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Abstract
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2009

Syntactic analysis is useful for many natural language gssing applications requiring fur-
ther semantic analysis. Recent research in statisticainganas produced a number of high-
performance parsers using probabilistic context-free (B3Rodels to parse English text, such
as (Collins, 2003; Charniak and Johnson, 2005). Problems, dr@vever, when applying
these methods to parse sentences in freer-word-orderdgegu Such languages as Russian,
Warlpiri, and German feature syntactic constructions phatiuce discontinuous constituents,
directly violating one of the crucial assumptions of comtiege models of syntax.

While PCFG technologies may thus be inadequate for full syictanalysis of all phrasal
structure in these languages, clausal structure can stifuitfully parsed with these methods.
In particular, we examine applying PCFG parsing to parsedpelogical fieldstructure of
German. These topological fields provide a high-level dpson of the major sections of a
clause in relation to the clausal main verb and the subadtidipdeads and appear in strict
linear sequences amenable to PCFG parsing. They are usefabks such as deep syntactic
analysis, part-of-speech tagging and coreference résolut

In this work, we apply an unlexicalized, latent variables&éa parser (Petrov et al., 2006) to
topological field parsing, and achieve state-of-the-ansipg results on two German newspaper
corpora without any language- or model-dependent adaptati

We perform a qualitative error analysis of the parser oyfgud identify constructions like

ellipses and parentheticals as the chief sources of rengagriror. This is confirmed by a



further experiment in which parsing performance improvisraestricting the training and
test set to those sentences without these constructions.

We also explore techniques for further improving parsirsyilts. For example, discrimina-
tive reranking of parses made by a generative parser coataporate linguistic information
such as those derived by our qualitative analysis. Saliitrgis another semi-supervised tech-

nigue which utilizes additional unannotated data for iragn
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Chapter 1

Introduction

One important way in which languages differ from each otkdnitheir syntactic structure.
A typical starting point in describing the syntax of a langeas to describe the behaviour of
the subject and object of the sentence in terms of theiripagitlative to the verb. It is thus
customary to classify languages into a language typologgdb@an their “basic” word-order,
using some notion of the word “basic”, such as by specifyhmgdlause type or grammatical
mood.

Many languages can be unproblematically classified in tlaig; ior example, English ex-
hibits SVO order (subject-verb-object), Irish VSO, and so dhis does not mean that these
languages adhere to their basic order without exceptionekample, English allows objects

and adjectives (among other types of constituents) in fobttte verb in certain contexts.

(2.1) (@) This tie, Fred bought(OSV) (Cormack and Smith, 2000)

(b) So badwas the smell that nobody would go near the ro¢Adjective-VS)

Other languages, however, are more problematic and defasnaassification. For ex-
ample, Russian and other Slavic languages display conbiglareore variation in their word
orders than English, though they are generally ascribed@ Basic word order (Siewierska,
1998). An even more extreme case is Warlpiri, an Australiorfginal language which has

famously been described asn-configurationa(Hale, 1983), meaning that syntactic relations
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such as notions of subject and object are not reflected inhhesp structure of the language.
This is illustrated in example 1.2, which shows that all jdassorderings of the subject, verb,
and object are possible in a simple declarative sentenceingealhe only constant in word

order between the sentences is the second position aypkaticleka.

(2.2) (a)Ngarrka- ngku ka  wawirri panti- rni
man ERG AUX kangaroo spear NONPAST

‘The man is spearing the kangaroo.’
(b) Wawirri ka panti-rni ngarrka-ngku
(c) Panti-rni ka ngarrka-ngku wawirri.

And so on (Hale, 1983).

Looking beyond the order of the subject, verb, and objecizavealso consider the order of
other syntactic elements, such as the order of a head noutsanodifiers. It turns out Warlpiri
also offers much variation in word order in this respect. Tolowing examples illustrate
possible orderings of the elements of the noun phrase ‘trag&roo'wawirri yalumpuy where
the demonstrative ‘that’ does not have to occur next to tlaelm®oun ‘kangaroo’, which is an
example of aliscontinuous constituent
(2.3) (a) Wawirri kapi-rna panti- rni yalumpu

kangaroo AUX spear NONPAST that
‘| will spear that kangaroo.

(b) Wawirri yalumpu kapi-rna panti- rni
kangaroo that AUX spear NONPAST
(Hale, 1983)

Languages which display such variation in their word ordmrenbeen called “free-word-
order” languages. This label is not unproblematic. Firsdstrifree-word-order” languages,
including Warlpiri, as we have seen above, have a privileggmbnd position that is occupied
by clitics, auxiliaries, finite verbs, or sometimes also ptementizers and subordinating con-

junctions. Second, while word order may be variable witlpees to grammatical roles, they
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may not be completely “free” with respect to other factormjally related to the information
structure of the discourse. Thus, in this paper, we will hedérmfreer-word-orderdanguages,
keeping in mind these caveats.

The focus of this paper will be the task of automatically smalg the clausal structure
of Standard German. German is a freer-word-order languatjesiWest Germanic branch of
the Indo-European language family, and frequently extitbéer-word-order phenomena like
topicalization scrambling andextraposition Topicalization is the process where a constituent
is found at the beginning of a sentence or clause due to itisssés the topic of a sentence
(loosely, what the sentence is about.) Scrambling refevatiability in the order of the noun
phrases, and extraposition is the process in which proalbgiceavy elements are optionally
placed at the right edge of a sentence.

Unlike English, which relies heavily on word order to indiegrammatical functions, Ger-
man possesses richer inflectional morphology for this pggpahich allows more latitude for
word order variation. Again, this is not to say that Germaa ha constraints on its word
order. For example, one characteristic of German and gloskdted languages such as Dutch
is their verb-second word order, which means that the seconstituent of a matrix clause in
a declarative sentence is a finite verb. Verb-second woreranteracts with freer-word-order
phenomena to produce many possible renderings of a senteatcdiffer in word order, but
have the same semantic content. Consider the following ebeamvhich involves scrambling
and topicalization. We first show the sentence in its prpteely canonical word order.

(1.4) Die Frau hat dem Mann das Buch gegeben.
the.NOM woman has the.DAT man the.ACC book given.

‘The woman gave the man the book.’

All other logical orders of the noun phrases are possibl¢h Wie same semantic inter-
pretation, although some of the non-canonical orderinghisnand other examples may be

considered unusual and pragmatically highly marked.

(1.5) (a) Die Frau hat das Buch dem Mann gegeben.
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(b) Dem Mann hat die Frau das Buch gegeben.
(c) Dem Mann hat das Buch die Frau gegeben.
(d) Das Buch hat die Frau dem Mann gegeben.

(e) Das Buch hat dem Mann die Frau gegeben.

In the above examples, the first position before the finité wat’ is occupied by a noun
phrase. Other constituents may also appear in this posargoragmatic reasons, such as the

past participle of the verb or an adverb.

(1.6) (a) Gegeben hat die Frau dem Mann das Buch.

(b) Gestern hat die Frau dem Mann das Buch gegeben.
yesterday has the.NOM woman the.DAT man the.ACC book given.

‘The woman gave the man the book yesterday.’

While these examples differ substantially in word order, s@mommonalities can be ob-
served. First, the finite verb is always in second positiotsoAthe past participlgegeben
always appears at the end of the sentence, except in the t@se ivwas fronted to the first
position before the finite verb. In the rest of the sentenowjdver, there is much variation in
the order of the remaining elements.

German sentences can also exhibit discontinuous cornstu@/e will provide the follow-
ing example of a German subordinate clause from Duchier atmifnann (2001). The two
syntactic constructions relevant to this example are Soliagy and extraposition.

(1.7) (a)dass Maria [einen Mann zu lieben] versucht.
that Maria.NOM a.ACC man to love tries.

‘that Maria tries to love a man.’
(b) dass Maria versucht [einen Mann zu lieben].
(c) dass Maria [einen Mann] versucht [zu lieben].
(d) dass [einen Mann] Maria [zu lieben] versucht.

(e) dass [einen Mann] Maria versucht [zu lieben].
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\
P/ VP
N
/
DET N Y

TN

COMP PTK
dass Maria einen Mannversucht Zu lieben

Figure 1.1: A German subordinate clause displaying a dismoous constituenginen Mann

zu lieben

(f) *dass versucht Maria [einen Mann zu lieben].

1.7(a) shows the word order without scrambling of the nouagédviaria andeinen Mann
1.7(b) shows the word order when the verb phrasen Mann zu liebefio love a man’ is
extraposed to the right. (This is also the most common wodeéroof the clause.) In 1.7(c),
only the verbal headu lieberpart of the verb phrase is extraposed, leading to it beingraggd
from the complement dfeben resulting in a discontinuous constituent. 1.7(d) ande).gkow
the resulting word orders wheginen Manris placed befordlaria due to scrambling, without
and with the effect of partial extraposition, respectively

Of these five possible orderings, we see that three of theutt iesa discontinuous verb
phrase. Trying to find a pattern in the word order is more diffibere, but some regularities
can be detected. First, the complementidassalways appears in first position. Also, the
finite verbversuchtno longer appears in second position as in the previous drarfe will
shortly see that these two word-order observations aréecklaHowever, there is always at

most one constituent to the right of the finite verb, meanhal &n ordering such as 1.7(f) is
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ungrammatical.

Discontinuous constituents pose a problem for standantext-free grammaiCFG) mod-
els of language, as well as for existing CFG-based parsinmtdogy. Linguistic structures
produced by CFGs have the restriction that they musprogective meaning that crossing
branches in the constituency structure are disallowed.ddewthis is precisely what is needed
to model discontinuous constituents. Figure 1.1 shows atitoancy tree for example 1.7(b),
where the crossing branches are necessary to model thed#gées in the example.

On the other hand, there is utility in simply modelling thawde-level patterns in word
order. With this information, we can identify the verbal tea a sentence as well as possible
locations for its arguments. This shallower form of parsmguld allow us to respect pro-
jectivity, because non-projectivity is a result of disaanbus constituents at the sub-clausal
level. To this end, we now describe the topological field mod&erman, which allows us to

characterize the observations about patterns in the walef tinat we have made above.

1.1 Topological Field Model of German

Topological fields are high-level syntactic units which eppin a prescribed linear order. They
exist in an enclosing syntactic region@hle, 1983), which is the clause in German, and de-
scribe the major sections of a German clause by identiffieg/erbal heads and subordinating
conjunctions.

Topological fields may have constraints on the number of wardphrases they contain,
and are not required to form a semantically coherent caiestit The main reason that topo-
logical fields are a good model of German clausal syntax isttieaorder of the topological
fields is mostly strict and unvarying, in contrast to the tieédy free orderings possible at the
sub-clausal level.

In the German topological field model, clauses belong to dtieree types: verb-last (VL),

verb-second (V2), and verb-first (V1), each with a speciftuseace of topological fields (Table



CHAPTER1. INTRODUCTION 15

Type | Fields

VL | (KOORD) (C) (MF) VC (NF)

V1 | (KOORD) (LV) LK (MF) (VC) (NF)

V2 | (KOORD) (LV) VF LK (MF) (VC) (NF)

Table 1.1: Topological field model of German. Simplified fréme annotation schema of the
German newspaper corpugjBa-D/Z (Telljohann et al., 2006). Parentheses indicateoal

elements.

1.1). VL clauses include finite and non-finite subordinatisks, V2 sentences are typically
declarative sentences amdrquestions in matrix clauses, and V1 sentences includenges-
guestions, and certain conditional subordinate clausdewBee give brief descriptions of the

most common topological fields.

o VF (Vorfeldor ‘pre-field’) is the first obligatory constituent in sent&s of the V2 type.

This is often the topic of the sentende.

e LK (Linke Klammeror ‘left bracket’) is the position for finite verbs in V1 and \&2n-

tences. Itis replaced by a complementizer with the fieldll&hie VL sentences.

e MF (Mittelfeld or ‘middle field’) is an optional field bounded on the left by Lahd
on the right by the verbal complex VC or by NF. Most verb argatagadverbs, and
prepositional phrases are found here, unless they haveftmeged and put in the VF, or

are prosodically heavy and postposed to the NF field.

e VC is the verbal complex field. It includes infinite verbs, aslivas finite verbs in VL

sentences.

LAn anonymous reviewer to the ACL paper upon which this pathefpaper is based pointed out that this
position does not correspond to a single function with resfeinformation structure. The reviewer suggested
this case, where VF contains the focus:

—Wer kommt zur PartyP/Who is coming to the Party?)
—Peterkommt zur Party(Peteris coming to the party.)
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¢ NF (Nachfeldor ‘post-field’) contains prosodically heavy elements sashpostposed

prepositional phrases or relative clauses.

¢ KOORD (Koordinationsfeldor ‘coordination field’) is a field for clause-level conjunc-

tions.

e LV (Linksversetzungr ‘left dislocation’) is used for resumptive constructsanvolving

left dislocation. For a detailed linguistic treatment, geey, 2004a).

Exceptions to the topological field model as described alolovexist. For instance, par-
enthetical constructions exist as a mostly syntacticaliependent clause inside another sen-
tence. Consider the following example taken from the Gerneavspaper corpusiBa-D/Z. In
this annotation scheme, parentheticals are attachedlgitealerneath a clausal node without
any intervening topological field. In this example, the pdinetical construction is highlighted

in bold print. Some clause and topological field labels unideNF field are omitted for clarity.

(1.8) (a) (SIMPX “(VF Man) (LK muR) (VC verstehen) (SIMPX sagte er)“ (NF daf diese

Minderheiten seit langer Zeit massiv von den Nazis bedroht werden)).

(b) Translation: “One must understantig said “that these minorities have been massively

threatened by the Nazis for a long time.”

1.2 Organization of Paper

In the following chapters, we will examine the problem ofgiag topological field structures
in German. First, we will review previous work in statistiocaethods for constituency parsing
in general and topological field chunking and parsing inipaldr (Chapter 2). Then, Chapter
3 will describe applications of topological fields to otheatural language processing tasks
like anaphora resolution. Next, we will show that a genetalisical parser (Petrov et al.,
2006) achieves state-of-the-art performance on two Germeasspaper corpora, outperforming

previous parsers, many of which were tailored to this domala will also perform an analysis
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of our parsing results by examining some of the remainingrermade by the parser, and
consider constructions like ellipses and parentheticdighvbreak the standard prescribed
topological field model presented above and affect pargsglts (Chapter 4). After that, we
will explore reranking and self-training as strategiesgiove on the results of the Berkeley
parser (Chapter 5). Finally, the last chapter concludes mgudsion of German topological

fields with remarks on future directions of research.



Chapter 2

Related Work

The problem of phrase structure parsing can be defined asvillGiven an input string of
natural language text, return a phrase structure tree cfehtence according to a grammar of
the language. As we have seen in the last chapter, linguististituents in freer-word-order
languages sometimes occur in discontinuous segments int@ense, which causes problems
for many existing parsers that implicitly assume that dtunstts form continuous substrings.
In particular, parsers must deal with the problemrmoh-projectivity the case of syntax trees
having crossing branches, which is classically disalloweFGs. Topological field parsing
as introduced in the previous chapter allows us to avoid thggtivity problem while still
providing us with useful information about the sentence.

In this chapter, we will review existing general statiskjgarsing methods suitable for topo-
logical field parsing. Then we will examine previous work arging and chunking topological
fields. Finally, we will provide a brief introduction to comfational models of German syntax

making use of other grammar formalisms.

2.1 Statistical Parsing

We first provide a formal description of context-free gramsnaA CFGG can be defined as

the following 4-tuple:

18
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G=(N,Z,RS), where

N is a set oinonterminal symbols

2 is a set oterminal symbols

Ris a set ofrulesor productionsin the form ofA — (3, whereA € N andp is an ordered

list of symbols drawn fronN U Z.

Sis the starting symbol.

Sentences can be generated from a CFG in the following dematprocess. Starting
with S rewrite a nonterminal by replacing it with the right-hand side of a rule wi&ton the
left-hand side. Repeat this rewriting process until we endavitp a string of terminals. One
view of parsing is to recover this derivational process ftarget output sentence.

Probabilistic context-free gramma(BPCFGs) are an extension of CFGs in which each rule
is associated with a probability € [0,1]. In a consistent PCFG, the probabilities of all the
rules with the same nonterminal on the left-hand side formoaatbility distribution (i.e., sum
to one). Because natural language is highly ambiguous, may g2ffses can result from a
single sentence. The main utility of PCFGs is to allow us tecghe best parse for a sentence
among multiple parses, according to its probability moBelynomial-time parsing algorithms
exist and are well known for CFGs and PCFGs.

The probability of a parse tree in a PCFG is the product of tlobatoilities of each of
the rules used in the parse tree. Consider example 2.1 andsbeiated sample PCFG (Fig-
ure 2.1). Two parse trees can be generated for this sente@hash are shown in Figure 2.1
along with the associated product of rule probabilitiesdusecompute the probability of the
parse.

(2.1) Katzen fangen Mause, die schnell sind.
cats catch mice who fast are.

‘Cats catch mice who are fast.’
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S— VF LK MF, 0.2 N — Katzen 0.01
S— VF LK MF NF, 0.3 N — Mauseg 0.02

S— CMFVC,0.1 V — fangen 0.03
VF — N, 0.55 V — sind 0.35

LK —V,0.95 COMP — die, 0.4
MF — N, 0.25 ADJ — schnel] 0.05
MF — N S, 0.05

MF — ADJ, 0.15
C — COMP, 0.9
VC —-V,0.8
NF — S, 0.7

Figure 2.1: Partial listing of rules and probabilities ineargple PCFG

/ S //\
VF \ VF LK MF NF
I I
T T T/M\SF\VC
| N COMP AI|Z)J \ ITI \ N COMP ADJ vV
KatzenfangenMause d|e schnell sind Katzen fangen Mause, die schnell sind

(a) Parse probability: 0.2 0.55x 0.01 x 0.95x (b) Parse probability: 0.% 0.55x 0.01 x 0.95x
0.03x 0.05x 0.02x 0.1 x 0.9 x 0.4 x 0.15x 0.03x 0.25%x 0.02%x 0.7x 0.1x 0.9x 0.4x 0.15
0.05x 0.8 x 0.35=2.37x10 12 x 0.05x 0.8 x 0.35 = 1.244x10 11

Figure 2.2: Ambiguous parses for the sentede¢gzen fangen [luse, die schnell sindrom

example 2.1 based on PCFG from Figure 2.1
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To create a PCFG parsing model then, we need to determineléseimthe grammar and
the rule probabilities. This is typically done by trainifgetmodel on dreebank a collection
of parse trees that have been carefully annotated (usualhutmans). The simplest method
would be to take the set of rules present in the trees in adrdeland assign to each rule a
probability equal to the frequency of their occurrence mtieebank divided by the frequency
of the LHS nonterminal. For example, if the treebank corgdiiO occurrences of the rule
VF — N, and VF occurs 200 times in total, the rule would be assignptbbability of 0.55.
This method of probability estimation is a casensfximum likelihood estimationWe will
look at more sophisticated methods of training a parsingehiodthe next sections.

After training and parsing with a parsing model, we next fdngeproblem of evaluating the
output parses. To do this, we compare the generated parseseshsection of the treebank,
which we did not use in training or in developing the parsegiast a gold standard anno-
tation of the same section. The usual method of doing thispamison is to use a family of
constituent-level PARSEVAL measures from Abney et al. (3991

The most commonly used measures jaiecision andrecall. They are defined as would

be expected based on their usage in information retrieval:

# Correctly parsed constituents
# Constituents identified by parser

Precision=

# Correctly parsed constituents

Recall= . . .
# Constituents in gold standard annotation

Precision and recall can be combined into one score caltid-tiheasure, the harmonic mean
of the precision and recall. Different weights can be giveedch of precision and recall, but

typically, F; is used (equal weights on both).

_ 2 x Precision x Recall
1 = —
Precision+ Recall

A constituent is considered to be correctly parsed if the atad end of the constituent are

correctly identified. This is known aslabelledconstituent accuracy. One can also impose the
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additional requirement that the label (i.e. nonterminaégary) assigned by the parser must
match the gold standard annotation, which would bddbelledconstituent accuracy.

Other measures defined by PARSEVAL consider the numberosk-bracketin the sen-
tence. A cross-bracket occurs when the elements spanneddnystituent in the gold parse
and a constituent in the parser’s output partially overkag,where neither is a subset of the
other. That is, for three elements (A B C), one posits a cargstitover A and B, ((A B) C),
while the other posits one over B and C (A (B C)).

Most work in parsing has used treebanks of newspaper textdonng and testing. In
English, the most widely used corpus is fPenn TreeBankMarcus et al., 1993), specifically
sections of it that are drawn frolVall Street Journatext. In German, three corpora are com-
monly used: NEGRA (Brants et al., 1999), TIGER (Brants et aD20and TiBa-D/Z (Telljo-
hann et al., 2004). NEGRA and TIGER are copora based on thepapesier Frankfurter
Rundschapwhereas TiBa-D/Z is based on another newspaplé,tageszeitunglhe principal
difference between these German corpora lies in the type®fstructure that is used. NEGRA
and TIGER both emphasize dependency structures, and usgrngdoranches to model long-
distance dependencies. This means that they must be [ivizjiedtbefore they can be used in
(P)CFG parsing. iBa-D/Z, on the other hand, respects projectivity, usingtemdl annota-
tions on the edges between nonterminal nodes to mark lot@ndis dependencies. Another
important difference is that onlyiiBa-D/Z is annotated with topological fields. This will have
ramifications for our experiments in the next chapter.

We now review existing techniques for parsing phrase sirast We will divide them into
two broad categories based on the type of probability mdalthey usegenerativemodels,

anddiscriminativemodels.

2.1.1 Generative Approaches

In machine learning, learning a generative model involeesriing the joint probability distri-

bution P(x,y), wherex is the observed input angdis the output. They are so named because
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sampling from the joint probability distribution can be @oio generate instances ©fy). In
parsing, the input is the sentence, and the output is the pas. Finding the best parse for a

sentence is then findingsuch that:
y = argmaxP(X,y)
y
= arg;naHXI.\/)P(y)
But P(x|y) = 1 if y yieldsx, and 0 otherwise. Thus, the above expression can be rawaiste

y= argmax P(y)
y st. x=yield(y)
As we saw in the previous section, one simple way to define argéwe probability model

over a CFG is to define the probability of a parse tree to be théyat of the probabilities of
the rules used in the derivation of the tree. One major probath this approach is that it
wrongly assumes that the rule probabilities in the dervatian be determined independently
of each other. With a basic set of nonterminal symbols draemflinguistic theories, this is
clearly wrong. Consider example 2.1, specifically the re¢atiauselie schnell sind“that are
fast”. Relative pronouns in German are marked for gendee, @l number. In this example,
die marks the plurality and the nominative case. The finite verlthe clausesind must
agree in person and number with the subject of the sentertdehws the relative pronoun
in this example. Knowing that the relative pronourdis, as opposed to, sagas (neuter,
nominative), we can be more confident that the finite verbeaetid of the clause &ndrather
thanist (singular subject). This dependence, however, is not tefida the simple PCFG rule
probabilities assigned in Table 2.1.

Strategies to correct this assumption involve refining eoninal categories into more fine-
grained categories. These parsing models are able to disdbwical and structural dependen-
cies in rule probabilities because the rule probabilitersefach split nonterminal are estimated
separately from the treebank.

One approach is to incorporate lexical information into tle@terminals, in effect creat-

ing many more nonterminal categories. However, this agiraaeates a much larger model,
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and hence requires a much greater amount of data to estineaprdbabilities of rules asso-
ciated with each lexical item. Since most lexicalized rudes encountered a paltry number
of times in a treebank, sparsity of data and overfitting bexom severe issue. The sparsity
problem must then be overcome by making other independesscergtions or by smoothing
and interpolating rule probabilities, for example towattusir part-of-speech.

Collins (1996, 2003) describes three lexicalized sta@isfgarsing models of increasing
linguistic sophistication. These models incorporate taeept, the head word and the part-of-
speech (POS) tag of the head word into nonterminals, andraptysnamed Model 1, Model 2,
and Model 3. As discussed above, treating the augmenteédmaingls as independent labels
in a regular PCFG causes severe sparsity problems, henherfurtlependence assumptions
must be made. In Model 1, the probability of phrase structukes is decomposed into the
probabilities of generating the head of the right-hand @riéS), and each of the non-terminals
in the RHS, given the parent node and the head node. Model 2 addINd extend Model 1 to
model other complex linguistic structures, such as the atiglgorization frames of words, and
wh-movement.

The Charniak parsér(1997; 2000) is similar to the Collins Model 1 parser in the \itay
breaks down PCFG rules into probabilities of generating gaokduced nonterminal, given
the parent and the head of the constituent. It differs in t@ming on other information
from the context of the rule application, which is called thistory”, such as for example the
grandparent label.

While the above results have shown that lexicalization isbeial for parsing of English,
the case is not as clear in German. In Dubey and Keller (2003F,G parsing of NEGRA is
improved by using sister-head dependencies, which outpesf standard head lexicalization
as well as an unlexicalized model. The best performing maatél gold part-of-speech tags

available during parsing achieves Bnof 75.60%. Sister-head dependencies are useful in

INot to be confused with later discriminative reranking passbased on this generative baseline such as
Charniak and Johnson (2005).
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this case because of the flat structure of NEGRA's trees. Rtdyey (2005) show that using
morphological information outperforms the lexicalizegélne, with arf of 76.3 on the same
corpus using the same training, development, and test sets.

These numbers are much lower than the repdriddr labelled English constituency pars-
ing, leading to a belief that parsing in German is harder. &l@#, this may really be a function
of the annotation scheme used in the corpus used rathertiedariguage. NEGRA's anno-
tation scheme is very flat in the sense that internal straa@iphrases is often omitted. So,
for example, the prepositional phragaf die Bank'to the bank’ would not contain a noun
phrase constituerttie Bank Rather, (the part-of-speech tags of) the three words aaelestl
directly to the PP label. Internal structure, however, cansierably aid parsing. ibler
et al. (2006) show that lexicalization and other parsingpégues used for English do indeed
improve parsing on theliBa-D/Z corpus, which does contain internal structure,dyngl F,
numbers comparable to English parsing. Since the Germao@being compared both con-
tain newspaper text, the large difference in performaneéiduted to the annotation scheme.

Lexicalization is not the only way to split nonterminals.h@t splits can be found based on
linguistic intuitions about subtypes of categories, or fatistical methods that maximize the
likelihood of generating the training data. Intuitivelarases grouped under one nonterminal
in standard tagsets can be of many types. For example, thedeerthatcan stand on its own
as a noun phrase, or occur with other nominal material #sanwoman These different uses
of a nonterminal would be expected to have different digtrdnal properties with respect to
the rules of a PCFG, and thus can be usefully split.

Using this intuition, Klein and Manning (2003) designed anexicalized parser that is
competitive with lexicalized ones. They found splits sustttee determiner split above man-
ually, based on their linguistic knowledge. Later work byrBe et al. (2006) automates this
process by alternately splitting symbols to increase th@essiveness of the grammar, and
merging symbols to keep the problem size manageable andltcedhe risk of overfitting.

More details of their parser, called the Berkeley parset,lprovided in section 4.1.
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2.1.2 Discriminative Approaches

In contrast to the previous generative approach, discétivie models aim to learn the condi-
tional probability distributiorP(y|x) directly. Approaches differ in how they define the prob-
ability of a tree given a sentence. Often, the probabilisiierpretation is abandoned entirely,
so discriminative parsing boils down to determining thetlpegse of a sentence by optimiz-
ing some arbitrary function. This flexibility in being able ¢asily incorporate varied knowl-
edge about parse trees into the optimization function isrtapr advantage of discriminative
parsers. There are two main types of discriminative parsdrscriminative reranking parsers,
and parsers using dynamic programming approaches.

In discriminative reranking, a number of “good” parses ag@eyated by generative ap-
proaches as above. These N-best parse trees are then tebgnitistical methods such as
log-linear models, allowing human expert knowledge to lm®iporated into the process. The
upper-bound of these methods is the maximum achievablénggperformance from the N-
best list, known as theracle score In general English phrase structure parsing, Charniak and
Johnson (2005) found that their 50-best ordgleneasure is 96.8% on the PennTreebank cor-
pus, which is substantially better than their system’sagberformance of 91.0%, indicating
potential for further improvement under this approach. teinn to reranking in Chapter 4.
In dynamic programming approaches, a large number of gdessérse trees are represented
compactly in a parse tree forest or chart, and the best gedsé® is decoded from this rep-
resentation. One example is the max-margin approach takdadkar et al. (2004), which
casts parsing as a classification problem of separatingatiieat parse of a sentence from the
other candidate parses. Henderson (2004) uses a leftrdoigtery-based model, in which
parsing is viewed as a series of decisions made in sequamtéaning a parser is to learn a
probability distribution of the next decision conditioned the previous ones. Since the num-
ber of previous decisions in a parse is unbounded, a neurabriebased approach is used to
learn a finite representation of the previous decisions.lditge number of features needed for

these approaches means that tractability is typically sureisso local features which only con-
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sider information available at a particular productionha tree are used. More recent work by
Huang (2008) introducdsrest rerankingwhich allows usage of non-local features in addition
to local features by an approximate decoding method. Noatlfeatures are computed in a

bottom-up way by reranking subtrees at internal nodes. En@pnance of this parser on the

Wall Street Journatorpus is the highest so far for parsers that do not use addittraining

data, at arF; of 91.7%.

2.2 Topological Field Chunkers and Parsers

Existing work in identifying topological fields can be died into chunkers, which identify
the lowest-level non-recursive topological fields, andpes, which also identify sentence and
clausal structure.

Veenstra et al. (2002) compare three approaches to topaloigld chunking based on
finite-state transducers, memory-based learning, and P@gpsctively. It is found that the
three techniques perform about equally well. The finiteéesteansducer approach provides a
Fp of 94.1% using POS tags from the TnT tagger, and 98.4% witd tads, and the other
approaches provide similar results. In other work by Lie2003), a topological field chun-
ker is implemented using a multi-class extension to the i@adly two-class support vector
machine (SVM) classification framework. Parameters to tlehme learning algorithm are
fine-tuned by a genetic search algorithm, with a resullipgneasure of 92.25%. Training the
parameters to SVM does not have a large effect on performarreasing thé;-measure in
the test set by only 0.11%.

As for parsing, the corpus-based, stochastic topologield parser of Becker and Frank
(2002) is based on a standard treebank PCFG model, in whielprababilities are estimated
by frequency counts. This model includes several enhanaesmehich are also found in the
Berkeley parser. First, they use parameterized categ@pisting nonterminals according

to linguistically based intuitions, such as splitting diént clause types (they do not distin-
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guish different clause types as basic categories, unlikgaiD/Z). Second, they take into ac-
count punctuation, which may help identify clause bouretariThey also binarize the very
flat topological tree structures, and prune rules that ooluoonce. They test their parser
on a version of the NEGRA corpus, which has been annotatedteptiiogical fields using a
semi-automatic method.

Ule (2003) proposes a process ternigicected Treebank Refinemg@TR). The goal of
DTR is to refine a corpus to improve parsing performance. D Bomparable to the idea
of latent variable grammars on which the Berkeley parser $&tain that both consider the
observed treebank to be less than ideal and both attempfinie reby splitting and merging
nonterminals. In this work, nonterminals are split and redrgy considering the nontermi-
nals’ contexts (i.e., their parent nodes) and the distidbudf their productions. Unlike in the
Berkeley parser, splitting and merging are distinct stagebker than parts of a single iteration.
Multiple splits are found first, then multiple rounds of miewgare performed. No smoothing
is done. As an evaluation, DTR is applied to topological fdsing of the TiBa-D/Z corpus.

We discuss the performance of these topological field parsenore detail in Chapter 4.

2.3 Other Computational Models of German Syntax

Although we focus on (P)CFG-based models in this work, Gersyamax and parsing have
been studied using a variety of computational grammar fosma. Here we briefly mention
some of this work. Hockenmaier (2006) has translated then@erTIGER corpus (Brants
et al., 2002) into a CCG-based treebank to model word ordeati@ns in German. Foth et al.
(2004) consider a version of dependency grammars knowregghted constraint dependency
grammarsfor parsing German sentences. On the NEGRA corpus (Skut,et948), they
achieve an accuracy of 89.0% on parsing dependency edg€&alleier (2000), a platform
for efficient HPSG parsing is developed. This parser is lex¢ended by Frank et al. (2003)

with a topological field parser for more efficient parsing afr@an. The system by Rohrer
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and Forst (2006) produces LFG parses using a manually debsigmammar and a stochastic
parse disambiguation process. They test on the TIGER campdifchieve af{-measure of
84.20%.

Topological field parsing concerns itself with the surfagatactic structure that can be
parsed from a sentence using projective syntax trees, butowd also like a deeper level
of representation that includes a more complete semarnggpiretation of the tree structure.
There exist models which maintain both syntactic projégtnd semantic interpretability, by
creating one parse tree for each of these components forsemténce. So, one parse tree
represents surface order, equivalent to the topologiclal fiarsing model described earlier,
and requires projectivity. The other is responsible forespnting semantic interpretation and
dominance relations in the tree which correspond to lirtguigsalities. They may not require
projectivity and may not be fully ordered.

Penn and Haji-Abdolhosseini (2003) provide one such fasmglwhich combines topo-
logical phenogrammatical structurewith semantically interpretablectogrammatical struc-
tures They also provide a simple parsing algorithm for this foliera.

Another such formalism is offered by Duchier and Debusm&®91), using dependency
trees to represent the two structures, instead of phrasetste trees. They distinguidimear
precedencélP) topological dependency trees, which are partiallyeoed and projective, from
immediate dominanc@D) syntax trees, which are unordered and non-projectivethese
dependency structures, the edges are labelled with ettleegriammatical function (for 1D
trees) as in typical typed dependency trees, or the topdofield for LP trees. Unfortunately,

parsing in this framework has been shown to be NP-compleatigikand Striegnitz, 2002).



Chapter 3

Applications

We have seen in the last chapter that topological fields geogiause-level information about
the structure of German sentences. Here, we motivate tiitg afitopological field parsing by

examining their application to several NLP problems.

3.1 Part-of-Speech Tagging

In Mller and Ule (2002), part-of-speech tagging and topoladield annotation are integrated
into a single process, with each component aiding the offfez.system begins by tagging an
input sentence using the TnT trigram POS tagger (Brants,)2@th word is assigned a list
of possible POS tags ranked in decreasing order of probabilhen, these tags are fed into
a series of transducers which use hand-crafted finite-gtatamars to annotate topological
fields, embedded clauses, and NP chunks. If the transdyntimess does not result in a parse,
then the next-best POS tag from the ranked list is used anahthetation process is restarted.
If this results in a parse, the newly chosen POS tag is coregidbe correct tag.
This process was found to reduce POS tagging errors, phinfari verbs and comple-

mentizers. The tagset used in the experiment distinguiségeen finite and infinite verbs,
and between different kinds of subordinating complemensgizwhich can be morphologically

identical in German. The clausal context would be able tecd¢he proper category, because

30
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recall that the position of the finite verb depends on theeserd type. The initial POS tagger,
however, relies only on the local trigram context. The mandfit of this combined approach
is that the topological field annotation process injectagddcontext into the POS tagging pro-
cess to allow proper disambiguation. Overall tagging eseeduced from 2.98% to 2.77%.
Another benefit is an increase in parser coverage, thoughliaetitative evaluation is done to
determine if the increased coverage comes at the price oéased parsing accuracy.

The authors provide the following example (Example 3.1)exehthe verbzustimmen
‘agree’, occurs in the exact same local context, though ibfisite in 3.1(a), and finite in
3.1(b).

(3.1) (a) Gestern wollten weder die Konservativennoch die Liberalen dem
yesterday wanted neither the conservatives nor the liberals the

Antrag zustimmen.
motion accept-INFINITE

‘Yesterday, neither the conservatives nor the liberalstedito accept the motion.’

(b) Kommentatorenerwarten, dass weder die Konservativennoch die
commentators expect that neither the conservatives nor the
Liberalen dem Antrag zustimmen.
liberals the motion accept-FINITE

‘Commentators expect that neither the conservatives nditibeals will accept
the motion.’

3.2 HPSG Parsing

Like other forms of shallow parsing, topological field paggiis useful as the first stage to
further processing and eventual semantic analysis. InkFetal. (2003), topological field in-
formation is used to guide parsing in thead-drive phrase structure gramm@tPSG) frame-
work.

HPSG is a highly lexicalized grammar theory in which lexitains are feature structures
that include detailed information about the feature sties syntax, semantics, and form,

including requirements on how this feature structure combiwith other feature structures.
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Parsing in HPSG consists of finding a way to combine featutetstres such that these re-
guirements are satisfied (throughification. From a computational perspective, the main
problems in parsing HPSGs are parser efficiency and covertger than accuracy, since
HPSG grammars are so detailed that any parse for a sentdit@dyito be correct.

Also because of the highly lexicalized nature of HPSG, HP&@Gqrs typically take a
bottom-up approach to parsing, where structures are hgpiatbd for an input sentence starting
at the level of the lexical items. The main utility of topoloal fields is to provide top-down
clausal information that can guide the parsing processy tae be useful because topological
fields or field sequences often correspond to phrases in alfGHRSse. For example, the
Vorfeldis an HPSG constituent, and the span from the left brackeagong the finite verb to
the end of the clause is also a constituent in HPSG.

Using this knowledge available from the topological fielth&ey encode a set of soft con-
straints for the parsing algorithm. In particular, the poie HPSG constituents identified by
the topological fields are used to affect the priority of askthe chart parsing algorithm used
for parsing HPSG structures so that parsing decisions teatansistent with the boundaries
of the potential constituent are preferred over those thiatradict it.

Testing on the manually annotated test set of Becker and K2&@i2) and using the topo-
logical field parser in that work, HPSG parsing performanes sped up by a factor of about
2 with a coverage loss of less than 1%. The authors furthev ghat using NP and PP chunks
in a similar fashion do not lead to a speed increase, indigdtiat their hypothesis about the

usefulness of topological fields because of their hightleagure is correct.

3.3 Anaphora Resolution

Anaphora resolution is the task of identifying pairs of lingfic expressions in which one (the
anaphor) refers to the other (the antecedent). Stricthalspg, the antecedent must occur

before the anaphor; if the order is reversed, the phenomisrigrown as cataphora.
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Anaphora can take a variety of forms including reflexive jams, non-reflexives pro-
nouns, and full noun phrases. These different types of awaptealization are subject to
different syntactic constraints; for example, a regulamomun cannot be the direct object of
the clause in which its antecedent is the subjecHe(*saw him, where the indices indicate
thatHe andhimrefer to the same person.) In theoretical linguistics,gr@mstraints form the
basis of Binding Theory (Haegeman (1994) provides an inttda to the topic), and previous
work in computational anaphora resolution made heavy usgrdhctic parses using insights
drawn from this theory (Hobbs, 1978; Lappin and Leass, 1994)

Becker and Pecourt (2002) present an approach to anaphohati@s which does not make
use of full syntactic parses. Rather, the algorithm reliea topological parser to provide the
same type of information regarding the domain that diffeferms of anaphora can take.

Two levels of domains which can be retrieved from a topolalparse are defined: theacal
domain which is the immediately dominating finite clause, and thather domainwhich
is the clause immediately dominating the local domain. Thiee following constraints are
derived. First, personal pronouns and full noun phraselsarsame local domain may not be
coreferential. Second, antecedents of reflexive pronowrs be in the same local domain.
Finally, the antecedent of relative pronouns must be oatsidhe local domain, in the mother
domain.

The interaction between these three constraints for amaphkeolution can be seen in ex-
ample 3.2. The reflexivsichresolves tesiein the same local domain, and the relative pronoun
dieresolves talie Fragen Thus, the personal pronosie must resolve t®ie Studenteysince
it may not resolve to the same antecedent as the relativepnowhich is in the same local

domain, as that would render the two coreferential.

(3.2) [Die Studenten] formulierten [die Fragenlp, [die], [sie]1 [sich]1 gestellt
the students formulated the questions,that they themselvesasked
hatten.
had.

‘The students formulated the questions which they had asieadselves’
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Unfortunately, this work lacks a quantitative analysisits® unclear how large a contribu-

tion topological field information made.

3.4 Summary

In this chapter, we have seen three tasks which benefit frpoidgical field information: part-
of-speech tagging, HPSG parsing, and anaphora resoldttecommon thread in how topo-
logical fields aid in these tasks is that they provide higreléenformation which supplements
the available local information. In POS tagging, they pdevclausal context to disambiguate
the finiteness of verbs, and the type of complementizer; iS@mParsing, they provide top-
down information to guide a chart parser to select likelyesdtp expand; and in anaphora
resolution, they demarcate relevant boundaries for caimssron different kinds of anaphora.
Another area where topological fields may prove to be ussfabmputational discourse.
Topic-focus ordering in German is known as correlate wigiotogical field structure (Frey,
2004b). One fruitful area of future research would be to esif topological information
could be helpful for identifying sentential topics and hermid in modelling the information

structure of a passage.



Chapter 4

Parsing Experiments

We have seen that topological fields are a useful model of &ermtausal syntax which can
be handled by a phrase structure parser. In this chaptergsarile our experiments to parse
the TuBa-D/Z and NEGRA newspaper corpora using an unlexicalizeshtavariable parser,
and show that we achieve results that are better than thépeestate-of-the-art with mini-
mum domain-specific adaption. We also provide an in-depétyars of the results and show
that systematic exceptions to the topological field modeuiting elliptical and parenthetical

constructions are the main source of remaining errors.

4.1 A Latent-Variable Parser

For our experiments, we used tlaent-variablebased Berkeley parser (Petrov et al., 2006).
Latent-variable parsing assumes that an observed treebprdsents a coarse approximation
of an underlying, optimally refined grammar which makes niimre-grained distinctions in the
syntactic categories. For example, the noun phrase cgtélidin a treebank could be viewed
as a coarse approximation of two noun phrase categoriesspanding to subject and object,

NP"S andNP VP,

Parts of this chapter and the next chapter have been préyiouislished as (Cheung and Penn, 2009).
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The Berkeley parser automates the process of finding suchatishs. It starts with a sim-
ple X-bar grammar style backbone (that is, binarized witerimediate ‘bar’ levels), and goes
through iterations of splitting and merging nonterminaisprder to maximize the likelihood
of the training set treebank. In the splitting stage, an Etgd@n-Maximization algorithm is
used to find a good split for each nonterminal. In the mergiages categories that have been
oversplit are merged together to keep the grammar sizeabiecand reduce sparsity. Finally,
a smoothing stage occurs, where the probabilities of rdesdch nonterminal are smoothed
toward the probabilities of the other nonterminals spbinfrthe same syntactic category.

The Berkeley parser has been applied to tiidD/Z corpus in the constituent parsing
shared task of the ACL-2008 Workshop on Parsing German (PataKlein, 2008), achieving
anF;-measure of 85.10% and 83.18% with and without gold stanB&8 tags respectively.
This evaluation considered all nodes, not just topolodieddls, and considered grammatical
functions as well as the syntactic category. We chose theeB®rlparser for topological field
parsing because it is known to be robust across languageé$femmause it is an unlexicalized
parser. Lexicalization has been shown to be useful in monergé parsing applications due
to lexical dependencies in constituent parsing (e.gub(kr et al., 2006; Dubey and Keller,
2003) in the case of German). However, topological fielddam@ higher level of structure
pertaining to clause-level word order, and we hypothediz lexicalization is unlikely to
be helpful. Furthermore, lexicalized parsing models rexjai notion of headedness for each
constituent, which may be difficult to define for topologifelds like theMittelfeld which do

not form a semantically coherent constitifent

4.2 Data

For our experiments, we primarily used théBa-D/Z (Tubinger Baumbank des Deutschen

|/ Schriftsprache) corpus, consisting of 26116 sentend@89¢ training, 2611 development,

2Thanks to Christopher Manning for bringing this point to attention.
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Das hditte ich schon aus ADIJA-HD Griinden  niemals tun konnen
dsthetischen

Figure 4.1: “I could never have done that just for aesthet&sons.” SampleiBa-D/Z tree
with topological field annotations. Edge labels appear afteode label, separated by a hyphen.

Topological field layer in bold.

2089 test, with a further 522 sentences held out for futupeementsj taken from the Ger-
man newspapedie tageszeitung The corpus consists of four levels of annotation: clausal,
topological, phrasal (other than clausal), and lexicale @nnotation scheme is based on a
context-free backbone, contains no traces or empty caésg@and encodes grammatical func-
tions. See Figure 4.1 for an example of a tree in ti@®d-D/Z corpus. We define the task
of topological field parsing to be recovering the first twodksvof annotation, following Ule
(2003).

We also tested the parser on a version of the NEGRA corpuseadiby Becker and Frank
(2002), in which syntax trees have been made projective @uuidgical fields have been au-
tomatically added through a series of linguistically imf@d tree modifications. All internal
phrasal structure nodes have also been removed. The canpsists of 20596 sentences, which
we split into subsets of the same size as described by BeckeFramk (2002). The set of

topological fields in this corpus differs slightly from theeused in TiBa-D/Z, making no dis-

3These are the same splits into training, development, atcéts as in the ACL-08 Parsing German work-
shop. This corpus does not include sentences of lengtheyrisain 40.

416476 training sentences, 1000 development, 1058 testimj2062 as held-out data. We were unable to
obtain the exact subsets used by Becker and Frank (2002). ilMdiseuss the ramifications of this on our
evaluation procedure.
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Gold tags| Edge labels LP% | LR% | F1% | CB | CB0%| CB< 2% | EXACT%

- - 93.53| 93.17| 93.35| 0.08| 94.59 | 99.43 79.50

+ — 95.26| 95.04| 95.15| 0.07| 95.35| 99.52 83.86
— + 92.38| 92.67| 92.52| 0.11| 92.82| 99.19 77.79
+ + 92.36| 92.60| 92.48| 0.11| 92.82| 99.19 77.64

Table 4.1: Parsing results for topological fields and clhosastituents in the tiBa-D/Z cor-

pus. CB refers to cross-bracketing. Best results in bold.

tinction between clause types, nor consistently markirld be clause conjunctions. Because
of the automatic annotation of topological fields, this emrpontains numerous annotation er-
rors. Becker and Frank (2002) manually corrected their tetsasd evaluated the automatic
annotation process, reporting labelled precision andlre€83.0% and 93.6% compared to
their manual annotations. There are also punctuationectkrors, including missing punctu-
ation, sentences ending in commas, and sentences comgasedle punctuation marks. We
test on this data in order to provide a better comparisonpviekiious work. Although we could
have trained the model in Becker and Frank (2002) on ti@aFD/Z corpus, it would not have
been a fair comparison, as the parser depends quite heavllEGRA's annotation scheme.
For example, TBa-D/Z does not contain an equivalent of the modified NEGRAsameter-
ized categories; there exist edge labelsiBaD/Z, but they are used to mark head-dependency

relationships, not subtypes of syntactic categories.

4.3 Results

We first report the results of our experiments on thidBa-D/Z corpus. For the (iBa-D/Z
corpus, we trained the Berkeley parser using the defaulinpetex settings. The grammar

trainer attempts six iterations of splitting, merging, @mdoothing before returning the final
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grammar. Intermediate grammars after each step are aled.s@ihiere were training and test
sentences without clausal constituents or topologicaldieihich were ignored by the parser
and by the evaluation. As part of our experiment design, westigated the effect of providing

gold POS tags to the parser, and the effect of incorporatilyg éabels into the nonterminal

labels for training and parsing. In all cases, gold annotativhich include gold POS tags were
used when training the parser.

We report the standard PARSEVAL measures of parser perfaenianiable 4.1, obtained
by theevalb program by Satoshi Sekine and Michael Collins. This tablevshiie results
after five iterations of grammar modification, parametetioger whether we provide gold
POS tags for parsing, and edge labels for training and gardihe number of iterations was
determined by experiments on the development set. In tHaeati@n, we do not consider edge
labels in determining correctness, but do consider putiotyaas Ule (2003) did. If we ignore
punctuation in our evaluation, we obtain Bstmeasure of 95.42% on the best modelGold
tags,— Edge labels

Whether supplying gold POS tags improves performance depamevhether edge labels
are considered in the grammar. Without edge labels, gold aR@sSimprove performance by
almost two points, corresponding to a relative error rednaf 33%. In contrast, performance
is negatively affected when edge labels are used and goldt&§3Sare supplied (i.e+ Gold
tags,+ Edge labely making the performanceorsethan not supplying gold tags. Incorpo-
rating edge label information does not appear to improvéopaance, possibly because it
oversplits the initial treebank and interferes with theseas ability to determine optimal splits
for refining the grammar.

To facilitate a more direct comparison with previous worle, also performed experiments
on the modified NEGRA corpus. In this corpus, topological Beddeparameterizedmeaning
that they are labelled with further syntactic and semanfarimation. For example, VF is split
into VF-REL for relative clauses, and VF-TOPIC for those @mihg topics in a verb-second

sentence, among others. All productions in the corpus hieebeen binarized. Tuning the
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Parser LP% LR% F1%
TiuBa-D/Z

This work 95.26 95.04 | 95.15
Ule unknown | unknown | 91.98

NEGRA—from Becker and Frank (2002)

BFO02 (len.< 40) 92.1 91.6 91.8

NEGRA—our experiments

This work (len.< 40) | 90.74 90.87 | 90.81

BFO02 (len.< 40) 89.54 | 88.14 | 88.83
This work (all) 90.29 | 90.51 | 90.40
BFO2 (all) 89.07 | 87.80 | 88.43

Table 4.2: BF02 = (Becker and Frank, 2002). Parsing result®fmlogical fields and clausal
constituents. Results from Ule (2003) and our results wetaimdd using different training
and test sets. The first row of results of Becker and Frank (R@@2from that paper; the rest
were obtained by our own experiments using that parser. esllits consider punctuation in

evaluation.

parameter settings on the development set, we found thainederized categories, binariza-
tion, and including punctuation gave the bEgperformance. First-order horizontal and zeroth
order vertical markovization after six iterations of sjaigg, merging, and smoothing gave the
bestF; result of 91.78%. We parsed the corpus with both the Berketeggy and the best
performing model of Becker and Frank (2002).

The results of these experiments on the test set for sergenhtangth 40 or less and for all
sentences are shown in Table 4.2. We also show other resartigprevious work for reference.
We find that we achieve results that are better than the mod&cker and Frank (2002) on

the test set. The difference is statistically significgnt(0.0029, Wilcoxon signed-rank).
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The results we obtain using the parser of Becker and Frank2j2&@ worse than the
results described in that paper. We suggest the followiagaes for this discrepancy. While
the test set used in the paper was manually corrected farai@h, we did not correct our test
set, because it would be difficult to ensure that we adherdldetgame correction guidelines.
No details of the correction process were provided in theepand descriptive grammars of
German provide insufficient guidance on many of the examiplddEGRA on issues such
as ellipses, short infinitival clauses, and expanded pidglcconstructions modifying nouns.
Also, because we could not obtain the exact sets used foirtgaidevelopment, and testing,
we had to recreate the sets by randomly splitting the corpus.

Comparing across the two corpora, there also is a differanpernformance of the parser
on TuBa-D/Z and on NEGRA. Aside from a slightly different set of édgmical and clausal
categories, the principal difference between the two aearpothat TiBa-D/Z contains internal
phrasal annotation, while NEGRA does not. Our results inditiaat internal annotation can
improve parsing results on topological fields and clauseltahvhich complements the result
of Kuibler (2005) that parsing topological field labels also iovess the parsing performance of

internal phrasal structure.

4.4 Analysis

While PARSEVAL measures provide a good aggregate picturesgpénformance of a parser,
we also need a more in-depth error analysis in order to iflyer@maining errors made by the

parser. We now return to thdiBa-D/Z corpus for a series of such analyses.

4.4.1 Category-Specific Results

We first examine the category-specific results for our bedfopaing model ¢ Gold tags,
— Edge labels Overall, Table 4.3 shows that the best performing topokidield categories

are those that have constraints on the type of word thatasved to fill it (finite verbs in
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Topological Fields

Category # LP% LR% F1%

PARORD | 20 | 100.00| 100.00| 100.00

VCE 3 100.00| 100.00| 100.00
LK 2186 | 99.68 | 99.82 | 99.75
C 642 | 99.53 | 98.44 | 98.98
VC 1777] 98.98 | 98.14 | 98.56
VF 2044 | 96.84 | 97.55 | 97.20

KOORD 99 | 96.91 | 94.95 | 95.92

MF 2931 | 94.80 | 95.19 | 94.99

NF 643 | 83.52 | 81.96 | 82.73

FKOORD | 156 | 75.16 | 73.72 | 74.43

LvV 17 | 10.00 | 5.88 7.41

Clausal Constituents

Category # LP% LR% F1%

SIMPX 2839 | 92.46 | 91.97 | 92.21

RSIMPX | 225 | 91.23 | 92.44 | 91.83

PSIMPX 6 100.00| 66.67 | 80.00

DM 28 | 59.26 | 57.14 | 58.18

Table 4.3: Category-specific results using grammar with rgeddbels and using gold POS

tags
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Problem Freq.
Misidentification of parentheticals 19
Coordination problems 13
Too few SIMPX 10
Paired punctuation problem 9
Other clause boundary errors 7
Other 6
Too many SIMPX 3
Clause type misidentification 2
MF/NF boundary 2
Lv 2
VF/MF boundary 2

Table 4.4: Types and frequency of parser errors in the fiftyst&coring parses by -measure,

using parametersH Gold tags,— Edge label¥

LK, verbs in VC, complementizers and subordinating conjamst in C). VF, in which only
one constituent may appear, also performs relatively Welpological fields that can contain
a variable number of heterogeneous constituents, on tlee bind, have poordt-measure
results. MF, which is basically defined relative to the posg of fields on either side of it, is
parsed several points below LK, C, and VC in accuracy. NF, wbantains different kinds of
extraposed elements, is parsed at a substantially worsk lev

Poorly parsed categories tend to occur infrequently, ghaly LV, which marks a rare re-
sumptive construction; FKOORD, which marks topologicaldiebordination; and the dis-
course marker DM. The other clause-level constituentsNIPSI for clauses in paratactic con-
structions, RSIMPX for relative clauses, and SIMPX for othkwuses) also perform below

average.
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4.4.2 Qualitative Error Analysis

As a further analysis, we extracted the worst scoring fiftytseces by -measure from the
parsed test set{ Gold tags,— Edge labely and compared them against the gold standard
trees, noting the cause of the error. The major mistakes imatiee parser are summarized in

Table 4.4.

Misidentification of Parentheticals Parenthetical constructions do not have any dependen-
cies on the rest of the sentence, and exist as a mostly sigalctndependent clause inside
another sentence. They can occur at the beginning, endtloe imiddle of sentences, and are
often set off orthographically by punctuation. The parses problems identifying parenthet-
ical constructions, often positing a parenthetical carttsion when that constituent is actually
attached to a topological field in a neighbouring clause. fblewing example shows one
such misidentification in bracket notation. Clause-intetapological fields are omitted for

clarity.

(4.1) (a) TuBa-D/Z: (SIMPXWeder das AusmaR der Sctheit noch der fiihere oder sgtere
Zeitpunkt der Geburt macht einen der Zwillinge €ine Mutter mehr oder weniger echt /

authentisch Uberlegei.

(b) Parser: (SIMPXNeder das Ausmalf? der Sctieit noch der fihere oder satere Zeitpunkt
der Geburt macht einen der Zwillingérfeine Mutter mehr oder weniger eght

(PARENTHETICAL [ authentisch /Uberlegen)

(c) Translation: “Neither the degree of beauty nor the earlier or later tirbathf makes one

of the twins any more or less real/authentic/superior to a mother.”

We hypothesized earlier that lexicalization is unlikelygive us much improvement in
performance, because topological fields work on a domainigshaigher than that of lexical
dependencies such as subcategorization frames. Howexen,tge locally independent nature
of legitimate parentheticals, a limited form of lexicalima or some other form of stronger

contextual information might be needed to improve idergtfan performance.
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Coordination Problems The second most common type of error involves field and clause
coordinations. This category includes missing or incdrEdOORD fields, and conjunctions
of clauses that are misidentified. In the following exame, conjoined MFs and following

NF in the correct parse tree are identified as a single long MF.

(4.2) (a) TuBa-D/Z:Auf dem europischen Kontinent aber hat (FKOORMF kein Land und
keine Macht ein derartiges Interesse an guten Beziehungen zu RufRjJamal (MF auch

kein Land solche Erfahrungen im Umgang mit RuBland{NF wie Deutschland).

(b) ParserAuf dem euro@ischen Kontinent aber h&MF kein Land und keine Macht ein
derartiges Interesse an guten Beziehungen zu Ruf3land und auch keind_solche

Erfahrungen im Umgang mit Ruf3land wie Deutschland)

(c) Translation: “On the European continent, however, no land andweiphas such an
interest in good relations with Russia (as Germany), and also no lands{izs)

experience in dealing with Russia as Germany.”

Other Clause Errors Other clause-level errors include the parser predictiogféa or too
many clauses, or misidentifying the clause type. Clauses@retimes confused with NFs,
and there is one case of a relative clause being misidenéiiedmain clause with an intransi-
tive verb, as the finite verb appears at the end of the clausetincases. Some clause errors
are tied to incorrect treatment of elliptical construcipim which an element that is inferable

from context is missing.

Paired Punctuation Problems with paired punctuation are the fourth most comtype of
error. Punctuation is often a marker of clause or phrase demas. Thus, predicting paired

punctuation incorrectly can lead to incorrect parses.

Other Issues Other incorrect parses generated by the parser includdepnsbwith the in-

frequently occurring topological fields like LV and DM, inéty to determine the boundary
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between MF and NF in clauses without a VC field separatingwloe &nd misidentifying ap-
positive constructions. Another issue is that althoughpieser output may disagree with the
gold standard tree inliBa-D/Z, the parser output may be a well-formed topologieddifparse

for the same sentence with a different interpretation, ¥angple because of attachment ambi-
guity. Two judges including the author independently cleecthe fifty worst-scoring parses,
and determined whether each parse produced by the Berkelesrmauld be a well-formed
topological parse. Where there was disagreement, the judigesssed their judgments until
they came to a consensus. Of the fifty parses, it was detedntivag nine, or 18%, could be
legitimate parses. Another five, or 10%, differ from the gsti@ndard parse only in the place-
ment of punctuation. Thus, tHg-measures we presented above may be underestimating the

parser’s performance.

4.4.3 Results on Subsets

Another method of examining the results of the parser is toore suspected problematic
cases—in this domain, sequences of topological fields wdaatot follow the canonical model
described in section 1.1—and determine whether performanproves on the remainder. If
performance is substantially improved, then the filteratlamnstructions may be considered
unexplained variance from the standard topological fieldiehowhich is currently not well
accounted for. We now define and motivate four levels of iegins on the topological field

sequences in theliBa-D/Z corpus. They are presented in increasing order tictageness.

Model A: Full Model This model consists of the full topological field annotadaund in

TuBa-D/Z without any restrictions.

Model B: Clauses with Finite Verbs and Infinitival Clauses In this model, all clauses
must be headed by a main verb, either a finite one in the LK or ¥@,for an infinitival one in

infinitival clauses. Excluded are sentences like elliptcastructions where a verb is omitted.
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Model C: Only Clauses with Finite Verbs This model also disallows infinitival clauses.
Infinitival clauses do not strictly follow the topologicaéfd model, because although they are
assigned a clause-label byiBa-D/Z’s annotation scheme, no finite verb heads the claunsk,

no complementizer or C field is found, even though they arb-last constructions.

Model D: “Textbook” Model  This model is the most restrictive. Only sentences whichtmee

the following criteria are permitted:

e Clauses follow either the C (MF) VC (NF) verb-last patternagdlogical fields, or the
(VF) LK (MF) (VC) (NF) pattern for verb-initial and verb-send clauses.

e Sentence contains at least one clause (this eliminatedimesmdnd meta-data).

e Sentence contains exactly one clause label at the top lgitblnothing else other than
punctuation (this weeds out more headlines and parengthetnstructions at the top

level).

e The clause node SIMPX must be a child of the top level, or NWBI(this weeds out

more parenthetical constructions).

To create a parser based on each model, we filtered out seateritie training set that do
not conform to the restrictions imposed by each model, treened the Berkeley parser on the
remaining sentences. Similarly, we created four test sefdtéring out sentences that do not
fit the model. We tested the four grammars on each of the tes{Eable 4.5).

In general, restricting the power of the model leads to arravgment in parsing perfor-
mance on the corresponding test set. In the full test set ), the original model gives the
best parsing performance. As we increase the level of césémness of the test set, however,
this is no longer the case. Test Set B is about equally wetlgghby Models A and B, with the
difference not being statistically significant (two-tail@vilcoxon signed-rankp > 0.99). For
Test Set C, Models A and B still tie for best performance updtstical significancegd > 0.9),

and interestingly, they outperform Model C itseff £ 0.013). Finally, in the most restrictive
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Test SetModel | Training Set A| Training Set B| Training Set C| Training Set D

M = 20894 M =19326 M =17922 M = 10949
Test Set A 95.26/95.04 | 94.07/93.71 | 91.82/89.49 | 81.49/82.78
N = 2089 95.15 93.89 90.64 82.13
Test Set B 95.78/96.08 | 95.87/96.08 | 93.98/91.95 | 82.53/85.54
N =1945 95.93 95.98 92.95 84.01
Test SetC 95.97/96.41 | 96.08/96.41 | 95.65/95.85 | 81.96/87.31
N = 1802 96.19 96.24 95.75 84.55
Test Set D 97.99/97.90 | 97.61/97.54 | 96.31/95.68 | 98.43/98.42
N =1076 97.95 97.58 96.00 98.42

Table 4.5: Labelled constituency results on subsets ofdasieset, using parameters Gold
tags, — Edge label¥ after five iterations of splitting and merging. First rohosvs labelled

precision/recall, second row in italics shofas(in %). M is training set sizel\ is test set size.

Test Set D, Model D outperforms the other modgls<(0.03 for each of the models to Model
D).

These results support the conclusion that non-canonicplesees of topological fields
present in the full test set are not well accounted for by tireent topological field model. As
we remove constructions such as parentheticals and el|iiset; of the best model increases
from 95.15% from Test Set A to 98.42% for Test Set D. Also, tigaiicance tests show that
the restrictive models we designed, especially the teXthloodel, are meaningful subsets of
the original corpus. These results corroborate the findnfigise analysis of the most frequent

error types in the fifty worst parses in section 4.4.2.
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4.4.4 Merging Topological Field Labels

In a similar vein, we can also determine whether the parsemsistently confusing topological
field labels by performing an experiment where we merge $aipeihe training set and in the
evaluation. For example, we can determine how widespreafdision between MF and NF is.
We define the following three models, decreasing in theglle¥discrimination of topological

field labels:

Full Model This is again the original 1Ba-D/Z model of topological fields.

VF/MF/NF Merged In this model, the three topological fields which can contaimetero-
geneous mix of constituents, VF, MF, and NF, are merged isiagle TOPONODE.

All Merged In this model, all topological field labels are renamed TOFRIDNE.

Once again, we trained grammars using the Berkeley parsarraérging these labels in
the training set, and performed an evaluation using the sanef topological fields that the
model was trained on.

We see that performance does not improve when we merge gipaldield labels in train-
ing and testing. In fact, the full model is statistically migcantly better than the unlabelled
model (o = 0.0251). These results show that topological field disimst are useful to the
parser, and that it is the identification of topological fibwindaries, rather than identification

of the field labels, that is the leading source of remainimgrer

Test Setf Full Model | VF/MF/NF Merged | All Merged

LP/LR | 95.26/95.04 94.98/95.12 94.67/94.58

F 95.15 95.05 94.63

Table 4.6: Parsing results after selectively merging kmbethe test set by labelled precision,
recall, andF-measure (in %), using paramete#s Gold tags,— Edge label}, after five itera-

tions of splitting and merging



Chapter 5

Improving Topological Field Parsing

While we have achieved good parsing results from the Berkedesep in the previous chapter,
we have also identified some of the remaining types of errothe parse output, indicating
that further performance gains are possible. In this cmapteexplore two approaches to this

end—reranking, and self-training.

5.1 Reranking for Paired Punctuation

As a general method, reranking has become popular in a yafetlLP problems outside
of parsing, including machine translation and sentencatbary detection (Shen et al., 2004,
Roark et al., 2006). We have also presented some work on iagaitksection 2.1.2 which
uses a discriminative statistical model together with gdarumber of features (for example,
1.3M in Charniak and Johnson (2005)) to improve parsing tesul

Here, we take a far simpler approach of reranking based orfieatere using a hard con-
straint. The main result of this section is not primarily thirovement in parsing performance
that this simplistic procedure produces, but rather it ishow that reranking is a promising
area for further research.

The feature over which we perform reranking concerns puatictn which occurs in pairs,

such as quotation marks, parentheses, and brackets. Wpdamenting with the development

50
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Set N LP% | LR% | F1% | CB | CB0% | CB< 2% | EXACT%
All Unreranked 2089 | 95.26| 95.04| 95.15| 0.07 | 95.35| 99.52 83.86
All Reranked 2089 | 95.39| 95.09| 95.24| 0.07| 95.55 | 99.57 83.92

Problematic Unreranked 38 | 81.56| 82.84| 82.19| 0.61 | 60.53 94.74 28.95

Problematic Reranked | 38 | 85.35| 84.20| 84.77| 0.39| 71.05| 97.37 31.58

Table 5.1: Effect of constrained reranking, using gold t@gd without edge labels. Problem-
atic here refers to sentences where paired punctuationnbeecur in the same clause in the

initial parser output.

set of TuBa-D/Z, we noticed that the parser sometimes returns parsgsich paired punctu-
ation is not placed in the same clause—a linguistically amplble situation. In these cases,
the high-level information provided by the paired pundiais overridden by the overall like-
lihood of the parse tree. To rectify this problem, we perfedna simple post-hoc reranking
of the 50-best parses produced by the best parameter settingold tags,— Edge label}
selecting the first parse that places paired punctuatidmeisame clause, or returning the best
parse if none of the 50 parses satisfy the constraint. Tlisgalure improved thE;-measure
t0 95.24% (LP = 95.39%, LR = 95.09%).

Overall, 38 sentences were parsed with paired punctuatialifferent clauses, of which
16 were reranked. The reranked results for both the enstesét as well as the 38 sentences
are shown in Table 5.1. Of the 38 sentences, reranking inedrperformance in 12 sentences,
did not affect performance in 23 sentences (of which 10 dirdead a perfect parse), and
hurt performance in three sentences. A two-tailed signsiegtiests that reranking improves
performance§ = 0.0352).

Example 5.1 illustrates how reranking can improve perforcea Here, the parser’s best
parse predicts a spurious SIMPX clause spanning the telxedtitire sentence, but this causes

the second pair of quotation marks to be parsed as belongihga different clauses. The
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parser also predicts an incorrect LV field. Using the paingagbuation constraint, our rerank-

ing procedure was able to correct these errors.

(5.1) (a) “ Auch (SIMPX wenn der Krieg heute ein Mobilisierungsfaktor ist) ”, so PAGSIMPX

die Leute sehen , dal3 mdir ©lie Arbeit wieder auf die Stra3e gehen muR3) . ”

(b) Parser(SIMPX*“ (LV Auch (SIMPX wenn der Krieg heute ein Mobilisierungsfaktq) ist
", s0 Pau, " (SIMPX die Leute sehen, dal3 mdm flie Arbeit wieder auf die Stral3e

gehen muf3). ”

(c) Translation: “Even if the war is a factor for mobilization,” said Pau, ‘Peeple see, that

one must go to the street for employment again.”

Surprisingly, there are cases in which paired punctuat@esadot belong inside the same
clause in the gold parses. These cases are either extend&digps, in which each of the
guotation mark pair occurs in a different sentence altagrethr cases where the second of
the quotation mark pair must be positioned outside of othBeteice-final punctuation due to
orthographic conventions. Sentence-final punctuatiogpgally placed outside a clause in
this version of TiBa-D/Z.

More work can be done to find and motivate features for reragkind to employ a rerank-
ing method more sophisticated than using a hard constifaantexample, more features could
be designed based on the qualitative error analysis dorfeeiprevious section to deal with
problematic constructions like parentheticals and ed¥psTo investigate the upper-bound in
performance that this type ®-best reranking is able to achieve, we present some statisti
on our (¢ Gold tags,— Edge labely 50-best list. We found that the average rank of the best
scoring parse b¥;-measure is 2.61, and the perfect parse is present for 164@ @088 sen-
tences at an average rank of 1.90. The or&gleneasure is 98.12%, indicating that a more
comprehensive reranking procedure might allow furthefquarance gains. Table 5.2 shows

more statistics on the characteristics of the best parsnmstofF; in the 50-best list.
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N 2088
Oracle Labelled Recall 98.01
Oracle Labelled Precision 98.23
Oracle Labelled; 98.12
Mean best rank 2.61
Median best rank 1
Standard dev. of best rank 6.29
# Perfect rerank possible 1649
# Best rank is not the first parse 278
Mean best rank when not the first parse | 13.13
Median best rank when not the first parse| 7
Standard dev. when best is not the first paré&.04

Table 5.2: Oracle statistics for 50-best list afBa-D/Z test set

5.2 Self-Training

Another area worth exploring for improving parsing perfarne is to utilize external resources
for training outside of the corpus from which the trainingldast sets are drawn. Currently,
the best parser performance on the standard test sectibe\bfl Street Journatreebank in
English uses the method eélf-trainingto make use of more training data (McClosky et al.,
2006). Self-training is a kind of semi-supervised methodvimch a learning algorithm is
trained on its own output. Basically, the parser is first gdion an initial training set, is then
used to parse a new unlabelled data set, and then retrairtee oniginal training set together
with the recently parsed, additional data set. In McClosksle2006), the standard training
sections of the WSJ«40k sentences in total including training and test secjisssed as

the initial training set, and a section of the much larget,uniabelled, North American News
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Text corpus (Graff, 1995) is used as the additional datazdtgentences from thieA Times
section). Using the Charniak parser with reranking (Chararak Johnson, 2005), labell&d
performance on the test set improves from 91.3% withouttsailiing to 92.1%.

A related method is that afo-training where multiple “views” of a problem cooperate
to produce annotations for unlabelled data, which can treended as training data. Let us
illustrate with the procedure described by Sarkar (2004 this work, a small set of labelled
data is used to train two “views” into the parsing problemeTinst (called H1) is a supertag-
ging model that assigns elementary trees inlteeicalized Tree-Adjoining Gramm&LTAG)
formalism to input words. The second (called H2) is a modatd theates attachments between
elementary trees to produce a parse for the sentence.

Co-training proceeds as follows. First, H1 and H2 are traioedhe labelled data set.
Then, a small portion of the unlabelled data set is procegsedigh H1 and H2. The most
probablen sentences of this portion that H1 and H2 annotate are added tabelled set, and
the process iterates. After each iteratiomcreases, in effect relaxing the confidence threshold
necessary for a parse to be added to the labelled set. Afteeainlabelled data is exhausted,
the combined originally labelled and newly labelled set barused to train a final parser. On
WSJ this procedure improves parsing performance from 7@g#%efore co-training to 79.8%.

While these semi-supervised methods are able to reducacelan labelled data, they can
also easily magnify errors in the parser’'s model. McCloskgl ef2006) find that self-training
does not work well in conjunction with the base generatives@aalone, and only improves
the performance of the reranking parser. Sarkar (2001)sasement in performance can be
attributed to the small initial labelled training set thatdses (9695 sentences). Our goal then
is to expand the availability of training data without commising on the data quality.

We overcome this problem by using information from anotheelled treebank, NEGRA.
As mentioned in Chapter 4, we have obtained a version of NEGR#&hids been made projec-
tive and semi-automatically annotated with topologicdtiBe After parsing NEGRA with our

initial parser trained on UBa-D/Z data, we can then use the NEGRA annotations as a guide
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From NEGRA From TUBa-D/Z
CL SIMPX, RSIMPX, PSIMPX
LK C
VF
MF MF, MFE
RK VC VCE
NF
DF DM, LV

Table 5.3: Equivalence classes between thBa-D/Z and NEGRA annotation schemes for

topological fields and clause labels. Each row defines oniwagunce class.

to control the quality of the parses by filtering out parsegmtthe parse and the annotations
disagreé-

We use the following filtering mechanism. First, we define aafeequivalence classes
over the sets of topological fields and clausal labels foartie two corpora in order to enable
a comparison over the different annotation schemes usdale(5a3). Then, we require that
the topological field and clause nodes in the NEGRA annotatimh the initial parse made
by the model trained oniiBa-D/Z agree in terms of their start, end, and label accgrtbn
the equivalence classes defined. Any mismatch results iparse being excluded from the
self-training training set.

We tested four versions of the self-training procedure hbying two binary parameters:
whether we use filtering or not, and whether we used all of NEG&Aone quarter of the
sentences randomly drawn from the full set. Of the 16476eseeits in the full NEGRA, 6488

passed the filtering mechanism. Of the one quarter subeed®@1 sentences of 4119 passed

1The other logical possibility is to usdiBa-D/Z as a guide to parsing NEGRA. However, as we noteéeearl
NEGRA's topological field annotations were done semi-auttically and contain noise and errors, and are thus
not as reliable an evaluation standard.
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Proportion Added| Filtering | LP% | LR% | F1% | CB | CB0% | CB< 2% | EXACT%
No self-training 95.26| 95.04| 95.15| 0.07| 95.35| 99.52 83.86
1/4 — 94.99| 94.99| 94.99| 0.08| 94.78 | 99.14 83.53
1/4 + 95.32| 95.21| 95.26| 0.07| 95.07 | 99.43 83.63
Full — 95.26| 95.00| 95.13| 0.08| 94.59 | 99.23 83.87
Full + 95.43| 95.18| 95.31| 0.08| 94.83 | 99.43 84.16

Table 5.4: Parsing results for topological fields and clhosastituents in the GBa-D/Z cor-

pus’s test set after self-training. Best results in bold.

filtering. The results of self-training after incorporaithese sentences are presented in Table

5.4. All results use gold POS tags, no edge labels, and assl lmasthe Berkeley parser after

five iterations of splitting and merging.

Although the differences in parsing performance are natiicant between the four mod-

els using self-training and the original without self-tiaig, we can comment on some trends

in the results. These results seem to confirm the finding by bklJl et al. (2006) that self-

training by itself is not useful for improving performanceeo a baseline generative parser,

reducingF; from 95.15% to 95.13% using the full NEGRA corpus. On the otteard, per-

formance improves slightly to 95.31% if only filtered serttes are added to the training set.

These results suggest that some source of informationdeutdithe generative parsing pro-

cess is necessary for self-training to be successful. Tdukide a reranker, which considers

additional features that can be designed by human expefitedng, which acts as a kind of

quality control mechanism for the new trees to be added ttrétieing set.

Much work remains to be done in working out the specific fiigrsettings that would

maximize performance gains, as well as in determining a m@péisticated weighting system

that would better reflect the higher confidence in th#a-D/Z training sentences over the

parsed sentences from NEGRA.



Chapter 6

Conclusions

In this paper, we examined applying the latent-variable Blesk parser to the task of topo-
logical field parsing of German, which aims to identify thglnlevel surface structure of
sentences. Without any language or model-dependent dgidaptae obtained results which
compare favourably to previous work in topological fieldgiag. We further examined the
results of doing a simple reranking process, constrairfiegoutput parse to put paired punc-
tuation in the same clause. We also considered self-tgiagha method of gathering more
training data, using a version of NEGRA with topological fialthotation as a filter to assure
quality of the additional parses that we are feeding backtime parser. Finally, we considered
some applications of topological fields.

The following is a summary of the contributions of this pajpenore detail with comments

on areas of future work.

The Berkeley parser for parsing topological fields We have shown that the Berkeley parser
is a good generative model of parsing German topological éirtl clause structure. The parser
performs extremely well in identifying the traditional iefnd right brackets of the topological
field model; that is, the fields C, LK, and VC. The parser achidasscally perfect results on
these fields in the OBa-D/Z corpus, withF-measure scores for each at over 98.5%. These

scores are higher than previous work in the simpler taskpflamical field chunking.

57
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Noise in the TuBa-D/Z corpus Through a qualitative analysis of the worst parsed sengence
and through experiments on subsets of the corpus, we hawe tbat infrequently occurring
topological fields and constructions are poorly parsed aevell accounted for by the canon-

ical topological field model. Parenthetical constructiand ellipses are of particular concern.

Reranking and self-training While we have explored simple reranking and self-training
methods which have given small accuracy improvements, muamte work can be done to
refine the proposals in this paper. A more comprehensivedis@tive reranking of the parser
output would be able to incorporate more contextual infdroma for example, it would be able
to include features dealing with parentheticals and edkpsvhich are problematic as we have
discussed. Also, a more sophisticated self-training m®cdilizing other German corpora

could provide a valuable source of additional training data

Applications We have looked at three applications of topological fieldb@literature: part-
of-speech tagging, deep parsing, and anaphora resoluftoa utility of topological fields in
these applications is due to their high-level clausal rattrich complements local information
available for these tasks. Future work on applying topaaldiields will also likely share this
property. In addition, topological fields may be useful imguutational discourse, due to their

correlation with the information structure of a passage.
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