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Abstract
Cores of semantic classes in scenario descriptions can
be extremely valuable in question-answering, informa-
tion extraction, and document retrieval. We propose
a semi-supervised learning approach to automatically
identify and classify cores of semantic classes in un-
structured text. We perform a case study on medical
text. The results show that the selected features char-
acterize the cluster structure of the data, and unlabeled
data is effectively explored in the classification. Com-
pared to a state-of-the-art supervised approach, the
performance of the semi-supervised approach is much
better when there is only a small amount of labeled
data. The two are comparable when a large amount of
labeled data is available.

Keywords

question answering, information extraction, transductive learning, named
entity identification

1 Introduction

While the identification of named entities (NEs) in a text is
an important component of many information retrieval and
knowledge management tasks, including question answer-
ing and information extraction, its benefits are constrained
by its coverage. Typically, it is limited to a relatively small
set of classes, such as person, time, and location, for which
instances can be recognized with reasonable confidence by
straightforward methods with a minimal amount of con-
text. However, in sophisticated applications, such as the
non-factoid medical question answering that we consider in
this paper, NEs are only a small fraction of the important
semantic units discussed in documents or asked about by
users. In fact, many semantic roles in scenarios and events
that occur often in questions and documents do not contain
NEs at all. Therefore, it is imperative to extend the idea of
NE identification to other kinds of semantic units. In this
paper, we propose an approach to detect a more diverse set
of semantic units that goes beyond simple NEs.

Our targets are cores of semantic classes or roles in sce-
nario descriptions. The semantics of a scenario is defined
by the role that each participant plays in it and can be ex-
pressed by a frame structure, where each slot in the frame
designates a semantic class. For example, a medical treat-
ment scenario can have three semantic classes: the patient’s
problem P, the treatment or intervention I, and the clinical

outcome O.1 The slots in the corresponding frame may be
filled with either complete or partial information. Consider
the following example, where parentheses delimit each in-
stance of a semantic class (a slot filler) and the labels P, I,O
indicate its type:

Sentence:
Two systematic reviews in (people with AMI)P inves-
tigating the use of (calcium channel blockers)I found a
(non-significant increase in mortality of about 4% and
6%)O.

Complete slot fillers:
P: people with AMI
I: calcium channel blockers
O: a non-significant increase in mortality of about 4%
and 6%

Partial slot fillers:
P: AMI
I: calcium channel blockers
O: mortality

The partial slot fillers in this example are the smallest frag-
ments of the corresponding complete slot fillers that exhibit
information rich enough for deriving a reasonably precise
understanding of the scenario. We use the term core to re-
fer to such a fragment of a slot filler. In this example, the
cores of the patient’s problem and the treatment are both
NEs, whereas the core of the clinical outcome is not. Sim-
ilarly, non-NE cores are common in other scenarios. For
example, the test method in diagnosis scenarios, the means
in a shipping event, and the manner in a criticize scenario
may all have non-NE cores.

In a question answering system, keyword-based docu-
ment retrieval is usually performed to find relevant doc-
uments that may contain the answer to a given question.
Keywords in the retrieval are derived from the question.
Cores of semantic classes can be extremely valuable in
searching for such documents for complex question sce-
narios, as shown in this example.2

Question scenario:
A physician sees a 7-year-old child with asthma in
her office. She is on flovent and ventolin currently
and was recently discharged from hospital following

1 Readers familiar with evidence-based medicine will recognize this as
a simplification of the PICO representation for the formulation of a
problem-centered query [21].

2 The scenario is an example used in the usability testing in the EPoCare
project at the University of Toronto.
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her fourth admission for asthma exacerbation. Dur-
ing the most recent admission, the dose of flovent was
increased. Her mother is concerned about the impact
of the additional dose of steroids on her daughter’s
growth. This is the question to which the physician
wants to find the answer.

For a complex scenario description like this, the answer
could be drowned in the large amount of irrelevant pas-
sages found by inappropriate keywords derived from the
question. However, with the information given by cores
of semantic classes, for example P: asthma, I: steroids, O:
growth, the search can be much more effective.

Similarly, identifying cores of semantic classes in docu-
ments can facilitate the question/answer matching process.
Some information relevant to the question is listed below,
where boldface indicates a core:

E1: A more recent systematic review (search date
1999) found three RCTs comparing the effects of
becolmetasone and non-steroidal medication on lin-
ear growth in children with asthma (200 µg twice
daily, duration up to maximum 54 weeks) suggesting
a short term decrease in linear growth of −1.54 cm a
year.

E2: Two systematic reviews of studies with long term
follow up and a subsequent long term RCT have found
no evidence of growth retardation in asthmatic chil-
dren treated with inhaled steroids.

The sentences here are from the book Clinical Evidence
(CE) [3], which we are using as the base text in our project
on natural-language question answering in evidence-based
medicine [17]. The clinical outcomes mentioned in the evi-
dence have very different phrasings — yet both are relevant
to the question. The pieces of evidence describe two dis-
tinct outcomes. Missing either of the outcomes will lead to
an incomplete answer for the physician. Here, the cores of
semantic classes provide the only clue that both outcomes
must be included in the answer, while complete description
of semantic classes with more information could make the
matching harder to find because of the different expressions
of the outcomes.

In addition, semantics presented in cores of semantic
classes can help filter out irrelevant information that cannot
be identified by searching methods based on simple string
overlaps. Consider these two questions:

In patients with myocardial infarction, do β block-
ers reduce mortality and recurrent myocardial in-
farction without adverse effects?

In someone with hypertension and high cholesterol,
what management options will decrease his risk of
stroke and cardiac events?

In the first question, the first occurrence of myocardial in-
farction is a disease but the second is part of the clinical
outcome. In the second question, stroke is part of the clin-
ical outcome rather than a disease to be treated as it usu-
ally is. Obviously, string matching cannot distinguish be-
tween the two cases. By identifying and classifying cores
of semantic classes, the relations between these important
semantic units in the scenarios are made very clear. There-
fore, documents or passages that do not contain myocardial
infarction or stroke as clinical outcomes can be discarded.

PoS
Tagging

p(c | n) or
tf · idf

UMLS

Syntactic
Relations

Context
Features

Domain
Features

words corescandidates

(noun
phrases)

Preprocessing Classification

Fig. 1: Architecture of the approach to core identification.

Finally, cores of semantic classes in a scenario are con-
nected to each other by the relations embedded in the frame
structure. The frame of the treatment scenario contains a
cause-effect relation: an intervention used to treat a prob-
lem results in a clinical outcome.

In the following sections, we propose a method to auto-
matically identify and classify the cores of semantic classes
according to their context in a sentence. We take the med-
ical treatment scenario as an example, in which the goal
is to identify cores of treatments, problems, and clinical
outcomes. For ease of description, we will use the terms
intervention-core, disease-core, and outcome-core to refer
to the corresponding cores. We work at the sentence level,
i.e., we identify cores in a sentence rather than a clause
or paragraph. Two principles are followed in developing
the method. First, complete slot fillers do not have to be
extracted before core identification. Second, we aim to re-
duce the need for expensive manual annotation of training
data by using a semi-supervised approach.

2 Architecture of the method

In our approach, we first collect candidates for the target
cores from sentences under consideration. For each candi-
date, we classify it as one of the four classes: intervention-
core, disease-core, outcome-core, or other. In the classi-
fication, a candidate will get a class label according to its
context, its semantic types in the knowledge base Unified
Medical Language System (UMLS), and the syntactic rela-
tions in which it participates. Two knowledge resources in
UMLS — the Metathesaurus and the Semantic Network —
are used. The Metathesaurus is the central vocabulary com-
ponent of UMLS that contains information about biomed-
ical and health-related concepts. Semantic types of con-
cepts in the Metathesaurus are provided in the Semantic
Network. Figure 1 shows the architecture of the approach.

3 Preprocessing

Our observation is that cores of the three types of slot fillers
are usually nouns or noun phrases. In the preprocessing,
all words in the data set are examined. The first two steps
are to reduce noise, in which some of the words that are
unlikely to be part of real cores are filtered out. Then, the
rest are mapped to their corresponding concepts, and these
concepts are candidates of target cores.

PoS tagging. Words that are not nouns are first removed
from the candidate set. PoS tags are obtained by using
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Brill’s tagger [5].
Filtering out some “bad” nouns. This step is the sec-

ond attempt to remove noise. Nouns that are unlikely to
be part of real cores are considered to be “bad” candi-
dates. Two different measures are considered to evaluate
how good a noun is.

tf · idf . This is the traditional measure of informativeness
of a word with regard to a document. Clinical Evidence text
is used to obtain the tf · idf value of a noun. 47 sections in
Clinical Evidence are segmented to 143 files of about the
same size. After the tf · idf value of a noun is calculated in
each file, the highest value is taken as its final score. Nouns
with tf · idf values lower than a threshold are removed from
the candidate set. The threshold was set manually after
observing the values of some nouns that frequently occur
in the text.

Domain specificity. We calculate the probability p(c |n),
where c is the medical class, and n is a noun. This
is the probability that a document is in the medical do-
main c given that it contains the noun n. Intuitively,
intervention-cores, disease-cores, and outcome-cores are
domain-specific, i.e., a document that contains them is very
likely to be in the medical domain. For example, morbidity,
mortality, aspirin, and myocardial infarction are very likely
to occur in a medicine-related context. Therefore, we in-
tend to retain highly medical domain-specific nouns in the
candidate set. Using this measure, a noun is a better candi-
date if the corresponding probability is high. Text from two
domains is needed in this measure: medical text, and non-
medical text. In our experiment, we use the same 47 sec-
tions in CE as the medical class text. For the non-medical
class, we use the Reuters collection, as it mainly consists of
newswire stories. 1000 documents in the Reuters collection
are randomly selected for the calculation. Nouns whose
probability values are below a threshold (determined in the
same manner as in the tf · idf measure) are filtered out.

Mapping to concepts. In many cases, nouns are part
of noun phrases that are better candidates for cores. For
example, the phrase myocardial infarction is a better can-
didate for an intervention-core than infarction. Therefore,
we use the software MetaMap [2] to map a noun to its cor-
responding concept (which is often a noun phrase) in the
Metathesaurus of UMLS. All the concepts form the set of
candidates of cores to be classified.

4 Representing candidates using fea-
tures

Given a set of candidates, the classification task is to iden-
tify several subsets; each corresponds to a type of slot filler,
or a semantic class. We expect that candidates in the same
semantic class will have similar behavior, characterized
by syntactic relations, context information, and semantic
types. All features are binary features, i.e., a feature takes
value 1 if it is present; otherwise, it takes value 0.

4.1 Syntactic relations

Syntactic relations have been explored in grouping similar
words [14] and words of the same sense in word sense dis-
ambiguation [12]. Lin [14] inferred that tesguino is similar
to beer, wine, etc., i.e., it is a kind of drink, by comparing

Sentence:
Thrombolysis reduces the risk of dependency, but increases
the chance of death.
Candidates:
thrombolysis, dependency, death
Relations:
(thrombolysis subj–of increase), (thrombolysis subj–of re-
duce)
(dependency pcomp-n–of of)
(death pcomp-n–of of)

Fig. 2: Example of dependency triples extracted from out-
put of Minipar parser.

syntactic relations in which each word participates. Ko-
homban and Lee [12] determined the sense of a word by
observing a subset of syntactic relations of the word. The
hypothesis is that different instances of the same sense will
have similar relations.

We also need to group instances of the same semantic
class. Such instances may participate in similar syntactic
relations while those of different classes will have different
relations. For example, intervention-cores often are sub-
jects of sentences, while outcome-cores are often objects.

Candidates in our task are phrases, rather than words as
in [14] and [12]. Thus, we consider all relations between
a candidate noun phrase and other words in the sentence.
To do that, we ignore relations between any two words in
the phrase when extracting syntactic relations. Any rela-
tion between a word not in the phrase and a word in the
phrase is extracted. We use the Minipar parser [13] to get
the syntactic relations. In the feature construction, a rela-
tion triple containing two words and the grammatical rela-
tion between them is taken as a feature, as shown in Figure
2. The set of all distinct triples is the syntactic relation fea-
ture set in the classification.

4.2 Local context

The context of candidates is also important in distinguish-
ing different classes. For example, a disease-core may of-
ten have people with in its left context. However, it is
very unlikely that the phrase people with mortality (with an
outcome-core) will occur in the text. We consider the two
content words on both sides of a candidate. When extract-
ing context features, all punctuation marks are removed ex-
cept the sentence boundary. The window does not cross
boundaries of sentences. We evaluated two representations
of context: ordered and unordered. In the ordered case, lo-
cal context to the left of the phrase is marked by L-, that to
the right is marked by R-. Symbols L- and R- are used only
to indicate the order of text. For the candidate dependency
in Figure 2, the context features with order are: L-reduces,
L-risk, R-increases, and R-chance. The context features
without order are: reduces, risk, increases, and chance.

4.3 Domain features

Each candidate has a semantic type defined in UMLS. For
example, the semantic type of death is organism function
and that of dependency is physical disability. These se-
mantic types are used as features in the classification.
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Table 1: Number of instances of cores in the whole data
set.

Intervention-core 501
Disease-core 153
Outcome-core 384
Total 1038

5 Data set and analysis

Two sections of Clinical Evidence were used in the experi-
ments. A clinician labeled the text for intervention-cores
and disease-cores. Complete clinical outcomes are also
identified. Using this annotation as a basis, outcome-cores
were labeled by the first author. The number of instances
of each class is shown in Table 1.

In our approach, the design of the features is intended to
group similar cores together. As a first step to verify how
well the intention is captured by the features, we observe
the geometric structure of the data.

In the analysis, candidates are derived using the domain
specificity measure p(c |n). Each candidate is represented
by a vector of dimensionality D, where each dimension
corresponds to a single feature. The feature set consists of
syntactic features, ordered context, and semantic types. We
map the high-dimensional data space to a low-dimensional
space using the locally linear embedding (LLE) algorithm
[20] for easy observation. LLE maps high-dimensional
data into a single global coordinate system of low dimen-
sionality by reconstructing each data point from its neigh-
bors. The contribution of the neighbors, summarized by the
reconstruction weights, captures intrinsic geometric prop-
erties of the data. Because such properties are indepen-
dent of linear transformations that are needed to map the
original high-dimensional coordinates of each neighbor-
hood to the low-dimensional coordinates, they are equally
valid in the low-dimensional space. In Figure 3, the data
is mapped to a 3-dimensional space (the coordinate axes
in the figure do not have specific meanings as they do not
represent coordinates of real data). Candidates of the four
classes (intervention-core, disease-core, outcome-core, and
other) are represented by (red) stars, (blue) circles, (green)
crosses, and (black) triangles, respectively. We can see that
candidates in the same class are close to each other, and
clusters of data points are observed in the figure.

6 The model of classification

On the basis of the feature design and data analysis, we
choose a semi-supervised learning model developed by
Zhu et al. [24] that explores the clustering structure of data
in classification. The general hypothesis of the approach is
that similar data points will have similar labels.

Let x1, . . . ,xn be labeled and unlabeled data. In the
model, a graph G = (V,E) is constructed (it does not have
to be fully connected), where the set of nodes V correspond
to both labeled and unlabeled data points and E is the set
of edges. The edge between two nodes i, j is weighted.
Weight wi j is assigned to agree with the hypothesis so that
the edge between two nodes that are closer in the data
space gets higher weight. This approach explores the clus-
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Fig. 3: Manifold structure of data.

ter structure of data by propagating labels from labeled data
points to unlabeled data points according to the weights on
the edges. Zhu et al. formulate the intuitive label propa-
gation approach as a problem of energy minimization in
the framework of Gaussian random fields, where the Gaus-
sian field is over a continuous state space, instead of over
a discrete label set. The idea is to compute a real-valued
function f : V → R on graph G that minimizes the en-
ergy function E( f ) = 1

2 ∑i, j wi j( f (i)− f ( j))2. The func-
tion f = argmin f E( f ) determines the labels of unlabeled
data points. This solution can be efficiently computed by
direct matrix calculation even for multi-label classification,
in which solutions are generally computationally expensive
in other frameworks. It is referred to as “SEMI” in the fol-
lowing description.

Label propagation explores the similarity of labeled and
unlabeled data points, and thus follows closely the cluster
structure of the data in prediction. We expect it to perform
reasonably well on our data set. We use the SemiL [10]
implementation of SEMI in the experiment.3

7 Results and analysis

We first evaluate the performance of the semi-supervised
model on different feature sets. Then, we compare the can-
didate sets obtained by using tf · idf with those obtained
by evaluating domain specificity. Finally, we compare the
semi-supervised model to a supervised approach.

In all these experiments, the data set contains all can-
didates of cores. Unless otherwise mentioned, the results
reported are obtained using the candidate set derived by
p(c |n), the feature set of the combination of syntactic rela-
tions, ordered context, and semantic types, and the distance
measure of cosine distance (as weights on the edges of the
graph). The result of an experiment is the average of 20
runs. In each run, labeled data is randomly selected from
the candidate set, and the rest is taken as unlabeled data
whose labels need to be predicted. We make sure that all
classes are present in labeled data; if any class is absent, we
redo the sampling. The evaluation of the semantic classes is

3 As our data is unbalanced, the parameter that handles unbalanced data
set is turned on the experiment. Default values of other parameters are
used unless otherwise mentioned.
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Fig. 4: Classification results of candidates.

very strict: a candidate is given credit if it gets the same la-
bel as given by the annotator and the tokens it contains are
exactly the same as those marked by the annotator. Can-
didates that contain only some of the tokens matching the
labels given by the annotators are treated as the other class.

7.1 Experiment 1: Evaluation of feature sets

This experiment evaluates different feature sets in the clas-
sification. As described in section 3, two different meth-
ods are used in the second step of preprocessing to pick
up good candidates. Here, as our focus is on the feature
set, for space reasons, we report only results on candidates
selected by p(c |n). (In section 7.2, we compare the two
methods of selecting good candidates.)

Figure 4 shows the accuracy of classification using dif-
ferent combinations of the four feature sets: syntactic re-
lations, ordered context, un-ordered context, and semantic
types. A baseline is set by assigning labels to data points
according to the prior knowledge of the distribution of the
four classes, which has accuracy of 0.395. It is clear in the
figure that incorporating additional kinds of features into
the classification results in a large improvement in accu-
racy. Using only syntactic relations (rel in the figure) as
features, the best accuracy is lower than 0.5. The addi-
tion of ordered context (orderco) or no-order context fea-
tures (co) improves the accuracy by about 0.1. Adding se-
mantic type features (tp) improves accuracy by a further
0.1. Combining all four kinds of features achieves the best
performance. With only 5% of data as labeled data, the
whole feature set achieves an accuracy of 0.6. Semantic
types seems to be a very powerful feature set, as it substan-
tially improves the performance on top of the combination
of the other two kinds of features. Therefore, we took a
closer look at the semantic type feature set by conducting
the classification using only semantic types, but found that
the result is even worse than using only syntactic relations.
This observation reveals interesting relations between the
feature sets. In the space defined by only one kind of fea-
tures, data points may be close to each other, and hence
hard to distinguish. Adding another kind sets apart data
points in different classes toward a more separable position
in the new space. This shows that every kind of feature is
informative to the task. The feature sets characterize the
candidates from different angles that are complementary in

the task.
We also see that ordered context features are only

slightly better than unordered features when semantic types
are not considered. This difference is not observable at all
when semantic type information is considered.

7.2 Experiment 2: Evaluation of candidate
sets

In the second step of preprocessing, one of two methods
can be used to filter out some bad nouns – using tf · idf
value or the domain specificity. This experiment compares
the two measures in the core identification task. A third op-
tion using neither of the measures (i.e., without filtering) is
taken as the baseline. Table 2 shows numbers of instances
remaining in the candidate set after preprocessing.

As shown in the table, there are much fewer instances in
the other class in the sets derived by tf · idf and the prob-
ability measure as compared to those derived by the base-
line, which shows that the two measures effectively remove
some of the bad candidates of intervention-core, disease-
core, and outcome-core. At the same time, a small number
of cores are removed.4 Compared to the baseline method,
the probability measure keeps almost the same number of
intervention-cores and disease-cores in the candidate set,
while omitting some outcome-cores. This indicates that
outcome-cores are less domain-specific than the other two.
Compared to the tf · idf measure, more intervention-cores
and outcome-cores are kept by the domain specificity mea-
sure, showing that the probability measuring the domain-
specificity of a noun better characterizes the cores of the
three semantic classes. The probability measure is also
more robust than the tf · idf measure, which heavily re-
lies on the content of the text from which it is calculated.
For example, if an intervention is mentioned in many doc-
uments of a document set, its tf · idf value can be very low
although it is a good candidate of intervention-core.

The precision, recall, and F-score of the classification
shown in Table 3 confirms the above analysis. The proba-
bility measure gets substantially higher F-scores than the
baseline for all the three classes that we are interested
in, using different amounts of labeled data. In particu-
lar, the corresponding precision values are much higher
than the baseline. Compared to tf · idf , the performance
of the domain specificity measure is much better on iden-
tifying intervention-cores, and slightly better on identify-
ing outcome-cores, while the two are similar on identifying
disease-cores.

7.3 Experiment 3: Comparison of the semi-
supervised model and SVMs

In the semi-supervised model, labels propagate along high-
density data trails, and settle down at low-density gaps. If
the data has the desired structure, unlabeled data can be
used to help learning. In contrast, a supervised approach
only makes use of labeled data. This experiment compares
SEMI to a state-of-the-art supervised approach; the goal is

4 The first and third step in the preprocessing also results in missing
cores in the candidate set. We roughly checked about one-third of the
total real cores in the data set and found that 80% of lost cores occur
because MetaMap either failed to find the concepts or it extracted more
or fewer tokens than marked by the annotator. 10% of missing cores
are caused by errors of the PoS tagger, and the rest occur because some
cores are not nouns.
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Table 2: Number of candidates in different candidate sets.
Class 1: intervention-core, Class 2: disease-core,

Class 3: outcome-core, Class 4: other

Measures Class1 Class2 Class3 Class4
tf · idf 243 108 194 785
p(c |n) 298 106 209 801
baseline 303 108 236 1330

Table 3: F-score of classification on different candidate
sets.

labeled data 1% 5% 10% 30% 60%
intervention-core:

baseline .53 .63 .66 .70 .72
tf · idf .51 .61 .64 .69 .71
p(c |n) .57 .69 .72 .75 .77

disease-core:
baseline .25 .36 .43 .48 .49
tf · idf .29 .41 .46 .53 .55
p(c |n) .27 .41 .47 .53 .55

outcome-core:
baseline .28 .41 .48 .53 .55
tf · idf .35 .49 .53 .59 .61
p(c |n) .37 .49 .54 .60 .63

to investigate how well unlabeled data contributes to the
classification using the semi-supervised model. We com-
pare the performance of SEMI to support-vector machines
(SVMs) when different amounts of data are used as labeled
data. We use OSU SVM [15] in the experiment.5

As shown in Table 4, when there is only a small amount
of labeled data (less than 5% of the whole data set), which
is often the case in real-world applications, SEMI achieves
much better performance than SVMs in identifying all the
three classes. For intervention-core and outcome-core,
with 5% data as labeled data, SEMI outperforms SVMs
with 10% data as labeled data. Similarly, SVMs need to
have about three times the labeled data to gain the same
performance achieved by SEMI using 10% data as labeled
data. With less than 60% data as labeled data, the per-
formance of SEMI is either superior to or comparable to
SVMs for intervention-core and outcome-core. This shows
that SEMI effectively exploits unlabeled data by following
the manifold structure of the data. The promising results
achieved by SEMI show the potential of exploring unla-
beled data in classification.

8 Related work

The task of named entity (NE) identification, similar to
the core-detection task, involves identifying words or word
sequences in several classes, such as proper names (loca-
tions, persons, and organizations), monetary expressions,
dates and times. NE identification has been an important
research topic ever since it was defined in MUC [16]. In
2003, it was taken as the shared-task in CoNLL [22]. Most

5 For the parameter that handles unbalanced data, we set it according to
the prior knowledge of the class distribution and give larger weight to
a class that contains fewer instances.

Table 4: F-score of classification using different models.
labeled data 1% 5% 10% 30% 60%
intervention-core:

semi .57 .69 .72 .75 .77
SVM .33 .60 .68 .74 .77

disease-core:
semi .27 .41 .47 .53 .55
SVM .21 .38 .54 .62 .65

outcome-core:
semi .37 .49 .54 .60 .63
SVM .07 .27 .44 .56 .62

statistical approaches use supervised methods to address
the problem [9, 6, 11]. Unsupervised approaches have
also been tried in this task. Thelen and Riloff [23] ex-
plored a bootstrapping method to learn semantic lexicons
of six categories: building, event, human, location, time,
and weapon. Cucerzan and Yarowsky [8] also used a boot-
strapping algorithm to learn contextual and morphological
patterns iteratively. Collins and Singer [7] tested the per-
formance of several unsupervised algorithms on the prob-
lem: modified bootstrapping (DL-CoTrain) motivated by
co-training [4], an extended boosting algorithm (CoBoost),
and the Expectation Maximization (EM) algorithm. The
results showed that DL-CoTrain and CoBoost are superior
to EM, while the two are almost the same.

Much effort in entity extraction in the biomedical do-
main has gene names as the target. Various supervised
models including naive Bayes, support-vector machines,
and hidden Markov models have been applied [1]. The
work most related to our core-identification in the biomed-
ical domain is that of Rosario and Hearst [19], which ex-
tracts treatment and disease from MEDLINE and examines
seven relation types between them using generative models
and a neural network. They claim that these models may
be useful when only partially labeled data is available, al-
though only supervised learning is conducted in the paper.
The best F-score of identifying treatment and disease ob-
tained by using the supervised method was .71. Another
piece of work extracting similar semantic classes was that
of Ray and Craven [18]. They report an F-score of about
.32 for extracting proteins and locations, and an F-score of
about .50 for gene and disorder.

9 Conclusion

We proposed a novel approach to automatically identify
and classify cores of semantic classes in scenario descrip-
tions. In the classification, a semi-supervised model that
explores the clustering structure of the data was applied.
Our experimental results show that syntactic relations, con-
text, and semantic types are informative and complement
features for this task. The features characterize the clus-
ter structure of the data, and unlabeled data is effectively
used. Compared to a state-of-the-art supervised approach,
the performance of the semi-supervised approach is much
better when there is only a small amount of labeled data,
and performance of the two are comparable when larger
amounts of labeled data are available.

Our approach does not require prior knowledge of se-
mantic classes, and it effectively exploits unlabeled data.
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The promising results achieved show the potential of semi-
supervised models that explore the clustering structure of
data in tasks of grouping similar instances. This approach
can be applied to other domains as well; the syntactic re-
lation and context features can be constructed in the same
way. For domains that do not have a knowledge base like
UMLS, the WordNet hierarchy may be used to get features
like semantic types. In this case, the level of generalization
in WordNet needs to be investigated.

A difficulty of using this approach, however, is in de-
tecting boundaries of the targets. A segmentation step that
pre-processes the text is needed. In the next step of our
work, we aim to investigate approaches that perform the
segmentation precisely.
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