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<H1>15.1  Introduction</H1>
In recent years, software systems based on commercial off-the-shelf (COTS) components (Meyers & Oberndorf, 2002) have become not the exception but the rule in software-based solutions for managing the informational resources of organizations worldwide. This is true for both COTS components that have a visible impact on the services offered by an organization, such as ERP (Enterprise Resource Planning) and CRM (Customer Relationship Management) systems, and others that take care of an organization’s daily functioning, such as mail or meeting scheduler systems, and security-related tools.

Successful COTS-based system development requires a unique set of activities to be performed, among which is the selection of the COTS components themselves (COTS selection). This activity is becoming more and more critical, due to the ever-growing COTS components market (COTS market), both in the variety of COTS components domains available in the COTS market (COTS domains, i.e., market segments that each enclose a significant group of functionalities), and the population of COTS components that are in these domains. As a consequence, several COTS selection methods, processes, and techniques have been and are being formulated (Burgués, Estay, Franch, Pastor, & Quer, 2002; Comella-Dorda, Dean, Morris, & Oberndorf, 2002; Kontyo,
 1996; Maiden & Ncube, 1998) that propose different ways of eliciting requirements and evaluating COTS components in the context of COTS selection. 

In Franch and Maiden (2003) we proposed to use advanced agent-oriented system modeling techniques, and in particular i* goal modeling, for COTS selection. The i* approach was originally developed to model information systems, and in particular the dependencies between human and technological actors in a more software-oriented system architecture. In our method, named REACT (REquirements ArchiteCTure), we apply i* SD models to model software architectures, not in terms of connectors and pipes, as is done in classical architecture modeling frameworks (Shaw, 1991), but in terms of actor dependencies to achieve goals, satisfy softgoals, use and consume resources, and undertake tasks. A case study was reported in Sai, Franch, and Maiden (2004): the selection of a new suite of COTS components for the Software Engineering Institute at Carnegie Mellon University to conform a financial planning, forecasting, and budgeting application.

Our agent-based approach has two major advantages for software component selection. First, the focus on goal and softgoal dependencies means that the selection process relies less on preemptive decisions about the architectural design or component selection—decisions that should be postponed for as long as possible. Second, the architecture is expressed in terms of the problem domain rather than the machine (Jackson, 1995), thus enabling more effective participation of stakeholders in a requirement-driven selection process. 

Another important innovation that we presented in Franch and Maiden (2003) is the analysis of these models to infer properties about the system architecture that impact on the satisfaction of nonfunctional requirements such as reliability and security, in order to assess the impact of selecting one component over another on requirement satisfaction. We presented these properties as easy-to-use treatments of i* models.

The rest of the chapter is organized as follows. In section 15.2 we give more details about the REACT method and outline the open questions that arose after its formulation. The balance of the chapter addresses them: in section 15.3 we talk about metrics for i*; in section 15.4, about prescriptive methodologies for building i* models; and in section 15.5, about taxonomies for organizing COTS domains. Finally, in section 15.6 we provide some conclusions. It must be pointed out that this chapter has an introductory aim; the interested reader may find more details about the different parts of the proposal in the references.
<H1>15.2  Modeling Component Dependencies to Inform Their Selection</H1>
The REACT method supports a concurrent requirement modeling and architecture modeling process with clear synchronization stages in which candidate architectures are tested for requirements compliance, similar to other existing iterative requirements acquisition-component selection processes (Kontyo, 
1996; Maiden & Ncube, 1998). In its extended form, it consists of activities that include development of quality models for COTS domains, requirements elicitation, decision-making techniques, and others. For the purposes of this chapter, we focus on the formulation of requirements models and their use for assessing architecture comparison and COTS selection.

<H2>15.2.1 Sociotechnical Systems in REACT</H2>
In REACT, system requirements are used to produce a sociotechnical system in which the responsibilities of, and expectations about, the system-to-be are made explicit. The way this sociotechnical system is built is not predetermined in REACT (it may be constructed from scratch, as a derivation of a social system, as an exercise of process reengineering, or by following any other strategy). For instance, in section 15.4 we present two particular model construction methodologies that we have adopted in our experiences.
 Also, in Sai et al. (2004) we started from system use cases to develop the i* model. And in subsection 15.2.5 we present a reuse-oriented strategy that exploits our knowledge of the COTS market. In any case case, the resulting system includes software actors, human actors, organizational actors, and hardware actors. Software actors represent software domains.

As an example, figure 15.1 shows a simplified sociotechnical system for a meeting scheduler with four software actors (meeting scheduler itself, message delivery, user directory, and anti-virus) and three human actors.  

[figure 15.1 here]

<H2>15.2.2  Generation of Candidate Architectures</H2>
Next we use our knowledge of the COTS market to make decisions about the system architecture. System software actors are assigned to feasible combinations of COTS components or, more precisely, combinations of types of COTS components, because at this stage we do not commit to a particular component. By feasible we mean that if a type of COTS component is assigned to actors A1, …, Ak, then there are some COTS components in the COTS market that belong to the software domains represented by A1, …, Ak. Some remarks follow:
<BL>
· The feasibility rule may be broken under several circumstances. For instance, some of the software actors are covered by existing components (see the concept of anchor, below). Also, a strategic decision may be taken that forces an actor to be covered by a component developed in-house.

· Assignment of software actors to types of COTS components is many-to-many. Not only may a type be assigned to more than one actor, but an actor may be assigned to more than one type in order to achieve some target system properties (e.g., dependability).

· We have introduced the concept of anchor for representing software actors that are currently implemented in the system. There are two types of anchors: heavy anchors, in which the current component must remain in the system, and soft anchors, if we allow considering their
 substitution for other components when exploring alternatives.</BL>
As a result, we obtain different system candidate architectures determined by the concrete assignments of actors to types of components. Depending on the concrete form that this assignment takes, dependencies among actors may or may not be hidden inside components. Different architectures with different assignments will differ in some architectural properties, such as diversity, data integrity, and others. 

More concretely, for a specific assignment of actors that results in a system candidate architecture, given two software actors A and B from the sociotechnical system model, and a dependency d from A to B, the following situations are possible:

<BL>
· A and B are assigned to different types of COTS components. In this case, the dependency d is kept as part of the system candidate architecture.

· A and B are assigned to the same type of COTS component. In this case, the dependency d does not appear in the system candidate architecture.

· A and B are assigned more than once to different types of COTS components. In this case, the dependency d is replicated in the system candidate architecture as many times as required.</BL>
We call the dependencies in the system candidate architecture instance dependencies, to distinguish them from the original model dependencies.

In figure 15.2 we present three possible system candidate architectures. In the first (A1), we consider that each system software actor is covered by one type of COTS component. In the second (A2), we consider a type of meeting scheduler that also offers message delivery facilities; as a result, dependencies between these two actors become hidden. In the last (A3), we consider a meeting scheduler with agenda that in addition must coexist with the external organization directory service; because we have the UDM actor replicated, each model dependency involving it generates two instance dependencies, except for dependencies between UDM and MS, in which just one (involving the UDM that models the organization directory) exists. For clarity of the drawing, we distinguish between the internal view of the system (software actors and their dependencies) and the external view (other actors in relationship to the system as a whole). The abbreviationxA means “x occurrences of dependencies of type A (goal, task, …)” in the direction determined by the arrow.

[figure 15.2 here]

<H2>15.2.3 Evaluation of System Properties</H2>
COTS selection takes place in REACT in two phases. First, system candidate architectures are compared with respect to relevant system properties, such as data integrity and diversity. Second, once the architecture has been selected, concrete COTS components compliant with the chosen assignment are further evaluated in terms of their particular relationships. In this section we focus on the first phase.

Relevant properties are determined from the system high-level goals. For instance, let’s suppose that security and usability are two relevant nonfunctional goals of the system. We may propose, among others, two particular properties that relate to these goals:

<BL>
· Data self-containment. The amount of data that does not flow among different COTS components, since we consider that the flow of information from one component to another exposes data to potential security breaches. We may measure this property by counting remaining resource dependencies or computing the percentage of hidden resource dependencies.

· Interface complexity. The amount of effort that users must exert in learning how to operate the system. We consider that effort is lessened when the users interact with fewer COTS components, thereby reducing the communication styles and graphical layouts to be dealt with. We may measure this property by counting the number of different COTS components that interact with human actors.</BL>
Figure 15.3 presents the definitions of these properties and the evaluation of the three candidate architectures considered above. The metrics are defined in terms of the cardinality of the following sets of dependencies: instance resource dependencies (IRD, the set of instance dependencies that are of type resource); hidden instance resource dependencies (HIRD, the set of instance dependencies that remain hidden because they connect two actors assigned to the same type of COTS component); user actors instance dependencies (UAID, the set of instance dependencies that involve human actors); and components that interact with user actors (CUA, the set of types of components that interact with human actors). Cardinality of a set S is denoted by ||S||. For data self-containment, 0 is the worst value (all resource dependencies yield to have data flow among components) and 1 is the best value (no data flow among components). For interface complexity, again 0 is the worst value (each interaction modeled by a dependency involves a different type of component) and 1 is the best value (all the dependencies involve a single type of component). Although evaluation results point to A2 as the best solution in this very simple case, usually no single architecture is the best selection with respect to all of its nonfunctional goals.

[figure 15.3 here]

<2>15.2.4 Informing the Selection of the COTS Components</H2>
Once an architecture has been chosen from the candidate set, the next step is to determine which concrete COTS components can be selected using this architecture. Dependencies among COTS components are crucial in this analysis. These dependencies state that a component A requires component B to attain its results, or else that A does not work together with B. These dependencies are also modeled as i* dependencies, considering A and B as agents and putting the right type of dependency links. For instance, the component dependency the meeting scheduler A requires the message delivery tool B to execute the Receive and Send Messages task yields to a dependency link from A to B. In Franch and Maiden (2003) it is shown how these dependencies refine the results obtained in the architecture evaluation.

In Sai et al. (2004) we gained some insights about the benefits of overlapping the application of REACT’s architecture-level and component-level analyses, in particular to discover and assess consequences for the architecture from the selection of different permutations of components.
<H2>15.2.5 Building Sociotechnical Systems Considering the COTS Market</H2>
The answer to the problem of determining which software actors should appear in the sociotechnical system is sometimes not obvious. In section 15.5 we propose to structure the COTS market by means of a taxonomy of COTS domains and also to enlarge this taxonomy with information about the dependencies that involve these domains. As a result, we could use this information to drive the construction of the sociotechnical system. In Franch (2005) we follow this strategy: we propose to build first a social system (i.e., a system that does not include the target software system) for the organization, and then compare sociotechnical systems for possible candidate domains. As a result, on the one hand we choose the software actors to be plugged into the social system, and on the other hand we may discover new needs that may be included in the social model, which is a way to implement the classical intertwining of requirements elicitation and COTS selection presented in Maiden and Ncube (1998).

More precisely, we distinguish two types of models:

<BL> 
· Organizational models. These correspond to the typical i* model that represents the goals pursued by an organization without considering the software system. We present in figure 15.4 an excerpt from an organizational model covering the data integrity aspect. Users who interchange data require the organization to keep their information preserved (D1) and not to send them undesired information (D2). Because users are aware that they may submit incorrect information, they also require the organization to warn them if they do (D4). Information checking shall be transparent to users (D6). In its turn, the organization only requires users not to submit hazardous information (D3). On the other hand, the organization needs support to discern whether its managed information contains unwanted data or not (D5). This gives rise to
 a third actor: a data integrity expert capable of informing the organization whether the information suffers from some hazards or not. 

[figure 15.4 here]

<BL>
· COTS domain models.
 These describe the services that a particular COTS domain addresses. A designated actor represents the domain of interest, and the other actors focus on its relationships. In Franch (2005) we present some characteristics of this kind of model. We show in figure 15.5 a COTS domain model for the segment of antivirus software packages (AVSP). Goal dependencies reflect major needs, and merely relevant nonfunctional properties, resources, and tasks appear. For instance, nonfunctional properties such as efficiency are not introduced in the model. (Of course we would like an antivirus solution to be efficient, but we consider that for AVSPs, efficiency is not as critical as for other types of COTS components, and therefore it does not appear in this highly strategic model.)</BL>
·  The two resource dependencies show the two most significant data concepts: the target of the tool (the files to be scanned, E4) and the object that threatens the files (the viruses, E8). Task dependencies reveal that AVSP activation (E5) and task management (E11) occur in a particular manner.

[figure 15.5 here]

COTS domain models can be compared with organizational models using the notion of matching among the actors and dependencies of the involved models.

The matching can be classified according to the following:

<BL>
· The coverage of the organizational model: a matching is complete if every intentional element of the organizational model is matched with one or more intentional elements in the COTS domain model; otherwise it is incomplete. 

· The coverage of the COTS domain model: a matching is complete if every dependency of the COTS domain model that is linked to at least one actor that is matched with an actor of the organizational model, is also matched with one or more dependencies in the organizational model; otherwise it is incomplete. Note that the definition of coverage does not take into account dependencies that link actors that have arisen in the COTS domain model.</BL> 

Model matching will usually be incomplete in the two sides. In the case of the COTS domain model, if the degree of incompleteness is too high, the COTS domain does not apply to the problem. Otherwise, one or more of the following statements will hold: (1) the system-to-be will combine services from different COTS domains (this is the usual situation for medium- and large-scale systems, such as our meeting scheduler example); (2) some in-house extensions and/or a glue code is necessary to achieve the expected functionalities; (3) uncovered organization requirements must be prioritized to decide if they can be relaxed; (4) the COTS domain offers some functionalities or behavioral characteristics that were not foreseen by the initial requirements of the system and that can be incorporated. Even a complete matching does not exclude that other COTS domains are also selected as applicable. In our case, in addition to AVSP, we could think of data encryption and spyware tools domains as applicable.

As already mentioned, the matching can be used to point out new organizational needs for the organization. In particular, we may say that each dependency D in the COTS domain model that links a new actor (one that does not match with an organizational actor) and a matched actor (one that matches with an organizational actor) is indicating a dependency that is not identified in the departing organizational model. Of course we are not proposing automatic updating of the organization model, because this requires a careful strategic analysis; we are merely providing a systematic way to identify candidate modifications to be performed.

<H2>15.2.6 Open Issues</H2>
The REACT method provides a backbone for driving COTS selection, but at the same time it raises some questions that must be answered in order to consider the method reliable. These questions are:

<BL>
· Which are the metrics of interest, and how do we define them? Concerning the first question, we are not aiming at inventing new metrics but at selecting some existing ones. We think about two types of metrics: organizational metrics, such as the concept of segregation of duties or length of responsibility chain, and architectural metrics, such as data integrity and diversity. Concerning the second question, we have defined some general forms for formulating metrics taking into account the structure of the i* model that represents the system architecture and its environment.

· How are models built? What is the precise meaning of their elements? It makes no sense to invest a lot of time in defining accurate metrics if we are not equally accurate in building the object of measurement. This means, on the one hand, defining methodologies with well-defined steps and guidelines for building
 models; on the other hand, it means having available a formal or at least rigorous model with all the valid constructs of the language. We have results for both sides, with two methodologies for building i* models and a UML model acting as reference framework for the language users.

· How can we structure the huge and continuously changing information about COTS domains available in the market? How can we link this information to our models? We propose to organize domains into a goal-oriented taxonomy. Being goal-oriented, on the one hand, we make the taxonomy
 more robust to market evolution, and on the other hand, it is easier to bring the goal-oriented part of the i* framework.
</BL>
These three questions are considered in detail in the next three sections.

<H1>15.3  Definition of Metrics for Architectural Properties</H1>
The problem of defining metrics for architectural properties, already  presented in subsection 15.2.3, has been an object of study
 in our group. In this section, we report the use of structural metrics for analyzing the architectural properties of an i* SD model as it was proposed in Franch, Grau, and Quer (2005). Recently, we have explored the use of OCL (Object Constraint Language) for expressing these metrics (see Franch, 2006).

Structural metrics are defined more concretely in terms of model elements.
 
<BL>
· Their sort. In the case of actors: human, software, hardware, organization. In the case of dependencies: goal, softgoal, task, resource.

· Their properties. Properties may be declared as needed. Examples of properties are number of expected instances of an actor and expected size of a resource.</BL>
Structural metrics are valuable both for analyzing a highly abstract model of a system of any kind, and for comparing different feasible realizations of this abstract model with respect to the most relevant criteria established in the modeled world.

For a given architectural property that is the object of measurement, it may be the case that all its elements (actors and dependencies) influence the metric. However, it is more likely that only elements of some particular sorts affect this property. Furthermore, some individual elements may be identified as especially relevant for the property; in the most general case, all the elements may have a different weight in the metric. We need, then, to take into account all these situations if we aim at having a widely applicable metrics formulation framework.

We distinguish three types of structural metrics. Global structural metrics takes the model as a whole and produce a single measure for the property of interest. Local structural metrics focuses on the individual elements of the model, producing a set of values that can be examined for thresholds or weak points of the model. On top of local structural metrics we define sensitivity metrics, used to find the element that maximizes the values of a local structural metric.
 We focus in this chapter on global structural metrics (see Franch et al., 2005, for the two other types). All types of metrics rely on two fundamental concepts, actor and dependency evaluation, depending on the kind of model element that is considered to influence the metric most strongly. 

<H2>15.3.1 Global Structural Metrics</H2>
We provide a general form for measuring how a particular actor or dependency influences the evaluation of an architectural property.

<H3> 15.3.1.1 Definition: Actor Evaluation</H3>
 Given a property P, an i* SD model M = (A, D) where A is the set of actors and D the set of dependencies, and an actor a in the model a(A, the actor evaluation of a for P over M is of the form
<DE>PM,A(a) = fM,A(a) ( gM,A(a)</DE>
where fM,A: A ( [0, 1] is a mapping that assigns a weight to every actor of the model, and gM,A: A ( [0, 1] is a mapping that corrects the weight of an actor considering its stemming and incoming dependencies, respectively.

<H3> 15.3.1.2 Definition: Dependency Evaluation</H3>
<DE>PM,D(d) = fM,D(d) ( gM,D(d)</DE>
Given a property P, an i* SD model M = (A, D) where A is the set of actors and D the set of dependencies, and a dependency d in the model, d=(a,b)(D, where a and b are the linked actors and the dependency evaluation of d for P over M is of the form
                <DE>PM,D (d)=fM,D (d)
X
gM,D(d) <DE>
where fM,D: D ( [0, 1] is a mapping that assigns a weight to every dependency of the model, and gM,D: D ( [0, 1] is a mapping that corrects the weight of a dependency considering the depender and dependee actors, respectively.

Actor-based and dependency-based global structural metrics merely sum the evaluations of their elements, and normalize the value considering the number of actors or dependencies that satisfy a particular condition, using the function limitM.

<H3> 15.3.1.3 Definition: Actor-Based Global Structural Metrics</H3>
Given a property P, an i* SD model M = (A, D) where A is the set of actors and D the set of dependencies, and a function limitM,P: A ( [1, ||A||], an actor-based global structural metric for P over M is of the form PM = (a(A: PM,A(a) /  limitM(D). 

<H3>Definition: Dependency-Based Global Structural Metrics</H3>
Given a property P, an i* SD model M = (A, D) where A is the set of actors and D the set of dependencies, and a function limitM,P: D ( [1, ||D||], a dependency-based global structural metric for P over M is of the form PM = (d(D: PM,D(d) /  limitM(D). 

<H2>15.3.2 An Example</H2>
As an example, we address the complexity of the user interface property introduced in subsection 15.2.3. Our first choice is an actor dependency metric counting how many different COTS components interact with human actors, that is, are dependers or dependees with some human actor (see figure 15.6, top left). This is only a first approximation, easy to define and compute but not very accurate, because it usually gives better solutions than those in which a coarse-grained type of COTS component is assigned to as many domains as possible.

[figure 15.6 here]
This first proposal may be refined by discarding those software actors whose link with human actors is based exclusively on softgoal dependencies, because such dependencies will not affect the user interface. We use this idea to define a second proposed metric, dependency-based in this case, by taking into account goal, resource, and task dependencies. Furthermore, we choose to give more weight to goal dependencies than to the others, because a goal may later involve (i.e., be decomposed into) other dependencies. Concerning weights, at the same time we prioritize types of users, for instance, making administrator
 users less important with respect to usability issues. Figure 15.6, top right, presents this option. Of course, it can be said that discarding softgoals is a very simplistic assumption, because some of them can be related to usability that may have impact on the property under study; therefore, a more accurate definition should take into account the type of softgoal, using a classification such as the quality standard ISO/IEC 9126-1 (International Organisation for Standardisation, 2001) and expressing it in the model;
 for instance, using the concept of type proposed by the NFR framework (Chung, Nixon, Yu, & Mylopoulos, 2000). 
Last, we explore two more precise metrics by assigning individual weights to dependencies that connect human and software actors (the others are given a null value). These dependencies are (see figure 15.1) MS, Meeting Scheduled (goal); CAD, Communicate Available Dates (task); PD, Personal Data (resource); MP, Meeting Proposal (resource); ECP, Effective Communication Provided (goal); ES, Ensure Safety
 (softgoal). The weights may be assigned using either quantitative or qualitative criteria.

A quantitative criterion for prioritizing resource dependencies could be to consider the number of fields that the data screen requires to be filled, whereas task dependencies can be prioritized by the number of clicks the user needs to do in the worst case; for goals and softgoal dependencies we make an estimation. In all these cases, we normalize again to obtain values between 0 and 1 (see figure 15.6, bottom left).

For qualitative analysis, we may apply criteria such as AHP (Analytic Hierarchy Process) (Saaty, 1990)
 or laddering (Rugg, Eva, Mahmood, Rehman, Andrews, & Davies, 2002) to weight dependencies and/or actors. In figure 15.6, bottom right, we show an example of human-software dependency prioritization using the AHP to define the weighting function. Needless to say, the convenience of such a detailed analysis must be carefully considered.

To complete this and the previous metrics, we need only to define the values of gA,D(a), taking into account the assignment of actors to concrete COTS components.

In this example we have observed (Franch et al., 2005) that the first metric gives different results compared with the others, and this fact aligns with the metric's low level of accuracy. The second metrics gives the right tendency, and the differences are very small. The third and fourth metrics are similar, although the concrete values are different because of the difference of the dependency evaluation function. Of course, variations in the values used for this function may change the ordering of the alternatives. We think that requirements prioritization approaches such as WinWin (Boehm, Grünbacher, & Briggs, 2001) may help in assigning the correct weights to the model elements.

<H2>15.3.3  REDEPEND-REACT</H2>
From the preceding discussion, the need for tool support is clear because i* models and architectural properties may be many, and therefore performing calculations by hand is unacceptably cumbersome and error-prone.

Some tools have been designed for constructing i* models, among them REDEPEND, a graphical modeling tool implemented as a Microsoft Visio plug-in (Pavan, Maiden, & Zhu, 2003). Complex i* SD models are produced by using a Visio stencil that allows a user to drag and drop the  i* shapes (actors, goals, softgoals, resources, tasks, and dependencies) into the drawing page, thus supporting the development and validation of large i* SD and SR models. REDEPEND-REACT is an extension of REDEPEND that assists the component selection process by allowing the definition of several catalogues (actors, software components, and properties for which basic dependency-based and actor-based metrics can be defined). Candidate architectures are generated by following certain criteria and providing a strong rationale. Architectures can be evaluated with regard to properties chosen from the catalogue and considered important for the system being modeled. 

Some heuristics guide the process of generating architectures. For instance, an architecture with an actor assigned to more than one type of component is recommended if there are many dependencies between these two actors. Also, an architecture with an actor assigned to more than two components is not recommended because it is not a usual situation. Only feasible architectures (see subsection 15.2.2) are recommended by the tool. REDEPEND-REACT offers a feature to state a limitation on the coverage of a particular actor, and allows the concept of anchoring introduced in subsection 15.2.2.

Concerning evaluation, it is necessary first to choose which properties are taken into account, and next all the generated architectures are evaluated with respect to those properties. Once the evaluation results are available, the architectures can be analyzed with respect to the values for the properties that are interesting for the system. Figure 15.7 shows a snapshot of the tool.

[figure 15.7 here]

<H1>15.4  Construction of i* Strategic Dependency Models</H1>
One of the greatest virtues of i* is the high degree of freedom that users have when creating models. However, this virtue makes the models difficult to manage in the context of COTS selection: we cannot reasonably maintain that a metric provides trustworthy information unless we have a precise procedure for building a model that is the object of measure. The ultimate goal could be stated thus: two different people with the same experience in the system domain, the same knowledge of i*, and the same modeling skills shall build nearly the same model in response to the same stimuli. To advance toward this goal, we seek guidelines for determining when to include an intentional element or not, which type of element is the most appropriate for a given situation, and so on.
Currently we may say that there is not much guidance for supporting this kind of highly prescriptive construction of i* models (Grau, Cares, Franch, & Navarrete, 2006). Consider, for instance, a well-established methodology such as Tropos (Fuxman, Liu, Mylopoulos, Pistore, Roveri, & Traverso, 2004). It is aimed mainly at guiding the whole software development process. In this sense, it supports the conception of a global solution for the problem at hand, but still gives much freedom for the construction of the models themselves. 

In this section we present two prescriptive methodologies that we have defined for building i* SD models. The first one, RiSD, approaches model construction from the classical system development point of view, going from system requirements to system model. The second one, PRiM, defines model construction as a result of process reengineering and therefore requires a departing system (that may be social or sociotechnical). Both of them rely on the existence of a precise semantics for i*. For this reason, we have formulated a reference model that encloses the meaning of the language constructs.

<H2>15.4.1  A Reference Model for i*</H2>
Because our methodologies aim at determining when a new intentional element is needed and which is the most appropriate type, we need first of all to define with the utmost precision the meaning of the language constructs. We have carried out this research in two significant steps.

<BL>
· Analysis of current i* proposals. In Ayala, Cares, et al. (2005) we analyzed the three most widespread proposals deriving from i*: Yu’s seminal work (Yu, 1995), reprinted as chapter 2 of this book; GRL (Goal-Oriented Requirement Language, 2000), and Tropos (Fuxman et al., 2004). We identified fourteen criteria grouped into two major categories, structural and nonstructural. Structural criteria are the most important ones, and they revealed different interpretations of similar concepts (e.g., which intentional elements can be related using means-end relationships), different levels of detail for some constructions (e.g., GRL not distinguishing among different types of agents), terminology, or even very fundamental concepts (e.g., whether SR models exist as such or not). Furthermore, we used Meyer’s (1985) criteria for analyzing specifications and discovered a few situations that were not clear in the analyzed proposals.

· Formulation of a reference model for i*. Chapter 17 of this book also proposes a reference model for i*. This model is an evolution of a proposal first made in Ayala, Cares, et al. (2005).  We use a UML class diagram to represent the model (see figure 15.8), which is described in more detail in section 17.3. We have constructed the reference model including those concepts common to i*, GRL, and Tropos dialects, and those concepts not common to the three variants but that seem relevant in the context of agent-oriented modeling. As a result, we have available a reference framework that allows the analysis of existing i* dialects and also the formulation of new ones. We propose to describe i*-based proposals by means of operations that make transformations on the reference model in a way similar to that used in the context of refactoring (Sunyé, Pollet, Le Traon, & Jézéquel, 2001). Therefore, to know the differences between a variant of i* and the reference framework, it is necessary to determine which refactoring operations are needed to obtain the conceptual model of the variant from the reference model.</BL>
[figure 15.8 here]

Once the reference model for i* has been established, we are ready to formulate methodologies for building i* models.

<H2>15.4.2  RiSD: A Methodology to Build i* SD Models from Scratch</H2>
RiSD (Franch, Grau, Mayol, et al., 2007)
 is a methodology for building Reduced i* SD models for software systems. It is defined as a set of activities structured in three phases: a preliminary phase that performs domain analysis, a phase for constructing the social system (without software), and a phase for constructing the sociotechnical system (with software). The last two phases, very similar to the early-requirements and late-requirements phases in Tropos as defined in Bresciani, Perini, Giorgini, Giunchiglia, and Mylopoulos (2004),
 may involve the partial or total construction of the i* SR models, but only as an aid for obtaining the final i* SD model, which is the target of the methodology (because it is the type of model we use in the context of COTS selection). RiSD includes precise questions and answers that guide the development process and provide criteria for choosing among types of intentional elements when diverse options exist. The criteria are oriented to reducing the size of the resulting model. RiSD also includes a traceability construct that shows the relationships among intentional elements, and therefore enhances understanding of the model. In addition, the methodology commits to the identification of the goal to attain when an actor shows up in the model. Figure 15.9 shows the modification of the reference model that applies these refactoring operations.

[figure 15.9 here]

Figure 15.10 shows the activities that take place in the three phases of RiSD. The social system model (phase II in the figure) is constructed iteratively. It begins with the identification of an initial set of social actors involved in the addressed problem and their main goals. Then, strategic dependencies among actors are identified and classified by considering which is the most appropriate type of each dependum. To classify each dependency into a valid type in i*, we propose two different sets of questions to be answered in a predefined order. In figure 15.11 we show the graph for one of these sets. In nodes 1 to 4 a question must be answered; in nodes 5 to 8 a specific type of dependency has been identified; and we make further inquires to determine if some additional softgoal dependencies shall be added, in which case we reach nodes 9 to 12. The actual questions appear in Franch et al. (2007). As examples, we show two of the questions. The first question, applied in node 1, is “Does the depender depend on the dependee to achieve an entity (if so, go to 3), or to attain a certain state (if so, go to 2)?” When in node 7, the question is “Are there some extra conditions that the achievement of the goal must satisfy? If so, for each condition, establish a new softgoal dependency from A to B.”
[figure 15.10  here]

[figure 15.11  here]

At this point, a first version of the social system model is obtained. To refine this model, existing dependencies are analyzed to determine if new actors or new dependencies should be incorporated into the model, in which case the process iterates.

The construction of the sociotechnical system model is also iterative. It begins with the definition of the software system as a new actor (with its main goal) and its inclusion in the social system model. Next, considering this actor, the existing dependencies are reassigned. The system may be decomposed into subsystems, which are modeled as new actors, using the is-part-of relationship, and therefore the existing dependencies are reassigned again. New subsystems may depend on each other, and these dependencies must be established. A refinement process, similar to that performed in the social model, may also be applied. Both phases can themselves be iterated, as shown in figure 15.10.

<H2>15.4.3 PRiM: A Methodology for Process Reengineering</H2>
PRiM (Grau, Franch, & Maiden 2005) is a process reengineering with i* methodology that provides a different perspective for building i* models. It relies on the observation that development of systems is an activity that seldom takes place from scratch. A new system may automate some tasks that are undertaken by humans in an organization, or may substitute for a system that is becoming obsolete from the organizational point of view. 

From the business process reengineering perspective, the specification of the system-to-be starts from the observation of the current system and the synthesis of its model, the understanding of its rationale, the formulation of new processes or possible ways to enhance existing ones, the generation and evaluation of alternatives, and finally the construction of the detailed target specification itself. All of these activities are defined and supported in PRiM, but for the purposes of this chapter we concentrate on the first two activities, observation of the current system and synthesis of its model.

The first activity, observation of the current system, consists of capturing and recording information about the elements of the current process in order to inform further phases. Techniques from both the human-computer interface and requirements engineering are used to gather data and model human activity from all the components of the current process: observation of current system use; informal scenario walk-throughs; interviews with representative human users; analysis of the current graphical user interface; and so on. Next, the process itself has to be documented. We may use artifacts such as sequence diagrams, human activity models, and similar items to represent the flow of data among the agents of the systems.

The second activity, synthesis of the current system's model, generates the i* model itself. With this purpose, we distinguish between two different kinds of goals: descriptive goals, appearing in current processes analysis; and prescriptive goals, coming from strategic management. Then, we propose to build the i* SD model in two steps in order to distinguish the functionality performed by the stakeholders (dealing with descriptive goals) from their strategic intentionality (prescriptive goals). The result is an i* model with two parts: an operational i* model (mainly composed of resources, tasks, and some low-level goals) and its associated intentional i* model (which adds high-level goals and softgoals to the operational one). In order to support this construction method and add a rationale to further analysis of the current process, both SD and SR i* models are developed. The models can be checked for consistency, as proposed in the RESCUE process (Jones & Maiden, 2005). More precisely, we propose the following steps for the second activity: <BL>
· Step 1: Actor Identification and Modeling. One actor for each stakeholder from the first activity, and another single actor for the software system (if any). 

· Step 2: Building the Operational i* Model. We use a scenario-like writing style, Detailed Interaction Scripts (DIS), to chronologically organize the scenario information obtained in the first activity. The DIS includes goals, actors, preconditions, triggering events, and postconditions. Translation from DIS to an i* model is straightforward, following five rules detailed in Grau et al. (2005). 
· Step 3: Building the Intentional i* Model. We apply a systematic procedure that relies on questions and answers, similarly to RiSD. First, an initial set of prescriptive goals is obtained directly from the current process. Second, this set and the already existing i* operational model are the basis for obtaining new goals and softgoals. In this process we involve stakeholders and use existing classification schemes, such as the ISO/IEC 9126-1 (International Organisation for Standardisation, 2001) standard, to generate questions about quality systematically and to retrieve answers easily. Finally, the resulting set of goals and softgoals can be analyzed in order to identify contributions and conflicts between the intentional elements by means of the i* contribution links. 
· Step 4: Checking the i* Model. We have defined a UML model that puts together the models used in the first activity (human activity diagrams
, or HAM, in this case), DIS, and i* models. The baseline concepts mappings across those models are defined with thicker horizontal lines. Then, we perform a two-phase checking, the first phase from HAM to DIS (six checks) and the second phase from DIS to i* models (seven checks).

<H1>15.5  Organizing Taxonomies of COTS Components Domains</H1>
As a result of the increasing adoption of COTS-based solutions, the COTS market has grown to the extreme. This growth gives rise to a new problem: how to organize the knowledge about this COTS market in such a way that searching it becomes a feasible task.

In Carvallo, Franch, Quer, and Torchiano (2004) we proposed to use taxonomies as a way to organize the COTS market (see figure 15.12), and we applied the proposal to the family of business applications. At the leaves of the taxonomy we have COTS domains (e.g., the domain of antivirus tools or mail servers systems). Domains are grouped into COTS categories (e.g., the category of communication infrastructure systems or financial packages), which may be further grouped in their turn. We proposed the use of attributes to discriminate among categories or domains. Additionally, we also bound quality models to nodes in the taxonomy, each describing the quality factors that are of interest for the particular category or domain; quality models are inherited downward in the taxonomy.

[figure 15.12  here] 

A crucial observation in this scheme is that COTS components do not operate in isolation; they communicate with other components. Therefore, we cannot consider the taxonomy complete unless we represent these relationships. Again, i* models are an adequate formalism for representing these relationships, but we need to design taxonomies to be goal-oriented. In Ayala, Botella, and Franch (2005) we presented our Goal-Based Taxonomy Construction Method (GBTCM), a goal-based reasoning method based on Antón’s (1996) GBRAM (Goal-Based Requirements Analysis Method) (see figure 15.13), adapted to the context of taxonomies for COTS components. It consists of seven activities grouped into two categories:

<BL>
· Goal Analysis. Concerns the exploration of available information sources for goal identification, followed by the organization and classification of goals.

[figure 15.13  here]
· Goal Refinement. Concerns the evolution of goals from the moment they are identified to the moment they are translated into operational requirements.</BL>
The suitability of GBTCM as a help for organizing the taxonomy is based on three facts:

<BL>
· It assumes the challenge of working with different sources of knowledge that are represented in different forms.
 This is a helpful aspect because, in our context, we have much diverse information related to the addressed market segment.

· It provides guidelines and heuristics for exploring, identifying, and organizing goals, and also allows adding new heuristics that guide toward a high probability of success while avoiding wasted efforts.

· It offers a guide for applying an inquiry-driven approach to goal-based analysis that can be useful for enhancing our questions-answers mechanism linked to characterization attributes.</BL>
The i* models that appear in the taxonomy have the usual structure of i* models but include a smaller number of dependencies, because dependencies must be universal for all the COTS components in those domains. If necessary, we can decompose the goals elicited for the involved domains in an SR diagram to gain insights into their relationships. Figure 15.14 shows an excerpt of an i* SD model for some COTS components domains.

[figure 15.14  here]
<H1>15.6  Conclusions</H1>
This chapter reports experiences in the use of i* as a language for driving COTS selection. We have given a general idea of how to make this selection based on the evaluation of properties over the i* SD models that represent sociotechnical systems. We have enumerated the associated problems that have arisen and our current state of research with respect to them.

It is worth remarking that the use of i* for COTS selection is not a universal solution for every selection problem. In fact, we have identified which conditions seem to point out the adequacy of its use:

<BL>
· Usefulness: The COTS domain addressed is a domain of general interest. This means that a great many organizations need to select COTS components from this domain. Some examples are: 
· Communication infrastructure (mail servers, videoconference, etc.), ERP systems, security-related systems, and so on.

 <SL>
· Consequence: The number of selection processes that take place in this COTS domain will be high, and reusability of the models is likely to occur.</SL>
<BL>
· Variety: There are many COTS components offered in the domain if the domain is competitive.
 The first part of the statement is a direct consequence of the previous point: if there is a universal need, of course lots of products will be offered. The second point excludes some particular COTS domains, such as operating systems in which options are few and the analysis we propose does not pay.</BL>
<SL>
· Consequence: The number of COTS components to be analyzed in selection processes in this domain will be high, and we will need a common framework as a basis for analyzing and comparing them.</SL>
<BL>

· Size: The COTS domain is characterized by a great many features. This makes understanding components from this domain more difficult, time-consuming, and cumbersome. Components such as ERP systems are typical examples, whereas time or currency converters are not.</BL>
<SL>
· Consequence: Many concepts are embraced by the COTS domain, and lightweight descriptions focusing on the most fundamental notions are needed for pruning the set of candidates in a cost-effective manner before detailed evaluations occur.</SL>
<BL>

· Continuity: The selection activity is monitored by an organization that accumulates experience from past selection processes. This organization will find it valuable to have the means to transfer knowledge from one experience to another and to assist its clients in the maintenance of their COTS-based information system.</BL>
<SL>
· Consequence: The organization will be involved in an increasing number of selection processes, thus being able to transfer knowledge while improving its skills.</SL>
<BL>

· Uncertainty: The starting requirements stated by the organization are vague, incomplete, and often ill-justified. Sometimes the organization does not even know exactly which COTS domain is relevant.</BL>
<SL>

· Consequence: The statement of organizational needs must cope with this incompleteness by focusing on the strategic underlying needs instead of the concrete requirements. Furthermore, it should be possible to add new needs from the COTS domain analysis, which means that social and sociotechnical models should be described similarly.</SL>
The use of our approach in COTS selection processes with different assumptions would require further experimentation.
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Figure 15.1 A simplified sociotechnical system for a meeting scheduler.

Figure 15.2 Three candidate system architectures for the meeting scheduler sociotechnical system. 

Figure 15.3 Two architectural properties and their evaluation for the three candidate architectures.

Figure 15.4 SD model for an organization with data integrity needs. For a key to the i* diagrams in this chapter, see figure A.1. 

Figure 15.5 A COTS domain model for the market segment of antivirus software packages.

Figure 15.6 Definition of metrics for the complexity of user interface. 

Figure 15.7 A snapshot of the REDEPEND-REACT tool.

Figure 15.8 A reference model for i* contribution types. 

Figure 15.9 Refactoring the i* reference model to adapt it to RiSD.

Figure 15.10 The three phases of the RiSD methodology.

Figure 15.11 Graph to classify i* dependencies. 

Figure 15.12 The fundamental elements of a taxonomy.

Figure 15.13 Overview of the GBRAM activities.

Figure 15.14 An excerpt from an i* SD model involving content- management-related domains.
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