
A Vulnerability-Centric Requirements Engineering

Framework: Analyzing Security Attacks, Countermeasures,

and Requirements Based on Vulnerabilities

Golnaz Elahi
University of Toronto
gelahi@cs.toronto.edu

Eric Yu
University of Toronto

yu@ischool.utoronto.ca

Nicola Zannone
University of Toronto

zannone@cs.toronto.edu

Abstract

Many security breaches occur because of exploitation of vulnerabilities within the system.
Vulnerabilities are weaknesses in the requirements, design, and implementation, which at-
tackers exploit to compromise the system. This paper proposes a methodological framework
for security requirements elicitation and analysis centered on the concept of vulnerability.
The framework offers modeling and analysis facilities to assist system designers in analyzing
vulnerabilities and their effects on the system; identifying potential attackers and analyzing
their behavior for compromising the system; and identifying and analyzing the countermea-
sures to protect the system. The framework proposes a qualitative goal model evaluation
analysis for assessing the risks of vulnerabilities exploitation and analyzing the impact of
countermeasures on such risks.

1 Introduction

Developing secure software systems is challenging because errors and misspecifications in re-
quirements, design, and implementation can bring vulnerabilities to the system. Attackers most
often exploit vulnerabilities to compromise the system. In security engineering, a vulnerability
is an error or weakness of a system or its environment that in conjunction with an internal or
external threat can lead to a security failure [1]. For example, vulnerabilities may result from
input validation errors, memory safety violations, weak passwords, viruses, or other malware.

In recent years, software companies and government agencies have become particularly aware
of security risks that vulnerabilities impose on the system security and have started analyzing
and reporting detected vulnerabilities of products and services. For instance, the IBM Internet
Security Systems X-Force [14] has detected and analyzed 6,437 new vulnerabilities in 2007, of
which 1.9% are critical and 37% are high risk. 20% of the 5-top critical vulnerabilities were found
to be unpatched. Of all the vulnerabilities disclosed in 2007, only 50 percent can be corrected
through vendor patches, and 90 percent of vulnerabilities could be remotely exploited. These
statistics show the critical urgency of the vulnerabilities affecting software services and products.
Various web portals and on-line databases of vulnerabilities are also made available to security
administrators. For example, the National Vulnerability Database1, SANS top-20 annual security
risks2, and Common Weakness Enumeration (CWE)3 provide updated lists of vulnerabilities and
weaknesses. The Common Vulnerability Scoring System (CVSS)4 also provides a method for
evaluating the criticality of vulnerabilities.

1http://nvd.nist.gov/
2http://www.sans.org/top20/
3http://cwe.mitre.org/
4http://www.first.org/cvss/

1



In requirements engineering, agent- and goal-oriented approaches have been found useful for
understanding security issues that arise from interactions of multiple actors with malicious or
non-malicious intentions, e.g., [18, 19, 10]. Knowledge about vulnerabilities, however, have not
been taken advantage of in these security requirements engineering framework. In addition, goal
models provide suitable basis for attaching vulnerabilities to the required actions and assets to
achieve the goals and propagating vulnerabilities among the actors and system participants. By
identifying vulnerabilities or classes of vulnerabilities and associating them with the activities
and assets that bring them to the system, the analysts understand how weaknesses are brought
to system and how flaws in one part of the system are spread out to other parts. Information
about potential attacks that exploit vulnerabilities can be linked to requirements to analyze the
effects of the exploited vulnerabilities on activities or goals of stakeholders. Analysts also need
to decide about alternative countermeasures by analyzing their impacts on attacks.

Analyzing the effects of vulnerabilities on the system allows one to assess the risks of attacks,
analyze the efficacy of countermeasures, and decide on patching or disregarding the vulnera-
bilities by taking advantage of goal model evaluation techniques [11, 6, 13]. By adapting goal
model evaluation, the analysts can verify whether top goals of stakeholders are satisfied with the
risk of vulnerabilities and attacks and assess the efficacy of security countermeasures against the
risks. The evaluation does not only specify if the goals are satisfied; but also makes it possible
to understand why and how the goals are satisfied (or denied) by tracing back the result of eval-
uation to vulnerabilities, attacks and countermeasures. In addition, the resulting security goal
models and goal model evaluation can provide a basis for trade-off analysis among security and
other quality requirements [9]. New vulnerabilities are continuously being uncovered. By linking
requirements, vulnerabilities, and countermeasures to each other in a modeling framework, one
can update the models with newly detected vulnerabilities in order to analyze the risks imposed
by the new vulnerabilities.

Current state of the art raises the need for a systematic way to link the empirical security
knowledge such as information about vulnerabilities, attacks, and proper countermeasure to
stakeholders’ goals and security requirements. Secure software engineering frameworks rarely
use vulnerabilities to elicit security requirements. Existing frameworks focus on various aspects
for eliciting security requirements such as design of secure components [16], security issues in
social dependencies among actors [19] and their trust relationships [10], attacker behavior [31, 28]
and attacker goals [32], and events that can cause failure in the system [2].

In particular, Liu et al. [19] propose a vulnerability analysis approach for eliciting security
requirements. However, vulnerabilities in this framework is different from the one defined in the
security engineering community (i.e. weaknesses in the system). Liu et al. refer to vulnerabilities
as the weak dependencies that may jeopardize the goals of depender actors. Only some security
software engineering approaches consider analyzing vulnerabilities, as weaknesses of the systems,
during the elicitation of security requirements. For instance, in [20], vulnerabilities are modeled
as beliefs inside the boundary of attackers and may contribute positively to the attacks. However,
the resulting model does not specify how the vulnerability is brought to the system, what actions
or assets cause the vulnerabilities, and which actors are vulnerable in the system. In addition,
the impact of countermeasures on the vulnerabilities and attacks are not captured. The CORAS
framework [8] also provides a way for expressing how a vulnerability leads to another vulnerability
(or to a threat) and how a vulnerability (or combination of vulnerabilities) lead to a threat.
However, similar to [20], CORAS does not investigate which design choices, requirements, or
processes has brought the vulnerabilities to the system.

In our previous work [9], we have introduced the concepts of vulnerability into a security
conceptual modeling method. Vulnerabilities are treated as weaknesses in the structure of goals
and activities of intentional agents. Analyzing vulnerabilities together with system require-
ments and linking attacks to vulnerabilities allow one to analyze how attacks can compromise
the system by exploiting vulnerabilities and identify the security mechanisms needed to pro-
tect the system. This paper extends and refines our previous work by proposing an agent-

2



and goal-oriented framework for eliciting and analyzing security requirements by linking em-
pirical knowledge of vulnerabilities to requirements models. In particular, this work provides a
framework that enables understanding how vulnerabilities can be exploited to compromise the
security of the system. The proposed vulnerability-centric security requirements framework is
the result of surveying current critical vulnerabilities in security engineering discipline to under-
stand how vulnerabilities are brought to the system, exploited by the attacks, and handled by
the countermeasures.

The structure of the paper is organized as follows. Section 2 introduces the security concepts
used in the paper with a particular focus on the concept of vulnerability and related notions.
Section 3 introduces the meta-model of the framework, in which security concepts are incorpo-
rated into an agent- and goal-oriented modeling framework. Section 4 describes the modeling
process, and Section 5 proposes a method for analyzing security requirements based on the goal
model evaluation techniques. The modeling and analysis methods described are illustrated by
case examples. Section 6 overviews the current state of the art in threat analysis and security
requirements engineering. Finally, Section 7 draws a conclusion and discusses future work.

2 Relevant Concepts

This section investigates the conceptual foundation for the security requirements engineering
framework proposed in this paper. We identify the necessary and sufficient security conceptual
modeling constructs to be used in the meta-model of our framework in Section 3.

In the security engineering, an asset is “anything that has value to the organization” [15]. As-
sets can be people, information, software, and hardware [8]. They can be the target of attackers,
and consequently, they need to be protected. A vulnerability is a weakness in the system which
allows an attacker to compromise its correct behavior [1, 27, 26]. Vulnerabilities are brought to
the system by adopting a product or executing a service. Identifying and analyzing the backdoors
that attacks can exploit to compromise the system helps adopting effective countermeasure that
prevent the security failures through the vulnerabilities.

Security professionals consider threats as potential ways an attacker can attack a system
[29]. Attacks and threats are usually used interchangeably. An attack is a set of intentional
unwarranted actions which attempts to break the security of a system or a component of a
system [29]. Though the general idea of attack is clear, there is no consensus on a precise
definition. For instance, Schneider [27] points out that an attack can occur only in presence of a
vulnerability. Conversely, Schneier [29] broadens this vision, considering also attacks that can be
performed without exploiting vulnerabilities. By analyzing the possible ways in which a system
can be attacked, analysts can assess the risk and cost of attacks and understand their impact on
system security. Such knowledge helps them in the identification of appropriate countermeasures
to protect the system as well.

Attackers can have malicious goals and perform actions to achieve them. Examples of ma-
licious goals are disrupt or halt services, access confidential information, and improperly modify
the system [3]. Schneier [28] argues that understanding who the attackers are and their moti-
vations, goals, and targets, aids designers in adopting proper countermeasures to deal with the
real threats. Analyzing the source of attacks helps to better predict the actions taken by the
attacker. Schneier illustrates this through an example: When the attackers are terrorists, we
have to worry about attackers who are willing to die to achieve their goal. But if we are worried
about bored graduate students studying the security of our system, we usually do not have to
worry about illegal attacks such as bribery and blackmail [28].

A countermeasure is a protection mechanism employed to secure the system [29]. Counter-
measures can be actions, processes, devices, solutions, or systems intended to prevent a threat
from compromising the system. For instance, they are used to patch vulnerabilities or prevent
their exploitation. Countermeasure are selected according to the attacks and vulnerabilities.

3



Besides the concepts described, there are other concepts relevant to security requirements.
For instance, Giorgini et al. [10] integrate concepts from Trust Management, such as permission,
trust and delegation, into a Requirements Engineering framework to address authorization issues
in the early phases of software development process. Risk analysis frameworks (e.g., [2]) employ
the concepts of event to model uncertain circumstances that affect the correct behavior of the
system. However, events do not indicate involvement of intentionality; therefore, the event
concepts is appropriate to assess risks and safety requirements in critical systems, and it does
not allow the analysis of (malicious) intentional behavior. We do not incorporate the concept
of risk into the meta-model, since risk is a value that represent the potential consequences of an
attack.

However, security is not only limited to the identification of protection mechanisms to address
vulnerabilities. Security originates from human concerns and intents [19]; the social issues of
organizations where different actors can collaborate or compete to achieve their goals should be
considered as part of security requirements analysis [10, 19]. In addition, security is a subjective
and personal feeling [30]; therefore, security requirements analysis and security-related decision
makings require analyzing personal and organizational goals of the stakeholders participating to
the system. For this purpose, we take advantage of agent- and goal-oriented concepts such as
intentional actor, goal, and social dependency. There are evidences in the security requirements
engineering literature (e.g., [5, 7, 10, 19, 32, 35]) that these concepts provide the means for
analysis of organizational and social contexts in which the system-to-be operates. In the next
section, we show how security concepts can be integrated in the meta-model underlying the i*
agent- and goal-oriented framework.

3 An extended i* Meta-Model

Security is both a system and a social and organizational problem. The ability of the i* framework
[35] to model agents, goals, and their dependencies makes it suitable for understanding security
issues that arise among multiple malicious or non-malicious agents with competing goals. In
addition to modeling actors, i* offers a way to model actors’ dependencies, goals, assets, and
actions, refinements of goals into the actions and assets, and decomposition of actions. Thus, the
i* framework provides the basic setting suitable to represent vulnerabilities brought by actions
and assets and propagate them to the elements through the decomposition and dependency links.
Moreover, i* enables modeling contribution of goals, actions, and assets on other goals. Such
relations can be used to capture the effects of vulnerabilities on the satisfaction of system and
stakeholders’ goals.

In this section, we present the meta-model for the security requirements engineering frame-
work, which extends the i* meta-model with security concepts. The meta-model includes both
the i* Strategic Dependency (SD) diagram, which captures the actors and their dependencies
and the i* Strategic Rationale (SR) diagram, which expresses the internal goals and the behav-
ior of actors to achieve their goals. The meta-model also captures the concepts of vulnerability,
attack, security countermeasure, and their corresponding relationships with i* constructs.

3.1 The i* Meta-Model

The framework proposed in this paper extends the i* framework with the concepts of vulnera-
bility and attack. Figure 1 depicts the i* meta-model together with the security concepts. The
proposed framework employs agents and roles as two types of actors. An actor is an active entity
that has strategic goals and intentionality within the system or the organizational setting, carries
out activities, and produces entities to achieve goals by exercising its knowhow [35]. Actors can
be roles or agents. A role captures an abstract characterization of the behavior of a social actor
within some specialized context or domain of endeavor. Its characteristics are easily transferable

4



to other social actors. An agent is an actor with concrete and physical manifestations and can
play some role.

Intentional elements defined by the i* framework are goals, softgoals, tasks, and resources.
A goal represents the intentional desire of an actor, without specification of how the goal is
satisfied. Goals are also called hard goals in contrast to softgoals which do not have clear
criteria for deciding whether they are satisfied or not. A task is a sequence of actions which
the actor needs to perform (or depends on other actors to perform it) to achieve a goal. Tasks
capure system, stakeholders, or attackers’ actions and behavior. A resource is a physical or an
informational entity and is used to represent assets.

The relations between actors are captured by the notion of dependency. Actors can depend
on each other to achieve a goal, perform a task, or furnish a resource. For example, in a goal
dependency, an actor (the depender) depends on another actor (the dependee) to satisfy the
goal (the dependum). In addition to the dependum, two other intentional elements are involved
in a dependency. One element represents why a depender needs the dependum, and the other
element specifies how the dependee satisfies the dependum.

The meta-model in Figure 1 also describes the relationships between intentional elements
inside the boundary of actors. Actors have (soft)goals and rely on other (soft)goals, tasks, and
resources to achieve them. Softgoals can be decomposed into more softgoals using AND/OR
decomposition relations. Means-end links are relations between goals and tasks, and indicate
that a goal (the end) can be achieved by performing alternative tasks (the means). Tasks
can be decomposed into any other intentional elements through task decomposition links. By
decomposing a task into (soft)goals, resources, and other tasks, one can express that those
(soft)goals need to be satisfied, sub-tasks need to be performed, and resources need to be available
to have the root task performed.

Softgoals and other intentional elements can contribute either positively or negatively to the
other softgoals. This is represented through contribution links. The contribution relation is
characterized by attribute type which accepts Help (+), Make (++), Hurt (−), Break (−−)
and Unknown (?) values. By linking an intentional element to a softgoal by a Make and Break
contribution, one can express that satisfaction of the intentional element is enough to fully satisfy
or fully deny a softgoal, while Help and Hurt contributions indicate that the intentional element
has positive or negative impact, but the impact is not enough to fully satisfy or deny the softgoal.
This qualitative approach for modeling contribution to softgoals reflects the fact that softgoals
do not have clear-cut satisfaction criteria.

3.2 Attack and Security Countermeasure Extensions to the Meta-
Models

The concepts of vulnerability, attacks, effects of vulnerabilities, and impact countermeasures are
added to the i* meta-model. In Figure 1, extended elements to the i* meta-model are highlighed
with a different color. Adopting a task or employing a resource can bring vulnerabilities to the
system. For the sake of simplicity, we call such an intentional element a vulnerable element. The
concept of vulnerability is not limited to specific reported vulnerabilities or to general classes
of vulnerabilities. For example, one can model the famous worm called 2000 ILOVEYOU 5 or
general class of argument injection or modification. While resources such as National Vulnera-
bility Database provide a list of specific vulnerabilities in various versions of software products
developed by various vendors, Common Weakness Enumeration focuses on gathering classes of
weaknesses.

Exploitation of vulnerabilities can have effects on the same vulnerable element that has
brought the vulnerabilities or on other tasks, goals, and resources. The effect is characterized by
attribute type which specifies how the vulnerability affects a goal, a task, or a resource. The effect

5http://www.cert.org/advisories/CA-2000-04.html

5



Figure 1: The i* meta-model extended with the concept of vulnerability and attack

types are Hurt (−), Break (−−), and Unknown (?). The effect of vulnerabilities on softgoals is
not considered in the meta-model, since softgoals are not directly-measurable goals. The effect
of vulnerabilities would be propagated to softgoals from the affected elements that contribute to
the softgoals.

The definition of attack and security countermeasure is fundamentally a matter of perspec-
tive: a task or a goal counted as malicious can be perceived non-malicious from a different
viewpoint. Sequences of actions for mounting an attack are basically similar to sequences of
actions performed by legitimate actor. Therefore, the line to differentiate malicious actions from
non-malicious ones is arbitrary, and distinguishing malicious goals from non-malicious goals de-
pends on the perspective adopted by the system designer.

Malicious elements have the same semantics of ordinary intentional elements: they can be
similar or identical to non-malicious elements. For example, the desire to have a high profit is
not a malicious goal, but an actor can achieve such a goal either by working legally and honestly
or cheating and frauds. On the other hand, a task can be interpreted as malicious in a condition
while it is counted as non-malicious in a different context. For example, one can install a camera
for spying into other people privacy, whereas a surveillance camera can be used for security
purposes. In this example, the goal for performing tasks indicates if the task is malicious or not.

Other factors can make distinguishing malicious and non-malicious behavior challenging.
For instance, the concept of competition, which in general is not malicious, illegitimate, or
unauthorized, is similar to the notion of attack because competitions have similar impacts that
attacks have. From one organization’s perspective, a competitor can be seen as an attacker, and
from the competitor viewpoint, the organization is a competitor.

Since malice is a matter of perspective, distinguishing the malicious and non-malicious be-
havior does not affect the analysis. Therefore, The meta-model presented in Figure 1 is a neutral
meta-model that does not distinguish malicious and non-malicious elements. A fragment of this

6



meta-model is shown in Figure 2. An attack is a series of tasks than an actor performs to exploit
a number of vulnerabilities and has negative effects on other intentional elements. This defi-
nition of attacks is based on the definition proposed by Schneider [27] in which vulnerabilities
are a key aspect of any attack. This choice is due to the fact that we are mainly interested
in analyzing the effects of vulnerabilities on the system. Attacks that are performed without
exploiting vulnerabilities can be modeled by introducing a new class of attacks in which their
target is a task or a resource instead of a set of vulnerabilities.

Figure 2: A fragment of the meta-model which focuses on extensions to the i* to express attacks
and vulnerabilities. The meta-model does not distinguish malicious and non-malicious behavior.7

Resources and tasks can have impacts on attacks. Such tasks and resources can be interpreted
as security countermeasures; however we do not distinguish them from non-security mechanisms
in the meta-model as this distinction does not affect requirements analysis. These impact have
an attribute, type, which accepts Hurt (−), Break (−−), and Unknown (?) values. Ssecurity
countermeasures can be used to patch vulnerabilities, alleviate the effect of vulnerabilities, or
prevent the malicious tasks that exploit vulnerabilities or system functionalities. By patch-
ing the vulnerability, the countermeasure fixes the weakness in the system. Example of such
countermeasure is new updates the software vendors provide for the released products. A coun-
termeasure that alleviates the vulnerability effects does not address the source of the problem,
but it intends to reduce the effects of the vulnerability exploitation. For example, a security
solution that brings up a backup system in case of working system denial of service alleviates the
impact of security failures. Countermeasures can prevent the actions that the attacker performs,
which consequently prevents exploitation of the vulnerability by the actions. For example, an
authentication solution prevents unauthorized access to assets. Countermeasure may prevent
performing system’s vulnerable tasks or prevent using vulnerable resources, which results in re-
moving the vulnerability that has been brought to the system by the vulnerable elements. For
example, one can disable JavaScript option in the browser to prevent exploitation of malware
run by the browser.

As showed by Sindre and Opdahl [17], graphical models become much clearer if the distinction
between malicious and non-malicious elements is made explicit and the malicious actions are
visually distinguished from the legitimate ones. Sindre and Opdahl show that the use of inverted

7The task class has been duplicated to make the meta-model clearer.

7



elements strongly draws the attention to dependability aspects early on for those who discuss
the models. In this regard, an extended meta-model is developed with the assumptions that
some actors are attackers and have malicious goals, and other actors employ countermeasures
for protecting their goals. Figure 3 presents the extended meta-model, which is derived from the
meta-model in Figure 2 by introducing a new type of actor called attacker which has malicious
intentional elements such as malicious goals and malicious softgoals inside its boundary. The
concept of boundary is added to link the malicious elements to the attacker. An attack involves
an attacker, malicious tasks that he performs to exploit a set of vulnerabilities, and the effect of
exploited vulnerabilities on other actors’ intentional elements.

Figure 3: The fragment of the meta-model in which attacks, attackers, malicious behavior, and
security countermeasure are explicit elements of the meta-model.

4 Modeling Process

This section presents the security requirements modeling process along with the modeling no-
tation and graphical representation. The resulting models help the analysts to understand the
social and organizational dependencies among main stakeholders of the system, their goals, the
system architecture, the organization structure [35], and security issues that arise among inter-
action of actors [9] in the early stages of the development.

Figure 4 summarizes the relationships between the views of the security requirements model
and the steps needed to develop those views. The process consists of five steps; each of them re-

8



sults in a view of the security requirements model. Each of these views provides new incremental
information:

1. Requirements view which captures stakeholders and system actors together with their
(soft)goals, the tasks to achieve those goals, required resources, and the dependencies
among them.

2. Vulnerabilities view which extends the requirements view by adding the vulnerabilities that
tasks and resources brings to the system and the impact that their exploitation (or of their
combinations) has on the system.

3. Attacker template view which captures the behavior of attackers by representing how at-
tackers can exploit vulnerabilities to compromise the system.

4. Attacker profile view which captures individual goals, skills, and behavior of a specific class
of attackers based on the attacker template view.

5. Countermeasure view which captures the security solutions adopted by actors to protect
the system and their impacts on attacks and vulnerabilities.

Figure 4: The modeling process

The process for developing security requirements models is incremental: in each step new
elements are added to the requirements model to show new aspects. The modeling process
starts with the identification of actors, their dependencies, goals, and the tasks and resources
necessary to achieve them. Then, the vulnerabilities that tasks and resources bring to the system

9



are identified and propagated through the goal model. In the third step, possible attacks that
can exploit the vulnerabilities are identified and analyzed. Attacker profiles that specify the
capabilities and skills of categories of attackers are defined. The model is then evaluated to
assess the risk of vulnerabilities exploitation by attackers. If the result of analysis shows that
the risks cannot be tolerated by stakeholders, the requirements model is revised by introducing
countermeasures and their impacts on vulnerabilities and attacks. Modeling goal, vulnerabilities,
attacks, and countermeasures is an iterative process as the adoption of countermeasures may
cause the introduction of new vulnerabilities, denial of functionalities or quality goals.

Identification of vulnerabilities, attacks, and countermeasures by the analysts require security
knowledge and experience. The proposed framework in this work does not provide guidelines
or methods for finding vulnerabilities and attacks and selecting proper countermeasures. The
modeling process proposes a way for linking security knowledge such as reports of attacks, list
of vulnerabilities, and alternative countermeasures, which are known by security experts.

4.1 Eliciting and Modeling Initial Requirements

Requirements modeling is intended to identify and model stakeholders’ needs and system require-
ments. We take advantage of the i* framework that provides a useful approach for modeling
and analyzing stakeholders’ and system’s goals and system-and-environment alternatives that
address achievements of the goals [36, 35]. We do not present the modeling process underlying
the i* framework, and details in this regard can be found in [36].

Figure 5 shows the requirements view of a browser which requests the content from a web
server to build HTML pages. The User depends on a software agent, the Firefox Browser to
Browse web sites. The browser depends on the User to Enter inputs and depends on Web
server for Web page content and JavaScript. This view describes high level goals and tasks of
a browser. For instance, one of the browser’s tasks is to Show the web pages, and to perform
that, the browser needs to Run the JavaScript with user inputs. This makes the final customized
HTML page, and for this aim, the browser Request and get pages from the server and Get users’
input.

4.2 Modeling and Analyzing Vulnerabilities

Vulnerability modeling intends to understand the weaknesses affecting system requirements. To
incorporate specific vulnerabilities or classes of vulnerabilities into the requirements model, we
incrementally refine the requirements view by identifying the vulnerable tasks and resources
and analyze the effect of vulnerability exploitation. To represent vulnerabilities, the i* modeling
notation is enriched with a black circle for the new graphical element. The black circle is chosen to
resemble a hole or weakness in the system which leaves a backdoor for attacks. Vulnerabilities are
graphically attached to tasks and resources, which implies execution of the task or availability
of the resource brings the vulnerability to system. To represent the possible effect(s) of an
exploited vulnerability on goals, tasks, and resources a new link is added to the i* relations. The
vulnerability effect is visually represented by a dotted line with a label, l, where l ∈ {−,−−, ?}.

Figure 5 shows the vulnerability view for a browser which requests the content from a web
server. One of the browser’s tasks is to Show the web pages, and to perform that, the browser
needs to Run the JavaScript with user inputs. The browser Request and get pages from the server
and Get users’ input. Each of these tasks bring a vulnerability to the system. By downloading
a JavaScript code from the web server, a Malicious Script can be downloaded as well. The user
inputs can also contain Malicious input. As a result, when the browser runs the JavaScript with
the user inputs, the browser is exposed to the combination of the Malicious script and Malicious
user input vulnerabilities.

When an actor depends on another actor for a vulnerable task or resource, the vulnerability
is carried to the depender actor by the vulnerable dependum. Figure 6(a) explains the propa-

10



Figure 5: Initial requirements and actors’ actions, extended with the vulnerabilities view.

gation of the vulnerability in the reverse direction of dependencies. This figure shows that for
dependency relations, the vulnerability V in the dependee’s resource R(how) is propagated to the
dependum, RD, and the depender’s element, R(why). For example, in Figure 5, the Malicious
Script vulnerability is brought to the Firefox agent because of the dependency link between the
browser and Web server on Web page content and JavaScript. The same argument for resource
dependencies and vulnerabilities is valid for task dependencies. For example, when the Firefox
agent gets the inputs from the user through the dependency link, Malicious input is brought to
the Get user input task of the browser.

Vulnerabilities are also propagated through decomposition links. Using decomposition links,
analysts refine tasks into more detailed elements with higher resolution information, and the
sub-elements describe the up level task in detail. The application of a framework to a number
of case studies has shown that it is easier to identify vulnerabilities for concrete sub-elements
rather than for high-level abstract ones. Therefore, vulnerabilities are propagated bottom-up
from sub-elements to the high level decomposed task.

Figure 6(b) depicts the vulnerability propagation rule through decomposition links. This
figure depicts that if a task Troot is decomposed into a task Tchild and a resource Rchild, respect-
fully with vulnerabilities V1 and V2, the root task would receive both vulnerabilities V1 and V2.
Vulnerability effects depend on the context of the vulnerable elements. As shown in Figure 6(b),
the analyst can either assign the vulnerability effect to the child (Effect2 for V2) or to the root
(Effect1 for V1) element based on the context. In addition, based on the context, one may de-
termine that the propagated vulnerabilities have a combined effect. Propagating vulnerabilities
effects cannot be automatically deducted from the structure of the model and requires human
judgement and security experiences.

A concrete example of vulnerability propagation through decomposition links is shown in
Figure 5 where the Run the JavaScript with user inputs task in decomposed into Request and

11



(a) Vulnerability propagation via dependency
links

(b) Vulnerability propagation via decomposi-
tion links

Figure 6: Vulnerability propagation rules

get content and scripts from the server with Malicious script vulnerability and Get users’ input
with Malicious user input vulnerability. Accordingly, the root task receives both vulnerabilities.
These vulnerabilities or their combination can have various effects on goals and tasks of the actors
when running the JavaScript. Figure 7 shows how the vulnerabilities are combined. The effect
of exploiting the combination of Malicious script in the malicious user input vulnerabilities is
expressed using the vulnerability effect link with a −− (break) contribution from the combination
of the vulnerabilities to Protect users’ cookies and Build the correct HTML page. In the next
section, we describe how the requirements and vulnerabilities views are related to the attacker
template and countermeasure views.

4.3 Modeling Attacker Templates

The aims of attacker template modeling is to define a view of the security requirements model
that represents the possible ways in which attackers can exploit vulnerabilities to compromise
the system and the goals behind these attacks. To build the attack template, designers can take
advantages of existing approaches (e.g., attack tree [28] and anti-goals [32]) to develop a tree-like
malicious goal model. In addition, catalogs of malicious goals [3] might be useful for driving
attacker goals.

As discussed earlier, the modeling notation graphically distinguishes malicious and non-
malicious elements using a black shadow in the background of malicious elements as proposed
in [19, 9]. The exploitation of a vulnerability by a malicious actor is graphically represented by
a link labeled exploit from the malicious task to the vulnerability. A vulnerability may have
different effects on other goals and mechanisms. Different attacks that exploit a vulnerability
may have different effects on other elements. Therefore, to graphically link an attack and the
effect of the vulnerability that the attack exploits, the corresponding vulnerability effect links for
each attack are labeled with the same tag number that the exploit link is tagged. In this way, an
attack is a quadruple consisting of an attacker, the malicious task that the attacker performs, a

12



set of vulnerabilities, and their effect on the system (see Figure 3).

Figure 7: Attacker template view for the browser and web server example.

Figure 7 gives the attacker template view by extending the view in Figure 5 and introducing
two possible attackers, Random hacker and Fake Web Site. Fake Web Site, is a Web server
who intends to Steal user’s passwords from cookies. The Fake Web Site uses Phishing attack by
exploiting the Malicious script. The Random hacker is a User and inherit users’ capabilities. For
instance, the Random hacker can browse a website and enter inputs. The hacker can use these
capabilities for his malicious intents such as Obtaining other users cookies. One possible way to
obtain cookies of other users is Cross-site scripting which consists of Injecting a malicious URL
into the JavaScript and Extracting the cookies from malicious URL logs. To Inject a malicious
URL into the JavaScript, the hacker Injects malicious URL as user input by playing the role
of an ordinary user. To specify which malicious task exploits the vulnerability and causes this
effect both the exploit and vulnerability effect links are labeled with a tag (number one).

4.4 Identifying and Modeling Countermeasures

By developing requirements, vulnerabilities, and attack template views, analysts have the ma-
chinery necessary to evaluate the risks threatening the system. On the basis of risk assessment,

13



analysts elicit and analyze the security countermeasures needed to protect the system. To model
countermeasures, a modeling element is not added to the i* framework, since countermeasures
share the same nature with other tasks and resources. Different countermeasures can have a
different impact on attacks. A countermeasure can alleviate the effect of a vulnerability, patch
it, or prevent malicious tasks or system’s functionalities that bring the vulnerabilities. These
impacts are modeled through alleviate, patch, and prevent links respectively.

The model in Figure 8 presents the countermeasures for the vulnerabilities and attacks de-
picted in Figure 7. The countermeasure elements are highlighted using a different color8. In
Figure 8, the web server employs two security mechanisms: validate user input and Remove
HTML tags from use input. By removing the HTML tags, the malicious code is removed from
the user input. This impact is modeled through prevent relations between the countermeasures
and the malicious task Inject malicious URL as user input with “-” label. By validating user
input, the Malicious user input vulnerability is partially patched.

At the browser side, one can Disable JavaScript and use Anti Phishing tool bar. Disabling
JavaScript prevents performing Run the JavaScript with user inputs, hence, the vulnerable task is
not performed any more. As a result, the vulnerabilities that are brought by running JavaScript
do not exist any more.

4.5 Attacker Profile Definition

Different typologies of attackers may have different capabilities and skills. The idea underlying
the attacker profile is to analyze classes of attackers and their behavior against the system. To
define capabilities and skills of a class of attackers, the tasks that the attacker can perform,
resources that can obtain, and goals that can satisfy are identified and labeled. Intuitively,
labels represent the evidences that a goal has been satisfied, a task has been performed, or a
resource is available. We refer to Section 5 for details about evaluation labels. Table 1 gives two
different attacker profiles for Random Hacker and two profiles for Fake Web Site introduced in
Figure 5. The table indicates which attacker can achieve the tasks by assigning evaluation labels
to malicious tasks defined in the attacker template.

Table 1: Attacker profile definition for attacker templates in Figure 5.
Malicious Task

Random
Hacker (1)

Random
Hacker (2)

Fake Web
Site (1)

Fake Web
Site (2)

Send malicious script
that returns back the
cookies

D D S S

Fake to be the actual
website

D D S D

Inject a malicious URL
into the JavaScript

S S D D

Inject a malicious URL
into the JavaScript

S S D D

Extract the cookies
from malicious URL
logs

S D D D

8The highlighted color in the models does not bear any semantical significance and only intends to highlight
the countermeasures in the figures.

14



Figure 8: The countermeasure view for the web server and browser example. (The elements with
highlighted color are countermeasures)

5 Security Requirements Analysis using Goal Model Eval-
uation

In addition to the benefits that analysts gain through the modeling process, goal models in-
cluding vulnerabilities, attacks, and countermeasures provide a basis for security requirements
analysis. The purpose of the evaluation is to assess the risks due to attacks for determining the
countermeasure necessary to protect the system. While traditional risk analysis methods assess
risks by considering quantitative probability and severity of successful attacks [29], we propose
analyzing risks by evaluating satisfaction or denial of goals of system and stakeholders. For this
purpose, we take advantage of qualitative goal model evaluation techniques. Although a quanti-
tative risk assessment approaches can greatly simplify decision making and provide accurate final
results, it can be difficult to apply due to lack of agreed metrics of vulnerabilities and accurate
measures, specially in the early stages of development. On the other hand, qualitative evaluation

15



answers questions with lower resolution information, represented in a qualitative spectrum.
Goal model evaluation is the procedure to verify that actors’ top level goals are satisfied by

the choices that actors have made and consists of propagating denial or satisfaction evidences
through the goal model using a set of rules [6]. Horkoff [13] proposes an i* goal model evaluation
method where denial or satisfaction labels are assigned to the leaf nodes and then are propagated
through the goal model based on the type of the links between the elements. Evidences for
satisfaction or denial are in the scale of values, which ranges from full satisfy (S), partial satisfy
(PS), unknown (?), and conflict (C) to partial deny (PD) and full deny (D) which intended order
of S > PS > C >? > PD > D. In case of conflicts, human judgment is required to resolve the
conflicts of contributions during the evaluation process.

In this work, we have enhanced the i* framework with new concepts such as vulnerability,
effects of vulnerabilities, malicious elements, countermeasures, and impacts of countermeasures.
These new concepts and relations need to be accommodated into the existing evaluation method.
To this end, we have adopted and adapted the goal evaluation method in [13]. The syntactical
and semantical definition of the new modeling constructs requires revising the evaluation methods
accordingly. Employing countermeasures introduces direct contributions of tasks and resources
to malicious and non-malicious tasks, vulnerabilities, and effects of vulnerabilities. A security
solution may partially prevent a malicious task. For example, increasing the buffer size can
only partially addresses buffer overflow unless the buffer size is made infinite. This impact may
cause the propagation of partial satisfaction and denial values to hard elements such as tasks
and goals. In contrast, the algorithm in [13] assumes that intentional elements contribute only
to softgaols. This implies that partial values are only assigned to softgoals. In the current work,
we relax this assumption by considering partial values to be assigned also to goals, tasks and
resources. Partial values associated with those elements indicate that there is partial evidence
of their satisfaction or denial. Labels are also associated with vulnerabilities to represent the
evidences that they are exploited or not.

Figure 9 summarizes the security goal model evaluation steps. The evaluation starts with
assigning labels to the leaf nodes of both malicious and non-malicious actors. In particular, the
labels associated with malicious elements are defined on the basis of the selected attacker profile.
Then, the labels are propagated to the upper nodes using propagation rules. The final result of
evaluation shows the consequences of attacks and exploitation of vulnerabilities on higher goals.
If some stakeholders and system goals are denied because of attacks, analysts need to consider
countermeasures and analyze their impact on the system behavior and security. Evaluation
labels are propagated through the goal model again to verify the satisfaction or denial of the
goals because of the employment of countermeasures. In what follows, we present the propagation
rules underlying the security goal evaluation method.

5.1 i* Propagation Rules

This section briefly presents the propagation rules for i* concepts (i.e., dependency, contribution,
decomposition, AND/OR, and means-end) based on the work in [13]. In a dependency relation,
satisfaction of the depender element relies on the satisfaction of the dependee element. Therefore,
dependency links propagate the value of the dependee element to the dependum and then to
the depender element. Differently from [13], we do not define rules for dealing with ambiguous
scenarios. Analysts should avoid drawing goal models that contains ambiguity such as the ones
presented in the left side of Figure 10. Analysts shall revise the models in order to disambiguate
the model. The right side of Figure 10 shows some examples of unambiguous scenarios.

Contribution links represent the impact of intentional elements only on softgoals. Table 2
presents the rules for propagating the impact of an intentional element with denial or satisfaction
value to the target softgoal through contribution links. However, since we relax the restriction

9Softgoald, Goald, and Taskd are the dependum elements.

16



Figure 9: Security goal model evaluation steps

Figure 10: Ambiguous dependency links which analysts need to avoid9

of contribution links in the i* syntax, the rules in Table 2 are valid for contribution links to
hard elements as well. To propagate the evaluation values from multiple elements to a softgoal,
the rules in Table 2 are not enough. Because while one element can make the softgoal satisfied,
another element may make the softgoal denied entailing conflicting evidences. In this work, we
follow the approach suggested in [13] where human judgment is required to resolve conflicts.

AND/OR links refines a softgoal into one or more softgoals. When a softgoal is refined using
AND links, the minimum value among the sub softgoals is propagated to the higher softgoal.
When the softgoal is refined using OR links, the maximum value among the sub softgoals is
propagated to the top softgoal. A decomposition link refines a task into one or more intentional
sub-elements. To perform the higher task, all sub-elements need to be satisfied. Accordingly, the
label that is propagated to the higher task through the decomposition link is the minimum value
among the values associated with the sub elements. Means-end links specify alternative tasks to

17



Table 2: Propagation rules for contribution links
Source Label Contribution Link Type
Label Name ++ + −− − ?
Satisficed (S) S PS D PD ?
Partially Satisficed (PS) PS PS PD PD ?
Conflict (C) C C C C ?
Unknown (?) ? ? ? ? ?
Partially Denied (PD) PD PD PS PS ?
Denied (D) D PD PS PS ?

satisfy a goal. Since those tasks are alternative ways to achieve the higher level goal, means-end
links work as OR relations: the maximum value among alternative tasks is propagated to the
goal.

5.2 Vulnerability Exploit and Effect Propagation Rules

Tasks and resources may bring vulnerabilities to the system, and attackers exploit them to
compromise the system. In order to propagate the satisfaction or denial labels of malicious tasks
to other elements, vulnerability is treated as a filter : when the filter is open, a backdoor to the
system is open for attackers. To determine if the filter is open or not, both the vulnerable element
and the malicious task that exploits the vulnerability need to be analyzed. If the vulnerable task
is not executed, the vulnerability cannot be exploited. Similarly, if the resource that brings
the vulnerability to the system is not available, then the vulnerability does not exist within the
system. At the same time, a vulnerability is exploited if the attack succeeds, indicating that the
malicious task has been performed. To determine the exploitation condition of a vulnerability
(i.e., if it has been exploited or not), we introduce the function

exp : MT × TR −→ Vf

where MT is the evaluation value associated with the malicious task, TR is the value associated
with the task or resource that has brought the vulnerability, and Vf represents the exploitation
condition of the vulnerability. The evaluation value for Vf is calculated as Vf = min(MT,TR).
The satisfaction label (S) for the Vf means that the vulnerability is fully exploited, i.e. the filter
is completely open. The denial label (D) indicates that the vulnerability is not exploited and
the backdoor to the system is completely closed. Partial labels for Vf indicate that there exist
partial evidences about the condition of the filter.

The effect of the vulnerability on other intentional elements is computed on the basis of the
exploitation condition of the vulnerability and severity of it effects on the system. For instance,
if a vulnerability has not been exploited, its negative effect would not be propagated to other
elements. For this purpose, we employ the function

eff : Vf × I −→ E

where Vf is the exploitation condition of the vulnerability, I represents severity of the vulner-
ability effect, and E represents the evidences about the satisfaction or denial of the intentional
elements that is affected by the vulnerability. This function shares the same intuition of the
propagation rules described in Table 2. In the case where an attack exploits the combination of
two or more vulnerabilities, human judgment is required to evaluate the function eff for several
combined vulnerability effects.

18



5.3 Countermeasure Impacts Propagation Rules

Countermeasures can have three different security impacts: they can be used to prevent execution
of a task, achievement of a goal, or the availability of a resource; patching vulnerabilities; or
alleviating their effects. The propagation of the impact of a countermeasure through a prevent
link depends on the successful employment of the countermeasure as well as on its efficacy. To
evaluate the final impact of the countermeasure on the target element, we introduce the function

pre : C × P −→ E(new)

where C is the evaluation label associated with countermeasure, P is the type of the prevent
relation, and E(new) is the new evaluation value of the target intentional element affected by the
prevent. A prevent relation shares the same nature with contribution relations, and accordingly,
the function pre uses the propagation rules defined in Table 2.

When a countermeasure patches a vulnerability, the vulnerability exploitation condition is
modified. The objective of patching a vulnerability is to make the filter closer and consequently
to reduce the impact of the attack that exploits the vulnerability:

patch : C × P −→ V(new)

where C is the countermeasure evaluation label, P is the contribution type of the patch rela-
tion, and V(new) is the new value to be associated to the vulnerability. Similarly to prevent
relations, a patch relation shares the same intuition with a contribution link, and the corre-
sponding propagation rules are similar to the ones defined in Table 2. However, we assume that
countermeasures only reduce the risks and do not magnify vulnerabilities or attacks. Therefore,
propagation rules apply in cases where the countermeasure is partially or fully satisfied, and the
impact is not propagated if the countermeasure is partially or fully denied. Once the impact of
a countermeasure is propagated through the patch link, the new exploitation condition of the
patched vulnerability needs to be propagated to other instances of the vulnerability through
decomposition and dependency links.

Finally, a countermeasure may alleviate the effect of an exploited vulnerability. In this case,
the contribution value of the alleviate link is combined with the countermeasure evaluation value
and the current effect of the vulnerability. This can be represented by the function

all : C ×A× E(old) −→ E(new)

where C is the countermeasure evaluation label, A is the contribution type of the alleviation
relation, and E(old) and E(new) are the contribution of the vulnerability effect before and after
applying the countermeasure respectively. Table 3 defines the rules used by function all to
compute the E(new) value.

Table 3: Propagation rules for alleviate links
Countermeasure
label

Alleviate
Contribution

Old Vulnerability
Effect

New Vulnerability
Effect

S - - -
PS - - - - -
S - - - - ? (no impact)
PS - - - - -
S - - - -
PS - - - -
S - - - ? (no impact)
PS - - - -

19



5.4 Evaluation Example

The first step of the evaluation is assignment of evaluation labels to the leaf nodes of malicious
and non-malicious actors. Attacker profiles are used for the assignment of evaluation labels to
the leaf nodes of malicious actors. Figure 11 shows the result of label propagation on a fragment
of Figure 7. The steps of propagation are depicted by the tag numbers assigned to the evaluation
labels of each element. After the initial label assignment, labels are propagated to the upper
nodes. For example, the Malicious script vulnerability attached to Run the JavaScript with user
inputs task is fully exploited because the vulnerable and malicious tasks that exploit it are fully
satisfied. The exploitation condition of the vulnerability together with its effect makes Protect
users’ cookies, fully denied.

Figure 11: Propagation of the evaluation labels through the attacker template view

In Figure 12, two alternative countermeasures, Disable JavaScript and Anti Phishing tool
bar, are added to the system to analyze their impacts on the system security. Assuming that the
user Disables JavaScript option, the evaluation process continues by propagating the impact of
this countermeasure to the Run the JavaScript with user inputs task. As a result, the task that
brings the vulnerability is fully denied, and the impact of the vulnerability is not propagated to
Protect users’ cookies goal. On the other hand, the Build customized page softgoal is partially
denied.

6 Related Work

Security requirements intend to protect the system against threats and prevent the exploitation of
vulnerabilities by attackers. Security Requirements Engineering should thus provide techniques
for modeling and analyzing attacks, attackers and vulnerabilities, and eliciting countermeasures
in order to protect the system. In this section, we overview the current state of the art in threat
analysis and security requirements engineering.

20



Figure 12: Propagation of the evaluation labels through the countermeasure view

6.1 Threat Analysis

In the security engineering, various modeling techniques have been proposed to analyze the
system from the perspective of attackers [22, 25, 28, 34]. Schneier [28] proposes attack tree as a
formal and methodical way for analyzing attacks. The root node of an attack tree is the goal of
the attacker that is refined using AND/OR relations to understand the possible alternatives used
by the attacker to achieve his goal. Schneier argues that designers can take advantages from the
understanding of all possible alternatives in which a system can be attacked, who the attackers
are, their abilities and motivations in order to select appropriate countermeasures against those
attacks. Attack trees can be also annotated with properties of attackers (e.g., skill, access, risk
aversion, etc.) and labels representing the cost or probability of achieving a goal. Such properties
allow designers to analyze the behavior of classes of attackers by focusing on a certain parts of
the attack tree. Attack trees, however, are not linked to other development artifacts, such as
design, architecture, and requirements specifications.

Fault Trees Analysis (FTA) [34] is one of the most commonly-used techniques in reliability
engineering. The main goal is to assess the likelihood of system failures based on the likelihood
of external events. Fault trees visually model logical relationships among infrastructure failures,
human errors, and external events that could lead to the system failure. Although FTA enables
modeling faults and tracing them to events or errors, it does not provide means to express
vulnerabilities of the system and link attacks to them. Moreover, FTA does not support the
analysis of the impact of countermeasures on the system.

McDermott [22] proposes to model attack nets as Petri Nets where places represent states or
modes of the security-relevant entities within the system, and transitions represent input events,
commands, or data that cause one or more security relevant entities to change state. Attack
steps are represented by places, transitions are used for the explicit modeling of attacker actions,
and tokens are used to indicate the progress of the attack. However, Petri Net models do not
support the modeling and analysis of vulnerabilities and countermeasures. The attack model is
not linked to other development artifacts, which is an obstacle to elicit security requirements

21



and design the architecture. Although it is possible to express attackers, their goals, skills, and
capabilities cannot be expressed.

Phillips et al. [25] introduced attack graphs to analyze vulnerabilities in computer networks.
Attack graphs provide a method for modeling attacks and relating them to the machines in a
network and to the attackers. The proposal is based on attack templates, attack profiles, and
network configurations. Attack templates describe generic steps in known attacks and conditions
which must be hold. The underlying idea is to match the network configuration, attacker profile,
and attack templates to generate the attack graph. An attack graphs is an attack template
instantiated with particular attackers/users and machines. Thereby, one can analyze an attack
graph by identifying the attack paths that are most likely to succeed. Although attack graphs
are able to model the steps of an attack, post and pre conditions, required configurations, and
capabilities, they do not express the impact of the attacks on system functionalities.

The CORAS project [8] proposes a modeling framework for model-based risk assessment in
the form of a UML profile. The profile defines UML stereotypes and rules to express assets, risks
targeting the assets, vulnerabilities, accidental and deliberate threats, and the security solutions.
In addition to the UML profile, CORAS defines a methodology based on the Unified Process
for risk assessment. The analysis method consists of analyzing the target context by developing
asset and threat models. The potential attackers, who impose the risks, and vulnerabilities that
are exploited by attackers are identified. Risks are prioritized with respect to their severity and
likelihood, and the treatments for those risks that are not acceptable are identified. CORAS
provides a way for expressing how a vulnerability leads to another vulnerability and how a
vulnerability or combination of vulnerabilities lead to a threat. CORAS also provides facilities
to relate treatments to threats and vulnerabilities. However, it does not investigate which design
choices, requirements, or processes has brought the vulnerabilities to the system.

6.2 Security Requirements Engineering

In recent years, the necessity of considering security from the early phases of the software devel-
opment process has been recognized. To address this need, traditional requirements engineering
framework has been adopted and adapted to support the modeling and analysis of security
requirements. Van Lamswerde extended KAOS [7], a goal-oriented security requirements engi-
neering methodology, by introducing the notions of obstacle to capture exceptional behaviors
[33] and anti-goal to model intentional obstacles set up by attackers to threaten security goals
[32]. Anti-goals are defined as the negation of application-specific instances of generic secu-
rity goals such as confidentiality, availability, and privacy. Basically, anti-goals represent the
goals of attackers. Anti-goals are then refined to form a threat tree on the basis of attackers’
goals and capabilities as well as software vulnerabilities. The leaf nodes are either software vul-
nerabilities or anti-requirements (i.e., anti-goals that are realizable by some attacker). Security
requirements are defined as the countermeasures to software vulnerabilities or anti-requirements.
The framework does not consider assets as a main concept for eliciting and elaborating secu-
rity requirements. In addition, vulnerabilities are identified as part of the anti model, while
vulnerabilities exist independent of the threats.

A number of approaches based on i*/Tropos [35, 5] have been proposed to address different se-
curity aspects. Liu et al. [19] propose to explicitly model the relationships among strategic actors
in order to elicit, identify, and analyze security requirements. All actors are assumed potential
attackers, which inherit capabilities, intentions, and social relationships of the corresponding
legitimate actor. The framework attempts to identify the vulnerable points in the dependency
network when an actor behaves maliciously and to understand the measures necessary to pro-
tect the system. Attacker identification however is limited to analyzing what roles in the system
can impose threat on the dependencies and ignores external attackers. Moreover, the approach
does not explicitly describe how countermeasures need to be incorporated into the model and
what are their impacts on attacks and other goals. A different perspective has been adopted by

22



Giorgini et al. [10] who define Secure Tropos for modeling and analyzing authorization, trust
and privacy concerns. Secure Tropos extends Tropos with concepts specific to security, namely
ownership, permission, delegation, and trust. Secure Tropos, however, addresses security issues
within the organization setting rather than dealing with malicious actors.

Some proposals focus on integrating risk analysis into the requirements engineering main-
stream. Asnar et al. [2] propose Goal-Risk (GR) Tropos, which extends Tropos with three basic
layers: strategy, event, and treatment. The strategic layer analyzes strategic interests of the
stakeholders; the event layer analyzes uncertain events along their impacts to the strategy layer;
and treatment layer analyzes treatments to be adopted in order to mitigate risks. However, the
framework mainly concerns the development of safety critical system and does not consider the
intentionality of attackers. Mayer et al. [23] analyze the impacts of risks on business assets and
elicit the security requirements for mitigating the risks. In this work, risks are related to the
threats and vulnerabilities in the architecture. However, threats are not assigned to an actor and
vulnerabilities are not attached to the assets or actions that bring the vulnerability to the system;
also threats and vulnerabilities are not related to each other and the impact of countermeasures
on the vulnerabilities is not analyzed. Matulevicius et al. [20] improves the Secure Tropos [24]10

modeling language for risk management purposes, where risk is defined as the combination of
a threat with vulnerabilities leading to negative impacts on assets. Vulnerabilities are treated
as beliefs inside the boundary of attackers which may contribute positively to the successful of
an attack. However, similar to the CORAS framework [8], the resulting model does not specify
how the vulnerability is brought to the system, by what actions, and by what actors. In addi-
tion, the enhanced Secure Tropos models do not capture the impact of countermeasures on the
vulnerabilities and attacks.

Haley et al [12] propose a security requirements framework based on constructing the sys-
tem context, representing security requirements, and developing satisfaction arguments for those
requirements. The framework extends problem frames and intends to determine adequate se-
curity requirements for the system by considering threats as crosscutting concerns. Functional
requirements describe how assets (i.e., objects to be protected) are used within the system, and
threats describe how attackers can compromise the security of assets. Security requirements are
thus defined as constraints on functional requirements. Once security requirements are elicited,
satisfaction arguments are used to verify that security requirements are satisfied by the system
as described by the context. This proposal, however, mainly focuses on system requirements and
does not provide methodological support for the analysis of the organizational context where the
system will operate.

In the UML community, Sindre and Opdahl [31] propose analyzing security requirements by
defining misuse cases, inverted UML use cases, which describe functions that the system should
not allow. They are depicted as black ovals to distinguish them from traditional use cases.
Misuse cases can be linked to use cases to indicate that the use case is exploited by the misuse
case, and use cases to misuse cases to indicate that the use case is a countermeasure against the
misuse case. This new construct makes it possible to represent actions that the system should
prevent together with those actions which it should support. A similar proposal is defined by
McDermott and Fox [21], who introduce abuse cases to specify the interactions that their results
are harm to system. Differently form misuse cases, abuse cases are distinguished from use cases
by representing them in separated models. This does not allow one to analyze the impact of
an abuse case on use cases. The security requirements elicitation process underling abuse and
misuse cases does not consider why and how security goals are defined without analyzing what
may threaten the assets.

Jürjens proposes UMLsec [16], a UML profile designed to express security relevant infor-
mation within UML diagrams. UMLsec objectives are to encapsulate knowledge and make it

10In security requirements literature, two different frameworks developed by different researchers are called
Secure Tropos [24, 10].

23



Table 4: Comparison of modeling notations. N indicates that the concept or relation is not
considered, and Y indicates the relation is considered explicitly in the notation. P means the
relation is implicitly considered or its semantics is not well defined.

Security Require-
ments Modeling
Framework

Vulnerability
graphical rep-
resentation

Relation to
vulnerable
elements

Effects of vul-
nerabilities

Relation of vul-
nerabilities and
attacks

Countermeasure’s
impact on vul-
nerabilities

CORAS Frame-
work [4] N Y P P
Secure Tropos by
Matulevicius et al.
[20] N Y P N
Risk-Based Secu-
rity Framework by
Mayer et al. [23] N P Y N
Security extention
on i* framework
by Elahi et al. [9] Y N P N
Current proposal
for vulnerability-
centric require-
ments engineering Y Y Y Y

available to developers in the form of a widely used design notation, and to provide formal tech-
niques for the verification of security requirements. The profile is described in terms of UML
stereotypes, tags, and constraints that can be used in various UML diagrams such as activity
diagrams, statecharts, and sequence diagrams. The stereotypes and tags encapsulate the knowl-
edge of recurring security requirements of distributed object-oriented systems, such as secrecy,
fair exchange, and secure communication link. Assigning a stereotype and tag to the model and
defining potential threats make it possible to analyze the behavior of subsystems in order to
verify the security impact of threats on the system. The defined security requirements are high
level and general. This increases the reusability of the extensions in various contexts. On the
other hand, the default threats may not hold in every context.

6.3 Discussion and Comparision

Few security modeling notations provide explicit constructs for modeling vulnerabilities and an-
alyzing their impacts on security requirements. As mentioned before, CORAS framework models
and analyzes vulnerabilities by linking them to the threats and risks. In [20], vulnerabilities are
modeled as beliefs of attackers which may contribute possitively to the attacks. In [23], i* is
extended to represent vulnerabilities and their relation with threats and other elements of the
i* goal model.

The missing point in these approaches is providing modeling constructs to understand why
vulnerabilities are within the system and how they are spread out among the actors. To our
knowledge, existing modeling notations do not provide means to assign vulnerabilities to the
actions that actors perform or assets they use. The harmful effects of vulnerabilities on stake-
holders and system requirements are not expressed by existing proposals. Among the modeling
notations that provide explicit constructs for the concept of vulnerability, CORAS is the only
method that relates the countermeasures to vulnerabilities. However, CORAS and other vul-
nerability modeling notations do not analyze the impacts of countermeasures on vulnerabilities.
Table 4 compares capabilities and limitations of existing modeling notations and the new pro-
posal in this paper for modeling and analyzing vulnerabilities as part a security requirements
engineering framework.

24



7 Conclusions and Future Work

This paper proposes a requirements engineering framework to support the elicitation of security
requirements based on the vulnerabilities that requirements and design decisions bring to the
system. The framework comprises of a modeling framework that extends i* with the concept
of vulnerability and relations that allow modeling and understanding effects of vulnerabilities
on security requirements. Security requirements are expressed in the form of countermeasures
to be adopted to prevent attacks, patch vulnerabilities, or alleviate their effect. Together with
a modeling notation, the framework provides an evaluation method for assessing vulnerabilities
risks and countermeasures efficacy.

This work is still in progress to better support system designers in modeling and analysis
of security requirements. Goal models and the i* modeling notation do not capture temporal
aspects of the systems. Therefore, the resulting models do not provide a temporal sequence to
guide reading and understanding the model for the analysts that view the large and complicated
models. A major limitation of the proposed approach concerns scalability issues. Goal models
contain multiple actors and dependency chains, and each actor includes several intentional el-
ements and complicated relationships. The resulting models, especially extended with security
concepts, can be complicated and hard to understand. This requires development of modeling
and analysis tools that provide resolution management and handle the model complexity by pro-
viding views of the security requirements model. To manage the complexity of the models, one
can filter vulnerabilities that are not exploited as well as their effects. Analysts would benefit
from views that focus on a specific attack, vulnerability, or countermeasure of importance, which
cuts some other elements out of the model.

The proposed framework assumes that analysts have knowledge about vulnerabilities, po-
tential attacks, and proper countermeasure or can obtain such information. In particular, the
analysis of vulnerabilities, such as propagating them through the goal model or identifying their
impacts require experience with vulnerable software products and services. However, existing
vulnerability databases do not provide the required knowledge for linking vulnerabilities to ac-
tions and assets of the system actors and to potential attacks and countermeasures. Therefore,
software developers without security expertise may need additional support for applying the
proposed framework.

To address these issues, we are building catalogs of attacker templates that defines the behav-
ior of attackers and catalogs of countermeasures that describe how security flaws are addressed
in current security practices. The attacker catalogs assume limited skills and capabilities for the
attackers and analyze the actions that they can perform for compromising the system in detail.
The attacker templates are then instantiated using attacker profiles to study the behavior of par-
ticular classes of attackers. We are also developing security metrics based on the risk attitude of
system designers and stakeholders as well as on specific application domains to assist designers
during the decision making process.

Finally, we are currently performing empirical studies for evaluating the expressiveness of
the proposed modeling notation and the accuracy of the analysis method. Human subjects are
being asked to use the proposed framework for modeling and analyzing a number of case studies.
The modelers are interviewed and models are critically analyzed to draw conclusions about the
practical usefulness and expressiveness of the approach.

Acknowledgment

Financial support from Natural Science and Engineering Research Council of Canada and Bell
University Labs is gratefully acknowledged.

25



References

[1] R. Anderson. Security Engineering: a guide to Building dependable Distributed systems.
John Wiley and Sons, 2001.

[2] Y. Asnar, R. Moretti, M. Sebastianis, and N. Zannone. Risk as Dependability Metrics for
the Evaluation of Business Solutions: A Model-driven Approach. In Proc. of DAWAM’08,
pages 1240–1248. IEEE Press, 2008.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic Concepts and Taxonomy
of Dependable and Secure Computing. TDSC, 1(1):11–33, 2004.

[4] F. Braber, I. Hogganvik, M. S. Lund, K. Stolen, and F. Vraalsen. Model-based security
analysis in seven steps — a guided tour to the coras method. BT Technology Journal,
25(1):101–117, 2007.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. TROPOS: An
Agent-Oriented Software Development Methodology. JAAMAS, 8(3):203–236, 2004.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, editors. Non-Functional Requirements
in Software Engineering. Kluwer Academic Publishing, 2000.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed Requirements Acquisition.
Sci. Comput. Programming, 20:3–50, 1993.

[8] F. den Braber, T. Dimitrakos, B. A. Gran, M. S. Lund, K. Stolen, and J. O. Aagedal. The
CORAS methodology: model-based risk assessment using UML and UP. In UML and the
unified process, pages 332–357. IGI Publishing, 2003.

[9] G. Elahi and E. Yu. A goal oriented approach for modeling and analyzing security trade-offs.
In Proc. of ER’07, LNCS 4801, pages 375–390. Springer, 2007.

[10] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Modeling security requirements
through ownership, permission and delegation. In Proc. of RE’05, pages 167–176. IEEE
Computer Society, 2005.

[11] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Formal reasoning techniques
for goal models. J. Data Semantics, 1:1–20, 2003.

[12] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering: A
framework for representation and analysis. TSE, 34(1):133–153, 2008.

[13] J. Horkoff. Using i* Models for Evaluation. Master’s thesis, University of Toronto, 2006.

[14] IBM Global Technology Services. IBM Internet Security Systems X-Force 2007 Trend Statis-
tics, 2008.

[15] ISO/IEC. Management of Information and Communication Technology Security – Part 1:
Concepts and Models for Information and Communication Technology Security Manage-
ment. ISO/IEC 13335, 2004.

[16] J. Jürjens. Secure Systems Development with UML. Springer, 2004.

[17] J. Krogstie, A. L. Opdahl, and S. Brinkkemper. Capturing dependability threats in concep-
tual modelling. Conceptual Modelling in Information Systems Engineering, pages 247–260,
2007.

26



[18] L. Liu, E. Yu, and J. Mylopoulos. Analyzing security requirements as relationships among
strategic actors. In Proc. of SREIS’02, October 2002.

[19] L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social
setting. In Proc. of RE’03, page 151. IEEE Computer Society, 2003.

[20] R. Matulevicius, N. Mayer, H. Mouratidis, E. Dubois, P. Heymans, and N. Genon. Adapt-
ing secure tropos for security risk management in the early phases of information systems
development. In CAiSE, pages 541–555, 2008.

[21] J. McDermott and C. Fox. Using abuse case models for security requirements analysis. In
Proc of ACSAC’99, page 55. IEEE Computer Society, 1999.

[22] J. P. McDermott. Attack net penetration testing. In Proc. of NSPW’00, pages 15–21. ACM,
2000.

[23] N. Meyer, A. Rifaut, and E. Dubois. Towards a Risk-Based Security Requirements Engi-
neering Framework. REFSQ-Proc. Of Internat. Workshop on Requirements Engineering for
Software Quality, 2005.

[24] H. Mouratidis, P. Giorgini, G. Manson, and I. Philp. A natural extension of tropos methodol-
ogy for modelling security. In Proceedings of the Workshop on Agent-oriented methodologies,
at OOPSLA, 2002.

[25] C. Phillips and L. P. Swiler. A graph-based system for network-vulnerability analysis. In
Proc. of NSPW’98, pages 71–79. ACM, 1998.

[26] E. R. Kissel. Glossary of key information security terms. NIST IR 7298, 2005.

[27] F. B. Schneider, editor. Trust in Cyberspace. National Academy Press, 1998.

[28] B. Schneier. Attack trees. Dr. Dobb’s Journal, 24(12):21–29, 1999.

[29] B. Schneier. Beyond Fear. Springer, 2003.

[30] B. Schneier. The psychology of security. Commun. ACM, 50(5):128, 2007.

[31] G. Sindre and L. Opdahl. Eliciting security requirements with misuse cases. Requir. Eng.,
10(1):34–44, 2005.

[32] A. van Lamsweerde. Elaborating security requirements by construction of intentional anti-
models. In Proc. of ICSE’04, pages 148–157. IEEE Computer Society, 2004.

[33] A. van Lamsweerde and E. Letier. Handling Obstacles in Goal-Oriented Requirements
Engineering. TSE, 26(10):978–1005, 2000.

[34] W. E. Vesely, F. F. Goldberg, N. Roberts, and D. F. Haasl. Fault tree handbook. Technical
Report NUREG-0492, U.S. Nuclear Regulatory Commission, January 1981.

[35] E. Yu. Modeling Strategic Relationships for Process Reengineering. PhD thesis, University
of Toronto, 1995.

[36] E. S. K. Yu. Towards modeling and reasoning support for early-phase requirements engi-
neering. In Proc. of RE’97, page 226. IEEE Computer Society, 1997.

27


