
Camera Models and Parameters

We will discuss camera geometry in more detail.
Particularly, we will outline what parameters are important
within the model.  These parameters are important to several
key computer vision tasks and must be computed
(calibrated) using approaches we will discuss in later
lectures.



Important Definitions
• Frame of reference: a measurements are made with respect to a

particular coordinate system called the frame of reference.

• World Frame: a fixed coordinate system for representing objects
(points, lines, surfaces, etc.) in the world.

• Camera Frame: coordinate system that uses the camera center as its
origin (and the optic axis as the Z-axis)

• Image or retinal plane: plane on which the image is formed, note that
the image plane is measured in camera frame coordinates (mm)

• Image Frame: coordinate system that measures pixel locations in the
image plane.

• Intrinsic Parameters: Camera parameters that are internal and fixed to
a particular camera/digitization setup

• Extrinsic Parameters: Camera parameters that are external to the
camera and may change with respect to the world frame.



Camera Models Overview

• Extrinsic Parameters: define the location and orientation of the camera
with respect to the world frame.

• Intrinsic Parameters: allow a mapping between camera coordinates
and pixel coordinates in the image frame.

• Camera model in general is a mapping from world to image
coordinates.

• This is a 3D to 2D transform and is dependent upon a number of
independent parameters.



Pinhole Model Revisited
• Select a coordinate system (,x,y,z) for the three-dimensional space to

be imaged

• Let (u,v) be the retinal plane π
• Then, the two are related by:
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• Which is written linearly in homogeneous coordinates as:
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The Retinal Plane
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Camera orientation in the world

• The position of the camera in the world must be recovered
– rotational component

– translation component

• Describes absolute position of the focal plane in the world coordinate
system

• This is a Euclidean transform from one coordinate system to another

• -translation, rotation
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Translation

rA =  rB +  tA

where ta represents
the pure
translation from
frame A to frame
B written in frame
A coordinates
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Frames A and B are related through
a pure translation
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Rotations
Frames A and B are related through

a pure rotation
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A position vector r, in
frame B, can be
expressed in the A
coordinate frame by
employing the 3 X 3
transformation matrix

ARB . . .



Rotation Matrix

This projection of frame B onto frame A clearly converts
a position vector,      , written in frame B, into the
corresponding coordinates in frame A,       .

Õ
rB

Õ
rA

A A B B

A B A A BB
A B

B BA BA A B A

A B
A B A A BB

r R r

i i i j i k
rx rx

ry j i j j j k ry

rz rz
k i k j k k

=

 
⋅ ⋅ ⋅         = ⋅ ⋅ ⋅           ⋅ ⋅ ⋅  

v v

)) ) ) ) )

)) ) ) ) )

) ) ) )) )



Interpreting the Rotation Matrix

To interpret the rotation matrix for this
transformation:

• the rows of ARB represent the projection of
the basis vectors for frame A onto the basis
vectors of frame B

• the columns of ARB represent the basis
vectors of frame B projected onto the basis
vectors of frame A



Rotations

One way to specify the rotation matrix ARB  is
to write the base vectors

in frame A coordinates and to enter the result
into the columns of ARB
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If           is a column vector representing the
axis of frame B written in frame A
coordinates, then
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Rotations: x

For completeness, we will look at the rotation
matrix for rotations about all three axes:

1 0 0

( , ) 0 cos( ) sin( )

0 sin( ) cos( )

rot x θ θ θ
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Rotations: y

For completeness, we will look at the rotation
matrix for rotations about all three axes:
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Rotations: z

For completeness, we will look at the rotation
matrix for rotations about all three axes:
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Extrinsic Parameters

• Recall the fundamental equations of perspective projection
– assumed the orientation of the camera and world frame known

– this is actually a difficult problem known as extrinsic pose problem

– using only image information recover the relative position and
orientation of the camera and world frames

• This transformation is typically defined by:
– 3-D translation vector T=[x,y,z]T

• defines relative positions of each frame

– 3x3 rotation matrix, R
• rotates corresponding axes of each frame into each other

• R is orthogonal: (RTR = RRT =I)



Extrinsic Parameters

R T

PXW

YW

ZW
ZC

XC

YC

Note: we write R=
r11 r12  r13
r21 r22 r23
r31 r32 r33

( )
How to write both rotation and translation as a single,
composed transform?



We consider the general case where frame 0
and frame 2 are related to one another
through both rotation and translation
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Homogeneous Transformations

The homogeneous transform is a
mechanism for expressing this form of

compound transformation
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Homogeneous Transforms

• Expand the dimensionality of the domain space

• Same transformation now can be expressed in a linear
fashion

• Linear transforms can be easily composed and written as a
single matrix multiply

• Vectors, in homoeneous space take on a new parameter r.
This is the scale of the vector along the new axis and is
arbitrary:  [x y z r]

• Normalization, after the transform has been applied is
accomplished simply by dividing each vector component
by  r  [x y z 1] = [x’/r  y’/r  z’/r  r/r]



Homogeneous Transformations

• Let 0T2 be the compound
transformation consisting of a
translation from 0 to 1, followed by
a rotation from 1 to 2



Homogeneous Transformations

• In vector notation, this homogeneous
transformation and corresponding
homogeneous position vectors are written:
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Composing Transformations

The homogeneous transform
provides a convenient means of

constructing compound
transformations



Composing Transformations

Example: Suppose
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Composing Transformations

Example: 0 4 0 1 1 2 2 3 3 4T T  T  T  T=
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The resulting compound transformation is

Composing Transformations

0 4

0.707 0 0.707 1
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Extrinsic Parameters
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Intrinsic Parameters
• Characterize the optical, geometric, and digital

characteristics of the camera
• Defined by:

– perspective projection: focal length  f

– transformation between camera frame and pixel coordinates

– geometric distortion introduced by the lens

• Transform between camera frame and pixels:

x = -(xim - ox)sx

y = -(yim - oy)sy

• (ox,oy) image center (principle point)

• (sx,sy) effective size of pixels in mm in horizontal and
vertical directions



Camera Lens Distortion
• Optical system itself a source of distortions

– evident at the image periphery

– worsened by large field of view

• Modeled accurately as radial distortion

x = xd (1 + k1r2 + k2r4)

y = yd (1 + k1r2 + k2r4)

• (xd,yd) distorted points, and r2= x2
d + y2

d

• note: this is a radial displacement of the image points

• because k2 << k1,    k2   is often ignored.



Camera models (again)

• Recall

Using the equations from previous slides, we are able to transform
pixel coordinates to world points this is our camera model.

-(xim - ox)sx = f
RT

1(Pw - T)

RT
3(Pw - T)

-(xim - ox)sx = f
RT

2(Pw - T)

RT
3(Pw - T)

Ri, i=1,2,3  is a 3D vector formed by the I-th row of R

x =  f y =  f 
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• Linear Perspective Projection Equations:



Linear Matrix Representation
• If we neglect radial distortion, we can rewrite the linear

perspective transform as a matrix product.

• A matrix is used for intrinsic and extrinsic parameters.

Mext= 

Mint = -f/sx 0 ox

0         -f/sy oy

0 0 1
( )

r11      r12      r13      -RT
1T

r21      r22      r23      -RT
1T 

r31      r32      r33      -RT
1T 

( )



Using the Perspective Equations
• 3x3 Mint only depends on the intrinsic parameters

• 3x4 Mext depends on extrinsic parameters

• We make use of these by introducing homogeneous coordinates to
point vectors in the world.

– Pw must be expressed in homogenous coordinates to allow direct
multiplication to Mint and Mext

x1

x2
x3

= Mint Mext 

Xw

Yw

Zw

1
• [x1,x2,x3]T is the projected point, using the vector we compute image

coordinates:
x1/x3 = xim

x2/x3 = yim



The Perspective Transform

• Mext : from world to camera frame

• Mint : from camera to image

• Can be viewed, formally, as a relation between a 3D point
and its perspective projection on the image plane.
– Maps points in projective space, space of vectors [xw,yw,zw]T  to the

projective plane, space of vectors [x1,y1,z1]T.

– defined up to a

– 11 independent parameters



Camera models from the Projective Equations

• Various models can be derived by setting appropriate constraints on
the projection equations

• The Perspective Model
– ox = oy = 0

– sx = sy = 1.0

• The Weak-Perspective Model
– note that image point p of world point P is given by:

p = M
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Zw

1

=
f RT
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f RT

2(T - P)
f RT

3(T - P)



Weak-Perspective Continued

 RT
3(P -  T) is the distance of P from the perspective

center along the optical axis.
Therefore:

 RT
3(Pi -  P) 

 RT
3(P -  T) << 1

Is the weak-perspective approximation. Using this 
approximation the perspective matrix can be written
to eliminate negligible terms.


