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Abstract

Automated lexicon acquisition from cor-
pora represents one way that large datasets
can be leveraged to provide resources for
a variety of NLP tasks. Our work applies
techniques popularized in sentiment lexi-
con acquisition and topic modeling to the
broader task of creating a stylistic lexicon.
A novel aspect of our approach is a fo-
cus on multiple related styles, first extract-
ing initial independent estimates of style
based on co-occurrence with seeds in a
large corpus, and then refining those es-
timates based on the relationship between
styles. We compare various promising
implementation options, including vector
space, Bayesian, and graph-based repre-
sentations, and conclude that a hybrid ap-
proach is indeed warranted.

1 Introduction

Though lexical resources are useful for many NLP
tasks, manual lexicon creation is often onerous,
particularly for aspects of language for where full
coverage requires hundred of thousands of annota-
tions. This work deals with one such aspect which
we refer to as stylistic variation. This should not
be understood in a purely aesthetic sense, but as
reflecting various high-level aspects of the text, in-
cluding genre and social identity. Some tasks rele-
vant to style so defined include genre classification
(Kessler et al., 1997), author profiling (Rosenthal
and McKeown, 2011), social relationship classi-
fication (Peterson et al., 2011), sentiment anal-
ysis (Wilson et al., 2005), readability classifica-
tion (Collins-Thompson and Callan, 2005), and
text generation (Hovy, 1990). Following the clas-
sic work of Biber (1988), computational model-
ing of style has often focused on textual statistics
and the frequency of function words and syntac-

tic categories. There are, of course, manually-
constructed lists which capture some aspects of
style, for instance resources related to psycholin-
guistics (Coltheart, 1980), but these are necessar-
ily limited in scope. Our interest is in provid-
ing broad lexical coverage, potentially in any lan-
guage. Here, we will show that style is particu-
larly amenable to corpus-based automated lexical
acquisition.

Our approach to this problem is grounded in
methods popularized for polarity lexicon creation
(Turney and Littman, 2003), but we take a more
holistic view than is typical, simultaneously tack-
ling the acquisition of several styles in a single
model. Not only is this theoretically warranted,
due to the correlation effects resulting from the
oral/literate spectrum of register, but we also show
it can offer practical gains: our hybrid models
first derive initial estimates of each style from a
large social media corpus, and then refine these
estimates based partially on the results from other
styles. We demonstrate that various popular meth-
ods are applicable to this problem, and indeed a
single method might not provide the best results
for all styles. For evaluation, we use a consensus
annotation, the results of which also raise interest-
ing questions about annotation for more continu-
ous kinds of variation.

2 Related Work

In English manuals of style and other prescrip-
tivist texts (Strunk and White, 1979; Kane, 1983),
writers are urged to pay attention to various as-
pects of lexical style, including elements such as
familiarity, readability, formality, fanciness, collo-
quialness, specificity, concreteness, and objectiv-
ity; these stylistic categories reflect common aes-
thetic judgments about language, but are also inex-
tricably linked to the conventions of register and
genre. See Biber and Conrad (2009) for a dis-
cussion of the relationship between register, genre,
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and style as traditionally defined in descriptive lin-
guistics. Some researchers have posited a few
fixed styles (Joos, 1961) or a small, discrete set of
situational constraints which determine style and
register (Halliday and Hasan, 1976); by contrast,
the applied approach of Biber (1988) and theo-
retical framework of Leckie-Tarry (1995) offer a
more continuous interpretation of register varia-
tion. In Biber’s approach, functional dimensions
such as Involved vs. Informational, Argumenta-
tive vs. Non-argumentative, and Abstract vs. Non-
abstract are derived in an unsupervised manner
from a mixed-genre corpus, with the labels as-
signed depending on where features (a small set
of known indicators of register) and genres fall on
each spectrum. The theory of Leckie-Tarry posits
a single main cline of register with one pole (the
oral pole) reflecting a reliance on the context of
the linguistic situation, and the other (the literate
pole) reflecting a reliance on cultural knowledge.
The more specific elements of register are repre-
sented as subclines which are strongly influenced
by this main cline, creating probabilistic relation-
ships between related dimensions.

Computational linguistics research most simi-
lar to ours has focused on classifying the lexi-
con in terms of individual aspects relevant to style
(e.g. formality, specificity, readability, and con-
creteness) (Brooke et al., 2010; Pan and Hsieh,
2010; Kidwell et al., 2009; Turney et al., 2011).
Of particular methodological relevance is work on
the induction of polarity lexicons based on co-
occurrence in large corpora (Turney and Littman,
2003; Velikovich et al., 2010), or connections
in WordNet (Rao and Ravichandra, 2009; Bac-
cianella et al., 2010); semi-supervised vector
space and graph methods are common, and several
of the methods we apply here are taken directly
from or inspired by work in this area.

3 Word annotation

In this study, we consider six styles—colloquial,
literary, concrete, abstract, subjective, and
objective—which are clearly represented in the
lexicon, which are mentioned often in the rel-
evant English linguistics literature, and which
have strong positive and negative correlations with
other styles in the group. Many (but not all) of
these correlations are related to the oral/literate
distinction. Our definition of each style (adapted
from our annotation guidelines) is given below.

Colloquial Words which are used primarily in
very informal contexts, for instance slang words
and internet abbreviations.

Literary Words which you would expect to see
primarily in literature; these words often feel old-
fashioned or flowery.

Concrete Words which refer to events, objects,
or properties of objects in the physical world that
you would be able to see, hear, smell, or touch.

Abstract Words which refer to something that
requires major psychological or cultural knowl-
edge to grasp; complex ideas which can’t purely
be defined in physical terms.

Subjective Words which are strongly emotional
or reflect a personal opinion.

Objective Words which are emotionally distant,
explicitly avoiding any personal opinion, instead
projecting a sense of disinterested authority.

Our method and evaluation relies on having a
set of seed words for each style. The words used in
this study were originally collected from various
sources by the authors; we included words that we
considered clear members of a particular stylistic
category—though they might also belong to other
categories—with little or no ambiguity with re-
spect to that style. Colloquial seeds consist of En-
glish slang terms and acronyms, e.g. cuz, gig, ass-
hole, lol. The literary seeds were primarily drawn
from web sites which explain difficult language
in texts such as the Bible and Lord of the Rings;
examples include behold, resplendent, amiss, and
thine. The concrete seeds all denote physical ob-
jects and actions, e.g. shove and lamppost, while
the abstract seeds all involve nontrivial concepts
patriotism and nonchalant. For our subjective
seeds, we used an edited list of strongly positive
and negative terms from a manually-constructed
sentiment lexicon (Taboada et al., 2011), e.g. gor-
geous and depraved, and for our objective set we
selected words from sets of near-synonyms where
one was clearly an emotionally-distant, formal al-
ternative, e.g. residence (for home) or occupied
(for busy). We filtered initial lists to 150 of each
type (900 in total), removing words which did not
appear in the corpus or which occurred in multiple
lists.

Relying on a single annotator, however, is prob-
lematic, and a more serious issue with our original
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Table 1: Fleiss’s kappa for 5-way annotation, by
style.

Style Kappa
Literary 0.61
Abstract 0.37
Objective 0.55
Colloquial 0.85
Concrete 0.67
Subjective 0.63
Average 0.61

seed sets is that many of the seeds belong on mul-
tiple lists, reflecting the fact that stylistic correla-
tions occur at the lexical level. This interferes with
evaluation, since we need to to be fairly certain not
only which seeds are in a category, but which are
not. Therefore, we carried out a full annotation
study with 5 annotators, asking each annotator to
tag all 900 words for each of the 6 styles accord-
ing to guidelines we prepared. One of the authors
was included as an annotator (this annotation was
carried out prior to all the others), but the other
four were unfamiliar with the project; all were na-
tive English speakers with at least an undergrad-
uate degree, and all reported reading a variety of
text genres for work and/or pleasure. We provided
written guidelines explaining each style in detail,
and asked annotators to make judgments based on
what they felt to be the most common sense. Com-
munication among annotators was restricted dur-
ing the process, but we allowed access to other
resources (e.g. the internet) and answered general
questions about the guidelines that came up dur-
ing the process. A few annotators had obviously
skewed numbers for certain styles relative to other
annotators due to misinterpretation of the guide-
lines, and we provided non-specific feedback for
revision in these cases. The Fleiss’s kappa (Fleiss,
1971) values for our 5-way annotation study are
presented in Table 1.1

The kappa values in Table 1 indicate agree-
ment well above chance, but several of the di-
mensions (and the average) are below the 0.67
standard for reliable annotation (Artstein and Poe-
sio, 2008), and only one (colloquial) reaches the
higher 0.8 standard. This suggests that there is a
sizable subjective aspect to these judgments and
we should be somewhat skeptical of the judgment

1The annotations and our guidelines are available at
http://cs.toronto.edu/∼jbrooke/style annotations.zip .

of any particular annotator. However, we had
forced our annotators to make a boolean choice for
each style, which may be somewhat inappropriate
for somewhat non-discrete phenomenon like style.
Taboada et al. (2011), when validating their fine-
grained manual polarity lexicon (which included
annotation of both polarity and strength), demon-
strated that Mechanical Turk worker disagreement
on a boolean task seemed to correspond fairly well
to ranges on a scale: there was agreement at the
extremes of polarity, but increasing disagreement
towards the middle.

With this in mind, we used our initial annota-
tions to create a new annotation task for two of
our external annotators: the goal was to investi-
gate whether annotators can identify relative dif-
ferences in degree suggested by either agreement
or disagreement with their choices by other anno-
tators. First, we extracted minority opinions, de-
fined here as word/style combinations where the
annotator agreed with exactly one other annotator
and disagreed with the three others, and consen-
sus opinions, defined as those where all the anno-
tators agreed. We randomly paired each minor-
ity opinion word/style with a consensus opinion;
for both opinions, the annotator in question had
made the same judgment (both yes, or both no),
but some of the other annotators had made differ-
ent choices. We then asked our annotators (who
were unaware of the exact nature of the experi-
ment) to pick, among two words they had tagged
the same in the first round, the word which had
‘more’ of the relevant stylistic quality.

In the negative case (where the annotator had
originally marked both as not having the style),
the results are stark: in 97% of the cases, the
annotator picked the minority opinion (i.e. the
word which some other annotators had marked
yes), suggesting that the annotator could identify
the stylistic tendencies of the (mixed-agreement)
word, but had nonetheless excluded it, probably
because there were much clearer examples of this
style and other styles which could be more clearly
applied to the word. In the positive case, the an-
notators preferred the word with group consensus
82.7% of the time, which is indeed the pattern we
would predict if the minority opinion is less ex-
treme; the positive case is more subtle than the
negative case, where many of the words used for
comparison very clearly do not belong to the rel-
evant style. These results are consistent with the
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Table 2: Number of seeds, by style.
Style Positive Negative
Literary 132 660
Abstract 107 599
Objective 245 495
Colloquial 163 684
Concrete 190 572
Subjective 258 487

idea that disagreement is a rough indicator of de-
gree, and that not all disagreement should be dis-
missed as noise or some other failure of annota-
tion. Of course, this also indicates that relative or
continous (e.g. Likert scale) judgments might be
preferable to boolean ones, but in this case boolean
annotation is far more practical, and indeed desir-
able for both model creation and evaluation.

For our final seed set, our positive annotations
include all word/style combinations where a ma-
jority of annotators marked yes, whereas our neg-
ative annotations include only terms where there
was complete consensus; words where only 1 or
2 annotators marked yes were removed from con-
sideration as seeds (for that particular style). The
summary of the counts for main seed set are pre-
sented in Table 2.

4 Methods

Our method for stylistic lexicon acquisition breaks
down into three steps. The first is to apply one
of several methods which leverages co-occurrence
in a large corpus to derive, for each word, a raw
score for each style. We then take that raw score
and normalize it; the resulting number can be
used directly to compare words relevant to a style.
Finally, we consider the vector formed by these
normalized style scores, and apply other methods
which further refine this vector, implicitly taking
into account the correlations among styles. The
elements of the refined vector correspond to the
degree of each style, so if we apply this method
for all words in our vocabulary we create a full-
coverage lexicon.

4.1 Corpus analysis

For all the methods in this section, we use the same
corpus, the ICWSM Spinn3r 2009 dataset (Burton
et al., 2009), which has been used successfully in
earlier work (Brooke et al., 2010). Social media
corpora are particularly appropriate for research

on style, since they contain a variety of registers.
Here, we include all 2.46 million texts in the Tier
1 portion which contained at least 100 word types.
Hapax legomena were excluded, since they could
not possibly offer any co-occurrence information,
but otherwise we did not filter or lemmatize words:
our full vocabulary is 1.95 million words.

Our simplest method uses pointwise mutual in-
formation (PMI) (Church and Hanks, 1990), a
popular metric for measuring the association be-
tween words. Since standard PMI has a lower
bound of −∞ when the joint probability is 0 (a
common occurrence since many of our words are
relatively rare), we actually use a normalized ver-
sion, NPMI, which has an upper bound of 1 and a
lower bound of −1.

NPMI(x,y) =

(
log

p(x,y)
p(x)p(y)

)(
1

log p(x,y)

)
Following earlier work (Brooke et al., 2010),

here and elsewhere we do not use the term fre-
quency within a document (which is less relevant
to style). Instead the probabilities are calculated
using the number of documents where the word or
words appear divided by the total number of doc-
uments. The raw score ri j for style i of word w j

is simply the sum of its NPMI with the associated
set of seeds Si:

ri j = ∑
s∈Si

NPMI(w j,s)

Our second method, LSA, was applied to for-
mality by Brooke et al. (2010) and concreteness by
Turney et al. (2011). We begin by converting our
corpus into a binary word-document matrix, and
carry out latent semantic analysis (Landauer and
Dumais, 1997), which includes a singular value
decomposition of the matrix and dimensionality
reduction to k dimensions. Assuming vw denotes
the resulting k-dimensional vector for word w, we
calculate ri j as:

ri j = ∑
s∈Si

cos(θ(vw j ,vs))

Our third method, using latent Dirichlet alloca-
tion (Blei et al., 2003), is more novel for lexical
acquisition, and we address the specifics of this
method in more detail in other work (Brooke and
Hirst, 2013). Briefly, LDA is a Bayesian topic
model which assumes that texts are generated via a
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distribution of topics for each text (θ ), and a distri-
bution of words for each topic (β ); given a corpus,
appropriate values for θ and β are derived using
inference, in this case variational Bayes inference
using the original implementation provided by
Blei et al. (2003). Our method works by seeding
each of six topics in an LDA model (correspond-
ing to our six styles) by dividing the entire initial
probability mass among the seeds and running two
iterations of the model, which distributes some of
the probability mass to co-occurring words. In our
previous work, we found further iterations had no
benefit and even slightly degraded the model. For
the LDA method, ri j corresponds directly to βi j of
the resulting model which is just the probability of
topic (style) i generating w j.

4.2 Normalization
The raw numbers derived from corpus analysis
methods discussed above cannot be used directly
as indicators of style: the frequencies of both the
seeds and the words being predicted have signifi-
cant effect on the relative and absolute magnitudes
of each style for all our methods, and performance
using just these numbers is near chance. However,
in two steps we can normalize these numbers to a
form where the magnitude does directly reflect de-
gree of a style. Again, ri j refers to the raw score
for style i and word j from some corpus analysis
method. First, we take steps to ensure that ri j is
nonnegative. For LDA this is unnecessary (since
ri j is based on a probability distribution), but for
NPMI and LSA it is needed, since both involve
summing over items which vary between −1 and
1. We can ensure that these are positive by adding
a constant equal to the number of seeds. Next, we
convert the result to a style ‘distribution’ for each
word:

r′i j =
ri j + |Si|

∑
6
k=1 rk j + |Sk|

The result is still not useful, since frequency
(and count) of seeds clearly still has an effect. To
focus on the differences between words, we sub-
tract the means for each style and divide by the
standard deviation

bi j =
r′i j− r′i

σr′i

to reach bi j, the base for the ‘style space’ methods
in the next subsection.

4.3 Style Vector Optimization

Given a vector that represents the styles for a given
word, we wish to refine the vector to improve
performance on relative judgments for individual
styles. Here, we test two options: the first trans-
forms the stylistic vectors into k-Nearest Neighbor
(kNN) graphs, where we can apply label propaga-
tion. The second option treats the vector as a set of
features for supervised linear regression, one for
each style, using a specialized loss function. Both
methods rely on having a style vector representa-
tion of not only our target words, but also our seed
(training) words. For LSA and NPMI, we used
leave-one-out crossvalidation to create these vec-
tors; for LDA, however, it was impractical to do
a full run of the model for each word, and so we
used 10-fold crossvalidation instead.

A vector-space representation offers a number
of obvious similarity functions for building a kNN
graph: we test two here, inverse Euclidean dis-
tance (L2) and cosine similarity (cos). A more dif-
ficult problem is the choice of k (for kNN k): here,
we estimate a good k from the training set. Since
the training set and dimensionality of the data is
(now) fairly small, we simply test on all possible
intervals of 5, and choose the best (often near 50,
though we saw values as low as 10 and as high
as 90) using our pairwise evaluation (see Section
5.1). Since our label propagation method works
independently for each style, we can choose a dif-
ferent k for each.

For label propagation, we use the simple one-
step propagation function from Kang et al. (2006).
Here, K is our similarity function (which returns
zero if seed s is not one of the k nearest neighbors),
and zi j is the resulting confidence score, which we
use as our new estimate for the style:

zi j = ∑
ws∈Si

K(w j,ws)

Obviously, the main work here is done by the sim-
ilarity function, which implicitly includes infor-
mation from other stylistic dimensions by prefer-
ring words which are close not just on the relevant
dimension, but in the stylistic space as a whole.
There are of course more sophisticated, multi-step
approaches to label propagation, e.g. the one used
by Rao and Ravichandran (2009), but a single-step
approach has clear advantages in light of our large
vocabulary and dense graph; we leave exploration
of whether unlabeled words can help further to fu-
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ture work. We did test the one-step correlated la-
bel propagation method proposed by Kang et al.
but found it was ineffective, probably because it
increases the effects of correlation, which is actu-
ally counter to our needs.

The information provided by label propagation
is distinct enough that it can be successfully com-
bined with the original (base) vector. As with k
for kNN, we estimated a good weighting for this
combination using the training data, testing at 0.01
intervals. Since we noted some interdependence,
we combined this step with the selection of (kNN)
k. Again, this ratio can be different for each style.

Our second vector optimization technique is an
adaption of supervised linear regression. Linear
regression usually involves minimizing squared
distance of the output of the model from the train-
ing set, assuming there are known values of ex-
pected output. In this case, however, we don’t
have reliable values for specific degrees of a style.
We proceed by replacing the least-squared loss
function with a loss function based on our eval-
uation metric (see Section 5.1):

L(θ) = ∑
w j∈Si,p

∑
wm∈Si,n

I(hθ (bi j) < hθ (bim))

Here, Si,p and Si,n refer to the positive and negative
examples of style i, respectively, hθ is the linear
regression function, and I is an indicator function
equal to 1 if the statement is true, and 0 otherwise.

Using such a loss function discourages standard
approaches to linear regression, but in this context
(a small feature space and training set), it is rea-
sonably practical to search the space exhaustively
for weights which provide a (near-)optimal result
(on the training data).2 Starting with full weight
(1) on the feature corresponding to the dimension
being derived and 0 on all others, we search the
range −1 to 1 at 0.001 intervals for the other di-
mensions, proceeding in order based on the great-
est difference across positive and negative exam-
ples of each style. We found that one such iter-
ation across each element of the vector was suffi-
cient, resulting in a stable model. This method can
be applied on the initial vector, or on a vector that
has already been refined by some other method,
i.e. the output of label propagation.

2At the suggestion of a reviewer, we also tried applying
SVMrank to this regression; it was much faster but perfor-
mance was worse.

5 Evaluation

5.1 Setup
Our evaluation is based on the pairwise compari-
son of words which are known (from our annota-
tion) to differ relevant to a certain style. Accuracy
for a test set Si (of a style i) is defined as the num-
ber of instances where the expected inequality ex-
ists between a pair of opposing words, divided by
the total number of such pairings:

Accuracy(Si) =
∑w j∈Si,p ∑wm∈Si,n I(zi j > zim)

|Si,p| · |Si,n|

Here z can refer to any of the metrics for style dis-
cussed in the previous section. The major advan-
tage of this definition of accuracy is that it does
not require an arbitrary cutoff point, but 100% ac-
curacy nonetheless indicates that the two sets are
perfectly separable. Also, it does not assume any-
thing about the degree of difference between two
words, e.g. that more is better, since for any given
pair of words we cannot be certain what an ideal
difference would be.

We evaluate using 3-fold crossvalidation, us-
ing the original 150-per-style annotation of our
900 words for the purposes of stratifying the data,
which allows for balanced sets of 600 for training
and 300 for testing. All seeding, training, and eval-
uation use the majority annotation of the 5 annota-
tors, discussed in Section 3. Since the initial splits
add a significant random factor, all results here are
averaged over 5 runs, with the same 5 runs (i.e.
same splits) used for all evaluated conditions.

5.2 Comparison of models
Table 3 shows a comparison of the performance of
various models, organized by the method of cor-
pus analysis. First, we note that most of these
numbers are quite high, almost all are above 80%
and most are above 90%. It is worth mention-
ing that if only direct opposites are considered
(e.g. colloquial versus literary, concrete versus ab-
stract), most dimensions reach results above 99%;
our multi-style evaluation here offers a more re-
alistic view. Among individual styles, colloquial
words seem the most distinct, which is consistent
with the results of human annotation. Acquisi-
tion of subjectivity, on the other hand, is strikingly
more difficult than the other styles.

Based only on average accuracy, we could con-
clude that LSA > LDA > NPMI with respect
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Model By Style AverageLit. Abs. Obj. Coll. Conc. Subj.
guessing baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0
NPMI
base (Normalized) 68.4 91.2 94.4 95.6 73.4 77.1 83.0
LP-cos 90.1 91.5 95.1 94.4 90.0 80.0 90.2
LP-L2 88.2 88.9 94.1 94.1 89.4 76.6 88.5
base+LP-cos 90.2 92.8 95.6 96.0 90.6 80.9 91.0
base, LR 89.8 93.6 94.2 96.5 85.5 79.7 89.9
base+LP-cos, LR 90.2 93.6 95.5 95.9 90.5 81.0 91.1
LDA
base 67.3 93.3 96.5 96.2 93.2 83.5 88.3
LP-cos 86.0 92.9 96.0 93.6 94.8 86.5 91.6
LP-L2 78.1 91.1 95.0 92.5 94.2 83.2 89.0
base+LP-cos 86.4 93.5 96.6 96.3 95.5 86.7 92.5
base, LR 84.3 93.9 96.5 96.4 94.7 85.7 91.8
base+LP-cos, LR 87.2 93.9 96.5 96.3 95.8 87.0 92.8
LSA
k=20, base 89.1 93.5 95.6 94.4 90.8 76.0 89.9
k=500, base 91.2 93.7 96.5 96.5 93.7 83.5 92.6
k=500, LP-cos 92.4 91.7 96.0 96.8 94.3 85.2 92.8
k=500, LP-L2 92.1 92.1 96.5 96.5 94.3 85.0 92.8
k=500, base+LP-cos 92.5 93.6 96.8 97.5 94.8 85.9 93.5
k=500, base, LR 92.7 94.0 97.2 97.2 94.9 86.5 93.7
k=500, base+LP-cos, LR 92.7 93.8 97.0 97.7 94.9 86.4 93.7

Table 3: Model performance in lexical induction of seeds, % pairwise accuracy. LP = label propagation,
cos = cosine similarity, L2 = inverse Euclidean distance, LR = linear regression. Bold is best in column.

to extracting relevant stylistic information from
the corpus. That NPMI is the worst performing
method is not surprising, since it relies only on di-
rect co-occurrence between seeds and test words,
and is not able to take advantage of larger pat-
terns in the data; we would expect similar results
for other simple relatedness measures. Though
LSA is better overall, the distinction between LSA
and LDA is more subtle, since in fact LDA is
the higher performing model for two of the six
styles, and its poorer overall performance can be
attributed to a rather dismal showing for literary
words, worse than NPMI. This is interesting be-
cause subjective and concrete words, where LDA
does well, are the most common in the corpus,
whereas literary words are consistently the least
common. We posit, based on this and our ear-
lier research focused on the LDA method, that
successful low-dimensional seeded LDA requires
styles (topics) that are reasonably well-represented
in the corpus; when that condition is met, LDA
will likely do better than LSA because it will

distinguish rather than collapse correlated styles.
LSA, on the other hand, is robust against the
scarcity problem because it requires only that a set
of words have a reasonably distinct k-dimensional
profile to form a coherent style.

Based on the results in Table 3, we can conclude
decisively that both of our optimization techniques
are effective. The effects are particularly marked
for NPMI, but is reasonably consistent across all
three corpus analysis techniques and the various
individual styles. With regards to the similarity
function in label propagation, we found that co-
sine similarity, a less common choice for building
graphs, was generally as good as, and often bet-
ter than, Euclidean distance. The vector resulting
from label propagation also consistently benefited
from being combined with the base vector, the re-
sult being better than either alone. It is not entirely
clear which of the two optimization methods is to
be preferred (their effects seem roughly similar),
though linear regression seems to have edge when
using LSA. Combining the two methods seems a
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good strategy, particularly for LDA.
The LSA results presented here mostly use k =

500, a fairly standard choice. However, we tested
other values, in particular extremely low values
(k = 20) to see if we could confirm our supposi-
tion (Brooke et al., 2010) that much stylistic infor-
mation is contained with the first few dimensions
of LSA. Our results suggest that the basic supposi-
tion is valid, since the difference between the two
conditions for most dimensions is not large, but
the identification of subjectivity (not considered
by Brooke et al. 2010) does seem to benefit greatly
from a higher-dimensional vector.

6 Qualitative analysis

To investigate further the successes and failures
of our method, we carried out two qualitative ex-
aminations of the output of our model. First, we
looked at those words within our annotated set of
words which consistently caused the most errors
across the various splits and runs. Second, we ran
a high-performing LSA model built from the en-
tire seed set on a subset of our vocabulary (we
excluded words of document frequency less than
100), creating lexicons for each style; we man-
ually inspected non-seed words that were ranked
highest on each dimension.

The clearest result from the inspection of the
seed output was that many of the false neg-
atives involve words that are strong on some
other dimension, typically on the other side of
the oral/literate divide. For example, the most
difficult-to-identify literary and abstract terms are
strongly subjective (e.g. loathe and obscene),
while the most difficult objective word, translu-
cent, is very concrete. The most difficult con-
crete words are literary (yoke, raiment) or objec-
tive (conflagration), and the most difficult subjec-
tive words are also somewhat objective (eminent)
or abstract (autocratic). Interestingly, a manual in-
spection of the weights for linear regression sug-
gests that our optimization is correcting for just
this kind of situation: we generally see negative
weights on (what we would predict to be) posi-
tively correlated styles, and vice versa. However,
in certain cases where one style has a much larger
role in determining the co-occurrence pattern in
the corpus, this correction may be insufficient.

Most of the false positives, by contrast, involve
overextension of each category in predictable
ways. For example, our highest ranking literary

words from the general vocabulary were mostly
very good, but contained a few words that are ob-
vious over generalizations into biblical and fantasy
texts, e.g. locust and sorcerers, while among the
objective words there were a number of academia-
relevant words that are really more abstract than
objective, e.g. coauthors and peer-review. Our
derived colloquial words contained many (some-
times purposeful) misspellings (wayy, annnnd)
which we could argue are genuinely colloquial;
less clear are the many lower-case celebrity names
(e.g. miley), but the fact that the bloggers used
lower case does make them non-standard. Con-
sistent with our qualitative results, subjective was
the most problematic in the general vocabulary:
though there were many good subjective words,
there were a lot of other words which suggest top-
ics that people tend to express opinions about, e.g.
sitcoms, entertainer, or flick; movie-related words
are particularly common, which might be a reflec-
tion the lexicon we took our subjective seeds from.

7 Conclusion

We have presented a methodology for deriving
high-quality stylistic lexicons from corpora. A
key aspect of our approach its hybrid nature: in-
formation is first extracted (using efficient, well-
established methods) in a semi-supervised fashion
from large corpora, and then refined using fully-
supervised techniques. We argue that there are
clear benefits in looking at multiple styles simul-
taneously, not only in terms of improving perfor-
mance but also in taking our evaluation beyond
‘toy’ situations where we ignore the complexities
and interactions among styles, drawing connec-
tions with broader insights from linguistics.

One possible criticism of our method is that we
use only co-occurrence information, and not other
information (e.g. word morphology) which could
be relevant to particular styles in English; this op-
tion should be explored further, particularly in the
optimization phase where we can easily add other
features, though we stress that our ultimate goal
is to derive methods that are easily extensible to
more styles and more languages. We have also not
considered word senses or multiword expressions,
but both can and should be added to the model.
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