, a problem that is similar
to sampling for phylogenetic trees (eg, see Mau, et al. 1999). Figure 5 illustrates one approach
that I have used, based on Metropolis-Hastings updates that propose to move the parent of a
randomly chosen terminal or non-terminal node to a new location in the tree. After the parent of
the chosen node is temporarily removed from the tree, a new position for it in the tree is found
by simulating the data generation process described in Section 2.1, up to the time where the new
path diverges from previous paths. (If this time is later than the child node’s divergence time, the
process is repeated.) This proposed position in the tree is then accepted or rejected based on the
likelihood, integrating over any missing node locations. It is important that at least the location
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of the parent node being moved be integrated over. This is easily done, and if non-terminal
node locations are being retained, a new location for the parent can easily be sampled after the
update (whether the proposal was accepted or not). If non-terminal node locations are not being
retained, the change in likelihood resulting from the proposed move can be computed in time
proportional to the depth of the tree, which typically grows logarithmically with the number
of data points. I have also tried another approach to modifying the tree structure, in which a
non-terminal node’s position in the tree is updated by slice sampling. Best results are obtained
when both approaches are combined.

The models and Markov chain sampling methods described above are implemented as
part of my software for “flexible Bayesian modeling”, which is available from my web page,
http://www.cs.utoronto.ca/∼radford. This software was used for the two exam-
ples that follow.

6. MODELING A TWO-DIMENSIONAL DENSITY
I tested the ability of Dirichlet diffusion trees to model a bivariate distribution using an artificial
data set, generated by a somewhat complex procedure that produces an absolutely continuous
distribution that is not of any simple form. (For details of the distribution and of the models and
sampling procedures, see the software documentation, in which this is an example.) The data
set of 500 points is shown on the left of Figure 6, along with a simple kernel density estimate,
produced by the kde2d function in R’s MASS library, with default parameter settings.
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Figure 6. The two-dimensional density modeling example. The plots show the data points along with
contours of the natural log of the estimated density, spaced 0.5 apart. The left plot shows a simple
kernel density estimate; the middle and right plots show Dirichlet diffusion tree estimates with different
divergence functions.

This data was modeled directly (with no noise) using two Dirichlet diffusion tree models,
with divergence functions of a(t) = c/(1−t) and a(t) = b + d/(1−t)2. For both models, the
two variables had separate hyperparameters controlling diffusion variances, which were given
fairly vague prior distributions. The parameters of the divergence function (c for the first model,
b and d for the second) were also given fairly vague priors.

The middle plot in Figure 6 shows the density estimate found using a(t) = c/(1−t). This
estimate was computed by simulating the generation of a 501st data point from 75 trees taken
from the posterior distribution. For each of these trees, 500 paths were simulated that would end
at each of the 500 data points if no divergence were to occur, with the time and location where
divergence did occur defining a Gaussian distribution for the generated point. (This stratified
sampling scheme improves the approximation, compared to generating 500 independent paths.)
The final density estimate is an equal mixture of these 75 × 500 Gaussian distributions.
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The posterior distribution of c for this model had mean 1.5 and standard deviation 0.2, so
according to my conjecture, the distribution produced will be absolutely continuous. The actual
distribution from which the data was drawn is indeed absolutely continuous, but with a density
that is smoother than the estimate found with this divergence function. Even when c ≈ 1.5
(as in the right of Figure 4), the prior with a(t) = c/(1−t) favours distributions with some
small-scale clustering, producing peaks in the density estimate around each data point.

The right plot in Figure 6 shows a density estimate found in the same way using a Dirchlet
diffusion tree with a(t) = b + d/(1−t)2. It displays a smoothness that is more appropriate for
this data.

7. CLUSTERING GENE EXPRESSION DATA
I have also applied Dirichlet diffusion tree models to data on gene expression in leukemia cells
gathered by Golub, et al. (1999). This data contains levels of expression for 3571 genes in the
tumors of 72 leukemia patients. (Expression levels for more genes were measured, but were
discarded as being unreliable. The remaining data was preprocessed to avoid spurious variation,
and scaled so the variance of each variable was one.) Each tumor was classified as one of three
types — AML, ALL-B, or ALL-T — based on data other than gene expression. The aim of
this test is to see whether by clustering the gene expression data we can rediscover these three
known types.

I first tried modeling this this data using a subset of only 200 genes, randomly selected from
the total of 3571. The expression levels of these genes were modeled as having Gaussian noise,
with the noise-free values generated from a Dirichlet diffusion tree with a divergence function
of the form a(t) = b + d/(1−t)2. Separate noise and diffusion variances were given to each
gene. All hyperparameters were given fairly vague prior distributions.
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Figure 7. Two hierarchical clusterings of the 72 tumors, drawn from the posterior distribution. Tumor
types are shown by o = AML, + = ALL-B, and x = ALL-T.

I ran two replicated Markov chain simulations, each taking approximately 90 minutes on a
1.7 GHz Pentium 4 processor. The state for these Markov chains did not include the locations
of non-terminal nodes; these were instead integrated over. The two chains produced consistent
results. Both appear to have converged after about one third of the run, judging by trace plots
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of hyperparameters. I also ran chains in which non-terminal node locations were explicitly
represented. This sped up tree updates by a factor of eight, but reduced their acceptance rate,
with the result that efficiency was comparable to when these locations were integrated over.

Figure 7 shows dendrograms derived from two diffusion trees sampled from the posterior
distribution. The clustering found is mostly consistent with the pre-existing classification,
showing that the Dirichlet diffusion tree method produces useful results on problems of this
scale. The posterior means of the diffusion and noise standard deviations for different genes
varied by a factor of five, showing that the model has discovered that some genes are more
relevant to the clustering than others.

When all 3571 genes are used, each Markov chain update takes much longer (increasing in
proportion to the number of genes), and the chain shows some signs of not completely converg-
ing. The results produced are reasonable, but correspond to the pre-existing classification less
closely than was the case using only 200 genes. I am presently investigating whether annealing
methods can improve convergence on this very high dimensional problem.
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