PAGE
865

<CN>14</CN>

<CT>Requirements Analysis for Run-Time Service Compositions</CT>
<CA>Enzo Colombo and John Mylopoulos</CA>
<H1>14.1 Introduction</H1>
Industrial districts consist of a number of enterprises, often small-to-medium, that are located in the same geographic area, and often collaborate through short-term projects to deliver products and services. In such a setting, enterprises strive to exploit flexible forms of collaboration with their business partners as a means to extend the boundaries of their planning activities, increase performance through cooperation, and reduce total cost of ownership. Such collaborations often take the form of alliances—temporary or permanent—between two or more legal entities that are created in order to further business or social objectives without causing partners to lose their autonomy (Galbraith, 1995). Unfortunately, such alliances are undermined by heterogeneity because participating organizations have their own information systems, business processes, procedures, internal roles, and responsibilities. Consequently, industrial districts represent an ideal environment for the implementation of coordination mechanisms that support the automation of interorganizational business processes through the logical composition of distributed services representing public views on private workflows.

In this context, ebXML constitutes a stable architectural solution that provides a specification language and an architecture shifting the logic of composition from information to service exchange (ebXML Technical Project Architecture Team, 2001).
 However, ebXML does not support interorganizational business processes that are run-time customizable, that is, they can readily adapt their structure according to feedback from the environment. For example, a previous agreement cannot be renegotiated during the execution of a collaborative activity, and a partner cannot be automatically replaced when cooperative goals are not fulfilled. In order to overcome these limitations, researchers and practitioners have focused much effort on implementing service-oriented architectures supporting run-time collaboration mechanisms among organizations (Multichanel Adaptive Information Systems Project, 2006; VISPO Project, n.d.).

Run-time customizability for interorganizational processes is generally implemented through service compositions involving multiple channels and different actors. In particular, such compositions describe relationships among cooperating organizations according to a global, neutral perspective, in terms of valid control and coordination mechanisms. Moreover, these compositions are usually public, because they specify common rules defining a valid interaction among distributed business processes.

Unfortunately, this line of research on run-time applications does not have counterparts in methods, models, and tools supporting the requirements engineering process. Indeed, as shown by Baresi Papazoglou, and Wieringa (2004), conceptual modeling and analysis of run-time composition of services is in its early stages, even if this is the phase in which the most and the costliest errors are introduced into a design (Castro, Kolp, & Mylopoulos, 2002).

The goal of this chapter
 is to present a methodological framework that supports the conceptual modeling and formal analysis of requirements for run-time service compositions through a social and complementary process perspective. Specifically, the chapter explores how to analyze different process alternatives complying with the same social specification. Finally, our approach supports the formal verification of critical properties of a service composition (e.g., termination, structural soundness, and achievement of shared goals). We view this work as a first step toward the design of run-time service compositions aligned with different requirements policies.

In the remainder of the chapter, we first motivate and position this work relative to the state of the art in section 14.2. Then, in section 14.3, we introduce a set of requirements policies adopted from the autonomic computing literature (Kephard, Parasha, Sunderam, & Das, 2004;
 Murch, 2004) that modelers can adopt during the requirements analysis and process specification phase.
 Section 14.4 discusses the requirements analysis process supporting the implementation of a composition of services. Section 14.5 presents an example highlighting how our model formalizes service compositions with respect to alternative requirements. Finally, section 14.6 draws the conclusions of our work and presents future developments.

<H1>14.2 Related Work</H1>
Most work on run-time service compositions has focused on service orchestration, discovery, and semiautomatic management. For example, a theoretical model supporting service orchestration through colored Petri nets is proposed in Mecella, Parisi, Presicce, and Pernici (2002). In particular, this work proposes a novel formal approach to the distribution of control responsibilities among different actors.

Along similar lines, formal models of e-service discovery and composition are discussed in Bultan, Fu, Hull, and Su (2003) and Wombacher and Mahleko (2002). The work of Bultan et al. is focused mainly on providing a model of compositions for detailed design. Under this framework, individual services communicate through asynchronous messages and each service maintains a queue for incoming messages. Moreover, a global watcher keeps track of messages as they occur. However, this work pays little attention to the problem of requirements analysis for run-time service compositions, even though it is a key factor to improve collaboration among organizations. Requirements analysis techniques are particularly important within industrial districts in which the final output of a composition must comply with strategic goals (some shared and some not) among different organizations. Moreover, the violation of goals requires compensation actions aimed at leading the composition to an acceptable state.

A promising starting point for a methodology supporting requirements analysis for run-time service compositions is the adoption of a social model. Such a model facilitates goal refinement, the discovery of goal interactions, and the identification of services that can contribute to their achievement. Moreover, social models are consistent with coordination theory that constitutes the conceptual background for modeling service compositions (Malone & Crowstone,
1994). Requirements analysis through social models is discussed within the Tropos project, in which the i* modeling framework for early requirements analysis is applied to development of agent-oriented software. The i* framework supports the modeling of social relationships among actors and has been widely experimented with (see this volume).

However, social specifications alone are inadequate for modeling control and coordination mechanisms. In particular, they lack a formal semantics to represent standard and exceptional control flows for the actions constituting a service composition. Accordingly, i* needs to be supplemented in order to be adopted in our particular application domain.

<H1>14.3 Policies for Run-Time Service Composition</H1>
In this section,
 we define a core set of policies that service composition designers should evaluate during the requirements engineering process for run-time service compositions. This core includes a level of self-error detection, referred to as controllability, that defines strategies for identifying anomalous situations within a composition, and two levels of self-management, flexibility and adaptability. Flexibility concerns the management of problems repaired through the specification of ad hoc compensation flows, whereas adaptability (also called self-configuration) addresses cooperation scenario changes when the same problem occurs over time. It should be noted that self-repair and self-configuration are essential ingredients of autonomic systems (Colombo & Francalanci, 2004; Murch, 2004).

<H2>14.3.1 Flexibility</H2>

Flexibility refers to the run-time management of service self-repair intended to bring a composition to a consistent state at the lowest cost. Flexibility is formalized according to three dimensions of analysis: automation level, compensation classes, and sparsity.

Automation level is concerned with the degree of human intervention in conducting self-repair. We recognize three levels of intervention: automatic, manual, and semiautomatic. If the system can self-repair in the presence of anomalous events, the automation level is (obviously) automatic, whereas if the system provides only monitoring capabilities, the automation level is manual. Finally, if the system requires some human input to perform a compensation action, the automation level is semiautomatic.

Compensation actions are distinguished into five classes discussed in economics literature (Scott, 1992). These classes represent an exhaustive set of tasks that organizations may choose from in order to return a composition to a consistent state.
<BL>

· Delay class involves simply waiting for a predefined time interval in hopes that the anomalous situation is resolved; for example, missing information may be received if one waits beyond the due date.

· Informative class calls for actions that communicate a particular anomalous state of affairs; for example, notice of a violation is sent to a business partner.

· Renegotiation class involves either relaxation or tightening of goals in response to process failures.

· Reexecution class calls for the reexecution of one or multiple services, possibly starting the execution of the whole process.

· Retransact class involves the reexecution of the entire composition with other potential business partners. This kind of action always involves the failure of the current composition and, possibly, the replacement of one or more process partners.</BL>

Sparsity determines where compensation actions take place with respect to where the violation of goals occurs (Casati & Pozzi, 1999). When compensation is executed by the actor that detects a violation, the compensation is centralized. On the other hand, when the action is executed elsewhere, it is delegated. A delegated compensation can be based on either a centralized or a delegated decision. When the actor who reports an anomalous event also specifies the compensation that its business partner should perform, the decision is centralized; otherwise it is delegated. Moreover, a delegated compensation can be deterministic or not, depending on knowledge of the identity of the business partners involved in the composition. A typical example of non-determinism is the delegation of a compensation action to any actor that plays a given role within the system. Finally, compensation is participative if it is performed by more than one actor. For example, renegotiation is intrinsically participative because it requires a new agreement between two or more parties.

Table 14.1 summarizes the dimensions of flexibility supported within our framework.

[Table 14.1 here]

<H2>14.3.2 Controllability</H2>
During execution of a service composition, anomalous events are detected and communicated by monitoring activities whose aim is to evaluate the fulfillment of goals. Controllability concerns the level of visibility on private business processes that are part of a composed service, or the localization of control activities. In our environment, monitoring activities typically monitor quality of service goals (for example, service lead time, productivity, and use of resources).

Controllability is defined through two dimensions of analysis: service view and control policy. In service compositions such as the purchase of commodities by an occasional buyer, control is typically targeted to the end of the service, with no intermediate checks during service execution. This view can be seen as black-box because control is possible only when service outputs are delivered. Conversely, when control is possible on different activities during service execution, the service provides a public view on the private production process (i.e., gray-box).

Moreover, three control policies can be implemented when a service composition takes place. If control activities are performed where operating activities are executed, control is said to be centralized. On the other hand, control is delegated when control activities are performed elsewhere. Finally, if control activities are performed where operating activities are executed and are repeated elsewhere, the control policy is redundant. For example, let us consider a scenario that involves a service supplier and an occasional buyer. The supplier always monitors service lead time because it wants to ensure high quality of service. After all, any contract violation reduces the supplier’s reputation. The buyer monitors the same attribute, because it does not completely trust the supplier. This situation represents a simple case of redundancy because control is exercised by both parties in a transaction. Note that the two monitoring activities could return different results. For instance, service lead time measured by the supplier may not consider network delays. Consequently, redundant monitoring activities are not superfluous. Table 14.2 summarizes our dimensions of controllability.
[Table 14.2 here]
<H2>14.3.3 Adaptability</H2>

Adaptability is concerned with modifications of the standard and exceptional behavior of a composite process depending on the environment within which the composition is deployed. The environment is modeled through the set of organizations involved within a composition (i.e., stakeholders) and their respective goals.

In particular, adaptability is required when stakeholder goals are repeatedly violated over time. According to the stakeholder dimension, a designer may want to model different compositions as a function of the actors participating in the composite process. For example, when a business-to-consumer relationship is deployed, a provider could require payment before service delivery. On the other hand, for business-to-business interactions, payment may be required after delivery. The specification of this adaptive behavior requires the formalization of two roles, corporate and retail.

A stakeholder could also be modeled through the channel or the device used during a service composition. For example, a device could be a desktop, a laptop, or a mobile phone. A channel could be a virtual private network (VPN), the Internet, a wireless LAN, or the GSM network. For each channel a designer may want to consider the bandwidth and the level of security of the channel (e.g., low, medium, high). Therefore, a composition may vary, depending on the channel, because organizations may decide that strategic information provided by a given service can be shared on a VPN (high security, high bandwidth), but not when the same service is required over the Internet. Moreover, a composition with an information service provided for a laptop (e.g., querying a warehouse to check the availability of a product) can be simpler than a composed service intended for a desktop.

As discussed earlier, adaptation is especially important when stakeholder goals are repetitively violated over time. In this context, designers should identify different alternatives that reduce or eliminate goal violations. In our framework, we identify a main composition and a set of alternatives corresponding to other configurations when a goal/softgoal is repetitively violated. As a consequence, a composition shifts from one alternative to another, depending on the nature and number of violations. Violations can be either interleaved or not, depending on the policy that we adopt for counting anomalous events. If the counter is reset every time a desired behavior is reached, the policy is not interleaved; otherwise it is. Table 14.3 summarizes the dimensions of adaptability in our framework.

[Table 14.3 here]

<H1>14.4 Requirements Analysis of Run-Time Service Compositions</H1>
Figure 14.1 shows the methodological steps for requirements modeling and analysis of run-time service compositions. These steps comply with coordination theory, which provides the theoretical foundation to our approach (Malone & Crowstone,
 1994). From the perspective of coordination theory, interorganizational relationships should be described according to two levels of abstraction. The first level includes strategic concepts such as goals, activities, resources, and interdependencies (Malone & Crowstone,
 1990). At this level, goals are identified, refined, and either retained or delegated to other actors within the system. Moreover, activities (i.e., services) are assigned to goals and resources are required by activities. The second level concerns the specification of correct sequences of control and coordination activities and information flows, and planning alternative actions as a consequence of violations of goals associated with services. As a consequence, our methodology consists of a social specification allowing the modeling of strategy (i.e., static model), a process specification allowing the specification of information and action flows (i.e., behavioral model), and a formal analysis. Moreover, according to the principle of separation of concerns (Krutchen, 1995), we decided to use two strictly coupled models (i.e., the social and the process models) instead of a single model that tries to describe all the aspects of the environment. We now present each step.

[Figure 14.1 here]

A social representation of a composition can generate different scenarios with different business rules and, as a consequence, different process models. These alternatives are evaluated by studying the impact of different specification policies (see section 14.3) on strategic goals. The evaluation process is performed by adopting the labeling notation proposed in the NFR framework. Labels are defined as follows: satisfied ([image: image1.png]

), weakly satisfied ([image: image2.png]

), undecided ([image: image3.png]

), weakly denied ([image: image4.png]

), denied ([image: image5.png]

), and conflict ([image: image6.png]

) (Chung, Nixon, Yu, & Mylopoulos, 2000).

<H2>14.4.1 Social Specification</H2>

The social specification of a service composition consists of the following steps:

<BL>
· Step 1.1—Identification of market players and dependencies; this step determines the organizations involved in the composition and their business relationships.
· Step 1.2—Refinement of business relationships, that is, the actual pruning of intentional elements according to control and coordination policies.</BL>
Our social analysis concerns a service composition that formalizes the strategy and rationale of organizations interacting within a cooperative environment (i.e., who, why, and what). In particular, directors and decision makers receive feasibility analyses and define the general objectives of the composition, as well as the strategies through which these can be achieved.

Then, general strategies are refined into more operational goals, and corresponding services fulfilling these goals are identified. The output of this step is an i* social model of service composition, and its level of detail is at the discretion of the designer. In particular, our i* specification embeds intentional elements such as softgoals, goals, services (i.e., “tasks” in the i* notation), and information resources (Castro et al., 2002; Colombo, Francalanci, & Pernici, 2004).

Goals represent requirements to be fulfilled; softgoals are similar to goals but have no clear-cut fulfillment criterion. A service is a structured sequence of decisions and actions aimed at producing an added-value transformation of inputs into outputs. And, finally, information resources represent inputs/outputs to services.

Intentional elements are related to each other through Strategic Rationale (SR) and Strategic Dependency (SD) models. The SD model specifies social dependencies among organizational actors. In particular, an SD model is a graph in which each node represents an organizational actor, and each dependency link between two actors represents an agreement between the two actors, a depender and a dependee. The type of dependency defines the nature of the agreement. In particular, a goal (or softgoal) dependency represents the delegation of responsibility for the fulfillment of a goal (or softgoal) from a depender to a dependee. A service dependency represents the delegation of responsibility for the execution of a service from a depender to a dependee. Service dependencies are more constraining than goal dependencies, because the depender specifies how the service needed to fulfill a goal (or a softgoal) is to be implemented. Finally, a resource dependency represents the need for a resource (often information) that must be provided to the depender by the dependee. On the other hand, the SR model supports the refinement of stakeholder goals through decomposition, means-end, and AND/OR links.
 Directors and decision makers (see figure 14.1) define their high-level goals and strategies and then, following a refinement process, elicit the set of services (and the corresponding resources) that should be performed to achieve their goals (and softgoals). In conclusion, services are the means to fulfill goals/softgoals, and resources represent information necessary for services to transform input into outputs in order to fulfill goals/softgoals.

Our social specification can be easily complemented with formal properties defined using Formal Tropos (FT) (Fuxman, Pistore, Mylopoulos, & Traverso, 2001); an example is presented by Colombo and Mylopoulos (2006). In particular, FT allows the specification of cardinalities and social properties. The formalization of cardinalities is essential to decide whether an instance of the social specification is allowed or not (e.g., each instance of the cooperation includes exactly one buyer actor). Social properties describe how a service reasons
 when interacting with other services in the composition according to shared resources or multiple goals (e.g., if in a bid two offers satisfy a QoS goal, the service will select the offer with the lower price). However, because FT is not our contribution and it is not essential to present our methodology, in this chapter we focus on the formal analysis of the process model.

<H2>14.4.2 Process Specification</H2>
In our approach, a process model provides a description of the relationships among cooperating organizations according to a global, neutral perspective, in terms of valid control and coordination mechanisms. In particular, the process specification of a run-time service composition is organized according to the following steps:

<BL>
· Step 2.1—Operationalization of intentional elements and specification of business rules that manage either goal fulfillment or violation thereof.

· Step 2.2—Specification of a composition process model complying with both (1) the social model and (2) the core set of policies that could be adopted when modeling run-time compositions (see section 14.3).</BL>
As defined above, our process analysis describes the control and coordination mechanisms of a service composition. In particular, decision makers receive a social model from the previous step
 and, together with process analysts, define the business rules modeling the standard and exceptional behavior of a service composition.

Our approach to the transformation of a social model into business rules has been discussed in Colombo (2005) and Colombo et al. (2004). However, keeping it simple, goals/softgoals are mapped into preconditions or postconditions of services, and resources (i.e., information) are translated into input-output information for the evaluation of preconditions or postconditions.

Business rules are specified according to ECA (event, condition, action) rules complying with the following semantics (Cherubini, Colombo, Francalanci, & Spoletini, 2005).

<H3>14.4.2.1 Events</H3>
There are two types of events, Beg(sv) and End(sv), where sv is a service. These mark the beginning and end, respectively, of the service passed as argument.

<H3>14.4.2.2 Conditions</H3>
Let S be a set of actors, RO a set of roles played by actors in S, G a set of strategic goals, A a set of actions, R a set of information resources, Xt a set of discrete clock times, and CH and DV sets of channels and devices used to supply a service in the conversation.

A condition is a predicate p that can be categorized into one of the following classes:

<BL>
· Goal condition, of the form Achieved(g), g(G.

· Compensation condition, of the form Fulfilled(a) or Done(a), a(A.

· User condition, of the forms Actor(s), Role(s, ro), Device(dv), and Channel(ch). Actor(s) is satisfied when the current actor is s(S; Role(s, ro) is satisfied when the actor s(S plays the role expressed by ro(RO; Device(dv) is satisfied when the current device is dv(DV; and Channel(ch) is satisfied when the current channel is ch(CH.

· Temporal conditions consist of a conjunction of predicates of the form [((c]t, where (({(, (, =, <, >}, ((Xt is a discrete clock, c(N is a constant, and the subscript t indicates, in this particular case, a time measurement unit.

· Resource conditions have one of the following forms: (1) [((c]t, where (({(, (, =, <, >}, (is a variable, c is a constant, and the square brackets with the index t denote that (and c are of the same measurement unit t or (2) Received(x, s, r)(x(X, where r(R, s(S, and X are a set of temporal conditions.</BL>
<H3>14.4.2.3 Actions</H3>
Actions can be composed by means of logical (i.e., (, (, () and Sequence operators. When actions are composed with (, the action to be enacted is selected nondeterministically. The Sequence operator involves the execution of a finite number of compensation actions in a sequence. However, compensation stops at the first successful compensation action in the sequence. Moreover, compensation actions are grouped into classes as shown in table 14.4. Differences between Re-execute-from and Re-execute may not be immediately obvious. Re-execute-from is typically adopted when we need the reexecution of a hierarchical state from a well-defined internal substate. Reexecute, on the other hand, is used for the execution of a simple state.

[Table 14.4 here]
Finally, business rules are then mapped into a process model, that is, a particular instance of statechart (Harel & Naamad, 1996) in which transitions are labeled by the set of business rules defined so far and state labels are defined as follows (Cherubini et al., 2005).

A state label lq is a 5-tuple lq=<sv, {s1, …, sn}/\{ro1, …, ron}, x, ch, dv>, where sv(SV, si(S (i([1…n], roj(RO (j([1…n], x(X, ch(CH, dv(DV. The initial state q0 has no label. Final state labels are modeled as <[commit, abort, pending], null, null, null, null>.

The symbol (in the action part of an ECA rule means that no action is performed during the transition from one state to another.

Figure 14.2 shows the graphical notation corresponding to our formalization of a process model.

[Figure 14.2 here]
In conclusion, when business rules have been defined, services in the social specification are mapped into states of the process model and actors are mapped into state labels. Once correspondence rules are applied, several specification choices have to be addressed in order to obtain a complete process model. These degrees of freedom depend both on functional (e.g., payment is required before service delivery) and nonfunctional (e.g., flexibility, controllability, adaptability) requirements. In particular, modelers have to deal with the following specification issues:

<UNL>—Specification of the standard control flow of services using sequences and AND/OR states.

—Specification of the exceptional control flow if either precondition or postcondition does not hold. The specification of the exceptional flow involves the decision regarding which compensation classes are more appropriate to manage the violation effectively.</UNL>

<H2>14.4.3 Formal Analysis</H2>
In this phase, we apply model checking techniques to implement the automatic verification of process models of run-time service compositions. We adopt the state-of-the-art SPIN model checker (Holtzmann, 2004)
 for our experiments; our choice is motivated by its key features of embedding several state space reduction methods, such as state compression, on-the-fly verification, and hashing techniques, that guarantee excellent performance even in nontrivial industrial case studies (Cherubini et al. 2005; Holtzmann, 2004).
 Accordingly, the verification phase is organized as follows:

<BL>
· Step 3.1—Formalization of safety and liveness properties related to our process model (Pnueli, 1981)
· Step 3.2—Translation of the process model into the Promela language of the SPIN model checker (Holtzmann, 2004).
</BL>
This final step verifies that the process model is correct, or otherwise provides a counterexample that points to specification inconsistencies.

Properties to be verified are derived from requirements by process analysts. These properties are then formalized as LTL logic formulas. Hence, the process description of a composition of services C is accepted iff it satisfies a set of LTL formulas. Formally, let (be
 the conjunction of all LTL formulas; the process model is accepted iff C |= (.

Our properties can be classified as follows:

<BL>
· Structural properties, modeling the functional characteristics of a service composition. Critical structural properties include the absence of deadlocks (i.e., the absence of invalid end states), infinite loops, and total functional coverage (i.e., each service belonging to the process is actually invoked). More generally, structural properties model functional properties of a composition, the ownership of each service, and the device/channel used to deliver a service.

· Temporal properties, modeling time constraints of a composition. In particular, temporal requirements state that a service belonging to the composition cannot be invoked in a time less than or equal to t. Moreover, we can also require that a service is not invoked before t.

· Quality of Service (QoS) properties, modeling the quality requirements of a composition. Critical QoS properties formalize strategic business goals whose fulfillment depends on the satisfaction of service level agreement (SLA) parameters such as productivity, yield, price, and throughput.</BL>
Accordingly, LTL formulas can formalize the following critical scenarios:

<BL>
· A scenario involving a single property. For instance, we may require that the process lead time is always constrained below a given threshold (i.e., ((lead_time<threshold).
· A scenario involving dependencies among properties belonging to the same class. For instance, we may require that when a particular quality requirement is not fulfilled, the overall price of the composition must be below a predefined threshold (i.e., ([(throughput< .5) (((price<InitialPrice)]).
· A scenario involving dependencies among properties belonging to different classes. In particular, assertions relating either temporal and QoS properties to structural properties are useful to validate scenarios involving the behavior expected from a composite system as a consequence of exceptions. For instance, we may require that the violation of a quality requirement always leads to a negotiation of the initial agreement and vice versa (i.e., ([(throughput< .5) ((Done(negotiation)]).</BL>
Notice that verification is possible because we nondeterministically generate all possible values of temporal and QoS variables. These values are obtained by discretizing the domain of each variable into a finite number of significant values, thereby rendering the set of all possible states finite.

To keep things simple, we assume that each state of the model is mapped into a Promela process and that transitions among states are represented through the exchange of messages between Promela processes. Under these assumptions, the nondeterministic generation of a temporal and a QoS variable associated with a service is implemented within its corresponding Promela process. An in-depth discussion of the performances of our model checking technique and of the formal rules used to translate a process model into Promela has been provided by Cherubini et al. (2005) and Colombo (2005).

In conclusion, differently from FT, our approach allows designers to specify the flow of services and their interactions through a process model and to limit the use of LTL to defining a particular set of interesting properties that need to be verified.

Figure 14.3 illustrates the development environment that we have deployed to support the modeling and formal analysis of run-time service compositions. In particular, SR/SD models and the corresponding process model are designed using a prototype tool developed by Colombo (2005). This tool helps designers to preserve the consistency between the social
 and the process specifications. NFR diagrams, on the other hand, are designed using the Organization Modelling Environment (OME) tool (Yu & Yu, 2000).
[Figure 14.3 here]
<H1>14.5 Example</H1>
This section illustrates how the social and process models proposed in section 14.4 support the specification of a service composition according to different degrees of flexibility, controllability, and adaptability. Hence, our goal in this section is threefold. First, we provide an intuitive use of our specification models through a simple example. Second, we discuss how a single social specification can be mapped into multiple alternative process models. Finally, we show how model checking supports the identification of inconsistent behaviors in the process specification, thereby guiding designers as they work.

Let us suppose that within an industrial district, a buyer company buys laptop components on the market and delivers assembled laptops to a network of retailers. The buyer company decides to introduce quality control for purchased components before assembly in order to minimize laptop malfunctions (i.e., errors). Moreover, in order to reduce total costs, the buyer wants to minimize the interaction with the supplier. On the other hand, potential suppliers within the district do not provide any visibility on their production process. However, during component delivery, they do provide component technical features required by the buyer for purposes of quality control. This example precisely defines requirements for controllability (i.e., control delegation, black-box control). Moreover, control here is delegated because it is not implemented by the supplier (see subsection 14.4.2).

Given this social setting, there are several possible choices with respect to flexibility that need to be explored and compared during the design process. At this stage, the buyer may want to evaluate the impact of different policies on its high-level Contain costs softgoal under the hypothesis that this goal is decomposed into Minimize Errors and Minimize Interactions. The social model associated with this cooperating scenario is shown in figure 14.4.

[Figure 14.4 here]
Figure 14.6 studies the impact of controllability and flexibility on these softgoals through the NFR framework (Chung et al., 2000). In particular, flexibility impacts negatively on the Minimize Interactions softgoal and, in contrast, impacts positively on Minimize Errors.

[Figure 14.5 here]
[Figure 14.6 here]
Let us consider now the simplest specification scenario in which flexibility is not satisfied. This means that violations of Guarantee QoS are not managed. The analysis of the NFR tree shows that this configuration weakly satisfies Contain Costs. In particular, the Minimize Interactions softgoal is weakly satisfied and the Minimize Errors softgoal is weakly denied (see figure 14.6(a)). If the buyer is happy with the adoption of a strategy resulting in the weak satisfaction of its high-level goal, the process model formalizing our cooperating scenario is shown in figure 14.5. This specification presents a black-box delegated control in which compensation is not implemented because when the QoS goal is violated, the conversation automatically aborts. This form of cooperation corresponds to market coordination (Williamson, 1996).

A second alternative involves a cooperating scenario in which which the buyer wants to be sure that the compensation action raised by violations of Guarantee QoS lead the composition in a consistent state. Figure 14.6(b) shows the NFR model for this scenario. Here, the buyer requires the implementation of a centralized decision, but this requirement denies the Minimize Interactions softgoal. On the other hand, the implementation of a centralized decision guarantees the satisfaction of Minimize Errors. This results in weak satisfaction of the Contain Costs softgoal, as shown in figure 14.6(a). This means that the fulfillment of Minimize Errors balances the structural complexity derived
 by additional interactions.

Figure 14.7 shows the process model associated with our second alternative. With respect to the previous specification, from the perspective of controllability our scenario is unchanged because control is black-box and delegated. However, the specification is a bit more complex because compensation classes are introduced together with sparsity. Moreover, from an organizational perspective, the cooperation mechanism shifts from a spot market to forms of cooperation based on contractual agreements (Galbraith, 1995).

[Figure 14.7 here]
In particular, figure 14.7 enriches the scenario described in figure 14.5 by allowing the reexecution of the production task when the QoS goal is violated. Moreover, because reexecution is allowed exactly once, if the QoS goal is still violated, the conversation aborts. Reexecution is performed according to the following guard condition: <DIS>(Achieved(QoS_goal) (((Done(Re-execute(null, s, seller)).</DIS>

In summary, from the perspective of flexibility, this scenario is automatic, uses the execute compensation class, and delegates compensation with a centralized decision. The compensation is delegated because it is executed by an actor different from the one raising the exception (i.e., the seller). Moreover, decision is centralized because the compensation action is decided by the actor raising the exception (the buyer).

Finally, figure 14.6(c) captures the impact of flexibility on high-level softgoals in the case of delegated decision. According to this scenario, the impact on Minimize Interactions improves from Break to Hurt. As a consequence, the Minimize Interactions softgoal is not denied, as in figure 14.6(b), but weakly denied. Moreover, the Minimize Errors softgoal is still satisfied, meaning that the Contain Costs softgoal is satisfied as well. Hence, with respect to the previous alternatives, the following process specification represents a better compromise.

Figure 14.8 shows the process model corresponding to the social model of figure 14.6(c). In this case, the seller that will perform a corresponding compensation action is notified. If the compensation fails, the conversation is aborted; otherwise it is committed. Because the service view is black-box, the buyer is not aware of the rules followed to compensate the violation. The buyer here is aware only of the behavior of the conversation, independently of whether the compensation succeeds or fails. From a practical perspective, this scenario corresponds to a coordination mechanism based on comakership (Merli & Luoni, 1997).

[Figure 14.8 here]
Once the better policy has been identified, our last step is formal verification. Indeed, checking that the behavior of the process model is consistent with our requirements is a critical step for our design process. Under this scenario, we have two key requirements for our service composition:
<BL>

· An instance of the composition always terminates: (((commit (abort).
· The composition commits both when the QoS goal is fulfilled and when its violation is successfully compensated.</BL>

 <DIS>(qn(F [ln = <commit, null, null, null, null> (
 ((a:Action, qs:QoSGoal (Achieved(qs) (Fulfilled(a)))]</DIS>
The analysis of the process model through model checking shows that prod is an invalid end state (Holtzmann, 2004).
 In particular, there is a counterexample in which the composition does not terminate in either commit or abort because our specification does not model what happens when the order information resource is not received. Hence, our model is enriched with a transition from prod to abort labeled as follows:

<DIS>Beg(Production)[(Received(null, seller, order)]|(</DIS>
Moreover, a successive analysis shows the same problem for the con state. However, in this case production has already been executed and we want to avoid, if possible, an abort of the composition. As a consequence the process model is completed as follows:
<BL>
· A self-loop on the prod state is added to urge the provision of technical resources. This transition is labeled as follows:

· End(Production)[(Received(null, seller, technical_features)]|

· Urge([1,3], buyer, technical_features).

· A pending state modeling the transfer of control to a human operator is added to the composition to handle a failure of the urge compensation action. The transition from prod to pending is labeled as follows:

 End(Production)[(Fulfilled(Urge([1,3], buyer, technical_features))]|(</BL>
This new version of the original process model fully satisfies the two critical requirements formalized for our composition of services.

Now, let us suppose that the buyer company wants to collaborate with the supplier in order to satisfy Better price. In this case, both buyer and seller have to embed a Negotiate specification task exchanging Component Specifications and corresponding Offers. Figure 14.9 shows the social model corresponding to this scenario.

[Figure 14.9 here]
Figure 14.10 presents the impact of flexibility and controllability on Contain Costs and Better price when the buyer decides to retain centralized control in order to ensure consistent termination.
 Renegotiation positively impacts on Better price (help); on the other hand, reexecution contributes negatively to the fulfillment of the same softgoal (hurt). Indeed, reexecution of a part of a conversation potentially increases the costs for the supplier and, as a consequence, the supplier has to balance this risk by raising prices. On the other hand, renegotiation allows cooperating actors to reach a compromise agreement even if the Guarantee QoS goal is violated. Hence, the scenario outlined in figure 14.10(a) is selected to specify the process model of the conversation.

[Figure 14.10 here]
Figure 14.11 shows the business process model associated with figure 14.10(a). This scenario formalizes a negotiation phase in which an agreement on a QoS goal is negotiated for each instance of the cooperation. Moreover, violations of the QoS goal trigger the renegotiation of the service price. This compensation (i.e., participative compensation; see section 14.3) is implemented through the adoption of the action Relax(null, negotiation, price).

[Figure 14.11 here]
Finally, let us suppose that our Guarantee QoS goal is refined into Control process at run-time and Improve Control on Product goals. As a first step, we study the effect of our policies on these subgoals.

Figure 14.12 shows that controllability, when operationalized as black-box control, has a negative impact on Control process at run-time, because it sets the Guarantee QoS goal to conflict. In order to avoid this scenario, the supplier has to relax its privacy requirement for its internal business process. The relaxation of this requirement allows for controllability as a combination of gray-box and redundant control (see section 14.3), thereby leading to the satisfaction of Guarantee QoS (see figure 14.13).

[Figure 14.12 here]

[Figure 14.13 here]
Figure 14.14 shows the refined social model: Production is decomposed into Schedule, Transform, and Assemble & Delivery tasks. The Schedule task receives orders, the Transform task performs local control on component performances, and the Assemble & Delivery task supplies the final component together with its complete technical description.

[Figure 14.14 here]
Figure 14.15 shows how the process model in figure 14.11 is refined according to the social representation in figure 14.14. At this stage, the buyer has a public view on the private business process of the seller. In particular, the buyer is aware that orders are received and scheduled on the basis of requirements, and raw materials are then fetched from a warehouse and transferred to the transformation process. Finally, the production of components begins, and components are assembled and delivered.

[Figure 14.15 here]
Moreover, at the end of the transformation process, if the Good Performance goal derived from Control Process at run-time is not achieved, the buyer is notified and the transformation process is reexecuted.

We have designed a process based on gray-box control because the buyer gathers useful information during the execution of the production service (precisely when the Transformation task terminates, violating the Good Performances goal). Moreover, control is redundant because the quality control activity on components is performed during the Transformation task by the seller and in the QoS_Control task by the buyer.

As a final step, formal analysis of the process model in figure 14.15 detects the following inconsistencies in the specification:

<BL>
· neg is an invalid end state. This anomaly is repaired by specifying a transition from neg to commit, labeled as follows:
· End(neg) [Fulfilled(Relax(null, seller, price))]|(
· The specification embeds an infinite cycle because, if the good performances goal is not achieved, the transformation operation is infinitely executed. This anomalous behavior is repaired by specifying that if the reexecution compensation action fails, the composition is aborted. The transition from trasf to abort is labeled as follows:

 <DIS> End(Transformation) [(Achieved(Good Performances) (
 Done(Re-execute(null, seller, Transformation)]|(</DIS>

Table 14.5 shows a set of formal properties verified on the final version of our process model. For example, P1 formalizes a critical requirement for our specification because the production of laptop components could be embedded in a broader interorganizational process, and a delay could cause the failure of the overall schedule of activities. Moreover, the satisfaction of P3 guarantees that if the counterparts comply with their contract, the composition terminates with a commit.

[Table 14.5 here]
Even with a small example, automatic verification discovers unintuitive properties of the conversation. For example, at first glance P6 seems true, but verification proves it otherwise because time-outs associated with relax compensation actions do not bring the conversation into abort. However, if we rewrite this property, excluding this particular condition, P6 becomes true, as expected (see P6 revised in table 14.7).

In addition, table 14.6 shows the benchmarks associated with the detection of both a cycle and an invalid end state in the specification. The table also shows the performance of the SPIN model checker when the specification is fixed. Furthermore, table 14.7 shows the verification of the properties presented in table 14.5. It summarizes the results of verification, the number of states and transitions of the Büchi automaton explored for the verification, and the memory required. Moreover, when properties are verified through counterexamples, we also show the number of levels in the verification tree that have been explored by SPIN before the identification of the counterexample. All experiments were conducted on a PC equipped with an Intel Pentium 1500 MHz and 256Mbyte of RAM.

[Table 14.6 here]

[Table 14.7 here]
Finally, because our model of service composition is time-bounded, the memory needed to process the verification of a property is very small and processing time is negligible (Cherubini et al., 2005; Colombo 2005).

<H1>14.6 Conclusion and Future Work</H1>
We have presented a methodological framework that supports the modeling and formal analysis of run-time service compositions by extending the i* social model adopted in Tropos with a complementary process perspective. Our framework is founded on a set of policies that designers should consider when shifting attention from a social perspective to possible process scenarios. In summary, our proposal represents the first step toward the implementation of autonomic interorganizational business processes, that is, business processes that can self-repair, self-configure, and self-tune on the basis of feedback from the environment (Murch, 2004). Specifically, we envision an environment in which several service compositions exist, but only one is selected for execution. If there are problems with this execution, the system can self-repair or self-reconfigure by shifting to an alternative composition to improve its performance with respect to the fulfillment of stakeholder goals. Run-time mechanisms for reconfiguring a composition on the basis of different types of feedback have yet to be studied in our work.
<notes>Note
<REF>
References

Baresi, L., Papazoglou, M., & Wieringa, R. (eds.). (2004). Proceedings of the International Workshop on Service-Oriented Requirements Engineering [SoRE’04], Co-located with the 12th IEEE Joint International Requirements Engineering Conference [RE’04].
 http://conferenze.dei.polimi.it/sore04/.
Bultan, T., Fu, X., Hull, R., & Su, J. (2003). Converesation
 specification: A new approach to design and analysis of e-service composition. In Proceedings of the 12th International Conference on the World Wide Web [WWW2003] (pp. 403–410). New York: ACM Press.

Casati, F., Fugini, M.G., Mirbel, I., & Pernici, B. (2002). WIRES: A methodology for developing workflow applications. Requirements Engineering Journal, 7(2), 73–106.

Casati, F., & Pozzi, G. (1999). Modeling exceptional behaviors in commercial workflow management systems. In Proceedings of the 4th IFCIS International Conference on Cooperative Information Systems (pp. 127–138). Los Alamitos, CA: IEEE Computer Society Press.

Castro J., Kolp, M., & Mylopoulos, J. (2002). Towards requirement-driven information systems engineering: The Tropos project. Information Systems, 27(6), 365–389.

Cherubini, A., Colombo, E., Francalanci, C., & Spoletini, P. (2005). A formal approach supporting the specification and verification of business conversation requirements. In N. Guimarães and P.T. Isaías (eds.), Proceedings of the IADIS International Conference on Applied Computing (pp. 467–478).
 Lisbon, Portugal: Iadis Press.

Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in Software Engineering. Norwell, MA:
 Kluwer Academic.

Colombo, E. (2005). A service-oriented methodology for the analysis and specification of business conversation requirements. Doctoral dissertation, Dipartimento di Elettronica e Informazione, Politecnico di Milano.

Colombo, E., & Francalanci, C. (2004). Modelling business conversation based on non-functional requirements. Paper presented at the International Workshop on Service-oriented Requirements Engineering [SoRE’04], colocated with the 12th IEEE International Requirements Engineering Conference [RE’04]. http://conferenze.dei.polimi.it/sore04/
.
Colombo, E., Francalanci, C., & Pernici, B. (2004). Modelling cooperation in virtual districts: A methodology for e-service design. International Journal of Cooperative Information Systems, 13(4), 337–369.

Colombo, E., & Mylopoulos, J. (2006). A multi-perspective framework for organizational patterns. In D.W. Embley, A. Olivé, and S. Ram (eds.), Proceedings of the 25th International Conference on Conceptual Modeling [ER’06] (pp. 451–467). Lecture Notes in Computer Science 4215. Berlin: Springer.

ebXML Technical Architecture Project Team. (2001). ebXML Technical Architecture Specification v1.0.4. Retrieved November 12, 2007, from ebXML Web site: http://www.ebxml.org/specs/index.htm.
Fuxman, A., Pistore, M., Mylopoulos, J., & Traverso, P. (2001). Model checking early requirements specifications in Tropos. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering (pp. 174–181). Los Alamitos, CA: IEEE Computer Society Press.

Galbraith, J.R. (1995). Designing Organizations: An Executive Briefing on Strategy, Structure and Process. San Francisco: Jossey-Bass.

Harel, D., & Naamad, A. (1996). The STATEMATE semantics of statecharts. ACM Transactions on Software Engineering and Methodology,
 5(4), 293–333.

Holzmann, G.J. (1997). The model checker SPIN. IEEE Transactions on Software Engineering, 23(5), 1–17.

Kephard, J.,
Parashar, M., Sunderam, V., & Das, R. (eds.). (2004). Proceedings of the First International Conference on Autonomic Computing [ICAC’04]. Los Alamitos, CA:IEEE Computer Society Press.
 http://www.caip.rutgers.edu/~parashar/ac2004/organization.html.
Krutchen, P. (1995). The 4+1 view model of architecture. IEEE Software, 12(6), 42–50.

Malone, T.W., & Crowston, K. (1990). What is coordination theory and how can it help design cooperative work systems? In Proceedings of the 3rd Conference on Computer-Supported Cooperative Work (pp. 357–370). New York: ACM Press.

Malone, T.W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM Computing Surveys, 26(1), 87–119.

Mecella, M., Parisi Presicce, F., & Pernici, B. (2002). Modeling e-service orchestration through petri nets. In A. Buchmann, F. Casati, L. Fiege, M.-C. Hsu, and M.-C. Shan (eds.), Proceedings of the 3rd VLDB International Workshop on Technologies for E-Services [VLDB-TES’02] (pp. 38–47).
 Lecture Notes in Computer Science 2444. Berlin: Springer.
Merli, G., & Luoni, M. (1997). Comakership. Milan: ISEDI.
Multichannel Adaptive Information Systems (MAIS) Project. (2006). MAIS project. Retrieved November 12, 2007, from MAIS Project Web site: http://www.mais-project.it/index.php.

Murch, R. (2004). Autonomic Computing. On Demand Series. Indianapolis, IN: IBM Press.

Pnueli, A. (1981). A temporal semantics of concurrent programs. Theoretical Computer Science, 13, 45–60.

Scott, W.R. (1992). Organizations: Rational, Natural, and Open Systems. 3rd ed. Upper Saddle River, NJ: Prentice Hall.

VISPO (Virtual District Internet-based Service Platform) Project. (n.d.). VISPO Virtual District Internet-based Service Platform. Retrieved December 21, 2007, from VISPO Web site: http://vispo.casaccia.enea.it/info.htm.

Williamson, O.E. (1996). The Mechanisms of Governance. New York: Oxford University Press.

Wombacher, A., & Mahleko, B. (2002). Finding trading partners to establish ad-hoc business processes. In R. Meersman and Z. Tari (eds.), Proceedings of the DOA/CoopIS/ODBASE Confederated International Conferences: On the Move to Meaningful Internet Systems
(pp. 339–355). Lecture Notes in Computer Science 2519. Berlin: Springer.

Yu, E., & Yu, Y. (2000). Organization Modelling Environment (OME). Retrieved December 1, 2005, from University of Toronto, Department of Computer Science, Web site: http://www.cs.toronto.edu/km/ome/.
Table 14.1 Dimensions of flexibility

	Flexibility: “run-time management of service self-repair”

	Automation level
	automatic, semiautomatic, manual

	Compensation classes
	delay, informative, renegotiate, re-execute,

retransact

	Sparsity
	- centralized compensation

	
	- delegated compensation

 (i) centralized/delegated decision

 (ii) deterministic/nondeterministic

- participative compensations

Table 14.2 Dimensions of controllability

	Controllability: “visibility or localization of control activities”

	Service view
	Black-box, gray-box (public view)

	Control policy
	centralized, delegated, redundant

Table 14.3 Dimension of adaptability
	Adaptability: “modifications of the standard and exceptional behavior of a composite process”

	Stakeholder
	role, single actor

	
	channel, device

	Violation of goals over time
	- Interleaving

	
	 (i) interleaved

 (ii) not-interleaved events

	
	- sequence type

	 (i) repeated violation

 (ii) chain of different violations

Table 14.4 Classes of compensation actions
	Class
	Action
	Description
	Semantics and usage

	Delay
	Wait (x); x(Xt
	Wait until x
	There is no urgency on the execution of a service waiting for a resource. This scenario applies either when lead time is not mandatory, or when this service should be executed in parallel with a temporally longer flow

	
	Waitfor(x, r);

x(Xt, r(R
	Wait for information resource r until x
	

	
	Delay(x, s, sv);

x(Xt, s(S, sv(SV
	Delay the execution of service sv by actor s until x
	Adds a delay to a service. Accordingly, the time period when the state representing this service is “on” is incremented by the delay. This scenario can implement penalties on the execution of a service (e.g., delay of payment)

	Informative
	Urge(x, s, r);

x(Xt, s(S, r(R
	Urgently request resource r from actor s before x
	There is urgency for a resource needed by a strategic service

	
	Notify (x, s, r);

x(Xt, s(S, r(R
	Notify resource r to actor s before x
	An actor is notified about a specific state of affairs in the environment. The notification may involve information or condition violations

	Re-negotiate
	Relax(x, s, y);

x(Xt, s(S, y(X
	Actor s is requested to relax a previous constraint y before x
	Requires renegotiation aimed at relaxing a previous constraint. For example, a quality condition violation may be compensated by reducing the price of the service

	
	Tighten(x, s, y);

x(Xt, s(S, y(X
	Actor s is requested to tighten a previous constraint y before x
	Requires renegotiation aimed at tightening a previous constraint derived from an operational goal

	
	Delete(x, s, y);

x(Xt, s(S, y(X
	Actor s is requested to remove a previous constraint y before x
	Requires renegotiation aimed at removing a quality attribute derived from an operating goal

	Re-execute
	Re-execute(x, s, sv);
x(Xt, s(S, sv(SV
	Actor s is requested to re-execute service sv before x
	Requires re-execution of a service. This is a typical compensation when a mandatory requirement is not fulfilled

	
	Re-execute-from(x, s, sv); x(Xt, s(S sv(SV
	Actor s requested to re-execute service sv before x.
	Requires the re-execution of a composition from a well-defined state.

	
	Skip(x, s, sv);

x(Xt, s(S, sv(SV
	Actor s skips service sv before x
	Requires skipping a service during the run of a business conversation

	Retransact
	Replace (x, sv);

x(Xt ,sv(SV
	Service sv is delegated to a different actor for re-execution before x
	Delegates a service to another actor. This compensation is typically performed before aborting the current instance of the conversation

Table 14.5 Formal properties
	ID
	Property
	Formalization1

	P1
	The business conversation must not require more than 270 days
	((time(270)

	P2
	At the end of the negotiation phase, the business conversation is aborted iff the corresponding order is not received
	([Agreed(
((Received_order (Aborted)]

	P3
	Only exceptional flows may bring a conversation into an abort state
	([Aborted (

(GoodPerformance_violation (

QoSgoal_violation (

NotReceived_order)]

	P4
	The schedule task must be executed before transformation
	[((Transformation Until Schedule) (

(((Transformation) ((Transformation)]

	P5
	A composition may commit even with a relaxed agreement
	((Commit ((Done_relax)2

	P6
	If a time-out is triggered, the composition is always aborted
	((Time_out ((Aborted)

	P7
	Violation of the QoS goal may be compensated through delegation
	((QoSgoal_violation (IsSeller (

(IsBuyer)

	P8
	During a composition, the agreement may be renegotiated
	(((Done_Relax)2

1. All formulas are written using future operators because the SPIN model checker does not support past.
2. These properties are verified by generating an example.
Table 14.6 Benchmarks associated with the identification of an invalid end state and of a cycle
	ID
	States
	Transitions
	Memory (MBytes)
	Depth

	Inv. end state
	66
	70
	2,622
	83

	Revised
	927
	1332
	2,622
	-

	Cycle
	4
	45
	2,622
	9

	Revised
	2202
	5833
	2,622
	-

Table 14.7 Benchmarks associated with the verification of properties in table 14.5
	ID
	Result
	States
	Transitions
	Memory (MBytes)
	Depth

	P1
	false
	96.368
	143.251
	6,104
	227

	P2
	true
	96.434
	143.326
	6,206
	-

	P3
	true
	96.426
	143.314
	6,206
	-

	P4
	true
	322
	455
	2,622
	-

	P5
	true1
	256
	317
	2,622
	177

	P6
	false
	185
	359
	2,622
	225

	P6 revised
	true
	93.754
	139.679
	6,104
	-

	P7
	true
	93.158
	137.192
	6,206
	-

	P8
	true1
	248
	301
	2,622
	175

1. This property was verified through counterexamples.
<figure captions>

Figure 14.1 Methodological steps supporting the conceptual modeling and formal analysis of service compositions.

Figure 14.2 Graphical representation of the entities involved in a process model.
Figure 14.3 Development environment.

Figure 14.4 Social model between a buyer company and its laptop components supplier. See figure A.2 for a key.

Figures 14.5 Process model corresponding to the simplest scenario.

Figure 14.6(a) Black-box and delegated control.

Figure 14.6(b) Black-box and delegated control, centralized decision.

Figure 14.6(c) Black-box and delegated control, delegated decision.

Figure 14.6 Impact of different policies on high-level softgoals formalized with the NFR framework.

Figure 14.7 Process model corresponding to delegated control and centralized decision.

Figure 14.8 Business conversation with delegated compensation.

Figure 14.9 Social model involving negotiation between a buyer company and its laptop components supplier. See figure A.2 for a key.

Figure 14.10 (a) Centralized decision and renegotiation. (b) Centralized decision and re-execution.

Figure 14.10 Impact of different policies on Contain Costs and Better price softgoals.

Figure 14.11 Process model with a participative compensation.

Figure 14.12 Impact of controllability formalized as delegated and black- box control on the Guarantee QoS goal.

Figure 14.13 Impact of controllability formalized as redundant and gray- box control on Guarantee QoS.
Figure 14.14 Refined social model. See figure A.2 for a key.

Figure 14.15 Refined process model (time-out on states triggers the composition into abort).

�Author: Should the author be Technical Architecture Program Team? See the References.

�No query

�Author: Should the first author be Kephart?

�Author: Should “phase” be “phases”?

�Author: Should the second author be Crowston? See the References.

�Author: Which chapters in particular should be consulted?

�Author: Is “In this section” correct?

�Author: Should the second author be Crowston? See the References.

�Author: Should the second author be Crowston? See the References.

�Author: Is the addition of “when” correct? If not, please clarify “how…interacting.”

�Author: Please specify “the previous step” by number.

�Author: Please clarify “passed as argument.”

�Author: Should the citation be Holzmann, 1997? See the References.

�Author: Should the citation be Holzmann, 1997? See the References.

�Author: Should the citation be Holzmann, 1997? See the References.

�Author: Is the addition of “be” correct?

�Author: Is “social…specifications” correct?

�Author: Would it be correct to change “derived” to “required”?

�Author: Should the citation be Holzmann, 1997? See the References.

�Author: Please make clear what refers to 14.10a and what refers to 14.10b throughout discussion of the figure.

�Author: This action doesn’t seem to be in figure 14.11. Should it be there?

�Author: Was the Proceedings published as Lecture Notes in Computer Science? If so, do you wish to add that information, with the volume number, plus Berlin: Springer?

�Author: Is the change to “Conversation” from “Composition” correct?

�Author: Is the paper in volume 1 or volume 2?

�Author: Is Iadis the same as IADIS? If so, should it be all capitals?

�Should the city be Boston?

�Author: Did this paper appear in the Proceedings of SoRE’04? If so, do you wish to provide that information? If so, see Baresi et al.

�Author: Should the pages be 369-411?

�Author: Is the change to “Methodology” from “Methodologies” correct?

�Author: Should the pages be 279-295?

�Author: Should the name be Kephart?

�Author: Is the item correct as edited?

�Author: Should the pages be 1-28?

�Author: Is the book title correct as edited?

�. In this chapter, we use the Tropos version of i*. In particular, goals can be AND/OR decomposed into other goals, and a link (or an unspecified association) between a service and a goal/softgoal indicates that execution of the service results in the fulfillment of the goal/softgoal. Moreover, our notion of service refines the i* notion of task. Intuitively, for the delivery of a service, a supplier must actually execute a service, a buyer must actually require the service from a supplier by delegating a goal, and the supplier must benefit from providing the service by having a goal fulfilled. These minimal conditions draw the two-way exchange scenario typical of an economic transaction in which the supplier provides a service and the buyer provides something in return (Williamson, 1996).

�. In this chapter, we use the Tropos version of i*. In particular, goals can be AND/OR decomposed into other goals, and a link (or an unspecified association) between a service and a goal/softgoal indicates that execution of the service results in the fulfillment of the goal/softgoal. Moreover, our notion of service refines the i* notion of task. Intuitively, for the delivery of a service a supplier must actually execute a service, a buyer must actually require the service from a supplier by delegating a goal, and the supplier must benefit from providing the service by having a goal fulfilled. These minimal conditions draw the two-way exchange scenario typical of an economic transaction, where the supplier provides a service and the buyer provides something in return (Williamson, 1996).

