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Abstract. The quality of many software intensive systems is determined to a large extent by their performance 

characteristics, such as response time and throughput. The developers of such systems should be able to assess 

and understand the performance effects of various design decisions starting at an early stage, when changes are 

easy and less expensive, and continuing throughout the software life cycle. This can be achieved by constructing 

and analyzing quantitative performance models that capture the interact ions between the main system 

components and point to the system’s performance trouble spots. The paper proposes a graph grammar -based 

transformation from UML design models into Layered Queueing Network (LQN) performance models. The 

LQN model structure is generated from the high -level software architecture showing the architectural patterns 

used in the system, and from deployment diagrams indicating the allocation of software components to 

hardware devices. The LQN model parameters are obtained from detailed models of key performance scenarios, 

represented as UML interaction or activity diagrams annotated with performance information (according to the 

recently proposed UML performance profile). The proposed transformation from UML to LQN was 

implemented with PROGRES, a well-known visual language and environment for programming with graph 

rewriting systems. The proposed technique was applied to the performance analysis of three CORBA-based 

client server systems, and the performance model results are reasonably close to measurements obtained from 

the actual implementations. 

1. Introduction 

The quality of many software intensive systems, ranging from real-time embedded systems to 

telecommunication and web-based applications, is determined to a large extent by their performance 

characteristics, such as response time and throughput. The developers of such systems should be able 

to assess and understand the performance effects of various design decisions starting at an early stage, 

when changes are easy and less expensive, and continuing throughout the software life cycle. 

Software Performance Engineering (SPE), introduced in (Smith, 1990), is a technique that proposes to 

use quantitative methods and performance models in order to assess the performance effects of 

different design and implementation alternatives during the development of a system.  SPE promotes 

the idea that the integration of performance analysis into the software development process, from the 

earliest stages to the end, can insure that the system will meet its performance objectives. This would 

eliminate the need for “late-fixing” of performance problems, a frequent practical approach that 
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postpones any performance concerns until the system is completely implemented. Late fixes tend to 

be very expensive and inefficient, and the product may never reach its original performance 

requirements.  

The process of building a system's performance model before the system is completely implemented 

starts with identifying a small set of key performance scenarios repres entative of the way in which the 

system will be used (Smith, 1990; Smith and Williams, 2001). The performance analysts must 

understand first the system behaviour for each scenario by talking with the system developers and/or 

by using design specifications. The analyst, helped by the developers, will follow the execution path 

through the software for each scenario, from component to component, identifying the quantitative 

demands for resources made by each component (such as CPU execution time and I/O operat ions), as 

well as the various reasons for queueing delays (such as competition for hardware and software 

resources). The scenario descriptions thus obtained are mapped onto a performance model. By solving 

the model, the analyst will obtain performance results such as response times, throughput, utilization 

of different resources by different software components, etc. Trouble spots can be thus identified, and 

alternative solutions for eliminating them assessed in a similar way.  

The paper aims to bridge the gap between design specifications and performance modelling by 

proposing an automatic graph grammar -based transformation from UML (OMG, 1999) design models 

annotated with performance information into Layered Queueing Network (LQN) performance 

models. This way, the consistency of the performance model with the design model can be easily 

assured.The LQN model structure is generated from the high-level software architecture showing the 

architectural patterns used in the system, and from deployment diagrams ind icating the allocation of 

software components to hardware devices. The LQN model parameters are obtained from key 

performance scenarios represented as UML interaction or activity diagrams annotated with 

performance information. The annotations are made according to the recent proposal for a UML 

Profile for Schedulability, Performance and Time (OMG, 2001), whose goal is to enable the 

construction of models that can be used for making quantitative performance predictions. The 

proposed performance profile extends the UML metamodel with stereotypes, tagged values and 
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constraints that make possible to attach quantitative performance annotations (such as resource 

demands, execution probabilities, arrival rates, etc.) to the UML model elements.  

The UML to LQN transformation proposed in this paper was implemented with PROGRES, a well-

known visual language and environment for programming with graph rewriting systems (Schürr, A., 

1990; Schürr, A., 1994; Schürr, A., 1997). The paper extends previous work of the authors:  (Petriu, 

Shousha and Jalnapurkar, 2000) showed how to build LQN performance models based on the 

architectural patterns used, but the transformation was not automated, whereas (Petriu and Wang, 

2000) proposed a PROGRES-based transformation of architectural patterns into LQN. This paper 

completes the picture by showing how the LQN parameters can be obtained, as well, from UML 

models annotated with performance information according to the newly proposed UML profile.  

The technique proposed in the paper is applied to three CORBA-based client-server architectures. 

The goal was to generate automatically the LQN models from UML specifications of the system and 

see if it gives acceptable results, by comparing them with measurement results from (Abdul-Fatah and 

Majumdar, 1998). 

The performance modelling formalism used in the paper is the Layered Queueing Network (LQN) 

model, an extension of the well-known Queueing Network (QN) model. LQN was developed 

especially for modelling concurrent and/or distributed software systems (Woodside, 1988; Woodside 

et al, 1995, Franks at al, 1995). The LQN components represent either software processes or hardware 

devices. LQN determines the delays due to contention, synchronization and serialization at both 

software and hardware levels (see section 2.1 for a more detailed description).  

Since the introduction of SPE, there has been a significant research effort to integrate performance 

analysis into the software development process throughout all lifecycle phases. One aspect of this 

research is the derivation of performance models from software design specifications. A survey of the 

techniques developed in the recent years for deriving performance models from UML models is given 

in (Balsamo and Simeoni, 2001). The SPE methodology is followed very closely in (Cortelesa and 

Mirandola, 2000). Information from UML use case, deployment, and sequence diagrams is used to 

generate SPE scenario descriptions in the form of flow diagrams similar to those used in  (Smith, 
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1990; Smith and Williams, 2001). The flow diagrams are then mapped onto QN models. Another 

work presented in (Kähkipuro, 2001) introduces a UML-based notation and framework for describing 

performance models, and a set of special techniques for modeling component-based distributed 

systems. The idea of patterns is used in (Gomaa and Menasce, 2000) to investigate the design and 

performance modelling of interconnection patterns for client/server systems. Compared to the existing 

work in this direction, our paper is the only one that us es graph-grammar based transformations and 

high-level architectural patterns to generate software performance models. 

The paper is organized as follows: background information on LQN model, architectural patterns, 

UML performance profile and PROGRES is given in section 2; the principle of UML to LQN 

transformation is discussed in section 3; the PROGRES -based transformation is presented in section 

4; a case-study of three middleware-based client/server systems is presented in section 5; and the 

conclusions in section 6. 

2. Background 

2.1. Layered Queueing Network model 

Queueing Network (QN) models are a widely used technique for predicting the performance of 

computing systems. Although QN models have been successfully used in the context of traditional 

time-sharing computers, they often fail to capture complex interactions among various software and 

hardware components in client-server distributed processing systems. The Layered Queueing 

Networks (LQN) (Woodside,88; Woodside et al 1995, Franks at al 1995) and the Method of Layers 

(Rolia and Sevcik, 1995) are examples of new modeling techniques that were developed for handling 

such complex interactions. 

LQN is a new adaptation of queueing models for systems with software and hardware servers and 

resources. It is well suited for systems with parallel processes running on a multiprocessor or on a 

network, such as client-server systems. An LQN model is represented as an acyclic graph whose 

nodes (named tasks) are software entities and hardware devices, and whose arcs denote service 

requests (see Fig. 1). The LQN tasks are classified into three categories: pure clients (also named 
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reference tasks, as they drive the system), 

pure servers, and active servers. While 

pure clients can only send messages 

(requests) and pure servers can only 

receive requests, active servers can both 

send and receive requests. This marks the 

main difference between LQN and QN, 

where active servers, to which requests are 

arriving and queueing for service, may 

become clients to other servers as well. This gives rise to nested services. It is important to note that 

the word layered in the name of LQN does not imply a strict layering of the tasks. Although not 

explicitly illustrated in LQN notation, each server has an implicit message queue, called the request 

queue, where the incoming requests are waiting their turn to be served. The default scheduling policy 

of the request queue is FIFO, but other policies are also supported. A software or hardware server 

node can be either a single-server or a multi-server. A multi-server is composed of more than one 

identical clones that work in parallel and share the same request queue. A multi-server can also be an 

infinite-server if there is no limit to the number of its clones. The tasks are drawn as parallelograms, 

and the processors as circles (see Fig.2 for the notation). 

An LQN task may offer more than one kind of service, each modeled by a so-called entry drawn as a 

smaller parallelogram nested in a task. An entry is like a port or an address of a particular service 

offered by a task. An entry has its own execution time and demands for other services (given as model 

parameters). Servers with more than one entry still have a single input queue, where requests for 

different entries wait together.  

Arcs in an LQN model denote requests from one entry to another. The labels on the arcs denote the 

average number of requests made each time the corresponding phase in the source entry is executed. 

Requests for service from one server to another can be made via three differ ent kinds of messages in 

LQN models: synchronous, asynchronous and forwarding. A synchronous message represents a 

T1

P1

P2

T2_e2T2_e1

T2

1 1

1 1

T3 T4

P4P3

Pure Clients

Active Server

Pure Servers
 

Figure 1. Simple LQN model 
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request for service sent by a client to a server, where the client remains blocked until it receives a 

reply from the provider of service. If the server is busy when a request arrives, the request is queued. 

After accepting a request for one of its entries, the server starts to process it by executing a sequence 

of one or more phases of that entry. At the end of phase 1, the server replies to the client, which is 

unblocked and continues its work. The server continues with the following phases, if any, working in 

parallel with the client, until the completion of the last phase. After finishing the last phase, the server 

begins to serve a new request from the queue, or becomes idle if the queue is empty. During any 

phase, the server may act as a client to other servers. In the case of an asynchronous message, the 

client does not block after sending the message and the server does not reply back. A forwarding  

message (represented by a dotted request arc) is associated with a synchronous request that is served 

by a chain of servers. The client sends a synchronous request to Server1, which begins to process the 

request, then at the end of phase1 forwards it to Server2. Sever1 proceeds normally with the 

remaining phases in parallel with Server2, then at the end of its last phase starts another cycle. The 

client, however, remains blocked until Server2, which replies to the client at the end of its phase 1,  

serves the forwarded request. A forwarding chain can contain any number of servers, in which case 

the client waits until it receives a reply from the last server in the chain. 

T2

P1

T1

P2

e1

e1 Entry

Task
(single-server)

Task Pool
(multi - server)

Processor
(single -server)

Processor
(multi -server)
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a
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Activity Flow
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And-Fork
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Figure 2. LQN graphical notation 
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A phase may be deterministic or stochastic, and is 

subject to the following assumptions:  

• The total CPU demand of a phase (whose mean 

value s is given as a parameter) is divided up into 

n+1 exponentially distributed slices separated by 

requests to lower level servers. Each slice has the 

mean of s/(n+1), where n is the number of  

requests made in that phase. 

• The number of requests to lower level servers is geometrically distributed with a specified 

mean (given as a parameter) in a stochastic phase, and is deterministic in a deterministic phase.  

A more recent extension to LQN (Franks, 2000) lets an entry be further decomposed into activities if 

more details are required to describe its execution. This is typically required when entries have fork 

and join interactions. Activities are components that represent the lowest level of detail in LQN. They 

can be connected together not only sequentially, but with fork and join interactions as well, in the 

form of a directed graph (see Fig. 2 and 3). After an AND-fork, all successor activities can execute in 

parallel, while after an OR-fork, only one of the successor activities is executed, with probability Pi. 

Joins happens when multiple threads of control are connected together. As expected, the AND-joins 

introduce synchronization delays. An activity may have service time demand on the processor on 

which its task runs, just like a phase. Also, activities can make requests to other tasks by way of 

synchronous or asynchronous messages.  

The parameters of an LQN model are as follows: 

• customer (client) classes and their associated populations or arrival rates; 

• for each phase (activity) of a software task entry: average execution time; 

• for each phase (activity) making a request to a device: average service time at the device, and 

average number of visits; 

• for each phase (activity) making a request to another task entry: average number of visits  

e1

e3e2

T1

T3T2

&

&

a

cb

d

 

Figure 3. LQN task with activities 
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• for each request arc: average communication delay; 

• for each software and hardware server: scheduling discipline, multiplicity.  

Although the LQN toolset presented in (Franks, 2000) includes both simulation and analytical solvers, 

the analytical solver was used to solve the LQN models generated in the paper. 

2.2 UML Performance profile 

According to (OMG,2001) the UML Performance Profile provides facilities for: 

• capturing performance requirements within the design context 

• associating performance-related Q0S characteristics with selected elements of the UML model 

• specifying execution parameters which can be used by modelling tools to compute predicted  

performance characteristics 

• presenting performance results computed by modelling tools or found by measurement. 

The Profile describes a domain model, shown in Fig. 4, which identifies basic abstractions used in 

performance analysis. Scenarios define response paths through the system, and can have QoS 

requirements such as response times or throughputs. Each scenario is executed by a job class, called 

here a workload, which can be closed or open and has the usual characteristics (number of clients or 

arrival rate, etc.) Scenarios are composed of scenario steps that can be joined in sequence, loops, 

branches, fork/joins, etc. A scenario step may be an elementary operation at the lowest level of 

granularity, or may be a complex sub-scenario composed of many basic steps. Each step has a mean 

number of repetitions, a host execut ion demand, other demand to resources and its own QoS 

characteristics. Resources are another basic abstraction, and can be active or passive, each with their 

own attributes. The Performance profiles maps the classes from Fig. 4 to stereotypes that can be 

applied to a number of UML model elements, and each class attribute to a tagged value. For example, 

the basic abstraction PStep is mapped to the stereotype <<PAstep>> that can be applied to the 

following UML model elements: Message, Stimulus (when the scenario is represented by an 

interaction diagram) and ActionState, SubactivityState (when the scenario is represented by an 

activity diagram). 
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2.3. Architectural Patterns 

Frequently used architectural solutions are identified in literature as architectural patterns (such as 

pipeline and filters, client/server, client/broker/server, layers, master -slave, blackboard, etc.) (Shaw, 

1996; Buchmann et al, 1996). A pattern introduces a higher-level of abstraction design artifact by 

describing a specific type of collaboration between a set of prototypical components playing well-

defined roles, and helps our understanding of complex systems. Each architectural pattern describes 

two inter-related aspects: its structure (what are the components) and behaviour (how they interact). 

In the case of high-level architectural patterns, the components are usually concurrent entities that are 

executed in different threads of control, compete for resources, and may require some 

synchronization. The patterns are represented as UML collaborations (not to be confused with UML 

collaboration diagrams, a type of interaction diagrams). The symbol for a collaboration is an ellipse 

with dashed lines that may have an “embedded” square showing the roles played by different pattern 

participants (Booch et al, 1999; OMG, 1999).  

PerformanceContext

Workload
responseTime
priority

PScenario
hostExecDemand
responseTime

PResource
utilization
schedulingPolicy
throughput

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

PPassiveResource
waitingTime
responseTime
capacity
accessTime

PStep
probability
repetition
delay
operations
interval
executionTime

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

0..n

1..n
1..n 1

1
1

1..n 1..n

0..n

0..n

0..n

0..1

1..n

1

1
{ordered}

+successor

+predecessor

+root

+host

PerformanceContext

Workload
responseTime
priority

PScenario
hostExecDemand
responseTime

PResource
utilization
schedulingPolicy
throughput

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

PPassiveResource
waitingTime
responseTime
capacity
accessTime

PStep
probability
repetition
delay
operations
interval
executionTime

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

0..n

1..n
1..n 1

1
1

1..n 1..n

0..n

0..n

0..n

0..1

1..n

1

1
{ordered}

+successor

+predecessor

+root

+host

 

Figure 4. Domain model in the UML Performance Profile 
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In Fig. 5 and 6 are shown the structure and behaviour of two patterns used in our case study: 

ClientServer and ForwardingServerChain. The ClientServer pattern has two alternatives: the one 

shown in Fig.5.b is using a rendezvous communication style (where the client sends the requests then 

remains blocked until the sender replies), whereas the one from Fig. 5.c is using an asynchronous 

communication style (where the client continues its work after sending the request, and later on will 

accept the server’s replay). The ForwardingServerChain, shown in Fig.6, is an extension of the 

ClientServer pattern, where the client’s request is served by a series of servers instead of a single one. 

client is blocked 
waiting for the reply

send request

process reply

FS waiting

process request 
and forward

FS undefined

ForwardingServerClient

process reply

send request

do something 
else

wait for reply

waiting

process request 
and send reply

undefined

ServerClient

a) ClientServer collaboration

Client Server1*

Client
Server

ClientServer

b) ClientServer with rendezvous

c) ClientServer with asynchronous
messages

 

Figure 5. ClientServer architectural pattern  
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Figure 6. ForwardingServerChain architectural pattern 
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There may be more than two servers in the chain (although only two are shown in Fig.6). A server in 

the middle plays the role of ForwardingServer, as it forwards the request to the next server in the 

chain after doing its part of service. The last server in the chain plays the role of ReplyingServer, as it 

sends the reply back to the client. More architectural patterns and the corresponding rules for 

translating them into LQN are described by the authors in (Petriu, Shousha and Jalnapurkar, 2000) 

and (Petriu and Wang, 2000). 

2.4. Graph Rewriting Systems (PROGRES)  

The graph-grammar formalism is appropriate for the UML to LQN transformation because both UML 

and LQN models are described by graphs. We are using a known graph rewriting tool named 

PROGRES (PROgramming with Graph Rewriting Systems) to implement the formal transformations 

from UML to LQN (Schürr, 1990; Schürr, 1994; Schürr, 1997). This section describes briefly the 

concepts used, but it does not go into details. 

The essential idea of all implemented graph grammars or graph rewriting systems is that they are a 

generalization of string grammars (used in compilers) or term rewriting systems. The terms “graph 

grammars” and “graph rewriting systems” are often considered synonymous. However, strictly 

speaking, a graph grammar is a set of production rules that generates a language of terminal graphs 

and produces nonterminal graphs as intermediate results. On the other hand, a graph rewriting system 

is a set of rules that transforms one instance of a given class of graphs into another instance of the  

same class of graphs without distinguishing terminal and nonterminal results.  

In order to use PROGRES for the transformation of an attributed input graph (representing a UML 

model) into an attributed output graph (representing an LQN model) we have to define a graph 

schema that describes the static properties of the graph, i.e., the types/classes of the graph elements 

and their legal combinations. The schema shows the types of nodes and edges that can appear in both 

the input and the output graph. In the intermediary transformation stages, the graphs contain mixed 

nodes and edges. Applying a set of production rules in a controlled way performs the desired graph 

transformations. A production rule has a left-hand side defining a graph pattern that will be replaced 
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by the right-hand side (another graph pattern). A rule also shows how to compute the attributes of the 

new nodes from the attributes of the nodes that were replaced. In addition to the production rules, 

PROGRES also offers tests, queries, transactio ns, and functions, that are used to completely define 

the rewriting rules by which we can query and change the graph (Schürr, 1994). 

3. Principle of Transformation from UML to LQN 

The starting point for our algorithm is a UML model containing the following elements: 

• High-level software architecture represented by one or more collaboration diagrams showing 

the concurrent (distributed) component instances represented as active objects and the 

architectural patterns they participate in.  

• Allocation of high-level software components to hardware devices, modelled as a 

deployment diagram. 

• A set of key performance scenarios annotated with performance information (see section 5 

for a concrete example). Each scenario can be given either as a sequence or as an activity 

diagram.  

The output of our transformation algorithm is an LQN model that can be read and solved by the 

existing LQN solvers. This section presents the principle of the transformation at the UML and LQN 

notation level, whereas the following sections goes more deeply into the PROGRES transformation.  

The following pseudocode describes the main steps of the algorithm: 

1. Generate the LQN model structure 

1.1. determine LQN software tasks from the high-level architecture 

1.2. determine LQN hardware devices from deployment diagram 

2. Generate LQN details on entries, phases, activities from scenarios 

2.1 transform scenarios represented as sequence diagrams into activity diagrams 

2.2 for each scenario process the corresponding activity diagram(s) 

2.2.1  match the communication pattern from the architectural pattern with 
the messages between components given in the activity diagram  

2.2.2  identify the activity diagram elements corresponding to different LQN 
entries, phases, and activities, and create the LQN elements 

3.   Traverse the LQN elements, compute their parameters and write out the model file.  
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Step 1 generates the model structure (i.e., the software and hardware tasks and their connecting arcs) 

from the high-level architecture of the UML model and from the deployment of software components 

to hardware devices. Two kinds of UML diagrams are taken into account in this step: a high-level 

collaboration diagram that shows the concurrent/distributed high-level component instances and the 

patterns in which they participate, and the deployment diagram. Figures 7 and 8 show these two 

diagrams for one of the case-study systems discussed in section 5, namely the Forwarding-ORB 

example. Each high-level software component is mapped to a LQN task, and each hardware device 

(processor, disk, communication network, etc.) is mapped to a LQN hardware task. The arcs between 

LQN nodes correspond to the links from the UML diagrams. It is important to mention that in the first 

transformation step from UML to LQN we take into account only the structural aspect of the 

architectural patterns; their behavioural aspect will be considered in the next step. 

 

LQN task details are obtained in step 2 from scenario models. In general, scenarios can be represented 

in UML by sequence, collaboration or activity diagrams. (The first two are very close as descriptive 

power and have similar metamodel representation). UML statecharts are another kind of diagrams for 

behaviour description, but are not appropriate for describing scenarios. A statechart describes the 

behaviour of an object, not the cooperation between several objects, as needed in a scenario.   

There are some well-known differences between sequence and activity diagrams. Sequence diagrams 

are very good at showing the responsibilities of different objects and the linear execution of sequential 
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steps, but are not representing well concurrent flows of control. The present UML standard still lacks 

convenient features for representing loops, branches and fork/join structures in sequence diagrams. 

Other authors who are building performance models from UML designs have also pointed out this 

deficiency of the current UML standard, and are using instead extended sequence diagrams that look 

like the Message Sequence Chart standard (see, for example, Smith and Williams, 2001).  

On the other hand, activity diagrams show very well the flow of control, but are not so good in 

showing the objects responsible for different actions. This problem was somewhat alleviated by the 

introduction of swimlanes in activity diagrams. Another difference is that the sequence diagrams are 

somewhat more compact as a notation than the activity diagrams. Considering the trade-offs, we have 

decided to use activity diagrams for generating LQN detailed elements, since concurrency and flow of 

control are important in our transformation algorithm. However, we also accept scenarios modelled as 

sequence diagrams if the designers consider them good enough for their purposes, but we transform 

them into activity diagrams before proceeding with the transformation to LQN. 

Fig. 9 illustrates our approach to transforming sequence diagrams into activity diagrams (step 2.1 of 

the algorithm). We reserve a swimlane for each execution thread corresponding to a concurrent 

component (i.e., active object), which will contain also the operations done by passive objects 

executed in the same thread. The information on how to group the active and passive objects comes 

from the high-level architecture, where active instances may contain or use passive instances. In Fig. 

9, for example, there are three active objects, x, y and z, in the sequence diagram, and each has a 

corresponding swimlane in the activity diagram. The concept behind the transformation from 

sequence to activity diagram is to follow the message flow in the sequence diagram by taking also 

into account the execution threads of the active objects involved. We have defined transformation 

rules for the following cases (see Petriu and Sun, 2000 for more details): 

a. Sequential messages passed between objects in the same execution thread are mapped to an 

Action States in the corresponding swimlane (Figure 9, message "b"). 

b. Messages with condition guards that are alternatives of the same condition in the sequence 

diagram are mapped to a branching structure in the activity diagram (Figure 9, message "g" ,"h") 
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c. A synchronous message between 

objects running in different threads of 

control is treated as a join operation on 

the receiving side in the corresponding 

activity diagram, and its reply is 

treated as the corresponding fork 

(Figure 9, messages "a","r"). The 

object flow may be also shown, 

according to the current UML 

standard. The sender’s execution 

thread is suspended from the moment 

it sent the message until receiving 

back the reply. 

d. An asynchronous creation of an active 

object marks a fork operation in the 

corresponding activity diagram 

(Figure 9, new(z) ). 

e. An asynchronous message sent to 

another thread of control indicates a 

join operation on the receiver side and 

a fork operation on the sender side in 

the corresponding activity diagram 

The object flow is may be also shown.  

 

Step 2.2 of the algorithm processes the activity diagram for each scenario and identifies the LQN 

lower level elements: entries, phases and activities. Step 2.2.1 starts by traversing the activity diagram 

with the purpose of identifying the messages exchanged between concurrent components (i.e., those 
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that are crossing the swimlane boundaries). The intent is to overlay over the activity diagram the 

behavioural aspect of the architectural patterns involved, in order to verify whether the scenario is 

consistent with the patterns. Figure 10 illustrates this idea, by showing some inter-component 

messages that are identified and matched with the  client-server pattern.  

This information is used to generate the LQN elements (entries, phases and activities) as internal 

graph nodes in step 2.2.2. A task entry is generated for each kind of service offered by the 

corresponding software component instance. The set of all services offered by an instance is 

determined by looking at the messages received by this instance in all the scenarios considered for 

performance analysis. The LQN elements are generated as follows: 

• Each task starts with only one entry. A new entry is added to the task if a new type of a 

request is received. If a reques t is received more than once with the same message ID, its 

number of repetitions is increased by one.  

• All entries start in Phase 1. When a server sends a reply back to the client or forwards it to 

another server, it moves to the second phase within the entry. Additional phases may be 
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Figure 10. Extracting entry and phase information from the activity diagram 
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necessary for other patterns, such as "pipeline and filters", but they are not described in the 

paper (see Petriu, Shousha and Jalnapurkar, 2000) for more details on other patterns.  

• LQN activities are created if a conditional or non-conditional branching state is encountered. 

In the case of conditional branching, an LQN “OrFork” is created to connect alternate 

activities. A probability for each branch is calculated based on the given guard condition. An 

“OrJoin” is created to end the conditional branching, corresponding to a “merge” pseudostate 

in the activity diagram. 

• In the case of non-conditional branching, an LQN “AndFork” is created whenever a “Fork” 

pseudostate is used in the activity diagram to create a concurrent thread.  However, the "Fork" 

pseudostates used by the servers for sending a reply at the end of phase 1 are an exception to 

this rule, and no explicit LQN  “AndFork” is created in this case (see Fig. 10 for an intuitive 

explanation). 

• An LQN request arc is generated when a communication is detected between a client entry 

(phase, activity) and a server entry, according to the corresponding high-level pattern. The 

visit ratio of the arc is given by the number of repetitions of the scenario step originating the 

request multiplied by the number of requests made in that step. If more scenario steps 

contained in the same phase are sending a request to the same entry, we have to add the visit 

ratio contributions of all these scenario steps. 

The last step of the algorithm traverses the internal nodes representing the newly generated LQN 

model, computes its parameters (service times and visit ratios) and writes the model description to a 

text file in a format that can be read by the existing LQN solvers. 

The service times for each phase (activity) has two parts: (a) the total CPU execution time for all 

scenario steps (i.e., activity diagram States) contained in the phase and (b) the communication 

overhead. According to the UML Performance profile, each scenario step has a tagged value 

PAdemand indicating its demand for CPU time, and another one, PAprob, giving the probability of its 

occurrence. (We assume here that the PAdemand value is converted in number of cycles for a given   
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processor, and is assigned to the attribute Cycle  of the State that represents that step). Also, a 

processor has a tagged value representing its processing rate. The first line of the equation given 

below computes part (a) of the service time. Part (b) of the service time, the communication overhead 

is approximated separately for all messages sent (second line of the equation) and for all messages 
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received by that phase or activity (third line of the equation). SendOvhd represents the mean 

execution overhead for invoking the "send" primitive on a given platform, whereas the second term 

represents the time the CPU waits for sending a message.  It is computed as the length of the message 

multiplied by the visit ratio of the outgoing arc and divided by the speed of the link that carries that 

message. This term has an impact on the total service time only for long messages sent over slow 

communication links (for short communication messages sent over fast communication links, the 

values of the term is insignificant). If a message is exchanged between two tasks co-allocated on the 
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same processor, the last term is not included in the CPU time. The overhead due to receiving 

messages is estimated in the same way. The entire formula is as follows: 

)/.*.(

)/.*.(

Pr/Pr.*.

∑
∑

∑

++

+++

+=

LinkSpeedVisitRatioInArcMsgLengthInArcRcvOvhd

LinkSpeedVisitRatioOutArcMsgLengthOutArcSendOvhd

ocRateobeActionStatCycleseActionStateServiceTim

 

In this section we have presented the transformation approach at a high conceptual level, by using the 

UML and LQN graphical notation. The next section presents briefly issues regarding the 

implementation of the transformation algorithm with PROGRES, which performs transformation on 

the internal data structure representing the two models. 

4. PROGRES-based transformation 

As mentioned in section 2.4, a PROGRES program has two parts: a schema that defines the static 

properties of the graph, and a set of features (composed of production rules, tests, queries, 

transactions, and functions) that are used to completely define the rewriting rules for transforming the 

graph. 

In our case, the schema has two parts: a) a simplified subset of the UML metamodel (re-written 

according to the PROGRES syntax) which represents the diagram types contained in the UML input 

model, as explained in the previous section, and b) our own definition of the LQN model. We have 

not translated the whole UML metamodel into PROGRES, only the parts that are necessary. Even 

these parts are simplified, in the sense that we skipped over some abstract classes to reduce the size of 

the schema, and expressed as PROGRES node attributes only those UML metamodel attributes that 

were strictly necessary for building the performance model. We have also added attributes that 

correspond to the tagged values from the UML performance profile, such as those giving the CPU 

demand and probability of an execution step.  

Due to its size, we show here only a part of the schema: Fig. 11 represents the sub-schema for activity 

diagrams, and Fig. 12 the sub-schema for LQN models. PROGRES uses inheritance (possible 

multiple inheritance) to define hierarchies of node classes. Square boxes represent node classes, and 

the inheritance relationships are represented with dotted edges. Node classes correspond to abstract 
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classes in UML, i.e., node classes do not have any direct node instances. A node class has an optional 

list of attributes. Rounded-corner boxes represent node types, which are connected with their uniquely 
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defined classes by the means of dashed edges. Node types are leaves of the node class hierarchy, and 

are used to create node instances in a PROGRES graph. A node type specializes only one class and 

inherits all its properties. Solid edges between edge classes  represent edge types, which define the 

relationships between node instances. Node attributes are shown as small circles attached to the class 

or type boxes. The classes shadowed in Fig. 12 are repeated from Fig. 11. 

The schema describes the static propert ies of the internal data structure (a graph) that represents at the 

beginning only the UML input model, and grows gradually so that by the end represents also the LQN 

output model. Fig. 13 gives an example of a PROGRES graph that represents a simple activity 

diagram, and Fig.14 one that represents a simple LQN model. As expected, the internal data structure 

is more complex and less understandable than the UML or LQN graphical notation. However, it is at 

the greater level of detail that the algorithm present ed in section 3 was implemented. The detailed 

presentation of the implementation is beyond the scope of this paper (more details can be found in 

Amer, 2001). 

5. Case Study 

In this section are presented the results of the UML to LQN transformation algorithm applied to three 

CORBA-based client-server systems. The LQN model generated by using PROGRES were solved 

under different workloads with an existing LQN analytic solver (Franks, 2000). The results were 

compared with measurements obtained from actual implementations, taken from a performance study 

by Abdul-Fatah and Majumdar, 1998. Based on a Commercial-Off-The-Shelf (COTS) middleware 

product called Orbeline (currently sold as Visibroker by Inprise) and a synthetic workload running on 

a network of Sun workstations using Solaris 2.6, Abdul-Fatah and Majumdar  have implemented three 

performance prototypes, and measured them by using Solaris system calls buried into the prototype 

software. The three systems were the Handle-driven ORB (H-ORB), the Forwarding ORB (F-ORB) 

and the Process Planner (P-ORB). The H-ORB was the basic Orbeline product, whereas the F-ORB  

and P-ORB were built using additional processes in conjunction with the Orbeline middleware.  In 

(Petriu, Amer et al, 2000) is presented an analytical performance study of two of the systems, H-ORB 
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and F-ORB, by using “hand-built” LQN models. The LQN models developed in (Petriu, Amer et al, 

2000) are equivalent to the models derived automatically by our UML to LQN transformation.  

In their study, Abdul-Fatah and Majumdar have implemented a synthetic application in which two 

distinct services, A and B, are using the ORB. A client executes a cycle repeatedly, making one 

request to Server A and one to Server B. Two copies of A, called A1 and A2, as well as two copies of 

B, called B1 and B2, are provided. The two copies of each server enable the system to handle more 

load and allow us to investigate the impact of load balancing that is provided by many commercial 

ORB products. The client performs a bind operation before every request. The client request path 

varies depending on the underlying ORB architecture. In the H-ORB, the client gets the address of the 

server from the agent and communicates with the server directly. In the F-ORB, the agent forwards 

the client request to the appropriate server. The server then returns the results of the computations 

directly to the client. In the P -ORB, the agent combines the two requests, forwards them concurrently 

to both servers, waits for the arrival of the two results, then combines the results and sends them back 

to the client. When a service is requested form a particular server, the server process executes a loop 

and consumes a pre-determined amount of CPU time. The synthetic application is used because it 

provides flexibility in experimentation with various levels of different workload parameters, such as 

the service time at each server, and the inter-node delay.  

The synthetic application is characterized by a number of parameters that are briefly summarized. 

Number of clients (N): the total number of active clients during the life of the experiment.  

Service Demands (SA, SB):  The time required by server A and B, respectively, to provide the service. 

Whenever a particular server A (or B) is invoked it consumes SA (or SB) units of CPU time. 

Inter-Node Delay (D): Since the experiments were performed on a local area network, the inter -node 

delay that would appear in a wide-area was simulated by making a sender process to sleeps for D 

units of time before sending a message. However, in case of the H-ORB agent there was no access to 

the source code, and the inter-node delay for the handle returning operation was simulated by making 

the client sleep for D units of time before receiving the message.  
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Message Length (L): The size of the actual message sent by the client to the server, or returned by the 

server. (In the experiments, the message content was not important, only the size).  

Degree of Cloning: the concurrency degree of the agent process. A clone of a process is a copy that 

shares the message queue with its parent. A cloned process is represented in LQN as a multi-server. 

The following table summarizes the values for the workload factors by Abdul-Fatah and Majumdar: 

 
Factors Levels 
N 1,2,4,8,16,24 
D (msec) 200, 250, 500, 1000 
L (bytes) 4800, 9600, 19200 
SA / SB (msec) 10/15, 50/75, 250/375 
Degree Of Cloning 1, 4, 8 

 
Table 1: Levels for the Workload Factors 

5.1. H-ORB  

The input to the UML to LQN transformation for the H-ORB case is represented by a) the deployment 

diagram from Fig.8 (which is identical for all three cases), b) a collaboration diagram similar with  
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Fig.7, where the client/server pattern is used twice (between clients and agent, and between clients 

and servers), and c) the sequence diagram from fig.15. The sequence diagram is annotated with 

performance information according to the UML performance profile. The <<PAclosedLoad>> 

stereotype indicates that the scenario is used under a closed load with a population of N. ($N indicates 

a variable, to be substituted by a concrete value when the model is actually generated). A <<PAstep>> 

stereotype is applied to each of the actions triggered by the following messages: GetHandle(), Sleep(), 

A1Work(), A2Work(), B1Work() and B2Work(). All scenar io steps are characterized by a certain 

PAdemand value (which represents the CPU execution time), with the exception of Sleep(), which is 

characterized by a PAdelay value (delay without consuming CPU time).  The server operations have 

also a PAprob value of 0.5, which indicates their probability of being chosen.   

Fig. 16 shows the beginning of the activity diagram that was generated automatically from the 

sequence diagram from Fig. 15. (The activity diagram covers the communication between the client 

and the agent, and between the client one of the servers A). The activity diagram contains a swimlane 

for each concurrent component. In this case, the sequence diagram did not contain any passive 

objects. An additional swimlane was created for an "artificial" Sleep task needed to implement the 
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sleep operation, away from any of the existing processors. (Such a task is created every time the 

tagged value PAdemand is used). In the LQN model, Sleep will be implemented as a delay server 

(also known as infinite server), for which there is no queueing. Fig. 16 shows also how the different 

activity diagram states have been grouped into entry and phases. The object flow Arg1 that represents 

the content of the messages exchanged between the client and the servers was generated because the 

messages had arguments (not shown in the sequence diagram). What is important for the performance 

model is the size of the message, not its actual content. We have realized that, so far, the UML 

Performance Profile does not have a tagged value to define the message size. (However, we have 

added such an attribute to the PROGRES schema). As shown in Table 1, the size of the message was 

one of the experimental factors. 

The LQN model automatically generated for F-ORB is given in Fig. 17.  

The model was then given as input to the analytical LQN solver, obtaining the following results for 

the Mean Client Response Time (in seconds) for the different values of the number of clients (N).  

 
Number of Clients  Model Results Measured Values Error % 
1 1.64836 1.7212 4.231931211 
2 1.70365 1.7212 1.019637462 
4 1.82544 1.75 -4.310857143 
8 2.11086 1.9 -11.09789474 
16 2.80472 2.5 -12.1888 
24 3.58537 3.2 -12.0428125 

 

Table 2: H-ORB Model Results VS Measured Values 

A comparison between the model results and the measured values is depicted in Fig.18. 

The Response Time of the H-ORB,
D= 200 ms, L = 4800 bytes, SA/SB = 10/15 ms, Cloning =1

0

1

2

3

4

1 2 4 8 16 24

Number of Clients (N)

M
ea

n 
C

lie
nt

 R
es

po
ns

e 
T

im
e 

R
 (

se
c)

Model
Measured

 

Figure 18: H-ORB Model results VS Measured values Graph 



 29 

2.2. F-ORB results  

As stated in (Abdul-Fatah and Majumdar, 1998), the Forwarding ORB (F -ORB) architecture differs 

from H-ORB in the sense that the F-agent forwards the reply to the desired server rather than 

returning the handle to the requesting client. During each experiment, a fixed number of F-agents are 

implemented. All F-agents are activated and set ready to receive and process any client request in 

cooperation with the default agent supplied by ORBeline. The F-Agent and the default agent are co-

allocated on the same processor and are treated as one task. 

Due to space limitations, we cannot show the diagrams for the UML input model and the generated 

LQN model, which are presented in (Amer, 2001). The LQN model was solved with the analytical 

solver, giving the following results for the Mean Client Response Time (in seconds) for different 

numbers of clients (N). 

 
Number of Clients  Model Results  Measured Values Error %  

1 0.82336 1.3142 37.34895754 
2 1.16632 1.32 11.64242424 
4 2.0361 1.8 -13.11666667 
8 3.74539 3.3 -13.49666667 
16 7.09926 6.4 -10.9259375 
24 10.4351 10 -4.351 

  

Table 3: F -ORB Model Results VS Measured Values 

The model results and the measured values for a cloning level of 1 are shown in Fig.19 
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Figure 19: F-ORB Model Results VS Measured Values 
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5.3. P-ORB results 

In the Process Planner (P-ORB) architecture, the client sends its two requests combined in one 

message to an implemented P-agent. The P-agent decomposes the request into its simple constituent 

services, invokes the respective servers and when all services are performed, it relays back a single 

coherent reply to the originating client. The P-agent invokes both servers asynchronously since the 

design assumes no interdependencies between the two constituent requests. Both servers are invoked 

using a one-way send. During each experiment, a fixed number of P-agents are activated and set ready 

to receive and process any client request in cooperation with the default agent supplied by ORBeline 

The P-agent and the default agent are co-allocated on the same processor and are considered to be one 

task. For more details, see (Abdul-Fatah and Majumdar, 1998). 

Due to space limitations, we cannot show the diagrams for the UML input model and the generated 

LQN model, which are presented in (Amer, 2001). The LQN model was solved with the analytical 

solver, producing the results shown in Table 4 and Fig. 20 for the Mean Client Response Time (in 

seconds) for different numbers of clients (N). 

Number of Clients  Model Results Measured Values Error % 
1 0.73509 0.9015 18.45923461 
2 1.09699 1.2 8.584166667 
4 2.08761 2.1 0.59 
8 4.20283 4.2 -0.067380952 
16 8.45052 8.8 3.971363636 
24 12.6999 13 2.308461538 

 

Table 2: P-ORB Model Results VS Measured Values 
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Figure 20: P-ORB Model Results VS Measured Values Graph 
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6. Conclusions 

The paper presents a transformation algorithm from UML models (annotated with performance 

information) to LQN performance models. The algorithm was implemented with PROGRES, a known 

graph-rewriting tool. Automatically generated LQN models were solved analytically, then compared 

with measurements obtained from three CORBA-based systems. The model results are reasonably 

close to the measurements, which demonstrate that the approach is valid. This works contributes to 

bridging the gap between software design and performance analysis. It also offers promises that in the 

future, performance model generators could be integrated with UML tools, facilitating the quantitative 

analysis of software designs from the early stages throughout the software life cycle. 

The successful use of a graph rewriting tool to convert UML models into LQN model represents a 

proof of concept that graph-grammar techniques work for this kind of problem. However, although 

PROGRES is a very powerful tool, it introduces additional steps both in the algorithm implementation 

and in the transformation process. One disadvantage is that we had to convert the UML metamodel 

into a PROGRES schema during the development of the algorithm. Another disadvantage is that 

every UML model has to be converted into a PROGRES input graph every time we want to generate 

its corresponding performance model. Therefore, by using the lessons learned from this experience, 

we started working on a graph transformation algorithm that works directly on the internal data 

structure of a UML model. This is, in fact, a graph described by a schema that is exactly the UML 

metamodel. The disadvantage of such an approach is that we will have to implement from scratch the 

graph transformation operations that are provided by the general-purpose graph rewriting tools such 

as PROGRES. The advantage is, however, that we will eliminate a lengthy intermediary step and 

obtain a faster transformation. 

Another approach we are investigating is to perform the transformation at the XML level. The UML 

standard defines XMI, an interface from UML to XML. Every UML tool is supposed to implement 

this interface, and therefore to generate XML files that describe the UML models developed with the 

tool. There are new XML transformation languages, such as XSLT, and free tools to sup port them. 
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We started to investigate whether XSLT and its supporting tools are powerful enough for our 

application. 

Other directions for future work include: the addition of new architectural patterns to the 

transformation, the application of the UML to LQN transformation to a wider class of systems, and 

the possibility of generating another kind of performance models besides LQN.   
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