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Abstract. The automatic ranking of word pairs as per their semantic relatedness and ability to
mimic human notions of semantic relatedness has widespreadapplications. Measures that rely
on raw data (distributional measures) and those that use knowledge-rich ontologies both exist.
Although extensive studies have been performed to compare ontological measures with human
judgment, the distributional measures have primarily beenevaluated by indirect means. This
paper is a detailed study of some of the major distributionalmeasures; it lists their respective
merits and limitations. New measures that overcome these drawbacks, that are more in line
with the human notions of semantic relatedness, are suggested. The paper concludes with
an exhaustive comparison of the distributional and ontology-based measures. Along the way,
significant research problems are identified. Work on these problems may lead to a better
understanding of how semantic relatedness is to be measured.

Keywords: Distributional similarity/relatedness, semantic similarity/relatedness, word asso-
ciation, relative entropy, asymmetric measures, compositional/non-compositional measures,
pseudo-fuzzy metrics

Abbreviations: PCM – Primary Compositional Measure; CRM – Co-occurrence Retrieval
Model; KLD – Kullback-Leibler Divergence; PMI – Pointwise Mutual Information

1. Introduction

Humans are inherently capable of determining whether one word pair is more
semantically related than another. For example, given the word pairshoney–
beeand paper–car, one can easily identify the former pair to be more se-
mantically related than the latter. This, however, is not true for machines. A
lot of work has been done in automating the process in the lastfifteen years.
While some approaches do better than others and have been applied to solving
practical problems, none has matched human judgment.

Typically, automated systems assign a score ofsemantic relatednessto a
given pair of words (target words) calculated from arelatedness measure.
The absolute score is usually irrelevant on its own. For example, a relatedness
score of 0.7 betweena andb, in a possible range of 0 to 1, does not imply
that a and b are more related than the average word pair. However, given
that the semantic relatedness ofc andd is 0.6, the system can conclude that
a andb are more related thanc andd. Thus even though the absolute score
given by a relatedness measure is not of much significance, itis important that
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the measure give a higher score to word pairs which humans think are more
related and comparatively lower scores to word pairs that are less related. This
ability to mimic human judgment of semantic relatedness hasbeen used in
numerous applications such as automated spelling correction, word sense dis-
ambiguation, thesaurus creation, information retrieval,text summarization,
and identifying discourse structure.

Existing measures of semantic relatedness rely either on ontologies and
semantic networks or just raw text. Budanitsky (1999), Budanitsky and Hirst
(2001) and Patwardhan et al. (2003) do an extensive survey and comparison
of the various WordNet-based measures. Measures that use just raw text,
known as thedistributional measures, have been described individually
(for example, in Schütze and Pedersen (1997), Hindle (1990), Lin (1998a),
Pereira et al. (1993), etc) but have not been extensively compared among
each other. This paper focuses on distributional measures and analyzes their
strengths and limitations. Particular attention is paid tothe different kinds of
distributional measures and their components. New measures are suggested
that overcome some of their drawbacks. Characteristics of WordNet-based
and distributional measures are contrasted and finally, future research direc-
tions are suggested which may determine a better understanding of semantic
relatedness.

2. Background

2.1. CO-OCCURRENCES

Words that occur within a certain window of a target word are called theco-
occurrencesof the word. The window size may be a few words on either
side, the complete sentence, a paragraph or the entire document. Consider the
sentence below:

the plane flew through a cloud

If we consider the window size to be the complete sentence,flew co-occurs
with the, plane, through, aandcloud. The set of words that co-occur with
a word constitute the context of the word. They are used in tasks such as
information retrieval, word sense disambiguation, and semantic relatedness.
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2.2. WORD ASSOCIATION RATIO

Given two eventsx andy with probabilitiesP(x) andP(y), their pointwise
mutual information (Fano, 1961)1, PMI for short, or justI , is defined as
follows:

I(x,y) = log2
P(x,y)

P(x)P(y)
(1)

P(x,y) is the joint probability ofxandy. If I(x,y) evaluates to be close to zero,
i,e, P(x,y) ≈ P(x)×P(y), then it means that eventsx andy occur together
just as often as is expected from their individual probabilities. If I(x,y) ≫ 0,
it implies thatx andy occur together more often than would be expected from
their individual probabilities and hence have a strong correlation.

Church and Hanks (1989)1 introduceword association ratio, which is
similar to pointwise mutual information. Ifx and y are words with proba-
bilities P(x) andP(y) (estimated by corpus counts), their association ratio is
defined to be the same as in (1), except thatP(x,y) stands for the probability
that x appears, within a certain window, beforey. It should be noted that
P(x,y) is no longer symmetric (P(x,y) 6= P(y,x)) asP(x,y) andP(y,x) repre-
sent two different events. If two words have a word association ratio close to
zero then they do not share an interesting relationship but if I(w1,w2) ≫ 0,
thenw2 follows w1 (within a certain window) more often than chance and
the wordsw1 andw2 are strong co-occurrences. Theoretically, word associ-
ation ratio may yield negative values (word pair occurs lessfrequently than
expected by random chance) but Church and Hanks (1989) show that it is
hard to accurately predict negative word association ratios with confidence.
Systems which use word association ratio may be adversely affected by this.
A common approach to counter this is to equate the negative association
values to 0 (for example, Lin (1998a)). This usually means that the system
will ignore such words.

A problem with PMI in general (which is inherited by word association
ratio) is that low frequency events get higher scores than expected. Pantel
and Lin (2002) try to overcome this by multiplying the PMI value with a
correction factor. Although, Pantel and Lin give the correction factor for
word association ratio using syntactically related co-occurring words, a more
generic form applicable for pointwise mutual information is as shown below:

Icorrected(x,y) = log2
P(x,y)

P(x)P(y)
×

min(freq(x), freq(y))
min(freq(x), freq(y))+1

(2)

The correction factor is large (close to 1) if both the eventsoccur a large
number of times and small (close to 0) if any of the two events occurs very
few times.
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2.3. RELATEDNESS VSSIMILARITY

A closely related concept to semantic relatedness issemantic similarity.
While there is some overlap in their meanings and they may be used inter-
changeably in certain contexts, it is important to be aware of their distinction.
Budanitsky and Hirst (2001) and Budanitsky and Hirst (2004)point out that
semantic similarity is used when similar entities such asapplesandbananas
or table and furniture are compared. These entities are close to each other
in an is-a hierarchy. For example,applesandbananasare hyponyms offruit
andtableis a hyponym offurniture. However, even dissimilar entities may be
semantically related, for example,doorandknob, treeandshade, or gymand
weights. In this case the two entities are not similar per se, but are related by
some relationship. This relationship may be one of the classical relationships
such as meronymy (is part of) as indoor–knobor a non-classical one as in
tree–shadeand gym–weights. Thus two entities are semantically related if
they are semantically similar (close together in the is-a hierarchy) or share
any other classical or non-classical relationships. As Budanitsky and Hirst
(2004) point out, semantic similarity is a subset of semantic relatedness.

The concept ofsemantic distancehas traditionally been used in the con-
text of both semantic relatedness and semantic similarity.In the former con-
text, it represents the inverse of semantic relatedness, while in the latter, it
is the inverse of semantic similarity. In this paper as well,we shall continue
to use the term for both concepts with the confidence that the context will
disambiguate the intended meaning.

2.4. THE DISTRIBUTIONAL HYPOTHESIS

Given a text corpus, individual words have more or less differing contexts
around them. The context of a word is composed of words co-occurring with
it within a certain window around it. Distributional measures use statistics
acquired from a large text corpora to determine how similar the contexts
of two words are. These measures are also used as proxies to measures of
semantic similarity as words found in similar contexts tendto be semanti-
cally similar. This is known as thedistributional hypothesis (Firth (1957)
and Harris (1968)) and such measures have traditionally been referred to as
measures ofdistributional similarity .

The hypothesis makes intuitive sense as Budanitsky and Hirst (2004) point
out. If two words have many co-occurring words then similar things are being
said about both of them and so they are likely to be semantically similar. Con-
versely, if two words are semantically similar then they arelikely to be used in
a similar fashion in text and thus end up with many common co-occurrences.
For example, the semantically similarbugand insectare expected to have a
number of common co-occurring words such ascrawl, squash, small, woods,
and so on, in a large enough text corpus.
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Like measures of distributional similarity there exist measures of what
we will call distributional relatedness (Schütze and Pedersen (1997) and
Yoshida et al. (2003)). These measures use raw text and co-occurrence in-
formation to determine semantic relatedness between two words. The distri-
butional hypothesis mentioned earlier is generic enough tobe the basis for
both distributional similarity and distributional relatedness. We propose more
specific hypotheses that demarcate the two.

Hypothesis of distributional similarity:
Distributionally similar words tend to be semantically similar, where
two words (w1 andw2, say) are said to be distributionally similar if they
have many common co-occurring words and these co-occurringwords are
each related tow1 andw2 by the same syntactic relation.

Hypothesis of distributional relatedness:
Distributionally related words tend to be semantically related, where
two words (w1 andw2, say) are said to distributionally related if they have
many common co-occurring words and this set of co-occurringwords is
not restricted to only those that are related tow1 and w2 by the same
syntactic relation.

The two hypotheses are based on the fact that semantically similar words
belong to the same broad part of speech (noun, verb, etc) and are thus each
syntactically related to most common co-occurring words bythe same syn-
tactic relation. Further, the more two words are semantically related, the more
common co-occurring words they have. Consider the semantically related
word pairdoctor–operate. In a large enough body of text, the two words are
likely to have the following common co-occurring words:patient, scalpel,
surgery, recuperate, and so on. All these words will be used by a measure of
distributional relatedness and the pair will be assigned a high score. However,
a measure of distributional similarity will not use any of these co-occurring
words (and likely no other, for that matter) as they are not related to the target
words by the same syntactic relation. The worddoctor is almost always used
as a noun whileoperateis a verb. Thusdoctor andoperatewill get a very
low score of distributional similarity. The word pairdoctor–nurse, on the
other hand, will get a high score of distributional relatedness and distributed
similarity. Thus an important characteristic of any distributional measure is
whether it is a measure of distributional similarity or moregenerally that of
distributional relatedness.

It should be noted that a measure of distributional similarity will provide
a high score for certain closely related but dissimilar words belonging to the
same thematic role. For example,homelessanddrunkwhich refer to dissim-
ilar concepts but share a non-classical relationship of association (homeless
anddrunk tend to occur together in text) will likely get a high score asthey
belong to the same part of speech (adjective) and may have many common
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co-occurring words such asbeggar, person, helped,and so on, related by
the same syntactic relation. This is a limitation of the current measures of
distributional similarity and the impact of the limitationon the ability of the
measures to mimic semantic similarity is worth determining.

The relevant literature uses the termdistanceas inverse of distributional
similarity. In order to clearly distinguish between semantic distance, this pa-
per will refer to the inverse of distributional similarity as distributional dis-
tance. Like semantic distance, distributional distance will also be used as
the inverse of distributional relatedness, and the contextshould help disam-
biguate the intended meaning.

2.5. RELATEDNESS OFWORDS AND CONCEPTS

Measures of semantic relatedness and similarity are applied to particular con-
cepts (or particular senses of the words); for example, one may determine the
semantic relatedness ofbank in the financial institutionsense andinterest
in the interest ratesense. Distributional measures, on the other hand, usu-
ally assign scores to word pairs irrespective of the nature of their polysemy
(how many senses they have) or the particular senses they have been used
in. Distributional measures will need a much more knowledgerich source
(for example large amounts of sense-tagged corpora) than raw text to assign
scores to word-sense pairs.

2.6. EVALUATION

The presence of a large number of relatedness measures necessitates a suit-
able evaluation to determine which methods come closest to the human no-
tions of relatedness and to determine how good they each are.There exist two
modes of evaluation. The first involves the creation of two ranked lists of cer-
tain word pairs. One list is created using a relatedness measure while the other
is ranked by humans. The correlation of the two rankings is indicative of how
closely the measure mimics human judgment of relatedness. Rubenstein and
Goodenough (1965) were the first to conduct quantitative experiments with
human subjects who were asked to rate 65 word pairs on a scale of 0.0 to 4.0
as per their relatedness. The word pairs chosen ranged from very similar and
almost synonymous to unrelated. Miller and Charles (1991) also conducted a
similar study on 30 word pairs taken from the Rubenstein-Goodenough pairs.
However, lack of large amounts of data from human subject experimentation
limits the quality of this mode of evaluation.

The second and a more indirect way of evaluating measures of semantic
relatedness is by the performance of natural language tasksthat use them,
for example, automatic spelling correction, word sense disambiguation, es-
timation of unseen bigram (not found in training data) probabilities, and so
on.
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3. Distributional Measures

3.1. SPATIAL METRICS

A popular technique to determine distributional relatedness between two words
is to map them to points in a multidimensional space such thatthe distance
between the two points is an indicator of distributional andthereby semantic
distance between them.

Large co-occurrence matrices pertaining to each word, which store the
set of words that co-occur with it within a certain window size, are created
from a text corpus. Consider a multidimensional space wherethe number of
dimensions is equal to size of vocabulary. A wordw1 can be represented by
a point in this space such that the vector~w1 from the origin to this point
has equal positive components in all dimensions corresponding to words that
co-occur withw1. Similarly, vector~w2 can be created for wordw2. This sec-
tion describes three distributional distance metrics thatquantify the distance
between~w1 and~w2.

3.1.1. Cosine
Thecosinemethod (denoted byCos) is one of the earliest distributional mea-
sures. Given two wordsw1 andw2, the cosine measure calculates the cosine
of the angle between~w1 and~w2. If a large number of words co-occur with
bothw1 andw2, ~w1 and~w2 will have a small angle between them, the cosine
will be large, and we get a large relatedness value between them. The cosine
measure gives scores in the range from 0 (unrelated) to 1 (maximally related).

Cos(w1,w2) =
~w1.~w2

| ~w1 | × | ~w2 |
(3)

A limitation of the cosine method in its original form is thatall co-occurring
words are treated the same, irrespective of how often they co-occurred with
w1 andw2. A popular variation (Yoshida et al. (2003), Lee (1999), andSchütze
and Pedersen (1997)) that incorporates this information isstated below:

Cos(w1,w2) =
∑w∈C(w1)∪C(w2) (P(w|w1)×P(w|w2))

√

∑w∈C(w1)P(w|w1)2×
√

∑w∈C(w2)P(w|w2)2
(4)

C(x) is the set of words that co-occur (within a certain window) with the
word x in a corpus.P(x|y) is the probability that a particular co-occurrence
is composed ofx and y, given that wordy is one of the words in the co-
occurrence pair. It can be approximated by simple corpus counts. Once again,
the formula is the cosine of the angle between the word vectors~w1 and~w2 but
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the word vectors incorporate the strength of association ofthe co-occurring
words with the target words. The component of~x in a dimension (correspond-
ing to wordy, say) is equal to the strength of association ofy with x. Thus
the vectors corresponding to two words are closer together,and thereby get a
high distributional relatedness score, if they share many co-occurring words
and the co-occurring words have more or less the same strength of associa-
tion with the two target words. In the above formula conditional probability
of the co-occurring words given the target words is used as the strength of
association.

The cosine is used, among others, by Schütze and Pedersen (1997) and
Yoshida et al. (2003), who suggest methods of automaticallygenerating the-
sauri from text corpora. Schütze and Pedersen (1997) use the Tipster category
B corpus (Harman, 1993) (450,000 unique terms) and theWall Street Journal
to create a large but sparse co-occurrence matrix of 3,000 medium-frequency
words (frequency rank between 2,000 and 5,000). Latent semantic indexing
and single-value decomposition (see Schütze and Pedersen(1997) for details)
are used to reduce the dimensionality of the matrix and get for each term a
word vector of its 20 strongest co-occurrences. The cosine of a word vector
(say~w1) with each of the other word vectors is calculated and the topscores
along with the words whose vector generated the top scores isnoted. These
words form the thesaurus entries forw1.

Yoshida et al. (2003) believe that words that are closely related for one
person may be distant for another. They use around 40,000 HTML documents
to generate personalized thesauri for six different people. Documents used to
create the thesaurus for a person are retrieved from the subject’s home page
and a web crawler which accesses linked documents. The authors also sug-
gest a root-mean-squared method to determine the similarity of two different
thesaurus entries for the same word.

3.1.2. Manhattan and Euclidean Distances
Distance between two points (words) in multidimensional space can be cal-
culated using theManhattan distance a.k.a.L1 norm (denoted byL1) or
Euclidean distancea.k.a.L2 norm (denoted byL2). In the Manhattan dis-
tance (5) (Dagan et al. (1997), Dagan et al. (1999), and Lee (1999)), the
disparity in strength of association ofw1 andw2 with each word that they
co-occur with, is summed. The more the disparity in association, the more is
the distributional distance between the two words. The Euclidean distance (6)
(Lee (1999)) employs the root mean squared of the disparity in association to
get the final distributional distance. BothL1 norm andL2 norm give values
in the range 0 (zero distance or maximally related) and infinity (maximally
distant or unrelated).
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L1(w1,w2) = ∑
w∈C(w1)∪C(w2)

| P(w|w1)−P(w|w2) | (5)

L2(w1,w2) =

√

∑
w∈C(w1)∪C(w2)

(P(w|w1)−P(w|w2))
2 (6)

The above formulae use conditional probability of the co-occurring words
given the target words as the strength of association. The distributional relat-
edness of words may be found by taking the reciprocal of the distributional
distance or similar suitable method.

Lee (1999) compared the ability of all three spatial metricsto determine
the probability of an unseen (not found in training data) word pair. The mea-
sures in order of their performance (from better to worse) were: L1 norm,
cosine, andL2 norm. Weeds (2003) determined the correlation of word pair
ranking as per a handful of distributional measures with human rankings
(Miller and Charles word pairs Miller and Charles (1991)). Using verb-object
pairs from theBritish National Corpus (BNC), she found the correlation of
L1 norm with human rankings to be 0.39.

3.2. SET OPERATIONS

Distributional measures, as discussed earlier, aim to determine semantic sim-
ilarity (or relatedness) using words that co-occur with thetarget words. The
problem can be transformed to finding the similarity of two sets (W1 andW2,
say), where each set has as its members the co-occurring words of the two
target words (w1 or w2), respectively. One can now use set operations such as
Jaccard andDice coefficientto determine the similarity of the two sets and
thereby, the semantic similarity of the target words.

Jaccard(w1,w2) =
|W1∩W2|

|W1∪W2|
(7)

Dice(w1,w2) =
2×|W1∩W2|

|W1|+ |W2|
(8)

Both measures give scores in the range from 0 (unrelated) to 1(maximally
related) and will rank word pairs identically.
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Theorem 1.If the similarity of word pair one is less than the similarityof
word pair two, as determined by the Jaccard coefficient, thenthe similarity of
word pair one will be less than the similarity of word pair two, as determined
by the Dice Coefficient.

Proof.
Let x be the number of co-occurrences common to word pair one andy the

number of words that co-occur with just one of the two words inword pair
one.
Let l andmbe the corresponding values for word pair two.
Therefore,

Jaccard(pair one) =
x

x+y
(9)

Dice(pair one) =
2x

2x+y
(10)

Jaccard(pair two) =
l

l +m
(11)

Dice(pair two) =
2l

2l +m
(12)

Given,

Jaccard(pair one) < Jaccard(pair two) (13)

⇒
x

x+y
<

l
l +m

(14)

⇒ xl +xm < xl +yl (15)

⇒ xm < yl (16)

To prove,

Dice(pair one) < Dice(pair two) (17)

or,
2x

2x+y
<

2l
2l +m

(18)

or, 4xl +2xm < 4xl +2yl (19)

or, xm < yl (20)

which is true (from (16)). ✷

Thus, in terms of measuring distributional similarity/relatedness, Jaccard
and Dice coefficients are identical. Lee (1999) shows that the Jaccard coeffi-
cient performs better thanL1 norm in an unseen bigram probability estimation
task.
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3.2.1. Pseudo-Fuzzy Metrics
Simple set operations as stated above do not consider the strength of associa-
tion of the co-occurring word with the target words. The strength of associa-
tion can be incorporated into the metrics by considering theco-occurrence
sets to bepseudo-fuzzy. The degree of membership of each word in the
pseudo-fuzzy set corresponding to a target word is its strength of association
with the target word. We call the sets pseudo-fuzzy (and not fuzzy) because
the range of membership values is now dependent on the measure of associa-
tion used — conditional probability: 0 to 1, PMI (ignoring negative values2):
0 to infinity. Even though conditional probability has a range from 0 to 1 like
a standard fuzzy set membership function, the conditional probabilities of all
the words with respect to a particular target word sum up to 1.This need not
be (and usually is not) true of the membership values for a regular fuzzy set.

Use of conditional probability (denoted by CP) as the strength of associa-
tion and application ofJaccard andDice coefficienton the pseudo-fuzzy set
results in the following formulae. Similar to the case of regular sets, it can
easily be shown that the Dice and Jaccard coefficients of pseudo-fuzzy sets
also rank word pairs identically.

JaccardCP(w1,w2) =
∑w∈C(w1)∪C(w2)min(P(w|w1),P(w|w2))

∑w∈C(w1)∪C(w2)max(P(w|w1),P(w|w2))
(21)

DiceCP(w1,w2) =
2×∑w∈C(w1)∪C(w2)min(P(w|w1),P(w|w2))

∑w∈C(w1)P(w|w1)+∑w∈C(w2)P(w|w2)
(22)

=
2×∑w∈C(w1)∪C(w2)min(P(w|w1),P(w|w2))

1+1
(23)

= ∑
w∈C(w1)∪C(w2)

min(P(w|w1),P(w|w2)) (24)

Observe that the special nature of the membership function forces the Dice
coefficient to equate to simplified form (24) which is also thenumerator
of the Jaccard coefficient. Since Dice and Jaccard are identical in terms of
ranking word pairs, use of this simplified form is computationally optimal if
one decides to use the Dice or Jaccard coefficient with conditional probability
as the strength of association.

Dagan et al. (1995) use a weighted version of the Jaccard coefficient on
pseudo-fuzzy sets with PMI as the strength of association. They do not pro-
vide quantitative comparison with other distributional measures and do not
derive their measure as shown above. Viewing co-occurrenceinformation as
pseudo-fuzzy sets enabling the use of any of the numerous setoperations
to determine distributional similarity is a novel approach. Part of our future
research is to determine how well such measures fare compared to the others.
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3.3. MUTUAL INFORMATION–BASED MEASURES

Hindle (1990) was one of the first to factor the strength of association of
co-occurring words into a distributional similarity measure. The hypothesis
is that the more similar the association of co-occurring words with the two
target words, the more semantically similar they are. Hindle3 used pointwise
mutual information (PMI) as the strength of association. Consider the nouns
n j andnk that exist as objects of verbvi in different instances within a text
corpus. Hindle used formula (25) to determine the distributional similarity of
n j andnk solely from their occurrences as object ofvi . The minimum of the
two PMIs captures the similarity in the strength of association of vi with each
of the two nouns. Note that in case of negative PMI values, themaximum
function captures the PMI which is lower in absolute value.

Hinobj(vi ,n j ,nk) =























min(I(vi ,n j), I(vi ,nk)),
if I(vi ,n j)> 0 andI(vi ,nk)> 0

| max(I(vi ,n j), I(vi ,nk)) |,
if I(vi ,n j)< 0 andI(vi ,nk)< 0

0, otherwise

(25)

I(n,v) stands for the PMI (word association ratio, to be more precise) be-
tween the wordsn andv. Hindle used an analogous formula to calculate the
distributional similarity (Hinsub j) using the subject-verb relation. The overall
distributional similarity between any two nouns is calculated by the formula
(26).

Hin(n1,n2) =
N

∑
i=0

(Hinobj(vi ,n1,n2)+Hinsubj(vi ,n1,n2)) (26)

The measure gives similarity scores from 0 (maximally dissimilar) to infinity
(maximally similar). Note that in Hindle’s measure, the setof co-occurring
words used is restricted to include only those words that have the same syn-
tactic relation with both target words (either verb-objector verb-subject).
This is therefore a measure of distributional similarity and not distributional
relatedness. A form of Hindle’s measure where all co-occurring words are
used, making it a measure of distributional relatedness, isshown below:

Hinrel(w1,w2) = ∑
w∈C(w)























min(I(w,w1), I(w,w2)),
if I(w,w1)> 0 andI(w,w2)> 0

| max(I(w,w1), I(w,w2)) |,
if I(w,w1)< 0 andI(w,w2)< 0

0, otherwise

(27)

C(x) is the set of words that co-occur with wordx.
Lin (1998a) suggests a different measure derived from his information

theoretic definition of similarity (Lin, 1998b). Further, he uses a broad set
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of syntactic relations apart from subject-verb and verb-object relations and
shows that using multiple relations is beneficial even by Hindle’s measure.
He first extracts triples of the form(x, r,y) from the partially parsed text,
where the wordx is related toy by the syntactic relationr. If I(x, r,y) is
the information contained in the proposition: the triple(x, r,y) occurred a
constantc times, then Lin defines the distributional similarity between two
words,w1 andw2, as follows:

Lin(w1,w2) =
∑(r,w)∈T(w1)∩T(w2) (I(w1, r,w)+ I(w2, r,w))

∑(r,w′)∈T(w1) I(w1, r,w′)+∑(r,w′′)∈T(w2) I(w2, r,w′′)
(28)

T(x) is the set of all word pairs(r,y) such that the pointwise mutual infor-
mation I(x, r,y), is positive. Note that this is different from Hindle (1990)
where even the cases of negative PMI were also considered. Asmentioned
earlier, Church and Hanks (1989) show that it is hard to accurately predict
negative word association ratios with confidence. Thus, co-occurrence pairs
with negative PMI are ignored. The measure gives similarityscores from 0
(maximally dissimilar) to 1 (maximally similar).

Lin’s measure distinguishes itself from that of Hindle in two respects.
Firstly, he normalizes the distributional similarity between two words (w1

andw2) determined by their PMI with common co-occurring words by the
total PMI ofw1 andw2 with the rest of the related words. This is a significant
improvement as now high PMI of the target words with shared co-occurring
words does not guarantee a high distributional similarity score. As an addi-
tional requirement, the target words must have low PMI with words they do
not both co-occur with. The second difference in the two formulae is that
Hindle uses a minimum of the PMI between each of the target words and the
shared co-occurring word, while Lin uses the sum. Taking thesum has the
drawback of not penalizing for a mismatch in strength of co-occurrence, as
long asw1 andw2 both co-occur with a word. We suggest a new measure of
distributional similarity (denoted bySaif) which counters this but keeps the
normalizing factor of Lin’s measure:

Saif(w1,w2) =
2×∑(r,w)∈T(w1)∩T(w2)min(I(w1, r,w), I(w2, r,w))

∑(r,w′)∈T(w1) I(w1, r,w′)+∑(r,w′′)∈T(w2) I(w2, r,w′′)
(29)

The multiplication by two is done to get scores in the range of0 to 1 (note that
the sum in Lin’s formula was replaced by a min). The multiplication has no
effect on the relative ranking of word pairs by their similarities. Also notice
that like Hindle’s measure, both Lin’s and mine are measuresof distributional
similarity. Hindle (1990) used a portion of theAssociated Pressnews stories
(6 million words) to classify the nouns into semantically related classes. Lin
(1998a) used his measure to generate a thesaurus from a 64-million-word
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corpus of theWall Street Journal, San Jose MercuryandAP Newswire. He
also provides a framework for evaluating automatically generated thesauri by
comparing them with WordNet-based and Roget-based thesauri. He shows
that the thesaurus created with his measure is closer to the WordNet and
Roget-based thesauri than that of Hindle.

3.3.1. Mutual Information–Based Spatial and Fuzzy Metrics
Variations of the spatial metrics (equations (4), (5), and (6)) that use point-
wise mutual information instead of conditional probability as the strength of
association are possible. Following are the formulae for mutual information–
based spatial metrics.

CosMI(w1,w2) =
∑w∈C(w1)∪C(w2) (I (w,w1)× I (w,w2))

√

∑w∈C(w1) I(w,w1)2×
√

∑w∈C(w2) I(w,w2)2
(30)

LMI
1 (w1,w2) = ∑

w∈C(w1)∪C(w2)

| I(w,w1)− I(w,w2) | (31)

LMI
2 (w1,w2) =

√

∑
w∈C(w1)∪C(w2)

(I(w,w1)− I(w,w2))2 (32)

Use of pointwise mutual information as the strength of association in the
fuzzy metrics (see equations (22) and (21)) discussed earlier results in the
following:

JaccardMI(w1,w2) =
∑w∈C(w1)∪C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w1)∪C(w2)max(I(w,w1), I(w,w2))
(33)

DiceMI(w1,w2) =
2×∑w∈C(w1)∪C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w1) I(w,w1)+∑w∈C(w2) I(w,w2)
(34)

Observe thatSaif(w1,w2) (equation (29)) equates toDiceMI(w1,w2) if the
restriction to use only positive pointwise mutual information, is lifted.

3.4. RELATIVE ENTROPY–BASED MEASURES

3.4.1. Kullback-Leibler divergence
Given two probability mass functionsp(x) andq(x), their relative entropy
(D(p‖q)) is:

D(p‖q) = ∑
x∈X

p(x) log
p(x)
q(x)

for q(x) 6= 0 (35)

Intuitively, if p(x) is the accurate probability mass function corresponding to
a random variableX, D(p‖q) is the information lost on approximatingp(x)
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by q(x). In other words,D(p‖q) is indicative of how different the two distri-
butions are. Relative entropy is also called theKullback-Leibler divergence
or theKullback-Leibler distance (denoted byKLD).

Pereira et al. (1993) and Dagan et al. (1994) point out that words have
probabilistic distributions with respect to neighboring syntactically related
words. For example, there exists a certain probabilistic distribution (d1(P(v|n1)),
say) of a particular nounn1 being the object of any verb. This distribution can
be estimated by corpus counts of parsed or chunked text. Letd2 (P(v|n2)) be
the corresponding distribution for nounn2. These distributions (d1 andd2)
define the contexts of the two nouns (n1 andn2, respectively). As per the dis-
tributional hypothesis (Harris, 1968), the more these contexts are similar, the
more aren1 andn2 semantically similar. Thus the Kullback-Leibler distance
between the two distributions is indicative of the semanticdistance between
the nounsn1 andn2.

KLD(n1,n2) = D(d1‖d2)

= ∑v∈Vb P(v|n1) log P(v|n1)
P(v|n2)

for P(v|n2) 6= 0

= ∑v∈Vb’ (n1)∪Vb’(n2)P(v|n1) log P(v|n1)
P(v|n2)

for P(v|n2) 6= 0
(36)

whereVb is the set of all verbs andVb’(x) is the set of verbs that havex as the
object. The distributional similarity is determined by taking the reciprocal of
the Kullback-Leibler distance or similar suitable method.Note that the set of
co-occurring words used is restricted to include only verbsthat each have the
same syntactic relation (verb-object) with both target nouns. This is therefore
a measure of distributional similarity and not distributional relatedness.

It should be noted that the verb-object relationship is not inherent to the
measure and that one or more of any other syntactic relationsmay be used.
The distributional relatedness may even be determined using all words co-
occurring with the target words. Thus a more generic expression of the Kullback-
Leibler divergence is as follows:

KLD(w1,w2) = D(d1‖d2)

= ∑w∈V P(w|w1) log P(w|w1)
P(w|w2)

for P(w|w2) 6= 0

= ∑w∈C(w1)∪C(w2)P(w|w1) log P(w|w1)
P(w|w2)

for P(w|w2) 6= 0
(37)

V is the vocabulary (all the words found in a corpus).C(x), as mentioned ear-
lier, is the set of words occurring (within a certain window)with wordx. The
inverse of the distributional distance calculated above yields the distributional
relatedness ofw1 andw2.
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It should be noted that the Kullback-Leibler distance is notsymmetric, that
is, the distance fromw1 to w2 is not necessarily, and even not likely, the same
as the distance fromw2 to w1. This asymmetry is counter-intuitive to the
general notion of semantic similarity of words, although Weeds (2003) has
argued in favor of asymmetric measures. Further, it is very likely that there
be instances such thatP(w1|v) is greater than 0 for a particular verbv, while
due to data sparseness or grammatical and semantic constraints, the training
data has no sentence wherev has the objectw2. This makesP(w2|v) equal to
0 and the ratio of the two probabilities infinite. Kullback-Leibler divergence
is not defined in such cases but approximations may be made by considering
smoothed values for the denominator.

Pereira et al. (1993) use relative entropy to create clusters of nouns from
verb-object pairs corresponding to a thousand most frequent nouns in the
Grolier’s Encyclopedia, June 1991 version (10 million words). Dagan et al.
(1994) use Kullback-Leibler distance to estimate the probabilities of bigrams
that were not seen in a text corpus. They point out that a significant number
of possible bigrams are not seen in any given text corpus. Theprobabili-
ties of such bigrams may be determined by taking a weighted average of
the probabilities of bigrams composed of distributionallysimilar words. Use
of Kullback-Leibler distance as the semantic distance metric yielded a 20%
improvement in perplexity on theWall Street Journaland dictation corpora
provided by ARPA’s HLT program (Paul, 1991).

The use of distributionally similar words to estimate unseen bigram prob-
abilities will likely lead to erroneous results in case of less-preferred and
strongly-preferred collocations (word pairs). Inkpen andHirst (2002) point
out that even though words liketaskand job are semantically very similar,
the collocations they form with other words may have varyingdegrees of
usage. Whiledaunting taskis a strongly-preferred collocation,daunting job
is rarely used. Thus using the probability of one bigram to estimate that of
another will not be beneficial in such cases.

3.4.2. α Skew Divergence
α skew divergence(ASD) is a slight modification of the Kullback-Leibler
divergence, that obviates the need for smoothed probabilities. It has the fol-
lowing formula:

ASD(w1,w2) = ∑
w∈C(w1)∪C(w2)

P(w|w1) log
P(w|w1)

αP(w|w2)+ (1−α)P(w|w1)

(38)
α is a parameter that may be varied but is usually set to 0.99. Note that
the denominator within the logarithm is never zero with a non-zero numera-
tor. Also, the measure retains the asymmetric nature of the Kullback-Leibler
divergence.
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Lee (2001) shows thatα skew divergence performs better than Kullback-
Leibler divergence in estimating word co-occurrence probabilities. Weeds
(2003) achieves a correlation of 0.48 and 0.26 with human judgment on the
Miller and Charles word pairs usingASD(w1,w2) andASD(w2,w1), respec-
tively.

3.4.3. Jensen-Shannon Divergence
A relative entropy–based measure that overcomes the drawback of asymme-
try in Kullback-Leibler divergence is theJensen-Shannon divergencea.k.a.
total divergence to the averagea.k.a.information radius . It is denoted by
JSDand has the following formula:

JSD(w1,w2) = D

(

d1‖
1
2
(d1+d2)

)

+D

(

d2‖
1
2
(d1+d2)

)

(39)

= ∑
w∈C(w1)∪C(w2)

(

P(w|w1) log
P(w|w1)

1
2 (P(w|w1)+P(w|w2))

+

P(w|w2) log
P(w|w2)

1
2 (P(w|w1)+P(w|w2))

)

(40)

The Jensen-Shannon divergence is the sum of Kullback-Leibler divergence
between each of the individual distributionsd1 andd2 with the average distri-
bution (d1+d2

2 ). Further, it can be shown that the Jensen-Shannon divergence
avoids the problem of zero denominator as in Kullback-Leibler divergence.
The Jensen-Shannon divergence is therefore always well defined and, likeα
skew divergence, obviates the need for smoothed estimates.

The Kullback-Leibler divergence,α Skew Divergence, and Jensen-Shannon
divergence all give distributional distance scores from 0 (maximally simi-
lar/related) to infinity (completely dissimilar/unrelated).

3.5. CO-OCCURRENCERETRIEVAL MODELS

The distributional measures suggested by Weeds (2003) are based on the
notion of substitutability. The more appropriate it is to substitute wordw1

in place of wordw2 in a suitable natural language task, the more semantically
similar they are. The natural language task she focuses on isco-occurrence
retrieval (the retrieval of words that co-occur with a target word fromtext)
and depending on the definition ofappropriate she suggests six different
distributional measures called theco-occurrence retrieval models (CRMs).

Let N1 be the set of co-occurrences ofw1 retrieved from a text corpus
andN2 that of w2. In order to determine how appropriate it is to substitute
w1 in place ofw2 we have to decide how important it is to get as many co-
occurrences as possible listed inN2 (recall, denoted byR) and how important
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it is to not get co-occurrences not listed inN2 (precision, denoted byP).
Thus Weeds’ distributional measures have a precision component and a recall
component. The final score is a weighted sum of the precision,recall and
standardF measure (see equation (41)4). The weights determine the impor-
tance of precision and recall and are determined empirically. If precision and
recall are equally important, then we get a symmetric measure which gives
the same scores to the distributional similarity ofw1 with w2 andw2 with w1.
Otherwise, we get an asymmetric measure which assigns different similarities
to the two cases. As substitutability is defined as a measure of distributional
similarity, metrics such as precision and recall which quantify how good the
substitution is, are used to calculate the distributional similarity.

CRM(w1,w2) = γ

[

2×P×R
P+R

]

+(1− γ)

[

β[P]+ (1−β)[R]

]

(41)

γ andβ are tuned parameters that lie between 0 and 1.
Weeds argues that the asymmetry in substitutability is intuitive as in many

cases it may be okay to substitute a word, saydog, with another, sayanimal,
but the reverse is not likely to be acceptable as often. Sincesubstitutabil-
ity is a measure of semantic similarity, she believes that distributional sim-
ilarity between two words should reflect this property as well. Hence, like
the Kullback-Leibler divergence, all her distributional similarity models are
inherently asymmetric.

A word’s co-occurrence information may be specified by the set of co-
occurring words alone, or by specifying the strength of co-occurrences, as
well. This strength may be captured by a suitable measure of word association
such as conditional probability or pointwise mutual information between the
co-occurring words and the target words. Also, the difference in the strength
of co-occurrence may or may not be used to penalize the substitutability of
one word for another. Weeds (2003) provides six distinct formulae for preci-
sion and recall, depending on the the strength of co-occurrence and penalty
for differences in strength of association.

The precision (or recall) can be considered as the product ofa core preci-
sion (or recall) formula (denoted bycore) and a penalty function (denoted by
penalty). The CRMs that use simple counts of the common co-occurrences
in N1 andN2 and not the strength of associations as core precision and recall
values are calledtype-based CRMs(denoted by the superscripttype). The
CRMs that use conditional probabilities of the common co-occurrences inN1

andN2 with the target words as core precision and recall values arecalled
token-based CRMs(denoted by the superscripttoken). The CRMs that use
pointwise mutual information of the common co-occurrencesin N1 andN2

with the target words as core precision and recall values arecalledmutual
information–based CRMs(denoted by the superscriptmi). The core preci-
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sion and recall formulae for type, token and mutual information–based CRMs
are listed below:

coretype
P (w1,w2) =

|C(w1)∩C(w2) |

|C(w1) |
(42)

coretype
R (w1,w2) =

|C(w1)∩C(w2) |

|C(w2) |
(43)

coretoken
P (w1,w2) = ∑

w∈C(w1)∩C(w2)

P(w|w1) (44)

coretoken
R (w1,w2) = ∑

w∈C(w1)∩C(w2)

P(w|w2) (45)

coremi
P (w1,w2) =

∑w∈C(w1)∩C(w2) I(w,w1)

∑w∈C(w1) I(w,w1)
(46)

coremi
R (w1,w2) =

∑w∈C(w1)∩C(w2) I(w,w2)

∑w∈C(w2) I(w,w2)
(47)

The CRMs that do not penalize difference in strength of co-occurrence are
calledadditive CRMs (denoted by the subscriptadd). The CRMs that do pe-
nalize are calleddifference-weighted CRMs(subscriptdw). The penalty is a
conditional probability–based function (48, 49) for the token- and type-based
CRMs, and a mutual information–based function (50, 51) for the mutual
information–based CRM.

penaltytype
P = penaltytoken

P =
min(P(w|w1),P(w|w2))

P(w|w1)
(48)

penaltytype
R = penaltytoken

R =
min(P(w|w1),P(w|w2))

P(w|w2)
(49)

penaltymi
P =

min(I(w,w1), I(w,w2))

I(w,w1)
(50)

penaltymi
R =

min(I(w,w1), I(w,w2))

I(w,w2)
(51)

The precision and recall of additive and difference-weighted CRMs is listed
in the appendix.

Weeds (2003) extracted verb-object pairs of 2,000 nouns from theBritish
National Corpus (BNC). The verbs related to the target words by the verb-
object relation were used. Thus each of the co-occurring verbs is related to the
target nouns by the same syntactic relation and therefore the measures capture
distributional similarity, not relatedness. Correlationwith human judgment
(Miller and Charles word pairs) showed that difference-weighted (0.61) and
additive mutual information–based measures (0.62) performed far better than
the rest of the CRMs.



20 Saif Mohammad and Graeme Hirst

4. Discussion and Analysis of Distributional Measures

The previous section described numerous distributional measures. Variations
of the measures are possible depending on certain general properties of a dis-
tributional measure. This section discusses a few of the important properties
along with an analysis of their effect in assigning semanticrelatedness.

4.1. SIMPLE CO-OCCURRENCES VSSYNTACTICALLY RELATED WORDS

Harris (1968), one of the early proponents of the distributional hypothesis,
used syntactically related words to represent the context of a word. However,
the strength of association of any word appearing in the context of the target
words may be used to determine their distributional similarity. Dagan et al.
(1997), Lee (1999), and Weeds (2003) represent the context of a noun with
verbs whose object it is (single syntactic relation), Hindle (1990) represents
the context of a noun with verbs with which it shares the verb-object or
subject-verb relation, while Lin (1998a) uses words related to a noun by
any of the many pre-decided syntactic relations to determine distributional
similarity. Schütze and Pedersen (1997) and Yoshida et al.(2003) use all co-
occurring words in a pre-decided window size. Although Lin (1998a) shows
that the use of multiple syntactic relations is more beneficial as compared to
just one, there exist no published results on whether using only syntactically
related words (as compared to all co-occurrences) improvesor worsens the
quality of semantic similarity assignment.

Use of syntactically related words entails the requirementof chunking or
parsing the data. Once the data is suitably parsed, the computational cost of
such methods is lower as distributional similarity is determined with much
fewer words.

4.1.1. Use of Multiple Syntactic Relations
Lin (1998a) used a subset of words that co-occurred with the target words to
determine their distributional similarity. Only those co-occurrences that are
syntactically related (by any of the pre-decided list of relations) to the target
words are chosen. Once this restricted set of co-occurrences is determined,
distributional similarity is determined by formula (28) shown earlier. Observe
that the formula does not distinguish between the co-occurrences related by
different syntactic relations. An alternative is to calculate a distributional
similarity value using each of the syntactic relations individually and then
determine the overall distributional similarity from these results. The over-
all distributional similarity may be as simple as the average similarity (see
(52)) or the maximum (see (53)) of individual similarity results. Distribu-
tional similarity so calculated is justified in the following two paragraphs,
respectively.
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SimOverall Avg(w1,w2) =
1
N

(

Simr1(w1,w2)+Simr2(w1,w2)+

. . .+SimrN(w1,w2)
)

(52)

SimOverall Max(w1,w2) = max(Simr1(w1,w2),Simr2(w1,w2),

. . . ,SimrN(w1,w2)) (53)

whereN is the total number of syntactic relations considered and,

Simri (w1,w2) =
∑(ri ,w)∈T(w1)∩T(w2)(I(w1, ri ,w)+ I(w2, ri ,w))

∑(ri ,w′)∈T(w1) I(w1, ri ,w′)+∑(ri ,w′)∈T(w2) I(w2, ri ,w′)
(54)

whereri is a particular syntactic relation.
Consider the scenario where wordw′ has a strong word association ra-

tio (large MI value) withw1 but does not co-occur withw2. The large MI
value is added to the denominator as per Lin’s measure (28). This results
in a low distributional similarity value. However, a numberof words are
considered semantically related even though there exist words (exclusive co-
occurrences, say) that have strong word association ratios with one or the
other target word but not both. A mark of semantically related words is the
presence of a number of common co-occurring words with whom they are
both strongly associated. One or few strong co-occurrencesof a target word
that do not co-occur with the other target word do not imply that the target
words are semantically unrelated. For example, consider the rather similar
pair of nounsbananasandmangoes. The adjectivejuicy is likely to have a
large association ratio withmangoesbut not so withbananas. The large MI
value ofmangoesandjuicy may lead to an excessively low distributional sim-
ilarity value as per Lin’s measure (28). Averaging the different distributional
similarity values (as in (52)) calculated from individual syntactic relations
instead of Lin’s original method moderates the strongly negative effect of
such exclusive co-occurrences by restricting it to a particular syntactic rela-
tion (in this case, adjective-noun). It should be noted thatthe disparity in the
strength of association ofmangoesandjuicy versusbananaandjuicy, is use-
ful in bringing out the differences betweenmangoandbananawhich may be
used to determine thatmangoandorangeare more semantically related than
mangoandbanana. However, as pointed out earlier, we do not want a strong
co-occurrence to have an adverse affect on the estimation ofdistributional
similarity in all other cases.

Taking the maximum of individual distributional similarity values (53)
takes the aforementioned idea one step ahead and is groundedin the following
hypothesis:

Different syntactic relations are accurate predictors of the semantic simi-
larity for different pairs of words.
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For example, fruits tend to have strong word associations with adjectives
like sweet, bitter, ripeand juicy, and low association values with verbs that
they are related to by the subject-verb relation. For example, consider the
sentences:

the ripe mango fell to the ground
the ripe plum fell to the ground

The wordsripe andmangoare related by the adjective-noun relation and are
likely to have a large value of association. On the other hand, mangoandfell
which are the subject and verb, respectively, are likely to have a low measure
of association because almost anything can fall. The adjective-noun relation
is thus expected to yield a higher distributional similarity value than the
subject-verb relation. Employing equation (53) in this case will mean that co-
occurrences related to the target words by the adjective-noun relation will be
used to determine the distributional similarity while all other co-occurrences
will be ignored. Thus only the relation that has the strongest associated co-
occurrences is used to determine the distributional similarity as these co-
occurrences are expected to be the best predictors of semantic similarity. A
measure where other sets of co-occurrences, which are weak predictors of
semantic similarity, are allowed to influence the result maycause more harm
than benefit. Flipping the argument on its head, target wordspredicted to be
strongly distributionally similar by two or more syntacticrelations should be
assigned higher distributional similarity values than in the case of just one.
Using the maximum method will loose out on this information.

Part of our future work will be to determine if calculating individual sim-
ilarity values from different syntactic relations and thenarriving at the final
similarity is closer to human judgment or not. Also, as pointed out, both the
average or maximum approaches have their advantages and disadvantages.
It will be interesting to determine which method gives semantic similarity
values closer to the human notion of semantic similarity.

4.2. COMPOSITIONALITY

The various measures of distributional similarity may be divided into two
kinds as per their composition. In certain measures each co-occurring word
contributes to somefinite calculabledistributional distance between the target
words. The final score of distributional distance is the sum of these con-
tributions. We will call such measurescompositional measures. The rel-
ative entropy–based measures,L1 norm andL2 norm fall in this category.
On the other hand, the cosine measure along with Hindle’s andLin’s mutual
information–based measures belong to the category of what we call non-
compositionalmeasures. Each co-occurring word shared by both target words
contributes a score to the numerator and the denominator. Words that co-occur
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with just one of the two target words contribute scores only to the denom-
inator. The ratio is calculated once all co-occurring wordsare considered.
Thus the distributional distance contributed by individual co-occurrences is
not calculable and the final semantic distance cannot be broken down into
compositional distances contributed by each of the co-occurrences.

It must be noted that it is not clear as to which of the two kindsof mea-
sures (compositional or non-compositional) resembles human judgment more
closely and how much they differ in their ranking of word pairs. Our future
work aims to determine this.

4.2.1. Primary Compositional Measures
The compositional measures of distributional similarity (or relatedness) cap-
ture the contribution to distance between the target words (w1 andw2) due to
a co-occurring word by three primary mathematical manipulations of the co-
occurrence distributions (d1 andd2): thedifference, denoted byDif (as inL1

norm),division, denoted byDiv (as in the relative entropy–based measures)
and product, denoted byPdt (as in the conditional probability or mutual
information–based cosine method). We will call the three types of compo-
sitional measuresprimary compositional measures (PCM). Their form is
depicted below:

Dif = ∑
w∈C(w1)∪C(w2)

|P(w|w1)−P(w|w2)| (55)

Div = ∑
w∈C(w1)∪C(w2)

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(56)

Pdt = ∑
w∈C(w1)∪C(w2)

P(w|w1)×P(w|w2)

Scaling Factor
(57)

Observe that by taking absolute values in expressions (55) and (56), the varia-
tion in the distributions for different co-occurring wordshas an additive affect
and not one of cancellation. This corresponds to our distributional hypothesis
— the more the disparity in distributions, the more is the semantic distance
between the target words. The product form (57) also achieves this and is
based on the theorem:

The product of any two numbers will always be less than or equal to the
square of their average.

In other words, the more two numbers are close to each other invalue, the
higher is the ratio of their product to a suitable scaling factor (for example, the
square of their average). Note that the difference and division measures give
higher values when there is large disparity between the strength of association
of co-occurring words with the target words. They are therefore measures of
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distributional distance and not distributional similarity. The product method
gives higher values when the strengths of association are closer, and is a
measure of distributional relatedness.

Although all three methods seem intuitive, each produces different distri-
butional similarity values and more importantly, given a set of word pairs,
each is likely to rank them differently. For example, consider the division
and difference expressions applied to word pairs (w1, w2) and (w3, w4). For
simplicity, let there be just one wordw′ in the context of all the words. Given:

P(w′|w1) = 0.91

P(w′|w2) = 0.80

P(w′|w3) = 0.60

P(w′|w4) = 0.50

The distributional distance between word pairs as per the difference PCM:

Dif (w1,w2) = |0.91−0.8| = 0.11

Dif (w3,w4) = |0.6−0.5|= 0.1

The distributional distance between word pairs as per the division PCM:

Div(w1,w2) =

∣

∣

∣

∣

log
0.91
0.8

∣

∣

∣

∣

= 0.056

Div(w3,w4) =

∣

∣

∣

∣

log
0.6
0.5

∣

∣

∣

∣

= 0.079

Observe that for the same set of co-occurrence probabilities, the difference-
based measure ranks the (w3,w4) pair more distributionally similar (lower
distributional distance), while the division-based measure gives lower distri-
butional similarity values for word pairs having large co-occurrence proba-
bilities. This behavior is not intuitive and it remains to beseen, by exper-
imentation, as to which of the three, difference, division or product, yields
distributional similarity measures closest to human notions of semantic simi-
larity.

TheL1 norm is a basic implementation of the difference method. A simple
product-based measure of distributional similarity is as proposed below:

PdtAvg(w1,w2) = ∑
w∈C(w1)∪C(w2)

P(w|w1)×P(w|w2)

(1
2(P(w|w1)+P(w|w2)))2

(58)

The scaling factor used is the square of the average probability. It can be
proved that if the sum of two variables is equal to a constant (k, say). Their
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values must be equal tok/2 in order to get the largest product. Now, letk be
equal to the sum ofP(w|w1)/(P(w|w1)+P(w|w2)) andP(w|w2)/(P(w|w1)+
P(w|w2)). This sum will always be equal to 1 and hence the product (Z)
will be largest only when the two numbers are equal i,e,P(w|w1) is equal
to P(w|w2). In other words, the fartherP(w|w1) andP(w|w2) are from their
average, the smaller is the productZ. Therefore, the measure gives high scores
for low disparity in strengths of co-occurrence and low scores otherwise.
The incorporation of 2 in the scaling factor results in a measure that ranges
between 0 and 1.

The relative entropy–based methods use a weighted divisionmethod. Ob-
serve that both Kullback-Leibler divergence (formula repeated here for con-
venience — equation (59)) and Jensen-Shannon divergence donot take ab-
solute values of the division of co-occurrence probabilities. This will mean
that if P(w|w1) > P(w|w2), the logarithm of their ratio will be positive and
if P(w|w1) < P(w|w2), the logarithm will be a negative number. Therefore,
there will be a cancellation of contributions to distributional distance by words
that have higher co-occurrence probability with respect tow1 and words
that have a higher co-occurrence probability with respect to w2. Observe
however that the weightP(w|w1) multiplied to the logarithm means that in
general the positive logarithm values receive higher weight than the negative
ones, resulting in a net positive score. Therefore, with no absolute value of
the logarithm, as in the KLD, the weight plays a crucial role.A modified
Kullback-Leibler divergence (DAbs) which incorporates the absolute value is
suggested in equation (60):

KLD(w1,w2) = D(d1‖d2) = ∑
w∈C(w1)∪C(w2)

P(w|w1) log
P(w|w1)

P(w|w2)
(59)

KLDAbs(w1,w2) = DAbs(d1‖d2) = ∑
w∈C(w1)∪C(w2)

P(w|w1)

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(60)

The updated Jensen-Shannon divergence measure will remainthe same as in
equation (39), except that it is a manipulation ofDAbs and not the original
Kullback-Leibler divergence (relative entropy).

JSDAbs(w1,w2) = DAbs(d1‖
1
2
(d1+d2))+DAbs(d2‖

1
2
(d1+d2)) (61)

Note that once the absolute value of the logarithm is taken, it no longer makes
much sense to use an asymmetric weight (P(w|w1)) as in the KLD or as
necessary to use a weight at all. Equation (62) shows a simpledivision-based
measure. It is an unweighted form ofKLDAbs(w1,w2) and so we will call it
KLDAbs

Unw.
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KLDAbs
Unw(w1,w2) = Div(w1,w2) = ∑

w∈C(w1)∪C(w2)

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(62)

Experimental evaluation of these suggested modifications of Kullback-Leibler
divergence and informations radius is part of future work.

4.2.2. Weighting the PCMs
The performance of the primary compositional measures may be improved
by adding suitable weights to the distributional distance contributed by each
co-occurrence. The idea is that some co-occurrences may be better indicators
of semantic distance than others. Usually, a formulation ofthe strength of as-
sociation of the co-occurring word with the target words is used as weight, the
hypothesis being that a strong co-occurrence is likely to bestrong indicator
of semantic distance.

Weighting the primary compositional measures results in some of the ex-
isting measures. For example, as pointed out earlier, the Kullback-Leibler
divergence is a weighted form of the division measure (not considering the
absolute value). Here, the conditional probability of a co-occurring word with
respect to the first word (P(w|w1)) is used as the weight. Since the weight
is dependent on the first word and not the other, we have asymmetry. A
more symmetric weight could be the average of the conditional probabil-
ities between the co-occurring word and each of the two target words. A
symmetrically weighted division PCMSaifDiv

AvgWt is shown below:

SaifDiv
AvgWt(w1,w2) = ∑

w∈C(w1)∪C(w2)

1
2
(P(w|w1)+P(w|w2))

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(63)

We can have corresponding, symmetric weighted Jensen-Shannon divergence
andα skew divergence.L2 norm is a weighted version of theL1 norm, the
weight being:P(w|w1)−P(w|w2). A simple product measure with weights is
shown below:

PdtAvg
AvgWt = ∑

w∈C(w1)∪C(w2)

1
2
(P(w|w1)+P(w|w2))

P(w|w1)×P(w|w2)

(1
2(P(w|w1)+P(w|w2)))2

= ∑
w∈C(w1)∪C(w2)

P(w|w1)×P(w|w2)
1
2(P(w|w1)+P(w|w2))

(64)

A better weight (which is also symmetric) may be chosen giventhe fol-
lowing hypothesis:

The stronger the association of a co-occurring word with a target word,
the better indicator of semantic properties of the target word it is.
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The co-occurring word is likely to have different strengthsof associations
with the two target words. Taking the maximum of the two as theweight
(Dagan et al. (1995)) will mean that more weight is given to a co-occurring
word if it has high strength of association with any of the twotarget words.
As Dagan et al. (1995) point out, there is strong evidence fordissimilarity
if the strength of association with the other target word is much lower than
the maximum, and strong evidence of similarity if the strength of association
with both target words is more or less the same. Equation (65)is a weighted
division PCM that captures this intuition.

SaifDiv
MaxWt(w1,w2)

= ∑
w∈C(w1)∪C(w2)

max(P(w|w1),P(w|w2))

∑w′∈C(w1)∪C(w2) max(P(w′|w1),P(w′|w2))

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(65)

Similarly weighted product and difference measures may be created. Both
SaifDiv

MaxWt andSaifDiv
AvgWtgive distributional distance scores from 0 (maximally

similar/related) to infinity (completely dissimilar/unrelated).
It would be interesting to note the effect of weighting on these measures

and also to determine which weight factor is more suitable.

4.3. MEASURE OFASSOCIATION

As mentioned earlier, distributional measures use the disparity in association
of the target words with their co-occurring words to determine relatedness.
Lin (1998a) and Hindle (1990) use pointwise mutual information as the mea-
sure of association. The mutual information–based CRMs of Weeds (2003)
also use the same. All other measures studied in this paper use simple condi-
tional probability of the co-occurring words, given the target word. It should
be noted that replacing the strength of association in a measure with an-
other can result in a different distributional measure. Forexample, the mutual
information–based spatial and fuzzy metrics discussed earlier. Lin’s measure
(28) using conditional probability (CP) is shown below:

LinCP(w1,w2) =
∑(r,w)∈T(w1)∩T(w2)(P(w|w1)+P(w|w2))

∑(r,w′)∈T(w1)P(w′|w1)+∑(r,w′)∈T(w2) P(w′|w2)
(66)

Of course, in case of certain measures, for example the division-based
primary compositional measures, use of pointwise mutual information and
conditional probability is equivalent.
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DivMI(w1,w2) = ∑
w∈C(w1)∪C(w2)

∣

∣

∣

∣

∣

∣

log

P(w,w1)
P(w)P(w1)

P(w,w2)
P(w)P(w2)

∣

∣

∣

∣

∣

∣

(67)

= ∑
w∈C(w1)∪C(w2)

∣

∣

∣

∣

log
P(w|w1)

P(w|w2)

∣

∣

∣

∣

(68)

= Div(w1,w2) (69)

Weeds (2003) shows that her mutual information–based CRMs exhibit
higher correlation with human judgment on the Miller and Charles word pairs
compared to the ones that use conditional probability. It remains to be seen if
other measures follow the same pattern.

4.4. PREDICTORS OFSEMANTIC RELATEDNESS

Given a pair of target words, the vocabulary may be divided into three sets:
(1) the set of words that co-occur with both target words (common); (2) words
that co-occur with exactly one of the two target words (exclusive); (3) words
that do not co-occur with either of the two target words. Hindle (1990) uses
evidence only from words that co-occur with both target words to determine
the distributional similarity. All the other measures discussed in this paper so
far, use words that co-occur with just one target word, as well.

One can argue that the more there are common co-occurrences between
two words, the more they are related. For example,drink and sip may be
considered related as they have a number of common co-occurrences such
aswater, teaand so on. Similarly,drink andchesscan be deemed unrelated
as words that co-occur with one, do not with the other. For example,water
and tea do not usually co-occur withchess, while castleandmoveare not
found close todrink. Measures that use all co-occurrences (common and
exclusive) tap into this intuitive notion. However, certain strong exclusive co-
occurrences can adversely effect the measure. Consider theclassicstrong tea
vs powerful teaexample (Halliday (1966)). The wordsstrongandpowerful
are semantically very related. However, the wordcoffeeis likely to co-occur
with strongbut not withpowerful. Further,strongandcoffeecan be expected
to have a large value of association as given by a suitable measure, say PMI.
This large PMI value, if used in the distributional relatedness formula, can
greatly reduce the final value. Thus it is not clear if the benefit of using all
co-occurrences is outweighed by the drawback pointed out.

A further advantage of using only common co-occurrences is that the
Kullback-Leibler divergence can now be used without the need of smoothed
probabilities.
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KLDCom(w1,w2) = ∑
w∈C(w1)∩C(w2)

P(w|w1) log
P(w|w1)

P(w|w2)
(70)

Observe that we are taking the intersection of the set of co-occurring words
instead of union as in the original formula (37).

4.5. CAPITALIZING ON ASYMMETRY

Given a hypernym-hyponym pair (automobile-car, say) asymmetric distribu-
tional measures such as the Kullback-Leibler divergence,α skew divergence
and the CRMs generate different values as the distributional similarity of w1

with w2 as compared tow2 with w1. Usually, if w1 is a more generic concept
thanw2, the measures findw1 to be more distributionally similar tow2 than
the other way round. Weeds (2003) argues that this behavior is intuitive as it
is more often okay to substitute a generic concept in place ofa specific one
than vice versa, and substitutability is a indicator of semantic similarity. On
the other hand, in most cases the notion of asymmetric semantic similarity is
counter-intuitive, and possibly detrimental. Further, incase two words share a
hypernym-hyponym relation, they are likely to be highly semantically similar.
Thus given two words, it may make sense to always choose the higher of the
two distributional similarity values suggested by an asymmetric measure as
the final distributional similarity between the two. This way an asymmetric
measure (SimAsym) can easily be converted into a symmetric one (SimAsym),
while still capitalizing on the asymmetry to generate more suitable distri-
butional similarity values for hypernym-hyponym word pairs. Equation (71)
states the formula for the proposed conversion. A specific implementation on
the KL divergence formula is given in equation (72)

SimMax(w1,w2) = max(SimAsym(w1,w2),SimAsym(w2,w1)) (71)

KLDMax(w1,w2) = max(KLD(w1,w2),KLD(w2,w1)) (72)

Another method to convert an asymmetric measure of distributional sim-
ilarity (or relatedness) into a symmetric one is by taking the average (for-
mula 73) of the two possible similarity values. A specific implementation on
the KL divergence formula is given in equation (74)

SimAvg(w1,w2) =
1
2
(SimAsym(w1,w2)+SimAsym(w2,w1)) (73)

KLDAvg(w1,w2) =
1
2
(KLD(w1,w2)+KLD(w2,w1)) (74)

=
1
2 ∑

w∈C(w1)∪C(w2)

(

P(w|w1) log
P(w|w1)

P(w|w2)
+P(w|w2) log

P(w|w2)

P(w|w1)

)

(75)
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=
1
2 ∑

w∈C(w1)∪C(w2)

(

P(w|w1) log
P(w|w1)

P(w|w2)
−P(w|w2) log

P(w|w1)

P(w|w2)

)

(76)

=
1
2 ∑

w∈C(w1)∪C(w2)

(P(w|w1)−P(w|w2)) log
P(w|w1)

P(w|w2)
(77)

Determining the effectiveness of such conversions of existing asymmetric
measures is part of our future work.

4.6. HOW CRMS FIT

The CRMs suggested by Weeds (2003) are the first distributional measures to
be evaluated by comparing ranked word pairs with those ranked by humans
(Miller and Charles word pairs). At first glance the CRMs may look quite
distinct from the rest of the distributional measures studied so far, owing to
their rather complex formulae and multiple optimizing parameters. However,
setting the parameters to certain standard values equates afew of the CRMs
to other measures. The difference-weighted token-based CRM suggested by
Weeds has identical values for precision and recall. She proves that the pre-
cision (or recall) is inversely related to theL1 norm measure. This seemingly
odd result of equating a distributional distance measure with a precision (or
recall) value makes sense due to the following — as substitutability is de-
fined as a measure of distributional similarity, metrics such as precision and
recall which quantify how good the substitution is, reflect the distributional
similarity and are inversely related to distributional distance. Thus setting
γ = 0 andβ = 1 or 0, causes the CRM to behave like theL1 norm. Further,
as shown below, settingγ = 1 (in other words, taking theF measure) makes
the difference-weighted mutual information–based CRM identical to the mu-
tual information–based Dice coefficient (34). Following4 is a proof of the
same. The precision and recall of the difference-weighted MI-based CRMs
are repeated here (equations (78) and (79)) for convenience.

PMI
dw(w1,w2) =

∑w∈C(w1)∩C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w1) I(w,w1)
(78)

RMI
dw(w1,w2) =

∑w∈C(w1)∩C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w2) I(w,w2)
(79)
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Theorem 2.The difference-weighted mutual information–based CRM equates
to the mutual information–based Dice coefficient if its parameterγ is set to 1.

Proof.

SimMI
dw(w1,w2) = γ

[

2×P×R
P+R

]

+(1− γ)

[

β[P]+ (1−β)[R]

]

= 1

[

2×P×R
P+R

]

+(1−1)

[

β[P]+ (1−β)[R]

]

=
2×P×R

P+R

On substituting values forP andR from equations (78) and (79):

SimMI
dw(w1,w2)

=
2×
(

∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2))

∑w∈C(w1)
I(w,w1)

)

×
(

∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2))

∑w∈C(w2)
I(w,w2)

)

(

∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2))

∑w∈C(w1)
I(w,w1)

)

+
(

∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2))

∑w∈C(w2)
I(w,w2)

)

=

2×

(

(∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2)))

2

(∑w∈C(w1)
I(w,w1))(∑w∈C(w2)

I(w,w2))

)

(∑w∈C(w1)∩C(w2)
min(I(w,w1),I(w,w2)))(∑w∈C(w1)

I(w,w1)+∑w∈C(w2)
I(w,w2))

(∑w∈C(w1)
I(w,w1))(∑w∈C(w2)

I(w,w2))

=
2×∑w∈C(w1)∩C(w2)min(I(w,w1), I(w,w2)

∑w∈C(w1) I(w,w1)+∑w∈C(w2) I(w,w2)

= DiceMI(w1,w2)

✷

4.7. HIT AND M ISS CO-OCCURRENCES

Lastly, we examine two kinds of co-occurrences that pose a challenge to ex-
isting distributional measures: (1) Word pairs that occur together less number
of times than what would be expected by chance. Measures likePMI cannot
predict their association values with confidence and as pointed out earlier this
is countered by ignoring them completely. This means that the system misses
out on evidence from this set of co-occurrence pairs. (2) Co-occurrence pairs
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formed by a word with target words that are near synonyms. Inkpen and
Hirst (2002) point out that near synonyms (for example,hiddenand con-
cealed) may form strong and anti-collocations, respectively, with the same
co-occurring word (for example,agenda). All distributional measures that
use strength of association to determine semantic relatedness will consider
the large discrepancy in strength of association as evidence of unrelatedness.
Therefore, these co-occurrence pairs, which are not ignored (unlike the pre-
vious ones), will negatively impact the ability of distributional measures to
predict semantic relatedness of near synonyms. It should benoted that we
cannot eliminate such co-occurrences in a straightforwardmanner simply
because we are not aware apriori if the target words are near synonyms.
It would be interesting to determine the precise quantitative effect of such
co-occurrences on the performance of distributional measures.

4.8. SUMMARIZING THE DISTRIBUTIONAL MEASURES

In the last two sections we have seen numerous distributional measures. Ta-
bles I, II, III, and IV listed in the appendix summarize theirproperties.

5. Semantic Network and Ontology-Based Measures

Creation of electronically available ontologies and semantic networks like
WordNet has allowed their use to help solve numerous naturallanguage prob-
lems including the measurement of semantic distance between two words.
Budanitsky (1999), Budanitsky and Hirst (2001) and Patwardhan et al. (2003)
have done an extensive survey of the various WordNet-based measures, their
comparisons with human judgment on selected word pairs, andtheir efficacy
in applications such as spelling correction and word sense disambiguation.
Hence, this paper provides just a brief summary of the major WordNet-based
measures of similarity and focuses on their comparison withdistributional
ones.

One of the earliest and simplest measures is the Rada et al. (1989) edge
counting method. The shortest path in the network between the two target
words (target path) is determined. The more edges there are between two
words, the more distant they are. Elegant as it may be, the measure relies
on the unlikely assumption that all the network edges correspond to identical
semantic distance between the nodes they connect. Nodes in anetwork may
be connected by numerous relations such as hyponymy, meronymy and so
on. Edge counts apart, Hirst and St-Onge (1998) take into account the fact
that if the target path consists of edges that belong to a number of such
relations, the target words are likely more distant. The idea is that if we start
from a particular node (base word) and take a path via a particular relation
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(say, hyponymy), to a certain extent the words reached will be quite related
to the base word. However, if during the way we take edges belonging to
different relations (other than hyponymy), very soon we mayreach words
that are unrelated. Hirst and St-Onge’s measure of semanticrelatedness is
listed below:

HS(c1,c2) =C−path length−k×d (80)

wherec1 andc2 are the target concepts/words. And,d is the number of times
an edge corresponding to a different relation than that of the preceding edge
is taken.C andk are empirically determined constants.

Leacock and Chodrow (1998) used just one relation (hyponymy) and mod-
ified the path length formula to reflect the fact that edges lower down in the
is-a hierarchy correspond to smaller semantic distance than theones higher
up. For example,sports carandcar (low in the hierarchy) are much more
similar thantransportand instrumentation(higher up in the hierarchy) even
though both pairs of words are separated by exactly one edge in the is-a
hierarchy of WordNet.

LC(c1,c2) =− log
len(c1,c2)

2D
(81)

whereD is the depth in the taxonomy.
Resnik (1995) suggested a measure that used corpus statistics along with

the knowledge obtained from a semantic network. The measureis based on
the notion that the semantic similarity of two words may be determined from
the word that represents their similarity (thelowest common subsumeror
lowest super-ordinate (lso)). The more the information contained in this
node, the more similar the two words are. Observe that using information con-
tent (IC) has the effect of inherently scaling the semantic similarity measure
by depth of the taxonomy. Usually, the lower the lowest super-ordinate, the
lower is the probability of occurrence of the lso and the concepts subsumed
by it, and hence, the higher is its information content.

Res(c1,c2) =− logp(lso(c1,c2)) (82)

As per the formula, given a particular lowest super-ordinate, the exact posi-
tions of the target words below it in the hierarchy do not haveany effect on
the semantic similarity. Intuitively, we would expect thatword pairs closer
to the lso are more similar than those that are distant. Jiangand Conrath
(1997) and Lin (1997) incorporate this notion into their measures which are
arithmetic variations of the same terms. The Jiang and Conrath (1997) mea-
sure (denoted byJC) determines how dissimilar each target concept is from
the lso (IC(c1)− IC(lso) andIC(c2)− IC(lso)). The final semantic distance
between the two concepts is then taken to be the sum of these differences
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(see Budanitsky (1999) for more details). Lin (1997) pointsout that the lso
is what is common between the two target concepts and that itsinformation
content is the common information between the two concepts.Lin’s formula
(denoted byLin) can thus be thought of as taking the Dice coefficient of the
information in the two concepts.

JC(c1,c2) = 2logp(lso(c1,c2))− (log(p(c1))+ (log(p(c2))) (83)

Lin(c1,c2) =
2× logp(lso(c1,c2))

log(p(c1))+ (log(p(c2))
(84)

Budanitsky and Hirst (2001) show that the Jiang-Conrath measure has the
highest correlation (0.850) with the Miller and Charles word pairs and per-
forms better than all other measures considered in a spelling correction task.
Patwardhan et al. (2003) get similar results using the measure for word sense
disambiguation (especially of nouns).

6. Comparison of Distributional and Ontology-Based Measures

Distributional and ontology-based measures use distinct sources of knowl-
edge to achieve the same goal — the ability to mimic human judgment of
semantic relatedness. Owing to the difference in methodology, many inter-
esting comparisons may be made. The next few subsections aimat bringing
them to light.

6.1. KNOWLEDGE SOURCE VERSUSSIMILARITY MEASURE

Ontologies are much more expensive resources than raw data,which is freely
available. Creating an ontology requires human experts, istime intensive
and rather brittle to changes in language. Once created, updating an ontol-
ogy is again expensive and there is usually a lag between the current state
of language usage/comprehension and the semantic network representing it.
Further, the complexity of human languages makes creation of even a near
perfect semantic network of its concepts impossible. Thus in many ways
the ontology-based measures are as good as the networks on which they are
based. On the other hand, large corpora, trillions of words in size, may now be
collected by a simple web crawler. Large corpora of more formal writing are
also available (for example, theWall Street Journalor theAmerican Print-
ing House for the Blind (APHB)corpus). Therefore, using an appropriate
distributional measure that best captures the semantic similarity–predicting
information, plays a much more vital role in case of distributional measures.

As ontologies are a rich source of information where the various concepts
are linked together by powerful relations such as hyponymy and meronymy,



Distributional Measures as Proxies for Semantic Relatedness 35

the ontological measures likely correctly identify targetwords related by
edges that belong to just one relation as very similar. However, data sparse-
ness may force distributional measures to assign low similarity values to
clearly related word pairs. Assigning appropriate semantic similarity values
when target words are connected by different relational edges poses a major
challenge to ontological measures.

6.2. DOMAIN -SPECIFIC SEMANTIC SIMILARITY

So far, this paper has talked aboutuniversal similarity measures. Given a
word pair, the measures each give just one similarity value.However, two
words may be very semantically similar in a certain domain but not so much
in another. For example, the word pairspaceand timeare closely related in
the domain of quantum mechanics but not so much in most others. Ontolo-
gies have been made for specific domains, which may be used to determine
semantic similarity specific to these domains. However, thenumber of such
ontologies is very limited. On the other hand, large amountsof corpora spe-
cific to particular domains are much easier to collect, allowing a widespread
use of distributionaldomain-specificsimilarity.

6.3. ASSOCIATEDWORDS

Certain word pairs have a special relation with each other. For example,
strawberryandcream, doctor andscalpel, and so on. These words are not
similar physically or in properties, butstrawberriesare usually eaten with
creamand adoctor uses ascalpelto make an incision. An ontology-based
measure will correctly identify the amount of semantic relatedness only if
such relations are inherent in the ontology. For example, ifthe agent-instrument
relation does not link concepts in a semantic network (as in WordNet), the
ontology-based measures will not identifydoctorandscalpelas related.

Of the various distributional measures discussed, the onesthat use simple
co-occurrences capture such semantic relatedness, as words that tend to occur
together are likely to have large set of common co-occurringwords. Measures
(e.g., Lin (1998a), Hindle (1990)) that consider a wordw to be a shared co-
occurrence only ifw is related to both target words by the same syntactic
relation, will not find such words related, simply because such words that
tend to occur in the same sentence are likely to have different thematic roles
and thus different syntactic relations with common co-occurring words.

6.4. MULTI -FACETED CONCEPTS

The various senses of a word represent distinct concepts. Each of these con-
cepts can usually be described by a number of attributes or features. These
attributes may be physical descriptions like color, shape and composition or
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concept X

concept U concept V

w2 w4

a2 = 0
a1 = 0 a1 = 1 a1 = 1
a2 = 1 a2 = 0 a2 = 1

w1 w3w1 w3 w2 w4

concept Y concept Z

concept X

a1 = 0
a2 = 0

a1 = 1
a2 = 0

a1 = 0
a2 = 1

a1 = 1
a2 = 1

classification
based on a1

classification
based on a2

classification
based on a2

classification
based on a1

a1 = 0

Figure 1. Hierarchy Variations.

function, purpose and role. Two words are adjudged similar if they share a
number of such attributes and if the strength of the shared attributes is high.
By strength we mean how strongly an attribute helps define thewords. The
more prominent a shared feature, the more similar the two words are. Further,
it is possible that wordsw1 andw2 are related as they share a certain set of
attributes, whilew2 andw3 are related because they share a different set of
attributes. Thusw1 andw3 are likely not as related asw1 andw2, orw2 andw3.
For example, the physicalkey is closely related to the abstractpassword, as
they are bothmeans of getting access. Passwordis closely related toencryp-
tion as they both pertain todata security. However, the physicalkeyhas little
to do with encryptionand the two are not so much related. Thus semantic
relatedness is not necessarily transitive and may be a function of a subset of
relevant attributes, not necessarily all.

Hierarchies in an ontology are built by repetitive divisionof concepts as
per their attributes. The order in which these attributes are used to create the
tree structure can result in dramatically different hierarchies. For example,
consider a scenario depicted in figure 1, where the attributes a1 anda2 are
used in different orders to create different hierarchies ofthe wordsw1,w2,w3

andw4. Notice that whilew1 andw2 are closer to each other thanw1 andw3

in hierarchy-1, it is the other way round in hierarchy-2. Thus variations in the
order of use of attributes for creating the hierarchy can result in different sets
of words being close to each other.

It should be noted that real-world semantic hierarchies arecreated by well
formed methodologies and hence the order of attributes usedto create the
hierarchy is not arbitrary. That said, there is room for variation and further,
once a particular hierarchy is chosen, it captures certain semantic relations in
its structure, while others are lost.

In general, ontology-based measures of similarity capitalize on the prop-
erty that words that occur close to each other in a hierarchy share a lot of
attributes and are therefore similar. However, they usually rely on a fixed
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hierarchy. Word pairs that would be closer in variations of the hierarchy are
not considered. Thus ontology-based measures are likely towrongly assign a
low semantic similarity value to such word pairs. For example, considerkey
andpassword. They are bothmeans to gain accessbut the is-a hierarchy in
WordNet lists them in completely different branches of the network (figure 2).
The attribute determining whether the word refers to a physical entity or an
abstraction is used first to classify the words and hencekeyandpasswordfall
into different branches at the top of the hierarchy itself. Thus an ontology-
based measure is likely to find them unrelated. Distributional measures are
not bound by a fixed hierarchy and have a better chance at appropriately
identifying the semantic similarity of such word pairs. It would be worth
determining the extent to which this is true.

Entity

Instrumentality, instrumentation

Key

Artifact, artefact

Device

Whole, whole thing, unit

Object, physical objectRelation

Abstraction

Social relation

Communication

Indication, indicant

Evidence

Positive Identification

Password

Figure 2. keyandpasswordin the ‘is-a’ hierarchy of WordNet

6.5. EVALUATION AND COMPLEMENTARITY

Ontology-based and distributional measures of similarityhave each been in-
dividually shown to be reasonable quantifiers of semantic similarity. WordNet-
based measures have been used for applications such as spelling correction
and word sense disambiguation, while distributional measures have primarily
been used for estimating probabilities of unseen bigrams. Exhaustive compar-
isons of WordNet-based measures with each other (e.g., Budanitsky (1999),
Budanitsky and Hirst (2001) and Patwardhan et al. (2003)) have found that
the Jiang-Conrath measure performs better than the rest.

Dagan et al. (1994) perform experiments with a few relative entropy–
based measures and find that Jensen-Shannon divergence is slightly better
than Kullback-Leibler divergence andL1 norm in estimating bigram prob-
abilities of unseen words and in a pseudo–word sense disambiguation ex-
periment. However, the various distributional measures have not been used
to rank the Miller-Charles or Rubenstein-Goodenough word pairs, for which
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estimates of human judgment of semantic relatedness are available. Experi-
ments to this end will also enable a comparison of the distributional measures
with the ontology-based measures for which this data is already available.
Similar to the case of various ontological measures, it is worth determining
which distributional measure is closest to human notion of semantic similarity
and how well the distributional measures, which rely just onraw data, fare
against, the more expensive and knowledge rich, ontology-based measures.

Since the two kinds of measures rely on different knowledge sources,
there is a likelihood that distributional measures more accurately identify the
semantic similarity of a certain subset of word pairs, whilethe ontological
methods do so for a different subset. One of the more important problems
in the field is to quantify this complementarity. It should benoted that since
a similarity measure is evaluated by comparison of ranked word pairs and
not by the similarity values alone, capitalizing on the complementarity by
creating a combined semantic similarity predictor is a muchharder problem.

7. Conclusions

The paper has provided a detailed analysis of various corpus-based distri-
butional measures and compared them with measures based on ontologies
and semantic networks. Merits and limitations of the various measures were
listed. New measures that are likely to overcome the drawbacks of present
distributional measures were suggested. Specifically, a distributional mea-
sure that keeps the best of Hindle (1990) and Lin (1998a), overcoming their
respective drawbacks, was proposed. Variations of Kullback-Leibler diver-
gence and Jensen-Shannon divergence that better capture the disparity in
co-occurrence probabilities were suggested. A simple technique to convert
asymmetric measures into symmetric ones was suggested. Novel approaches
are described to determine distributional similarity by better utilization of
co-occurring words related by different syntactic relations.

The paper identified significant research problems that needto be an-
swered through experimentation. This will help better understand how statis-
tics from raw data may be manipulated to determine appropriate similarity
values between two words. For example, whether the use of syntactically
related, rather than plain co-occurrences, significantly improves the measure?
Or, are simple co-occurrences just as useful? What kinds of co-occurrences
(common, or exclusive, as well) should be used to determine distributional re-
latedness? Is pointwise mutual information or conditionalprobability a more
suitable measure of association to be used in the various distributional mea-
sures? Do compositional or non-compositional distributional measures pro-
duce more intuitive semantic similarity values? Which mathematical opera-
tion (difference, division, or product) of the co-occurrence distributions yields
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values that are closest to human judgment, in case of compositional mea-
sures? A direct evaluation of the distributional measures (other thanL1 norm,
α skew divergence and the CRMs for which these results exist) by their cor-
relation with the Miller-Charles and Rubenstein-Goodenough word pairs will
provide better insight into their relative abilities and will enable a compari-
son with WordNet-based measures for which the correlation coefficients are
already available.

Lastly, the paper pointed out that even though ontological measures are
likely to perform better as they rely on a much richer knowledge source,
distributional measures have certain distinct advantages. For example, they
can easily provide domain-specific similarity values for a large number of
domains, their ability to determine similarity of contextually associated word
pairs more appropriately, and the flexibility to identify multi-faceted concepts
as related from appropriate commonalities that may not be explicitly en-
coded in a semantic network. Thus it is very likely that ontological measures
are better at predicting semantic similarity for certain word pairs, while the
distributional measures do so for others. To identify the extent of this comple-
mentarity and a suitable combined methodology to assign semantic similarity,
remain significant problems in the field. A significant challenge in achieving
this is how to reconcile the nature of the two kinds of measures — while
ontological measures predict the semantic similarity of two concepts (or word
senses), distributional measures do so for two words. One ofthe problems we
intend to pursue is the development of a methodology that enables the use of
distributional measures to predict semantic similarity ofconcepts, with no or
little sense-tagged data.

Appendix

.1. CO-OCCURRENCERETRIEVAL MODELS

The precision and recall of additive and difference-weighted CRMs (Weeds,
2003).

Ptype
add (w1,w2) =

|C(w1)∩C(w2) |

|C(w1) |
(85)

Rtype
add(w1,w2) =

|C(w1)∩C(w2) |

|C(w2) |
(86)

Ptype
dw (w1,w2) =

∑|C(w1)∩C(w2)|
min(P(w|w1),P(w|w2))

P(w|w1)

|C(w1) |
(87)

Rtype
dw (w1,w2) =

∑|C(w1)∩C(w2)|
min(P(w|w1),P(w|w2))

P(w|w2)

|C(w2) |
(88)
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Ptoken
add (w1,w2) = ∑

w∈C(w1)∩C(w2)

P(w|w1) (89)

Rtoken
add (w1,w2) = ∑

w∈C(w1)∩C(w2)

P(w|w2) (90)

Ptoken
dw (w1,w2) = ∑

w∈C(w1)∩C(w2)

min(P(w|w1),P(w|w2)) (91)

Rtoken
dw (w1,w2) = ∑

w∈C(w1)∩C(w2)

min(P(w|w2),P(w|w1)) (92)

Pmi
add(w1,w2) =

∑w∈C(w1)∩C(w2) I(w,w1)

∑w∈C(w1) I(w,w1)
(93)

Rmi
add(w1,w2) =

∑w∈C(w1)∩C(w2) I(w,w2)

∑w∈C(w2) I(w,w2)
(94)

Pmi
dw(w1,w2) =

∑w∈C(w1)∩C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w1) I(w,w1)
(95)

Rmi
dw(w1,w2) =

∑w∈C(w1)∩C(w2)min(I(w,w1), I(w,w2))

∑w∈C(w2) I(w,w2)
(96)

whereC(x) is the set of all co-occurrences of wordx. Note that in case of
the difference-weighted token and mutual information–based precision and
recall formulae, there is a cancellation of a pair of terms obtained from the
core formulae and the penalty.

.2. SUMMARIZING TABLES

Tables I and II list the measures of distributional distancewhile tables III and
IV list the measures of distributional relatedness/similarity. If a measure is
placed in a distributional distance table, it means that theintuition behind the
measure lead to its original conception as a distance measure and similarly
for a relatedness measure. It should be noted however that a distance measure
may be converted into a relatedness measure by taking the inverse or other
such mathematical manipulation, and vice versa. Apart fromthe formula, the
tables show whether the measure is compositional (Comp.) ornot, and if so
then the kind of primary compositional measure (PCM) it is derived from.
The last column (Str.) indicates the particular strength ofassociation used
(most commonly) in the measure — conditional probability (CP) or pointwise
mutual information (PMI).
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Table I. Measures of distributional distance.

Measure Comp. PCM Formula Sym. Str.

Dif or L1 � diff. ∑w∈C(w1)∪C(w2) | P(w|w1)−P(w|w2) | � CP

L2 � diff.
√

∑w∈C(w1)∪C(w2) (P(w|w1)−P(w|w2))
2

� CP

KLD � div. ∑w∈C(w1)∪C(w2)P(w|w1) log P(w|w1)
P(w|w2)

X CP

KLDCom � div. ∑w∈C(w1)∩C(w2)P(w|w1) log P(w|w1)
P(w|w2)

X CP

KLDAbs
� div. ∑w∈C(w1)∪C(w2)P(w|w1)

∣

∣

∣
log P(w|w1)

P(w|w2)

∣

∣

∣
X CP

Div or KLDAbs
Unw � div. ∑w∈C(w1)∪C(w2)

∣

∣

∣
log P(w|w1)

P(w|w2)

∣

∣

∣
� CP
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Table II. Measures of distributional distance (continued).

Measure Comp. PCM Formula Sym. Str.

SaifDiv
AvgWt � div. ∑w∈C(w1)∪C(w2)

1
2 (P(w|w1)+P(w|w2))

∣

∣

∣
log P(w|w1)

P(w|w2)

∣

∣

∣
� CP

SaifDiv
MaxWt � div. ∑w∈C(w1)∪C(w2)

max(P(w|w1),P(w|w2))
∑w′∈C(w1)∪C(w2)

max(P(w′|w1),P(w′|w2))
× � CP

∣

∣

∣
log P(w|w1)

P(w|w2)

∣

∣

∣

KLDAvg � div. 1
2 ∑w∈C(w1)∪C(w2) (P(w|w1)−P(w|w2)) log P(w|w1)

P(w|w2)
� CP

KLDMax � div. max(KLD(w1,w2),KLD(w2,w1)) � CP

ASD � div. ∑w∈C(w1)∪C(w2)P(w|w1) log P(w|w1)
αP(w|w2)+(1−α)P(w|w1)

X CP

JSD � div. ∑w∈C(w1)∪C(w2)

(

P(w|w1) log P(w|w1)
1
2 (P(w|w1)+P(w|w2))

+ � CP

P(w|w2) log P(w|w2)
1
2 (P(w|w1)+P(w|w2))

)
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Table III. Measures of distributional relatedness/similarity.

Measure Comp. PCM Formula Sym. Str.

PdtAvg
� pdt. ∑w∈C(w1)∪C(w2)

P(w|w1)×P(w|w2)

( 1
2 (P(w|w1)+P(w|w2)))2 � CP

PdtAvg
AvgWt � pdt. ∑w∈C(w1)∪C(w2)

P(w|w1)×P(w|w2)
1
2 (P(w|w1)+P(w|w2))

� CP

cos X n.a.
∑w∈C(w1)∪C(w2)

(P(w|w1)×P(w|w2))
√

∑w∈C(w1)
P(w|w1)2×

√

∑w∈C(w2)
P(w|w2)2

� CP

JaccardCP X n.a.
∑w∈C(w1)∪C(w2)

min(P(w|w1),P(w|w2))

∑w∈C(w1)∩C(w2)
max(P(w|w1),P(w|w2))

� CP

DiceCP X n.a.
2×∑w∈C(w1)∪C(w2)

min(P(w|w1),P(w|w2))

∑w∈C(w1)
P(w|w1)+∑w∈C(w2)

P(w|w2)
� CP

Note: ‘n.a.’ stands for ‘not applicable’. For example, the cos measure is not a composi-
tional measure and therefore the type of PCM is not applicable.
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Table IV. Measures of distributional relatedness/similarity (continued).

Measure Comp. PCM Formula Sym. Str.

Hinrel(w1,w2) X n.a. ∑w∈C(w)







































min(I(w,w1), I(w,w2)),

if I(w,w1)> 0 andI(w,w2)> 0

| max(I(w,w1), I(w,w2)) |,

if I(w,w1)< 0 andI(w,w2)< 0

0,

otherwise

� PMI

Lin X n.a.
∑(r,w)∈T(w1)∩T(w2)

(I(w1,r,w)+I(w2,r,w))

∑(r,w′)∈T(w1)
I(w1,r,w′)+∑(r,w′′)∈T(w2)

I(w2,r,w′′) � PMI

Saif X n.a.
2×∑(r,w)∈T(w1)∩T(w2)

min(I(w1,r,w),I(w2,r,w))

∑(r,w′)∈T(w1)
I(w1,r,w′)+∑(r,w′′)∈T(w2)

I(w2,r,w′′) � PMI

CRMs X n.a. γ
[

2×P×R
P+R

]

+(1− γ)
[

β[P]+(1−β)[R]
]

X botha

a The MI-based CRMs use pointwise mutual information, while the type- and token-based
CRMs use conditional probability as the strength of association.
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Notes

1 In their respective papers, Robert Fano as well as Ken Churchand Patrick Hanks refer to
pointwise mutual information as mutual information.

2 It is hard to accurately predict negative word association ratios with confidence (Church
and Hanks (1989)).

3 In their respective papers, Donald Hindle and Dekang Lin refer to pointwise mutual
information as mutual information.

4 P is short forP(w1,w2), while R is short forR(w1,w2). The abbreviations are made due
to space constraints and to improve readability.
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