

Software Performance Evaluation: Graph Grammar-based

Transformation of UML Design Models into Performance Models

Hoda Amer and Dorina C. Petriu

Carleton University

Department of Systems and Computer Engineering
Ottawa, Canada, K1S 5B6

Contact for Correspondence:

Dorina C. Petriu
Carleton University
Department of Systems and Computer Engineering
1125 Colonel By Drive
Ottawa, ON, Canada, K1S 5B6
E-mail: petriu@sce.carleton.ca

Running title: Software Performance Evaluation of UML Models

 2

Abstract. The quality of many software intensive systems is determined to a large extent by their performance

characteristics, such as response time and throughput. The developers of such systems should be able to assess

and understand the performance effects of various design decisions starting at an early stage, when changes are

easy and less expensive, and continuing throughout the software life cycle. This can be achieved by constructing

and analyzing quantitative performance models that capture the interact ions between the main system

components and point to the system’s performance trouble spots. The paper proposes a graph grammar -based

transformation from UML design models into Layered Queueing Network (LQN) performance models. The

LQN model structure is generated from the high -level software architecture showing the architectural patterns

used in the system, and from deployment diagrams indicating the allocation of software components to

hardware devices. The LQN model parameters are obtained from detailed models of key performance scenarios,

represented as UML interaction or activity diagrams annotated with performance information (according to the

recently proposed UML performance profile). The proposed transformation from UML to LQN was

implemented with PROGRES, a well-known visual language and environment for programming with graph

rewriting systems. The proposed technique was applied to the performance analysis of three CORBA-based

client server systems, and the performance model results are reasonably close to measurements obtained from

the actual implementations.

1. Introduction

The quality of many software intensive systems, ranging from real-time embedded systems to

telecommunication and web-based applications, is determined to a large extent by their performance

characteristics, such as response time and throughput. The developers of such systems should be able

to assess and understand the performance effects of various design decisions starting at an early stage,

when changes are easy and less expensive, and continuing throughout the software life cycle.

Software Performance Engineering (SPE), introduced in (Smith, 1990), is a technique that proposes to

use quantitative methods and performance models in order to assess the performance effects of

different design and implementation alternatives during the development of a system. SPE promotes

the idea that the integration of performance analysis into the software development process, from the

earliest stages to the end, can insure that the system will meet its performance objectives. This would

eliminate the need for “late-fixing” of performance problems, a frequent practical approach that

 3

postpones any performance concerns until the system is completely implemented. Late fixes tend to

be very expensive and inefficient, and the product may never reach its original performance

requirements.

The process of building a system's performance model before the system is completely implemented

starts with identifying a small set of key performance scenarios repres entative of the way in which the

system will be used (Smith, 1990; Smith and Williams, 2001). The performance analysts must

understand first the system behaviour for each scenario by talking with the system developers and/or

by using design specifications. The analyst, helped by the developers, will follow the execution path

through the software for each scenario, from component to component, identifying the quantitative

demands for resources made by each component (such as CPU execution time and I/O operat ions), as

well as the various reasons for queueing delays (such as competition for hardware and software

resources). The scenario descriptions thus obtained are mapped onto a performance model. By solving

the model, the analyst will obtain performance results such as response times, throughput, utilization

of different resources by different software components, etc. Trouble spots can be thus identified, and

alternative solutions for eliminating them assessed in a similar way.

The paper aims to bridge the gap between design specifications and performance modelling by

proposing an automatic graph grammar -based transformation from UML (OMG, 1999) design models

annotated with performance information into Layered Queueing Network (LQN) performance

models. This way, the consistency of the performance model with the design model can be easily

assured.The LQN model structure is generated from the high-level software architecture showing the

architectural patterns used in the system, and from deployment diagrams ind icating the allocation of

software components to hardware devices. The LQN model parameters are obtained from key

performance scenarios represented as UML interaction or activity diagrams annotated with

performance information. The annotations are made according to the recent proposal for a UML

Profile for Schedulability, Performance and Time (OMG, 2001), whose goal is to enable the

construction of models that can be used for making quantitative performance predictions. The

proposed performance profile extends the UML metamodel with stereotypes, tagged values and

 4

constraints that make possible to attach quantitative performance annotations (such as resource

demands, execution probabilities, arrival rates, etc.) to the UML model elements.

The UML to LQN transformation proposed in this paper was implemented with PROGRES, a well-

known visual language and environment for programming with graph rewriting systems (Schürr, A.,

1990; Schürr, A., 1994; Schürr, A., 1997). The paper extends previous work of the authors: (Petriu,

Shousha and Jalnapurkar, 2000) showed how to build LQN performance models based on the

architectural patterns used, but the transformation was not automated, whereas (Petriu and Wang,

2000) proposed a PROGRES-based transformation of architectural patterns into LQN. This paper

completes the picture by showing how the LQN parameters can be obtained, as well, from UML

models annotated with performance information according to the newly proposed UML profile.

The technique proposed in the paper is applied to three CORBA-based client-server architectures.

The goal was to generate automatically the LQN models from UML specifications of the system and

see if it gives acceptable results, by comparing them with measurement results from (Abdul-Fatah and

Majumdar, 1998).

The performance modelling formalism used in the paper is the Layered Queueing Network (LQN)

model, an extension of the well-known Queueing Network (QN) model. LQN was developed

especially for modelling concurrent and/or distributed software systems (Woodside, 1988; Woodside

et al, 1995, Franks at al, 1995). The LQN components represent either software processes or hardware

devices. LQN determines the delays due to contention, synchronization and serialization at both

software and hardware levels (see section 2.1 for a more detailed description).

Since the introduction of SPE, there has been a significant research effort to integrate performance

analysis into the software development process throughout all lifecycle phases. One aspect of this

research is the derivation of performance models from software design specifications. A survey of the

techniques developed in the recent years for deriving performance models from UML models is given

in (Balsamo and Simeoni, 2001). The SPE methodology is followed very closely in (Cortelesa and

Mirandola, 2000). Information from UML use case, deployment, and sequence diagrams is used to

generate SPE scenario descriptions in the form of flow diagrams similar to those used in (Smith,

 5

1990; Smith and Williams, 2001). The flow diagrams are then mapped onto QN models. Another

work presented in (Kähkipuro, 2001) introduces a UML-based notation and framework for describing

performance models, and a set of special techniques for modeling component-based distributed

systems. The idea of patterns is used in (Gomaa and Menasce, 2000) to investigate the design and

performance modelling of interconnection patterns for client/server systems. Compared to the existing

work in this direction, our paper is the only one that us es graph-grammar based transformations and

high-level architectural patterns to generate software performance models.

The paper is organized as follows: background information on LQN model, architectural patterns,

UML performance profile and PROGRES is given in section 2; the principle of UML to LQN

transformation is discussed in section 3; the PROGRES -based transformation is presented in section

4; a case-study of three middleware-based client/server systems is presented in section 5; and the

conclusions in section 6.

2. Background

2.1. Layered Queueing Network model

Queueing Network (QN) models are a widely used technique for predicting the performance of

computing systems. Although QN models have been successfully used in the context of traditional

time-sharing computers, they often fail to capture complex interactions among various software and

hardware components in client-server distributed processing systems. The Layered Queueing

Networks (LQN) (Woodside,88; Woodside et al 1995, Franks at al 1995) and the Method of Layers

(Rolia and Sevcik, 1995) are examples of new modeling techniques that were developed for handling

such complex interactions.

LQN is a new adaptation of queueing models for systems with software and hardware servers and

resources. It is well suited for systems with parallel processes running on a multiprocessor or on a

network, such as client-server systems. An LQN model is represented as an acyclic graph whose

nodes (named tasks) are software entities and hardware devices, and whose arcs denote service

requests (see Fig. 1). The LQN tasks are classified into three categories: pure clients (also named

 6

reference tasks, as they drive the system),

pure servers, and active servers. While

pure clients can only send messages

(requests) and pure servers can only

receive requests, active servers can both

send and receive requests. This marks the

main difference between LQN and QN,

where active servers, to which requests are

arriving and queueing for service, may

become clients to other servers as well. This gives rise to nested services. It is important to note that

the word layered in the name of LQN does not imply a strict layering of the tasks. Although not

explicitly illustrated in LQN notation, each server has an implicit message queue, called the request

queue, where the incoming requests are waiting their turn to be served. The default scheduling policy

of the request queue is FIFO, but other policies are also supported. A software or hardware server

node can be either a single-server or a multi-server. A multi-server is composed of more than one

identical clones that work in parallel and share the same request queue. A multi-server can also be an

infinite-server if there is no limit to the number of its clones. The tasks are drawn as parallelograms,

and the processors as circles (see Fig.2 for the notation).

An LQN task may offer more than one kind of service, each modeled by a so-called entry drawn as a

smaller parallelogram nested in a task. An entry is like a port or an address of a particular service

offered by a task. An entry has its own execution time and demands for other services (given as model

parameters). Servers with more than one entry still have a single input queue, where requests for

different entries wait together.

Arcs in an LQN model denote requests from one entry to another. The labels on the arcs denote the

average number of requests made each time the corresponding phase in the source entry is executed.

Requests for service from one server to another can be made via three differ ent kinds of messages in

LQN models: synchronous, asynchronous and forwarding. A synchronous message represents a

T1

P1

P2

T2_e2T2_e1

T2

1 1

1 1

T3 T4

P4P3

Pure Clients

Active Server

Pure Servers

Figure 1. Simple LQN model

 7

request for service sent by a client to a server, where the client remains blocked until it receives a

reply from the provider of service. If the server is busy when a request arrives, the request is queued.

After accepting a request for one of its entries, the server starts to process it by executing a sequence

of one or more phases of that entry. At the end of phase 1, the server replies to the client, which is

unblocked and continues its work. The server continues with the following phases, if any, working in

parallel with the client, until the completion of the last phase. After finishing the last phase, the server

begins to serve a new request from the queue, or becomes idle if the queue is empty. During any

phase, the server may act as a client to other servers. In the case of an asynchronous message, the

client does not block after sending the message and the server does not reply back. A forwarding

message (represented by a dotted request arc) is associated with a synchronous request that is served

by a chain of servers. The client sends a synchronous request to Server1, which begins to process the

request, then at the end of phase1 forwards it to Server2. Sever1 proceeds normally with the

remaining phases in parallel with Server2, then at the end of its last phase starts another cycle. The

client, however, remains blocked until Server2, which replies to the client at the end of its phase 1,

serves the forwarded request. A forwarding chain can contain any number of servers, in which case

the client waits until it receives a reply from the last server in the chain.

T2

P1

T1

P2

e1

e1 Entry

Task
(single-server)

Task Pool
(multi - server)

Processor
(single -server)

Processor
(multi -server)

a

a

&

a

&

a

+

a
+

Activity Flow

Activity

And-Fork

a [e] Activity with reply

p1p2

And-Join

Or-Fork

Or-Join

Synchronous request
Asynchronous request
Forwarding request

Figure 2. LQN graphical notation

 8

A phase may be deterministic or stochastic, and is

subject to the following assumptions:

• The total CPU demand of a phase (whose mean

value s is given as a parameter) is divided up into

n+1 exponentially distributed slices separated by

requests to lower level servers. Each slice has the

mean of s/(n+1), where n is the number of

requests made in that phase.

• The number of requests to lower level servers is geometrically distributed with a specified

mean (given as a parameter) in a stochastic phase, and is deterministic in a deterministic phase.

A more recent extension to LQN (Franks, 2000) lets an entry be further decomposed into activities if

more details are required to describe its execution. This is typically required when entries have fork

and join interactions. Activities are components that represent the lowest level of detail in LQN. They

can be connected together not only sequentially, but with fork and join interactions as well, in the

form of a directed graph (see Fig. 2 and 3). After an AND-fork, all successor activities can execute in

parallel, while after an OR-fork, only one of the successor activities is executed, with probability Pi.

Joins happens when multiple threads of control are connected together. As expected, the AND-joins

introduce synchronization delays. An activity may have service time demand on the processor on

which its task runs, just like a phase. Also, activities can make requests to other tasks by way of

synchronous or asynchronous messages.

The parameters of an LQN model are as follows:

• customer (client) classes and their associated populations or arrival rates;

• for each phase (activity) of a software task entry: average execution time;

• for each phase (activity) making a request to a device: average service time at the device, and

average number of visits;

• for each phase (activity) making a request to another task entry: average number of visits

e1

e3e2

T1

T3T2

&

&

a

cb

d

Figure 3. LQN task with activities

 9

• for each request arc: average communication delay;

• for each software and hardware server: scheduling discipline, multiplicity.

Although the LQN toolset presented in (Franks, 2000) includes both simulation and analytical solvers,

the analytical solver was used to solve the LQN models generated in the paper.

2.2 UML Performance profile

According to (OMG,2001) the UML Performance Profile provides facilities for:

• capturing performance requirements within the design context

• associating performance-related Q0S characteristics with selected elements of the UML model

• specifying execution parameters which can be used by modelling tools to compute predicted

performance characteristics

• presenting performance results computed by modelling tools or found by measurement.

The Profile describes a domain model, shown in Fig. 4, which identifies basic abstractions used in

performance analysis. Scenarios define response paths through the system, and can have QoS

requirements such as response times or throughputs. Each scenario is executed by a job class, called

here a workload, which can be closed or open and has the usual characteristics (number of clients or

arrival rate, etc.) Scenarios are composed of scenario steps that can be joined in sequence, loops,

branches, fork/joins, etc. A scenario step may be an elementary operation at the lowest level of

granularity, or may be a complex sub-scenario composed of many basic steps. Each step has a mean

number of repetitions, a host execut ion demand, other demand to resources and its own QoS

characteristics. Resources are another basic abstraction, and can be active or passive, each with their

own attributes. The Performance profiles maps the classes from Fig. 4 to stereotypes that can be

applied to a number of UML model elements, and each class attribute to a tagged value. For example,

the basic abstraction PStep is mapped to the stereotype <<PAstep>> that can be applied to the

following UML model elements: Message, Stimulus (when the scenario is represented by an

interaction diagram) and ActionState, SubactivityState (when the scenario is represented by an

activity diagram).

 10

2.3. Architectural Patterns

Frequently used architectural solutions are identified in literature as architectural patterns (such as

pipeline and filters, client/server, client/broker/server, layers, master -slave, blackboard, etc.) (Shaw,

1996; Buchmann et al, 1996). A pattern introduces a higher-level of abstraction design artifact by

describing a specific type of collaboration between a set of prototypical components playing well-

defined roles, and helps our understanding of complex systems. Each architectural pattern describes

two inter-related aspects: its structure (what are the components) and behaviour (how they interact).

In the case of high-level architectural patterns, the components are usually concurrent entities that are

executed in different threads of control, compete for resources, and may require some

synchronization. The patterns are represented as UML collaborations (not to be confused with UML

collaboration diagrams, a type of interaction diagrams). The symbol for a collaboration is an ellipse

with dashed lines that may have an “embedded” square showing the roles played by different pattern

participants (Booch et al, 1999; OMG, 1999).

PerformanceContext

Workload
responseTime
priority

PScenario
hostExecDemand
responseTime

PResource
utilization
schedulingPolicy
throughput

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

PPassiveResource
waitingTime
responseTime
capacity
accessTime

PStep
probability
repetition
delay
operations
interval
executionTime

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

0..n

1..n
1..n 1

1
1

1..n 1..n

0..n

0..n

0..n

0..1

1..n

1

1
{ordered}

+successor

+predecessor

+root

+host

PerformanceContext

Workload
responseTime
priority

PScenario
hostExecDemand
responseTime

PResource
utilization
schedulingPolicy
throughput

PProcessingResource
processingRate
contextSwitchTime
priorityRange
isPreeemptible

PPassiveResource
waitingTime
responseTime
capacity
accessTime

PStep
probability
repetition
delay
operations
interval
executionTime

ClosedWorkload
population
externalDelay

OpenWorkload
occurencePattern

0..n

1..n
1..n 1

1
1

1..n 1..n

0..n

0..n

0..n

0..1

1..n

1

1
{ordered}

+successor

+predecessor

+root

+host

Figure 4. Domain model in the UML Performance Profile

 11

In Fig. 5 and 6 are shown the structure and behaviour of two patterns used in our case study:

ClientServer and ForwardingServerChain. The ClientServer pattern has two alternatives: the one

shown in Fig.5.b is using a rendezvous communication style (where the client sends the requests then

remains blocked until the sender replies), whereas the one from Fig. 5.c is using an asynchronous

communication style (where the client continues its work after sending the request, and later on will

accept the server’s replay). The ForwardingServerChain, shown in Fig.6, is an extension of the

ClientServer pattern, where the client’s request is served by a series of servers instead of a single one.

client is blocked
waiting for the reply

send request

process reply

FS waiting

process request
and forward

FS undefined

ForwardingServerClient

process reply

send request

do something
else

wait for reply

waiting

process request
and send reply

undefined

ServerClient

a) ClientServer collaboration

Client Server1*

Client
Server

ClientServer

b) ClientServer with rendezvous

c) ClientServer with asynchronous
messages

Figure 5. ClientServer architectural pattern

Client Forwarding
Server1*

Client
ForwardingServer
ReplyingServerFwdServerChain

Replying
Server

* 111

send request

process reply

client is blocked
waiting for the reply

FS waiting

process request
and forward

FS undefined

RS waiting

process request
and send reply

RS undefined

ReplyingServerForwardingServerClient

a) ForwardingServerChain
pattern

b) Behaviour of the ForwardingServerChain pattern

Figure 6. ForwardingServerChain architectural pattern

 12

There may be more than two servers in the chain (although only two are shown in Fig.6). A server in

the middle plays the role of ForwardingServer, as it forwards the request to the next server in the

chain after doing its part of service. The last server in the chain plays the role of ReplyingServer, as it

sends the reply back to the client. More architectural patterns and the corresponding rules for

translating them into LQN are described by the authors in (Petriu, Shousha and Jalnapurkar, 2000)

and (Petriu and Wang, 2000).

2.4. Graph Rewriting Systems (PROGRES)

The graph-grammar formalism is appropriate for the UML to LQN transformation because both UML

and LQN models are described by graphs. We are using a known graph rewriting tool named

PROGRES (PROgramming with Graph Rewriting Systems) to implement the formal transformations

from UML to LQN (Schürr, 1990; Schürr, 1994; Schürr, 1997). This section describes briefly the

concepts used, but it does not go into details.

The essential idea of all implemented graph grammars or graph rewriting systems is that they are a

generalization of string grammars (used in compilers) or term rewriting systems. The terms “graph

grammars” and “graph rewriting systems” are often considered synonymous. However, strictly

speaking, a graph grammar is a set of production rules that generates a language of terminal graphs

and produces nonterminal graphs as intermediate results. On the other hand, a graph rewriting system

is a set of rules that transforms one instance of a given class of graphs into another instance of the

same class of graphs without distinguishing terminal and nonterminal results.

In order to use PROGRES for the transformation of an attributed input graph (representing a UML

model) into an attributed output graph (representing an LQN model) we have to define a graph

schema that describes the static properties of the graph, i.e., the types/classes of the graph elements

and their legal combinations. The schema shows the types of nodes and edges that can appear in both

the input and the output graph. In the intermediary transformation stages, the graphs contain mixed

nodes and edges. Applying a set of production rules in a controlled way performs the desired graph

transformations. A production rule has a left-hand side defining a graph pattern that will be replaced

 13

by the right-hand side (another graph pattern). A rule also shows how to compute the attributes of the

new nodes from the attributes of the nodes that were replaced. In addition to the production rules,

PROGRES also offers tests, queries, transactio ns, and functions, that are used to completely define

the rewriting rules by which we can query and change the graph (Schürr, 1994).

3. Principle of Transformation from UML to LQN

The starting point for our algorithm is a UML model containing the following elements:

• High-level software architecture represented by one or more collaboration diagrams showing

the concurrent (distributed) component instances represented as active objects and the

architectural patterns they participate in.

• Allocation of high-level software components to hardware devices, modelled as a

deployment diagram.

• A set of key performance scenarios annotated with performance information (see section 5

for a concrete example). Each scenario can be given either as a sequence or as an activity

diagram.

The output of our transformation algorithm is an LQN model that can be read and solved by the

existing LQN solvers. This section presents the principle of the transformation at the UML and LQN

notation level, whereas the following sections goes more deeply into the PROGRES transformation.

The following pseudocode describes the main steps of the algorithm:

1. Generate the LQN model structure

1.1. determine LQN software tasks from the high-level architecture

1.2. determine LQN hardware devices from deployment diagram

2. Generate LQN details on entries, phases, activities from scenarios

2.1 transform scenarios represented as sequence diagrams into activity diagrams

2.2 for each scenario process the corresponding activity diagram(s)

2.2.1 match the communication pattern from the architectural pattern with
the messages between components given in the activity diagram

2.2.2 identify the activity diagram elements corresponding to different LQN
entries, phases, and activities, and create the LQN elements

3. Traverse the LQN elements, compute their parameters and write out the model file.

 14

Step 1 generates the model structure (i.e., the software and hardware tasks and their connecting arcs)

from the high-level architecture of the UML model and from the deployment of software components

to hardware devices. Two kinds of UML diagrams are taken into account in this step: a high-level

collaboration diagram that shows the concurrent/distributed high-level component instances and the

patterns in which they participate, and the deployment diagram. Figures 7 and 8 show these two

diagrams for one of the case-study systems discussed in section 5, namely the Forwarding-ORB

example. Each high-level software component is mapped to a LQN task, and each hardware device

(processor, disk, communication network, etc.) is mapped to a LQN hardware task. The arcs between

LQN nodes correspond to the links from the UML diagrams. It is important to mention that in the first

transformation step from UML to LQN we take into account only the structural aspect of the

architectural patterns; their behavioural aspect will be considered in the next step.

LQN task details are obtained in step 2 from scenario models. In general, scenarios can be represented

in UML by sequence, collaboration or activity diagrams. (The first two are very close as descriptive

power and have similar metamodel representation). UML statecharts are another kind of diagrams for

behaviour description, but are not appropriate for describing scenarios. A statechart describes the

behaviour of an object, not the cooperation between several objects, as needed in a scenario.

There are some well-known differences between sequence and activity diagrams. Sequence diagrams

are very good at showing the responsibilities of different objects and the linear execution of sequential

Agent

ServerB2ServerB1

ReplyingServer

Client 1 Client n

ServerA1 ServerA2

ForwardingServer

Client

. . .

Forwarding Server
Chain

Client

ReplyingServer ReplyingServer ReplyingServer

Figure 8. High-level architecture for the F-ORB
system

P1

Client

1..n

Local Area Network

P2

Agent

1..n
P3

Server_A1

P4

Server_A2

P5

Server_B1

P6

Server_B2

Figure 9. Deployment diagram for the F-ORB
system

 15

steps, but are not representing well concurrent flows of control. The present UML standard still lacks

convenient features for representing loops, branches and fork/join structures in sequence diagrams.

Other authors who are building performance models from UML designs have also pointed out this

deficiency of the current UML standard, and are using instead extended sequence diagrams that look

like the Message Sequence Chart standard (see, for example, Smith and Williams, 2001).

On the other hand, activity diagrams show very well the flow of control, but are not so good in

showing the objects responsible for different actions. This problem was somewhat alleviated by the

introduction of swimlanes in activity diagrams. Another difference is that the sequence diagrams are

somewhat more compact as a notation than the activity diagrams. Considering the trade-offs, we have

decided to use activity diagrams for generating LQN detailed elements, since concurrency and flow of

control are important in our transformation algorithm. However, we also accept scenarios modelled as

sequence diagrams if the designers consider them good enough for their purposes, but we transform

them into activity diagrams before proceeding with the transformation to LQN.

Fig. 9 illustrates our approach to transforming sequence diagrams into activity diagrams (step 2.1 of

the algorithm). We reserve a swimlane for each execution thread corresponding to a concurrent

component (i.e., active object), which will contain also the operations done by passive objects

executed in the same thread. The information on how to group the active and passive objects comes

from the high-level architecture, where active instances may contain or use passive instances. In Fig.

9, for example, there are three active objects, x, y and z, in the sequence diagram, and each has a

corresponding swimlane in the activity diagram. The concept behind the transformation from

sequence to activity diagram is to follow the message flow in the sequence diagram by taking also

into account the execution threads of the active objects involved. We have defined transformation

rules for the following cases (see Petriu and Sun, 2000 for more details):

a. Sequential messages passed between objects in the same execution thread are mapped to an

Action States in the corresponding swimlane (Figure 9, message "b").

b. Messages with condition guards that are alternatives of the same condition in the sequence

diagram are mapped to a branching structure in the activity diagram (Figure 9, message "g" ,"h")

 16

c. A synchronous message between

objects running in different threads of

control is treated as a join operation on

the receiving side in the corresponding

activity diagram, and its reply is

treated as the corresponding fork

(Figure 9, messages "a","r"). The

object flow may be also shown,

according to the current UML

standard. The sender’s execution

thread is suspended from the moment

it sent the message until receiving

back the reply.

d. An asynchronous creation of an active

object marks a fork operation in the

corresponding activity diagram

(Figure 9, new(z)).

e. An asynchronous message sent to

another thread of control indicates a

join operation on the receiver side and

a fork operation on the sender side in

the corresponding activity diagram

The object flow is may be also shown.

Step 2.2 of the algorithm processes the activity diagram for each scenario and identifies the LQN

lower level elements: entries, phases and activities. Step 2.2.1 starts by traversing the activity diagram

with the purpose of identifying the messages exchanged between concurrent components (i.e., those

x

v

uy

z

r

b()
a

new

new

d()

[c = c2] h()

[c = c1] g()

delete(v)f

h()

1st component 2nd component 3rd component

x

v

uy

z

r

b()
a

new

new

d()

[c = c2] h()

[c = c1] g()

delete(v)f

h()

1st component 2nd component 3rd component

Figure 9a. Example of sequnce diagram with
concurrent execution flows

a

f

r

v.g()

z.terminate()

v.h()

[c = c2][c = c1]

u.d()

x y

new(v)

x.send(a)

x.receive(r)

wait

undefined

z

y.receive(a)

u.b()

new(z)

y.receive(f)

u.h()

y.send(r)

z.delete(v)

z.send(f)

a

f

r

v.g()

z.terminate()

v.h()

[c = c2][c = c1]

u.d()

x y

new(v)

x.send(a)

x.receive(r)

waitwait

undefinedundefined

z

y.receive(a)

u.b()

new(z)

y.receive(f)

u.h()

y.send(r)

u.h()u.h()

y.send(r)y.send(r)

z.delete(v)

z.send(f)

z.delete(v)z.delete(v)

z.send(f)z.send(f)

Figure 9b. Corresponding activity diagram obtained

by automatic transformation

 17

that are crossing the swimlane boundaries). The intent is to overlay over the activity diagram the

behavioural aspect of the architectural patterns involved, in order to verify whether the scenario is

consistent with the patterns. Figure 10 illustrates this idea, by showing some inter-component

messages that are identified and matched with the client-server pattern.

This information is used to generate the LQN elements (entries, phases and activities) as internal

graph nodes in step 2.2.2. A task entry is generated for each kind of service offered by the

corresponding software component instance. The set of all services offered by an instance is

determined by looking at the messages received by this instance in all the scenarios considered for

performance analysis. The LQN elements are generated as follows:

• Each task starts with only one entry. A new entry is added to the task if a new type of a

request is received. If a reques t is received more than once with the same message ID, its

number of repetitions is increased by one.

• All entries start in Phase 1. When a server sends a reply back to the client or forwards it to

another server, it moves to the second phase within the entry. Additional phases may be

Client Thread Server Thread

Work

CleanupSend Again

Work Again

Synch Call

Reply

Synch Call

a) Matching cross-transitions with
pattern messages

WaitWork req

Entry1
Phase1

Entry2
Phase1

Entry1
Phase2

b) Entries and Phases

Client Thread Server Thread

Work

CleanupWorkAgain req

Work Again

WaitWork req

begins

Figure 10. Extracting entry and phase information from the activity diagram

 18

necessary for other patterns, such as "pipeline and filters", but they are not described in the

paper (see Petriu, Shousha and Jalnapurkar, 2000) for more details on other patterns.

• LQN activities are created if a conditional or non-conditional branching state is encountered.

In the case of conditional branching, an LQN “OrFork” is created to connect alternate

activities. A probability for each branch is calculated based on the given guard condition. An

“OrJoin” is created to end the conditional branching, corresponding to a “merge” pseudostate

in the activity diagram.

• In the case of non-conditional branching, an LQN “AndFork” is created whenever a “Fork”

pseudostate is used in the activity diagram to create a concurrent thread. However, the "Fork"

pseudostates used by the servers for sending a reply at the end of phase 1 are an exception to

this rule, and no explicit LQN “AndFork” is created in this case (see Fig. 10 for an intuitive

explanation).

• An LQN request arc is generated when a communication is detected between a client entry

(phase, activity) and a server entry, according to the corresponding high-level pattern. The

visit ratio of the arc is given by the number of repetitions of the scenario step originating the

request multiplied by the number of requests made in that step. If more scenario steps

contained in the same phase are sending a request to the same entry, we have to add the visit

ratio contributions of all these scenario steps.

The last step of the algorithm traverses the internal nodes representing the newly generated LQN

model, computes its parameters (service times and visit ratios) and writes the model description to a

text file in a format that can be read by the existing LQN solvers.

The service times for each phase (activity) has two parts: (a) the total CPU execution time for all

scenario steps (i.e., activity diagram States) contained in the phase and (b) the communication

overhead. According to the UML Performance profile, each scenario step has a tagged value

PAdemand indicating its demand for CPU time, and another one, PAprob, giving the probability of its

occurrence. (We assume here that the PAdemand value is converted in number of cycles for a given

 19

processor, and is assigned to the attribute Cycle of the State that represents that step). Also, a

processor has a tagged value representing its processing rate. The first line of the equation given

below computes part (a) of the service time. Part (b) of the service time, the communication overhead

is approximated separately for all messages sent (second line of the equation) and for all messages

MODEL_ELEMENT ACTION

STATE_VERTEX

SIMPLE_STATECOMPOSITE_STATE

STATE

PSEUDO_STATE

PARTITION

TRANSITION

CONDITIONAL_BRANCHNON_CONDITIONAL_BRANCH

ActionState
SubactivityState

InitialState FinalState

ObjectFlowState

DecisionMergeForkJoin

Arrow

Entry_Action
Into

Outof

W
ith

in

StateSL

P
rob

C
ycles

Is D
ashed

S
L

T
raversed

N
am

e

Swimlane

Figure 4. PROGRES sub-schema describing activity diagrams

 20

received by that phase or activity (third line of the equation). SendOvhd represents the mean

execution overhead for invoking the "send" primitive on a given platform, whereas the second term

represents the time the CPU waits for sending a message. It is computed as the length of the message

multiplied by the visit ratio of the outgoing arc and divided by the speed of the link that carries that

message. This term has an impact on the total service time only for long messages sent over slow

communication links (for short communication messages sent over fast communication links, the

values of the term is insignificant). If a message is exchanged between two tasks co-allocated on the

NODE

PROCESSOR_NODE TASK_NODE

ENTACT_NODE

ENTRY_NODEACTIVITY_NODE

LINK

ACTIVITY_CONN

ARC

PATTERN

Processor Task

EntryActivity

Link

OrForkAndFork

DirectOrJoinAndJoin

CallArc ReplyArc

ClientServer FwdServerChain

Supports

Communicates

INSTANCE

R
uns_In

O
w

ns

O
w

nsA
ct

C
urrent_E

ntry

Current_Act

In
Out

STATE_VERTEX

A
ssociated

W
ith

Entry_Act

Into
Conn

Outo
fConn

PARTITION RplyServerFwdClient

FwdServer
Clien

t

Se
rve

r

T
Id

T
M

ul
tP

Id

P
M

ult

P
S

ched
P

S
peed

LSpeed

A
Id

A
type

PhVisits
Ph

Bytes

Trans

ConnEntry

Name

A
ctS

T

A
ctE

ntry

Repl
yin

g P
hS

ervice

T
im

e

Id
H

asA
ct

C
urrP

h

E
ntry

C
ount

A
ctivity

C
ount

Figure 12. PROGRES sub-schema describing LQN models

 21

same processor, the last term is not included in the CPU time. The overhead due to receiving

messages is estimated in the same way. The entire formula is as follows:

)/.*.(

)/.*.(

Pr/Pr.*.

∑
∑

∑

++

+++

+=

LinkSpeedVisitRatioInArcMsgLengthInArcRcvOvhd

LinkSpeedVisitRatioOutArcMsgLengthOutArcSendOvhd

ocRateobeActionStatCycleseActionStateServiceTim

In this section we have presented the transformation approach at a high conceptual level, by using the

UML and LQN graphical notation. The next section presents briefly issues regarding the

implementation of the transformation algorithm with PROGRES, which performs transformation on

the internal data structure representing the two models.

4. PROGRES-based transformation

As mentioned in section 2.4, a PROGRES program has two parts: a schema that defines the static

properties of the graph, and a set of features (composed of production rules, tests, queries,

transactions, and functions) that are used to completely define the rewriting rules for transforming the

graph.

In our case, the schema has two parts: a) a simplified subset of the UML metamodel (re-written

according to the PROGRES syntax) which represents the diagram types contained in the UML input

model, as explained in the previous section, and b) our own definition of the LQN model. We have

not translated the whole UML metamodel into PROGRES, only the parts that are necessary. Even

these parts are simplified, in the sense that we skipped over some abstract classes to reduce the size of

the schema, and expressed as PROGRES node attributes only those UML metamodel attributes that

were strictly necessary for building the performance model. We have also added attributes that

correspond to the tagged values from the UML performance profile, such as those giving the CPU

demand and probability of an execution step.

Due to its size, we show here only a part of the schema: Fig. 11 represents the sub-schema for activity

diagrams, and Fig. 12 the sub-schema for LQN models. PROGRES uses inheritance (possible

multiple inheritance) to define hierarchies of node classes. Square boxes represent node classes, and

the inheritance relationships are represented with dotted edges. Node classes correspond to abstract

 22

classes in UML, i.e., node classes do not have any direct node instances. A node class has an optional

list of attributes. Rounded-corner boxes represent node types, which are connected with their uniquely

Join

Arrow
Out of

Into Into

Arrow

Action State
Out of

Into

Fork

ArrowArrow

Out of
Out of

Into

State
Swimlane

Server Thread

Actionl State Action State

Arrow Arrow

Out of Out of

Client Thread

State
Swimlane

Client Thread Server Thread

a) Activity Diagram b) Generated PROGRES Graph

Work

before call wait for call

Figure 13. Example of an activity diagram and its PROGRES graph

Task T2Task T1

Processor P2Processor P1

Entry T1_e1 Entry T2_e1

Call Arc

Reply Arc

supportssupports

ownsowns

out

out

in

in

T1_e1

T2_e1

P1

P2

a) LQN Model b) Generated Graph
Figure 14. Example of an LQN model and its PROGRES graph

 23

defined classes by the means of dashed edges. Node types are leaves of the node class hierarchy, and

are used to create node instances in a PROGRES graph. A node type specializes only one class and

inherits all its properties. Solid edges between edge classes represent edge types, which define the

relationships between node instances. Node attributes are shown as small circles attached to the class

or type boxes. The classes shadowed in Fig. 12 are repeated from Fig. 11.

The schema describes the static propert ies of the internal data structure (a graph) that represents at the

beginning only the UML input model, and grows gradually so that by the end represents also the LQN

output model. Fig. 13 gives an example of a PROGRES graph that represents a simple activity

diagram, and Fig.14 one that represents a simple LQN model. As expected, the internal data structure

is more complex and less understandable than the UML or LQN graphical notation. However, it is at

the greater level of detail that the algorithm present ed in section 3 was implemented. The detailed

presentation of the implementation is beyond the scope of this paper (more details can be found in

Amer, 2001).

5. Case Study

In this section are presented the results of the UML to LQN transformation algorithm applied to three

CORBA-based client-server systems. The LQN model generated by using PROGRES were solved

under different workloads with an existing LQN analytic solver (Franks, 2000). The results were

compared with measurements obtained from actual implementations, taken from a performance study

by Abdul-Fatah and Majumdar, 1998. Based on a Commercial-Off-The-Shelf (COTS) middleware

product called Orbeline (currently sold as Visibroker by Inprise) and a synthetic workload running on

a network of Sun workstations using Solaris 2.6, Abdul-Fatah and Majumdar have implemented three

performance prototypes, and measured them by using Solaris system calls buried into the prototype

software. The three systems were the Handle-driven ORB (H-ORB), the Forwarding ORB (F-ORB)

and the Process Planner (P-ORB). The H-ORB was the basic Orbeline product, whereas the F-ORB

and P-ORB were built using additional processes in conjunction with the Orbeline middleware. In

(Petriu, Amer et al, 2000) is presented an analytical performance study of two of the systems, H-ORB

 24

and F-ORB, by using “hand-built” LQN models. The LQN models developed in (Petriu, Amer et al,

2000) are equivalent to the models derived automatically by our UML to LQN transformation.

In their study, Abdul-Fatah and Majumdar have implemented a synthetic application in which two

distinct services, A and B, are using the ORB. A client executes a cycle repeatedly, making one

request to Server A and one to Server B. Two copies of A, called A1 and A2, as well as two copies of

B, called B1 and B2, are provided. The two copies of each server enable the system to handle more

load and allow us to investigate the impact of load balancing that is provided by many commercial

ORB products. The client performs a bind operation before every request. The client request path

varies depending on the underlying ORB architecture. In the H-ORB, the client gets the address of the

server from the agent and communicates with the server directly. In the F-ORB, the agent forwards

the client request to the appropriate server. The server then returns the results of the computations

directly to the client. In the P -ORB, the agent combines the two requests, forwards them concurrently

to both servers, waits for the arrival of the two results, then combines the results and sends them back

to the client. When a service is requested form a particular server, the server process executes a loop

and consumes a pre-determined amount of CPU time. The synthetic application is used because it

provides flexibility in experimentation with various levels of different workload parameters, such as

the service time at each server, and the inter-node delay.

The synthetic application is characterized by a number of parameters that are briefly summarized.

Number of clients (N): the total number of active clients during the life of the experiment.

Service Demands (SA, SB): The time required by server A and B, respectively, to provide the service.

Whenever a particular server A (or B) is invoked it consumes SA (or SB) units of CPU time.

Inter-Node Delay (D): Since the experiments were performed on a local area network, the inter -node

delay that would appear in a wide-area was simulated by making a sender process to sleeps for D

units of time before sending a message. However, in case of the H-ORB agent there was no access to

the source code, and the inter-node delay for the handle returning operation was simulated by making

the client sleep for D units of time before receiving the message.

 25

Message Length (L): The size of the actual message sent by the client to the server, or returned by the

server. (In the experiments, the message content was not important, only the size).

Degree of Cloning: the concurrency degree of the agent process. A clone of a process is a copy that

shares the message queue with its parent. A cloned process is represented in LQN as a multi-server.

The following table summarizes the values for the workload factors by Abdul-Fatah and Majumdar:

Factors Levels
N 1,2,4,8,16,24
D (msec) 200, 250, 500, 1000
L (bytes) 4800, 9600, 19200
SA / SB (msec) 10/15, 50/75, 250/375
Degree Of Cloning 1, 4, 8

Table 1: Levels for the Workload Factors

5.1. H-ORB

The input to the UML to LQN transformation for the H-ORB case is represented by a) the deployment

diagram from Fig.8 (which is identical for all three cases), b) a collaboration diagram similar with

<<PAclosedLoad>>
{PApopulation=$N}

ServerB1

GetHandle()

B2Work()

GetHandle()

A1Work()

ServerB2ServerA2ServerA1AgentClient

B1Work()

A2Work()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

Sleep()

<<PAstep>>
{PAdelay=('mean','asgn',

 $D, 'ms')}

<<PAstep>>
{PAdemand=('mean',

'meas', 4, 'ms')}

<<PAstep>>
{PAdemand=('mean',
 'meas', $SA, 'ms'),

 PAprob = 0.5}

<<PAstep>>
{PAdemand=('mean',
 'meas', $SB, 'ms'),

PAprob = 0.5}

Figure 15. Client request scenario in H-ORB

 26

Entry1
phase1

Client H-ORB Agent Server A1 Server A2

GeHandle req

A1Work req

Arg1

SleepT

GetHandle

Send Sleep

Sleep req

A1Work

Arg1

 Sleep req

Sleep

Sleep

Sleep

 Sleep req

Sleep

Arg1

A2Work

Arg1

Sleep Req

Sleep

Wait Wait WaitWait

Wait

Wait

Wait

WaitWaitWaitWaitSleep req

Wait

Entry1
phase1

Entry1
phase1

Entry1
phase1

Entry1
phase1

Entry1
phase1

Entry1
phase1

Entry1
phase1

Figure 16. Partial activity diagram automatically generated for H-Orb

 27

Fig.7, where the client/server pattern is used twice (between clients and agent, and between clients

and servers), and c) the sequence diagram from fig.15. The sequence diagram is annotated with

performance information according to the UML performance profile. The <<PAclosedLoad>>

stereotype indicates that the scenario is used under a closed load with a population of N. ($N indicates

a variable, to be substituted by a concrete value when the model is actually generated). A <<PAstep>>

stereotype is applied to each of the actions triggered by the following messages: GetHandle(), Sleep(),

A1Work(), A2Work(), B1Work() and B2Work(). All scenar io steps are characterized by a certain

PAdemand value (which represents the CPU execution time), with the exception of Sleep(), which is

characterized by a PAdelay value (delay without consuming CPU time). The server operations have

also a PAprob value of 0.5, which indicates their probability of being chosen.

Fig. 16 shows the beginning of the activity diagram that was generated automatically from the

sequence diagram from Fig. 15. (The activity diagram covers the communication between the client

and the agent, and between the client one of the servers A). The activity diagram contains a swimlane

for each concurrent component. In this case, the sequence diagram did not contain any passive

objects. An additional swimlane was created for an "artificial" Sleep task needed to implement the

Client

H-ORB Agent

0.5 0.5

P1

P5P4P3 P6

0.50.5

Sleep

4

2

P2

GetHandle

A1Work

ServerA1

A2Work

ServerA2

B1Work

ServerB1

B2Work

ServerB2

Figure 17. LQN model automatically generated for H-ORB

 28

sleep operation, away from any of the existing processors. (Such a task is created every time the

tagged value PAdemand is used). In the LQN model, Sleep will be implemented as a delay server

(also known as infinite server), for which there is no queueing. Fig. 16 shows also how the different

activity diagram states have been grouped into entry and phases. The object flow Arg1 that represents

the content of the messages exchanged between the client and the servers was generated because the

messages had arguments (not shown in the sequence diagram). What is important for the performance

model is the size of the message, not its actual content. We have realized that, so far, the UML

Performance Profile does not have a tagged value to define the message size. (However, we have

added such an attribute to the PROGRES schema). As shown in Table 1, the size of the message was

one of the experimental factors.

The LQN model automatically generated for F-ORB is given in Fig. 17.

The model was then given as input to the analytical LQN solver, obtaining the following results for

the Mean Client Response Time (in seconds) for the different values of the number of clients (N).

Number of Clients Model Results Measured Values Error %
1 1.64836 1.7212 4.231931211
2 1.70365 1.7212 1.019637462
4 1.82544 1.75 -4.310857143
8 2.11086 1.9 -11.09789474
16 2.80472 2.5 -12.1888
24 3.58537 3.2 -12.0428125

Table 2: H-ORB Model Results VS Measured Values

A comparison between the model results and the measured values is depicted in Fig.18.

The Response Time of the H-ORB,
D= 200 ms, L = 4800 bytes, SA/SB = 10/15 ms, Cloning =1

0

1

2

3

4

1 2 4 8 16 24

Number of Clients (N)

M
ea

n
C

lie
nt

 R
es

po
ns

e
T

im
e

R
 (

se
c)

Model
Measured

Figure 18: H-ORB Model results VS Measured values Graph

 29

2.2. F-ORB results

As stated in (Abdul-Fatah and Majumdar, 1998), the Forwarding ORB (F -ORB) architecture differs

from H-ORB in the sense that the F-agent forwards the reply to the desired server rather than

returning the handle to the requesting client. During each experiment, a fixed number of F-agents are

implemented. All F-agents are activated and set ready to receive and process any client request in

cooperation with the default agent supplied by ORBeline. The F-Agent and the default agent are co-

allocated on the same processor and are treated as one task.

Due to space limitations, we cannot show the diagrams for the UML input model and the generated

LQN model, which are presented in (Amer, 2001). The LQN model was solved with the analytical

solver, giving the following results for the Mean Client Response Time (in seconds) for different

numbers of clients (N).

Number of Clients Model Results Measured Values Error %

1 0.82336 1.3142 37.34895754
2 1.16632 1.32 11.64242424
4 2.0361 1.8 -13.11666667
8 3.74539 3.3 -13.49666667
16 7.09926 6.4 -10.9259375
24 10.4351 10 -4.351

Table 3: F -ORB Model Results VS Measured Values

The model results and the measured values for a cloning level of 1 are shown in Fig.19

The Response Time of the F-ORB,
D= 200 ms, L = 4800 bytes, SA/SB = 10/15 ms, Cloning =1

0
2
4
6
8

10
12

1 2 4 8 16 24

Number of Clients (N)

M
ea

n
C

lie
nt

 R
es

po
ns

e
T

im
e

R
 (

se
c)

Model
Measured

Figure 19: F-ORB Model Results VS Measured Values

 30

5.3. P-ORB results

In the Process Planner (P-ORB) architecture, the client sends its two requests combined in one

message to an implemented P-agent. The P-agent decomposes the request into its simple constituent

services, invokes the respective servers and when all services are performed, it relays back a single

coherent reply to the originating client. The P-agent invokes both servers asynchronously since the

design assumes no interdependencies between the two constituent requests. Both servers are invoked

using a one-way send. During each experiment, a fixed number of P-agents are activated and set ready

to receive and process any client request in cooperation with the default agent supplied by ORBeline

The P-agent and the default agent are co-allocated on the same processor and are considered to be one

task. For more details, see (Abdul-Fatah and Majumdar, 1998).

Due to space limitations, we cannot show the diagrams for the UML input model and the generated

LQN model, which are presented in (Amer, 2001). The LQN model was solved with the analytical

solver, producing the results shown in Table 4 and Fig. 20 for the Mean Client Response Time (in

seconds) for different numbers of clients (N).

Number of Clients Model Results Measured Values Error %
1 0.73509 0.9015 18.45923461
2 1.09699 1.2 8.584166667
4 2.08761 2.1 0.59
8 4.20283 4.2 -0.067380952
16 8.45052 8.8 3.971363636
24 12.6999 13 2.308461538

Table 2: P-ORB Model Results VS Measured Values

The Response Time of the P-ORB,
D= 200 ms, L = 4800 bytes, SA/SB = 10/15 ms, Cloning =1

0

5

10

15

1 2 4 8 16 24

Number of Clients (N)

M
ea

n
C

lie
nt

 R
es

po
ns

e
T

im
e

R
 (

se
c)

Model

Measured

Figure 20: P-ORB Model Results VS Measured Values Graph

 31

6. Conclusions

The paper presents a transformation algorithm from UML models (annotated with performance

information) to LQN performance models. The algorithm was implemented with PROGRES, a known

graph-rewriting tool. Automatically generated LQN models were solved analytically, then compared

with measurements obtained from three CORBA-based systems. The model results are reasonably

close to the measurements, which demonstrate that the approach is valid. This works contributes to

bridging the gap between software design and performance analysis. It also offers promises that in the

future, performance model generators could be integrated with UML tools, facilitating the quantitative

analysis of software designs from the early stages throughout the software life cycle.

The successful use of a graph rewriting tool to convert UML models into LQN model represents a

proof of concept that graph-grammar techniques work for this kind of problem. However, although

PROGRES is a very powerful tool, it introduces additional steps both in the algorithm implementation

and in the transformation process. One disadvantage is that we had to convert the UML metamodel

into a PROGRES schema during the development of the algorithm. Another disadvantage is that

every UML model has to be converted into a PROGRES input graph every time we want to generate

its corresponding performance model. Therefore, by using the lessons learned from this experience,

we started working on a graph transformation algorithm that works directly on the internal data

structure of a UML model. This is, in fact, a graph described by a schema that is exactly the UML

metamodel. The disadvantage of such an approach is that we will have to implement from scratch the

graph transformation operations that are provided by the general-purpose graph rewriting tools such

as PROGRES. The advantage is, however, that we will eliminate a lengthy intermediary step and

obtain a faster transformation.

Another approach we are investigating is to perform the transformation at the XML level. The UML

standard defines XMI, an interface from UML to XML. Every UML tool is supposed to implement

this interface, and therefore to generate XML files that describe the UML models developed with the

tool. There are new XML transformation languages, such as XSLT, and free tools to sup port them.

 32

We started to investigate whether XSLT and its supporting tools are powerful enough for our

application.

Other directions for future work include: the addition of new architectural patterns to the

transformation, the application of the UML to LQN transformation to a wider class of systems, and

the possibility of generating another kind of performance models besides LQN.

Acknowledgements

This work was partially supported by grants from the Natural Sciences and Engineering Research

Council of Canada (NSERC) and Communications and Information Technology Ontario (CITO).

References

Abdul-Fatah, I., Majumdar, S., 1998. “Performance Comparison of Architectures for Client-Server
Interactions in CORBA”, Proc. IEEE International Conference on Performance, Computing, and
Communication, Tempe, Arizona.

Amer, H., 2001. "Automatic Transformation of UML Software Specifications into LQN Performance
Models by using Graph Grammar Techniques", Master Thesis, Carleton University, Ottawa, Canada.

Balsamo, S., Simeoni, M., 2001. “On transforming UML models into performance models”,
Workshop on Transformations in the Unified Modeling Language, Genova, Italy.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modeling Language User Guide, Addison-
Wesley.

Buchmann, F., Meunier, R., Rohnert, H., Sommerland, P., Stal, M., 1996. Pattern-Oriented Software
Architecture: A System of Patterns, Wiley Computer Publishing.

Cortellessa, V. Mirandola, R., 2000. “Deriving a Queueing Network based Performance Model from
UML Diagrams”, In Proc. of the 2nd International Workshop on Software and Performance, Ottawa,
Canada, pp.58-70.

Franks, G., Hubbard, A., Majumdar, S, Petriu, D.C., Rolia, J., Woodside, C.M., 1995. “A toolset for
Performance Engineering and Software Design of Client-Server Systems”, Performance Evaluation,
Vol. 24, Nb. 1-2, pp.117-135.

Franks, G., 2000. "Performance Analysis of Distributed Server Systems", Ph.D. Thesis, Carleton
University, Ottawa, Canada.

Gomaa, H., Menasce, D.A., 2000. “Design and Performance Modeling of Component
Interconnections Patterns for Distributed software architectures, Proceedings of 2nd ACM Workshop
on Software and Performance, WOSP’2000, Ottawa, Canada, pp.117-126.

 33

Kähkipuro, P., 2001. “UML-Based Performance Modeling Framework for Component-Based
Distributed Systems”, in R.Dumke et al.(Eds): Performance Engineering, LNCS 2047, Springer,
pp.167-184.

Neilson, J.E., Woodside, C.M., Petriu, D.C., and Majumdar, S., 1995. "Software bottlenecking in
client-server systems and rendezvous networks", IEEE Trans. on Software Eng., vol. 21(9) pp.776-
782.

Object Management Group, 1999. UML Specification Version 1.3, OMG Doc. ad/99-06-08.

Object Management Group, 2001. UML Profile for Scheduling, performance and Time, OMG
Document ad/2001-06-14, http://www.omg.org/cgi-bin/doc?ad/2001-06-14.

Petriu, D.C., Amer, H., Majumdar, S., Abdul-Fatah, I., 2000 “Using Analytic Models for Predicting
Middleware Performance”, Proceedings of 2nd International Workshop on Software and
Performance, Ottawa, Canada, pp 189-194.

Petriu, D.C., Shousha, C., Jalnapurkar, A., 2000, "Architecture-Based Performance Analysis Applied
to a Telecommunication System", IEEE Trans. on Software Eng., Vol.26, No.11, pp. 1049-1065.

Petriu, D.C., Wang, X., 2000. "From UML description of high-level software architecture to LQN
performance models", in Applications of Graph Transformations with Industrial Relevance
AGTIVE'99 (eds. M.Nagl, A. Schürr, M. Muench), LNCS 1779, pp. 47-62, Springer.

Petriu, D.C., Sun, Y., 2000 "Consistent Behaviour Representation in Activity and Sequence
Diagrams", in UML'2000 The Unified Modeling Language - Advancing the Standard, LNCS 1939,
pp.369-382, Springer.

Rolia, J.A., Sevcik, K.C., 1995. “The Method of Layers”, IEEE Trans. on Software Eng., Vol. 21,
Nb. 8, pp 689-700.

Schürr, A., 1990. “Introduction to PROGRES, an attribute graph grammar based specification
language”, in Graph-Theoretic Concepts in Computer Science, M. Nagl (ed), Vol. 411 of Lecture
Notes in Computer Science, pp 151-165.

Schürr, A., 1994. “PROGRES: A Visual Language and Environment for PROgramming with Graph
Rewrite Systems”, Technical Report AIB 94-11, RWTH Aachen, Germany.

Schürr, A., 1997. “Programmed Graph Replacement Systems”, in Handbook of Graph Grammars and
Computing by Graph Transformation, G. Rozenberg (ed), pp 479-546.

Shaw, M., 1996. “Some Patterns for Software Architecture”, In Pattern Languages of Program Design
2 (J.Vlissides, J. Coplien, and N. Kerth eds.), pp.255-269, Addison Wesley.

Smith, C.U., 1990. Performance Engineering of Software Systems, Addison Wesley.

Smith, C.U., Williams, L.G., 2001. Performance Solutions: A Practical Guide to Creating responsive,
Scalable Software, Addison Wesley.

Woodside, C.M., 1988. "Throughput Calculation for Basic Stochastic Rendezvous Networks",
Performance Evaluation, Vol.9(2), pp. 143-160.

Woodside, C.M., Neilson, J.E., Petriu, D.C., Majumdar, S., 1995. “The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-like Distributed Software”, IEEE
Trans. on Computers, Vol.44(1), pp 20-34.

