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Abstract
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Master of Science
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2008

i∗ and in general goal model evaluation is used to help a requirements analyst build a

system that better achieves certain qualities by providing means of evaluating each alter-

native design. In this work, we improve the evaluation process of i∗ by (i) providing new

types of analysis and reasoning in the evaluation process and (ii) providing automated

support for existing and the newly introduced analysis use case profiles. The proposed

framework enables the requirements analyst to navigate through alternative solutions

that when propagated would satisfy certain high level goals of the organization; also the

analyst can specify preferences at different levels from basic desires to multiagent prefer-

ences and ask the framework to return the most preferred solutions first. The framework

also produces deterministic partial solutions resulting from analyst’s inputs by running

cautious queries over the logical model corresponding to the goal model.
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Chapter 1

Introduction

The concept of goal has been used in AI for planning to characterize an objective state

of the world [11]. Software requirements can be viewed as the goals that the software

is supposed to achieve and on this basis, goals have been used in software engineering

to model early requirements [2] and non-functional requirements [8] in a system. As an

example, for a hospital information management system, an early requirement might be

to make patients information available through the entire system for the staff that are

authorized to access patient’s data while a non-functional requirement might be to make

the system as easy as possible to use for patients/personnel (user-friendly).

Using goals for modeling stems from intentional modeling of systems. In a modeling

framework an abstract conceptual model is constructed from the real system. Every

modeling language focuses on certain characteristics and properties of the real-world

domain that it is modeling. In [10], it is discussed that these characteristics (ontologies)

can be categorized to static, dynamic, intentional and social. In static abstraction, the

model captures entities and their attributes and the static relationship between them.

The dynamic abstraction on the other hand can capture the changes occurred in system

elements and can potentially model characteristics such as processes, states and state

transitions. The classical software modeling diagrams used nowadays such as UMLs

(unified modeling language) or ERDs (entity relation diagram) are examples of dynamic

and static modeling frameworks respectively. The state-diagrams in UMLs enable them

to capture different states of the system as well as possible transitions of the system

among them. Although these models are nowadays addressing the majority of industry’s

demand for modeling systems, they don’t go beyond describing the ”what” and ”how”

of system aspects [15, 7]. For example, ERD diagrams describe what entities exist in

the system along with how these entities relate to each other; or UMLs describe what

states the system can go through and how would the system change its state (under what

1



Chapter 1. Introduction 2

conditions or actions). The one aspect of systems that is not addressed within static

or dynamic modeling is the reason behind the current functionality of the system or in

other words the ”why” questions: why do we have these states in the system? Why is

the system designed to move from state A to B and not to C or can the system better

satisfy that reason (goal) better if the system was changing its state in a different way?

These valuable questions that can lead to constructing better systems are usually asked

when designing large scale systems, however, static and dynamic modeling frameworks

do not capture intentional concerns. A typical software architect for example deals with

these questions on a daily basis. The ”why”s or motivations of the systems arise from

the autonomous parties involved in the system: people and the organizations involved

in the system. In the literature, goal models are typically used for modeling intentional

aspects of systems [14].

Goal models represent involving agents’ goals with explicit modeling notations and

provide modeling support for refining goals into more specific subgoals and eventually

tasks that are technical representation of the system. Goals can potentially be decom-

posed and refined in more than one way to subgoals; this variety determines the space

of possible solutions to a high level goal. However, an evaluation of each solution (alter-

native) can determine to what extent can each solution meet the goal. The other kind of

modeling is the social modeling in which the organizational structure and the interaction

of agents’ goals, roles and positions can be also modeled using proper modeling notations.

The i∗ modeling framework [16] is capable of capturing all the four category of concerns

in systems; The organizational interactions are modeled through dependency links in a

network of goal models that address the intentional aspect of the system. i∗ also model

limited static and dynamic concerns through such constructs like resources (as entities)

and tasks (as processes). The i∗ model and in general organizational goal models provide

a form of abstraction that enable simple yet effective forms of evaluations and analysis

to be performed on social/intentional aspects of organizations. These analysis can lead

to fundamental improvements in the strategic structure of the organizations and further

satisfying organizational goals. [7] provides an evaluation support framework for i∗ that

accounts for the social modeling capability of i∗ as well as intentional.

In this work, we intend to improve the evaluation process of i∗ by (i) providing new

types of analysis in the evaluation process and (ii) providing automated support for

existing and the newly introduced analysis profiles. In the following, we provide a review

of the existing approaches for evaluating goals models and also specifically i∗ models and

discuss their limitations.
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1.1 Existing Evaluation Frameworks

From a user-centric point of view, there are certain use cases that when supported by

an evaluation software tool, can help the analyst in improving his/her understanding of

the goal/i∗ model (henceforth called goal model for briefness) and available alternative

solutions. We can view these use cases under two categories:

1. Structural Use Cases: the ones that deal with the construction of the goal model

such as modifying the goal model like adding or removing elements, importing and

exporting the goal model, etc; and

2. Evaluational Use Cases: the use cases that help the analyst evaluate, compare,

modify and find the best alternative solution for fulfilling organizational goals with

respect to organizational soft goals and the way they will be fulfilled, such as bottom

up reasoning, top-down reasoning, etc.

Our framework extends the current evaluational use cases of i∗ evaluation procedure

(which is for example supported by OpenOME [17]) and provides automation support

for them. In chapter 4 we describe a line of research as an extension of this paper in

which automation support is provided even for structural use cases.

Throughout the literature, we can observe the following major approaches to evalua-

tional use cases in evaluating goals models:

• Bottom-Up Reasoning: In this scenario, given a goal model, the user can specify

a set of initial labels for certain elements of the model and use the tool to propagate

the labels up to the high level goals using a set of propagation rules that depend

upon the evaluation framework in use. For example, in an i∗ evaluation procedure

described in [7], the propagation rules are driven from table 3.1. The analyst can,

for example, use this use case to monitor the effect of changing the way a soft goal

is fulfilled on the satisfaction of the high level goals of the organizational model.

The flow of reasoning in this case is bottom up. In other words the user can not

specify desired high level satisfaction values and derive low level elements’ labels.

• Top down Reasoning Using SAT Solver: Automated reasoning can be most

helpful when the user can specify desired labels and use the reasoning tool to

derive other labels based on the model structure: as the size of the model grows,

the number of ways that high level goals can be fulfilled increase exponentially

with regard to the choices available. Top down reasoning with SAT Solver [12]



Chapter 1. Introduction 4

was an effort to address this kind of reasoning. Given as input a set of desired

values D for high level goals, the reasoning mechanism can determine either there

exists a solution alternative (an assignment of satisfaction/denial labels to leaf level

elements in the model) that when propagated, can produce every label in D.

Limitations of existing approaches

Navigation through solutions In the discussed approaches, the user can’t navigate

through different plans, but rather can only receive 0 or 1 solution. It is obvious that

giving the user the option of navigating through solutions enables the user to choose

among more options and better tailor the solution to his needs that are not necessarily

expressed in the criteria given as input to the evaluation software.

Preferences among user’s objectives Moreover, the user can’t specify preferences

among the labels in D: for example it may not be possible to fulfill both goals G1

and G2 at the same time, however, there may exist solutions that address one of them.

In this case, the user could have specified a preference between the two goals. The

preferences can of course take more complex forms and come into play in cases where

organizational goals highly compete with each other and compromising some of them in

favor of the others is inevitable. Also, the number of possible alternative solutions for

user’s objective can grow exponentially with the size of the model and thus the user can

not always enumerate them all in order to arrive at a conclusion. This concern too calls

for having a mechanism for discriminating among the solution alternatives.

Inferring implicated properties of the model The other direction along which the

existing approaches can be extended, is the ability of inferring useful properties of the

model based on the current solution and the structure of the model. For example, when

the user assigns a certain label to an element, given the user’s intentions, or even in

some cases independent of that, some other elements’ label will be uniquely determined.

Identifying these consequences can be helpful to the user since the user will know that

no matter what alternative he chooses, the value of these elements should be as they are

determined by the reasoning framework.

Incorporating domain knowledge into reasoning The other limitation of the ex-

isting reasoning and evaluation approaches is the way they deal with the analyst’s domain

knowledge when propagating labels: when analyzing goal models, it’s often the case that

the contributions made towards an element are conflicting each other. Some of the
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contributions imply the satisfaction of the element while others imply its denial. In i∗

evaluation procedure, in order to deal with these contradictions, the human knowledge

is taken as input and will be accounted to unify and resolve the conflicting contributions

into a satisfaction or a denial label for the element. The automated propagation will

be then continued until another conflict arises that needs human input to be resolved

and this process repeats until the model’s labels converge. Whereas in other evaluation

frameworks that use reasoning such as [5], the assumption is that the initial labels along

with the structure of the goal model is enough to derive the ultimate labels; when a con-

flict arises, they either reject the current solution or view the a conflicted element as one

which is both satisfied and denied and then the satisfaction and denial of this element will

be separately propagated upwards. We think that both approaches are approximations

of the reality. We believe that because of the complexity and diversity of the real world

organizations, human interaction is necessary to make requirements analysis a realistic

one that can take into account the unique characteristics of that organization.

1.2 Approach

The proposed framework in this paper intends to address the above shortcomings. Navi-

gation through proper solutions is provided by extracting all the solutions and providing

them to the user. The underlying computational engine along with provided logic rules

in chapter 3 makes it possible to discriminate among solutions based on user preferences.

By running queries over the program that represents the goal model in logic rules, we can

find the implicated properties of the model from the user’s initial input. The framework

also effectively solicits human knowledge into logical reasoning through user interaction

through two approaches: (i) Individually translating human conflict resolution into cor-

responding rules that simulate the effect of manual resolution in automated reasoning

and (ii) providing the user with the option of specifying preferences among incoming

links to a node N and resolving conflicts arising in N exclusively based on the given

order.

On the other hand, the framework takes advantage of faster logical reasoning machin-

ery compared to other computational methodologies: Answer Set Programming (ASP)

engines. The specific ASP engine that we use, DLV [9], uses model checking to compute

models, which is much faster than current implementation of i∗ evaluation procedure that

uses regular propagation algorithms.

The provided implementation is almost completely independent of the way that the

underlying engine works and on the other hand, recent advances [6] have shown that the
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models of an answer set program can be computed using SAT solvers which offer even

more potential prospect for faster computation.

1.3 Reasoning on Goal Models with ASP

The proposed logic framework consists of rules that together unify the following pieces

of knowledge into a declarative logic program:

• The structure of the goal model: the elements, decomposition, contribution

and dependency links in the model.

• User’s initial labels initial labels that user has assigned to leaf level elements.

• User’s desired labels for high level elements: or in other words, user’s goals

as to which soft goals or goals need to be satisfied.

• User’s preference for the satisfaction of soft goals: which soft goals are more

important than others, in case all of them can not be satisfied.

• User’s knowledge of conflict resolution: which is given as input by the user

through interactions or other mechanisms.

• Structural constraints and Plug-in qualities: The expressive power of the

underlying logical language that is used opens windows of opportunity for express-

ing a wide range of constraints and qualities of the model. These qualities may be

context sensitive and thus can be plugged into the set of other rules to produce

models of higher quality. For example, one could prefer models that delegate as few

tasks as possible to external agents over others. Other forms of constraints could

enforce levels of trust in the model. One good example of such constraints which

have has implemented using declarative logical language is [3].

The framework then feed the resulting program P into an ASP engine. The ASP

engine returns answer sets which are minimal sets of ground atoms that conform to all

rules of P that correspond to evaluations of the goal model. Through appropriate user

controls, the user can navigate through the generated models, pick up a model, modify

it, resolve any conflict in that model, re-propagate the results, specify preferences among

soft goals and other related tasks that enable the user to interact with the reasoner.
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1.4 Paper Organization

In the next chapter, through a top-down approach, we present the evaluational use cases

that are made possible in our framework. In chapter 3 computational support is provided

for each of the introduced use cases using answer set programming. Finally, in chapter 4

we provide the future lines of research that stems from this research as well as conclusions.



Chapter 2

Interactive evaluation framework for

i∗

We present our framework in two chapters: this chapter presents the conceptual design of

the framework from a user perspective while the next chapter deals with computational

support for use-cases introduced in this chapter. In addition to the verbal description of

the use cases, a visual snapshot of the application controls that the user can potentially

use in OpenOME to go through each use case is also given.

2.1 Bottom-Up Propagation Use Case

Bottom-Up propagation for i∗ evaluation is supported in available evaluation procedures

such as [7] and implemented in tools such as OpenOME. The main contribution in this

part would be the translation of the use case into answer set programming rules in

order to semi-automate the use case (automated when there’s no need for human conflict

resolution and manual otherwise) and integrate this use case with the other ones that our

framework supports. While the original implementation of this use case has appeared

in [7], we need to incorporate it in our framework since the propagation logic is used in

other use cases such as top-down evaluation.

In bottom-up propagation scenario, the user will assign a set of initial labels to some

nodes in the i∗ model and asks the tool to perform a bottom-up propagation. The tool

would then propagate the labels based on the propagation algorithm given in [7] and

once the propagation converges, shows the result to the user. The other dimension to

this use case is conflict resolution. In the presence of conflicting labels in a node’s bag of

labels, the tool asks the human to resolve the bag of labels to a final label and resumes

8
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the propagation procedure afterwards.

For visualizing this use case, consider the i∗ diagram in figure 2.1. As can be seen

in the figure, the user has pre-assigned a set of initial labels to some of the elements in

the lower level of the model. The OpenOME tool has simple button/menu controls for

performing a bottom up propagation (see figure 2.2). Once the user presses this button,

the bottom up propagation is performed and the result is shown to the user in the form

of newly propagated labels in the diagram (see figure 2.3).

When the i∗ evaluation procedure is unable to assess a final label based on the current

labels in a node’s bag of labels, it will ask the user to provide a resolution. The input

dialog box shown in figure 2.4 shows this scenario. The user will be repeatedly asked for

conflict resolution until the propagation converges into a final state where labels don’t

change anymore as a result of iteration [7].

The computational support needed to automate this use case is provided in the fol-

lowing chapter.

2.2 Top-down Evaluation Use Case

Top-down evaluation can enormously help a model analyst, given that the model reflects

the reality as close as possible and also that the model includes at least a near-optimum

solution among its alternatives.

In this use case, the user can determine a set of objective labels to be satisfied in

the model and ask the software tool to provide solution alternatives that satisfy the

user objectives. Currently, OpenOME has a SAT-based implementation of the top down

evaluation [4], however, as pointed out in chapter 1 it only provides one possible solution,

among potentially many. Our framework produces all the valid alternatives to the user

by means of AI planning and thus need some controls to let the user navigate through

these alternatives. The UI would provide two simple buttons for going back and forth

among the generated alternatives which are shown in figure 2.5. The user first presses the

top-down arrow button and then can go backward and forward through the generated

alternatives with the provided left and right arrow buttons (see figure 2.5).

Example Consider the i∗ model given in figure 2.6. As can be seen in the model, the

objective of the user is to set the label of goal a to be fully satisfied(fs). As such, based

on i∗ propagation rules, since goal a is decomposed into sub goals b and c, the label of

these sub goals should be at least fs which implies the label of fs for both goals b and

c. Moreover the label of nodes g and f is uniquely determined as partially denied and
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Figure 2.1: Snapshot of a sample goal model which is appeared in OpenOME example
models on which the user performs Bottom-Up propagation. The initial labels are placed
at the bottom right of nodes.
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Figure 2.2: The bottom-up propagation control in OpenOME
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Figure 2.3: The result of bottom up propagation on the i∗ model given in figure 2.1
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Figure 2.4: The dialog that enables the user to resolve the conflicts.

Figure 2.5: The top-down, left and right arrows will provide the user the ability to
perform top-down evaluation as well as navigating through the generated alternative
solutions.
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Figure 2.6: The initial i∗ model on which the user intends to perform a top down evalu-
ation.

partially satisfied; however for the subgoals of goal c we have several options: only one of

d or e needs to be necessarily fully satisfied. The two most significant alternative solutions

are the two solutions in which either d or e is satisfied. The user can navigate to these two

solutions as well as other valid solutions by the left and right arrow buttons. One of the

outcomes of the top-down evaluation is shown in figure 2.7. If the user navigates through

the possible alternatives, among the other alternative solutions, The user is eventually

provided with the one alternative depicted in figure 2.8.

2.3 Partial Solutions Resulting from User inputs

As the user specifies his desired labels as well as initial labels for the goal model, some

of the labels in the model can be determined as implications of the user’s input; in other

words, the evaluation rules along with user’s desired labels can impose certain labels in

the graph.

We provide the user with this feature in both explicit and implicit ways: Once the

user has provided a sequence of inputs, she can explicitly ask the tool whether the label of

a specific element or a set of elements is uniquely determined with respect to users’ inputs

and objectives. Also, the tool can implicitly inform the user about the implications of her

actions (inputs/objectives) by examining the the neighborhood (technically by running

a set of queries [see chapter 3]) of the elements that user is modifying. This use case is

available to the user in top-down evaluation scenario. Chapter 3 provides user interface
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Figure 2.7: A generated alternative that satisfies user objectives given in figure 2.6.

Figure 2.8: One of the solution alternatives that satisfies user objectives given in figure
2.6.
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snapshots for this use case. There’s no specific UI control needed for this use case,

however, the user can potentially determine the diameter of the neighborhood on which

the application will run the queries when the user changes the model.

2.4 Preferential Use Case

We address this case by providing the user with the ability to define soft-constraints (as

opposed to hard-objectives) in the form of preferences to prioritize the solution alterna-

tives. Based on recent advances in planning and logic literature [13], we address this

feature by enabling the analyst to define preference among qualities of alternatives. In

i∗ the goals that doesn’t have a clear cut definition - in terms of i∗ constructs and rela-

tionships - are represented as soft goals. Therefore, discriminating alternatives based on

their qualities can be interpreted as discriminating alternatives based upon the soft goals

corresponding to those qualities (non-functional requirements). Although we ground our

approach in preferences among soft-goals, it can be easily extended to a framework that

considers preferences among hard goals (that correspond to functional requirements) as

well.

In the following paragraphs, we provide different forms of preference notations and

semantics that we incorporate in our framework. In chapter 3 we’ll express this semantics

in answer set logic programming;

1. In the simplest form, we’d like to be able to express a simple desire among an

agent’s (soft) goals. E.g., formula 2.1 indicates the desire of full satisfaction of

usability and privacy soft goals and partial denial of flexibility.

ϕ = label(usability, fs) ∧ label(privacy, fs) ∧ label(flexibility, pd) (2.1)

The label predicate is the standard that we use in our ASP encoding which is

presented in more detail throughout the next chapter.

2. Due to lack of resources, the user’s most preferred desire can’t necessarily be sat-

isfied by any alternative; therefore, the preference language needs to be able to

incorporate several desire formulas and somehow express a priority among them.

As an example, the preference formula shown in formula 2.2 indicates that the

user’s most preferred desire is to have both the usability and privacy soft goals

be fully satisfied, and moreover it shows that if full satisfaction of both of these

qualities is not possible, the user prefers to have the soft goal privacy to be satisfied
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over usability.

ψ = label(usability, fs) ∧ label(privacy, fs) C
label(usability, fd) ∧ label(privacy, fs) C
label(usability, fs) ∧ label(privacy, fd) C
label(usability, fd) ∧ label(privacy, fd) (2.2)

3. In the presence of multiple agents in the model with individual preferences among

desires for each agent, the preferences of each agent may potentially compete with

each other. If the agents involved in the model are of equal importance to us, we

won’t prioritize their individual preferences; however, when agents are different to

us in terms of importance, then we would like to favor a solution that favors more

important agents’ preferences over less important agents’. As an example, suppose

that the preference formula for agents A, B, C and D is ψA, ψB, ψC , ψD respectively

and moreover that agents A and B’s preferences are both equally more important

than agents C and D’s preferences and also that agents C and D’s preference are

of equal importance to us. In this case, equation 2.3 captures our description.

ψA||ψB C ψC ||ψD (2.3)

In the rest of this section, we attempt to provide a user interface as well as an

example scenario that can better depict the feature provided in this use case. The UI

controls provided in this section enable the user to define a subset of the different types

of preferences that we define in the computational section; specifically, the proposed UI

supports defining partial ordering among the goals of an agent as well as defining partial

ordering among agents’ single agent preferences (see chapter 3 for definition). Also, we

assume that the intention of the user is always to satisfy a goal as opposed to denying it

(which is supported computationally).

In order to enable the user to express a order among soft goals of an agent or among

agents themselves, we have to provide the user with the ability to define an ordering over

a set of objects. A typical user interface control for this purpose would be an ordered list:

the user initially populates the list with a set of soft goals or agents (selecting objects of

different types is of course supported by OpenOME) and then using move up and move

down control buttons, any object in the list can be selected and moved to the top of

the list or to the bottom. The top most object will have the higher priority in planning.
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Figure 2.9: The user interface control by which the user can define an ordering among a
set of objects (in this figure the objects are specifically goals). G1 and G2 are in priority
level 1 (highest) while G3 is in the second priority group.

The user can move the bars up and down to change the formation of the priority
groups.

label(G1, fs) ∨ label(G1, ps)|label(G2, fs) ∨ label(G2, ps) C
. . . label(G3, fs) ∨ label(G3, ps)

Figure 2.9 depicts the UI control for fictitious goals G1, G2 and G3. More formally, the

following items describe the way that these preferences are interpreted:

1. Ordering among soft goals of an agent: Assume that the user has specified

an order among soft goals G1, G2, . . . , Gn. If the ordering is a total ordering, we

interprete this input such that alternative α would be more preferred that alterna-

tive solution β iff there exist a goal Gi that is satisfied or partially satisfied in α

while it is not satisfied or partially satisfied in β and moreover, for every goal Gj

that has a higher rank in user’s prioritization, Gj is either satisfied in both α and

β, partially satisfied in both of them or not satisfied at all in both of them. If the

ordering is a partial ordering the semantics in chapter 3 imply a more complicated

verbal description (see chapter 3).

In terms of the preference language that is presented in the next chapter, the inter-

pretation of the preference specified in figure 2.9 amounts to having the following

preference formula:

Generally, assuming that the goals in priority group i are represented as Gi1 , Gi2 , . . . , Giki
,

the following formula would indicate the user’s preference:
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label(G11 , fs) ∨ label(G11 , ps)| . . . |label(G1k1
, fs) ∨ label(G1k1

, ps) C
label(G21 , fs) ∨ label(G21 , ps)| . . . |label(G2k2

, fs) ∨ label(G2k2
, ps) C

. . .
label(Gn1 , fs) ∨ label(Gn1 , ps)| . . . |label(Gnkn

, fs) ∨ label(Gnkn
, ps) C

ψA1 C ψA2 C . . . ψAN

2. Ordering among singe agent preferences: Assuming that the user has specified

an ordering among agents’ single agent preference formulae as A1 > A2 > . . . > An,

given the semantics of the preference language, a multi agent preference formula

will be generated as follows:

where ψAi
represents the single agent preference formula that is generated for agent

Ai based on the interpretation given earlier. For partial ordering, the same pat-

tern as the one for goals would be used for translating the user’s intention to our

framework’s preference language.

Considering the example i∗ model in figure 2.1 is the model of a system containing

one agent A and this model is the goal model of that one agent and also that the user has

specified the provided a total ordering among the goals as : d C e, then the tool would

first return the most preferred solution alternatives which according to our framework’s

interpretation should amount to returning the goals model given in the figure shown in

table 2.1 first and depending on either the user wants to navigate to more alternatives,

all the other alternatives subsequently.
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Table 2.1: The most preferred alternative solutions for user’s objective specified in figure
2.1 with respect to user’s preference which is d C e



Chapter 3

Computational Support for i∗

Evaluation/Reasoning framework

In order to support the use cases visited in chapter 2, in this chapter, computational

machinery is provided for them in the order they are visited in chapter 2. As discussed

in section 1.3, the general approach is to translate the problem constraints, objectives

and the model structure into a unified logic program and feed this program into an ASP

engine in order to get answer sets that correspond to the solution alternatives in which

the user is interested. In the first section, we provide some foundational predicates of the

program that is shared among all use cases. The following sections lay out the translation

of the problem into logic program rules per each use case and in the end of each section

an example is provided to demonstrate the ideas concretely. The key point here is for us

to be able to express the constraints and rules that we have in terms of logic program

rules; Computing answers that follow these rules is delegated to the ASP solver engine.

Our framework provides the translation engine for the use cases discussed throughout

chapter 2 which is responsible for translating the problem into a logic program whose

answer sets provide the solutions for the use case. In future work, we intend to fully

integrate this engine with OpenOME using the UI prototypes provided in chapter 2.

The rules produced by the translation engine is provided as input toDLV . DLV [9] is a

deductive database system based on disjunctive logic programming that finds all minimal

sets of ground atoms that follow the rules in a given program. Answer set programming

is usually used to solve combinatorially hard problems: once should specify the problem

search space and also problem constraints in terms of logic rules; The ASP engine then

returns all minimal solutions (containing minimal number of atoms) for the logic program.

An advantage of using the DLV framework is that we can have disjunctive expressions in

21
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Description Predicate
Goal goal

Soft Goal softGoal

Task task

Label label

element with incoming contribution links contributedTo

Table 3.1: The i∗ element types in our framework’s scope

Relationship Type Predicate
And and(P, C)
Or or(P, C)

Help help(P, C)
Hurt hurt(P, C)
Make make(P, C)
Break break(P, C)

Dependency depend(P, C)

Table 3.2: The i∗ link types in the scope of our work; P , C indicate the parent and child
node respectively.

the head of rules and that’s the key for us to be able to express the space of possibilities

(see the top-down evaluation section in this chapter).

3.1 Foundational Rule Groups

3.1.1 Structural rules

The first group of rules are responsible for representing the basic structure of i∗ models.

For each given type of element in i∗ [16], we introduce a predicate that holds for all

instances of that type in a given goal model. So, if p is an element’s name in i∗, say the

name of a goal or of a task, we’ll have the predicate Type(p) where Type is the type of

p. The types that we included in our implementation are listed in table 3.1.

The other set of structural rules are the ones that define the relationships among the

elements. The relationships that we deal with in our framework are listed in table 3.2.

The structural rules presented will be used when translating supported use cases in

this chapter to logic rules in order to reflect the structure of the model.
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Label Ground atom
Fully Satisfied fs

Fully Denied fd

Partially Satisfied ps

Partially Denied pd

Conflict cf

Unknown un

Table 3.3: The i∗ relation types in the scope of our framework

3.1.2 Evaluation Rules

Labels

i∗ evaluation procedure [7] is an enhanced version of an evaluation procedure originally

proposed for NFR framework in [8]. A range of labels are used to indicate the extent to

which an element in the model is satisfied or denied. In our logical formulation, we have

a unary predicate for each label which holds for the elements with that label. Also an

element may not have more than one label at a time. Table 3.3 represents the different

labels and their corresponding ground atoms in our framework.

So if for example element e is fully satisfied in an evaluation E, label(e, fs)) would

hold in L(E): the logical model that corresponds to E and the underlying goal model.

3.2 Bottom-Up Propagation

For bottom-up evaluation, we adopt the propagation mechanism in [7] and translate it

into our framework by reusing our other predicates for labels and other properties of the

model. Based on [7], the propagation flows through the links and determines the label of

high level elements based upon their relationship with other elements in the graph which

is defined by various types of links in the model.

3.2.1 Dependency Links

In i∗ evaluation, the evaluation value is directly transferred from dependee to dependum

(the element depended upon) to depender. A tool based on the framework would au-

tomatically generate the rules based on the following rule scheme for each dependency

link: For each depender element that depends on dependee element upon dependum, the
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index(fd, -3).

index(pd, -2).

index(un, -1).

index(cf, 0).

index(ps, 1).

index(fs, 2).

Table 3.4: Rules that assign indices to i∗ labels. Note that the specific choice of numbers
as indices is not material: only the order of the numbers should be consistent with the
order given in equation 3.2.

following rule is added:

label(depender, L) :- label(dependee, L), label(L). (3.1)

Please note that syntactically, if a name begins with upper-case letter, it is interpreted

as a variable. On the other hand, predicates start with lower-case letters. Also, a

predicate with no parameter is considered to be a ground atom.

3.2.2 Decomposition Links

Decomposition links in i∗ determine the required elements that should be satisfied in

order for a task to be satisfied. The definition naturally amounts to and AND semantic

for the decomposition links when it comes to evaluation. There’s however a degree to

which each of the required elements can be satisfied and the evaluation picks up the

minimum label (with regard to the following ordering) from the children. The ordering

of i∗ labels is as follows:

fd < pd < un < cf < ps < fs (3.2)

The same ordering is used in means-ends links (paragraph 3.2.3). For implementation

simplicity, The above ordering can be expressed by assigning an integer index to each

label and comparing the indices when we need to compare labels.

For representing the semantic of decomposition links, the framework follows the fol-

lowing scheme: Suppose that task p is decomposed to elements c1, c2, . . . , cn; the following

rules are consequently included in the logical model:

The rules will select the minimum labels among p’s children as its label.
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bagContains(p, L) :- label(c1, L).

bagContains(p, L) :- label(c2, L).

. . .
bagContains(p, L) :- label(cn, L).

label(p, Y) :- bagContains(p, Y), not bagContainLessThan(p, Y).

bagContainsLessThan(E, X) :- bagContains(E, Y), Y < X.

Table 3.5: Rule scheme that represents decomposition links propagation in i∗. Note that
we assume that parent node p is decomposed into elements c1, c2, . . . , cn

bagContains(p, L) :- label(c1, L).

bagContains(p, L) :- label(c2, L).

. . .
bagContains(p, L) :- label(cn, L).

label(p, Y) :- bagContains(p, Y), not bagContainMoreThan(p, Y).

bagContainsMoreThan(E, X) :- bagContains(E, Y), Y > X.

Table 3.6: Corresponding logical rules for means-ends links

3.2.3 Means-ends Links

The means-ends links are devised to model the different tasks ti that each can satisfy a

goal g. In other words, one or more alternative tasks can accomplish a goal and conse-

quently the evaluation label of g would be the maximum label among these alternatives;

the maximum will be computed with regard to the same ordering given in equation 3.2.

In this case, we will include the rules in table 3.6 in the logical dual model, assuming

that elements c1, c2, . . . , cn are the means-ends for element p:

3.2.4 Contribution Links

The evaluation of contribution links in i∗ is done according to table 3.1 taken from [7].

We divide the necessary rules that follow table 3.1 for propagation into two sets: (i)

the set of rules that populate the parent’s bag based on child’s label and the type of the

contribution link that goes between the child and the parent node and (ii) the set of

rules that resolve the labels in the parent node (the node that has incoming contribution

links).

For each entry in table 3.1 we include one rule from the first set that adds a label

to the parent node’s bag of labels. For example, in the case of a help contribution link,

we’ll have the following rules that represent the column in table 3.1 that corresponds to

help links:

Note that the predicate contributedTo is used to increase the performance: only
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Figure 3.1: Propagation Rules Showing Resulting Labels for Contribution Links

rule for the first row (source label is fs):
bagContains(P, ps) :-

contributedTo(P), help(P, C), hasLabel(C, fs).

. . .

. . .
rule for the last row (source label is fd):
bagContains(P, pd) :-

contributedTo(P), help(P, C), hasLabel(C, un).

Table 3.7: The Corresponding logical rules for Help Contribution links
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Case Resulting Label
1. If the bag has only one label the single label
2. If the parent goal has multiple full labels of the same polarity,
and no other labels, such as {fs, fs, fs} or {fd, fd}

the full label

3. If all labels in the bag are of the same polarity, and a full label
exists in the set of labels, such as {ps, fs, ps} or {fd, pd}

the full label

4. If the previous human judgment produced fs or fd, and a new
contribution is of the same polarity

the full label

Table 3.8: Cases where the final label for parent elements can be automatically deter-
mined [7].

hasLabel(E, L) :- isLabel(L), bagContains(E, L), not bagContainsOtherThan(E,

L), contributedTo(E).

bagContainsOtherThan(E, L) :- isLabel(L), bagContains(E, L), bagContains(E,

L2), L2 <> L.

positiveBag(g) :- bagContains(g, ps).

positiveBag(g) :- bagContains(g, fs).

negativeBag(g) :- bagContains(g, pd).

negativeBag(g) :- bagContains(g, fd).

label(g, fs) :- bagContains(g, fs), not negativeBag(g).

label(g, fd) :- bagContains(g, fd), not positiveBag(g).

Table 3.9: Rules that reflect the automatic resolution cases (see table 3.8).

those atoms of type contributedTo will be checked against the rule. Also, it enhances

readability of the program.

The second set of rules are responsible for resolving the set of labels in a node (of

type contributedTo) to a single final label. In the cases described in table 3.8 the final

label in a bag can be automatically determined.

We easily incorporate these cases into our logical program through the rules defined

in table 3.9. The last case where human judgement is reused is translated into rules later

on after we discuss how we handle human judgement in the program.

Conflict Resolution

An important aspect of i∗ evaluation procedure is handling cases where automatic reso-

lution is not available. In these cases, the proposed procedure asks the human to resolve

the bag of labels to a final label. In order to integrate this effect in our approach, we

offer two solutions: (i) allowing human intervention during reasoning and (ii) allowing

human to specify preferences among incoming links to nodes and automating the reso-

lution on that basis. We’ll discuss the first approach here and discuss the second one in
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resolvedLabel(p, l) :- label(c1, l1), ..., label(cn, ln).

Table 3.10: The rules that handle user’s input in cases where automated resolution of
labels is not available.

label(g, L) :- resolvedLabel(g, L), samePolarityOrUn(c(n+1), L), ...,

samePolarityOrUn(c(m), L).

samePolarityOrUn(X, L) :- label(X, J), samePolarity(J, L).

samePolarity(J, L) :- L = fs, J = fs.

samePolarity(J, L) :- L = ps, J = fs.

. . .

. . .

Table 3.11: The logical rule that reuses human judgement for element p.

the future work chapter. Also, the two approaches can be integrated to give the user a

semi-automated handling of these cases.

In the first approach, the framework assigns a distinguished predicate to the node

in which the the bag of labels can’t be automatically resolved to a final label. The UI

then picks that predicate and asks the user for a resolution. The user then selects a

set of children based on which he’s deciding to resolve the label of the parent to say l.

Consequently, the framework includes a rule to the logic program such that whenever the

set of user selected children have labels equal to the current labels, the label of the parent

will be determined as l. Table 3.10 demonstrates the rules that produce this effect in

the model, assuming that the user has determined the label of parent element p to be l,

based on the labels of elements in S = {c1, c2, . . . , cn}, where S is a subset of p’s children.

Also Assume that the labels of c1, c2, ..., cn are respectively equal to l1, l2, . . . , ln when

this rule is being injected to the program. In the following sections, we will provide a

second approach that given initial user’s input on link priorities can determine the label

of the parent automatically.

As mentioned earlier, the framework provides the ability of reusing human judgment:

If a human judgment is provided for a parent element p when among all its children,

c1, c2, . . . , cn have had a known label, based on the last case described in table 3.8 the

framework includes a rule in the program (see table 3.11) such that if every child of p

other than c1, c2, . . . , cn have a label of the same polarity to the human-determined label

l, the label of p would be automatically resolved to l.

At this point, our logic program P (M) of a goal model M is capable of propagating

the initial labels.
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3.2.5 User Specific Propagation

A user can have his own way of handling non-automatic cases for label bag resolution;

e.g. if we have more partially satisfied contributions than partially denied ones, the ulti-

mate label of the parent should be partially satisfied. Or even in a lower level, the very

basic propagation rules which in our work are based on i∗ evaluation procedure could be

different. Although it is not straightforward all the times, due to the expressive power of

the language, user specific propagations can be incorporated into the logical translation

by modifying the propagation rules.

3.2.6 Demonstration of Bottom-Up propagation

For demonstrating our approach in action, we use a portion of the goal model taken from

GM [5] that includes the different types of links in i∗ and encoded the goal model along

with some initial labels in terms of logic program rules. Figure 3.2 shows the initial

diagram along with the initial labels assigned.

The code snippet shown in table 3.12 demonstrates the equivalent logic program that

our tool generates for the given goal graph. The program uses propagation rules as

described throughout this section based upon the type of incoming links to a node to

determine the relation between the labels of its neighbors and itself.

When the program appearing in table 3.12 is fed into DLV , there’s only one model

(answer set) returned; The atoms in the answer set are shown in table 3.13. The cor-

responding evaluation result to this answer set is depicted in figure 3.3. We can verify

the result by observing that if elements a, b and c have initial labels fd, fs and fd re-

spectively, the label of element d is uniquely determined by the means-ends rules created

specifically for d to be the greater label of elements b and c which is fs. The label of d

along with the label of element c would then determine the label of element e through

decomposition link rules pertaining to element e; from this point on, the label of elements

f , g and h is uniquely determined based on the propagation rules driven from table 3.1

appearing in 3.12 for these elements and their outgoing contribution links.

3.3 Top-down Evaluation

The objective in this section is to provide logical rules that, given the user’s desired labels

for high level goal G in the model, can propose alternatives that when propagated, will

evaluate G to the given desired label with respect to i∗ evaluation procedure. There rules

are provided for the UI provided in section 2.2.
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isLabel(fs).

isLabel(fd).

isLabel(un).

isLabel(cf).

isLabel(ps).

isLabel(pd).

indexLabel(fd, 0).

indexLabel(pd, 1).

indexLabel(un, 2).

indexLabel(cf, 3).

indexLabel(ps, 4).

indexLabel(fs, 5).

hasLabel(b, fs).

hasLabel(a, fd).

hasLabel(c, fd).

bagContainsMoreThan(E, X) :- bagContains(E, Y),

isLabel(Y), isLabel(X), Y > X.

bagContainsLessThan(E, X) :- bagContains(E, Y),

isLabel(Y), isLabel(X), Y < X.

bagContains(d, L) :- hasLabel(b, L).

bagContains(d, L) :- hasLabel(a, L).

hasLabel(d, X) :- bagContains(d, X), not

bagContainsMoreThan(d, X), isLabel(X).

bagContains(e, L) :- hasLabel(d, L).

bagContains(e, L) :- hasLabel(c, L).

hasLabel(e, X) :- bagContains(e, X), not

bagContainsLessThan(e, X), isLabel(X).

bagContains(h, pd) :- hasLabel(e, fd).

bagContains(f, ps) :- hasLabel(c, fd).

bagContains(g, ps) :- hasLabel(f, ps).

contributedTo(h).

contributedTo(f).

contributedTo(g).

hasLabel(E, L) :- isLabel(L), bagContains(E, L),

not bagContainsOtherThan(E, L), contributedTo(E).

bagContainsOtherThan(E, L) :- isLabel(L),

bagContains(E, L), bagContains(E, L2), L2 <> L.

Table 3.12: The translated logial program for the goal model in figure 3.2
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{isLabel(fs), isLabel(fd), isLabel(un),

isLabel(cf), isLabel(ps), isLabel(pd),

indexLabel(fs,5), indexLabel(fd,0),

indexLabel(un,2), indexLabel(cf,3),

indexLabel(ps,4), indexLabel(pd,1),

contributedTo(h), contributedTo(f),

contributedTo(g), hasLabel(b,fs),

hasLabel(a,fd), hasLabel(c,fd),

bagContainsMoreThan(d,fd),

bagContainsMoreThan(d,cf),

bagContainsMoreThan(e,cf),

bagContainsMoreThan(f,fs),

bagContainsMoreThan(f,fd),

bagContainsMoreThan(f,cf),

bagContainsMoreThan(f,pd),

bagContains(d,fs), bagContains(d,fd),

bagContains(e,fd), bagContains(f,ps),

bagContainsLessThan(d,fs),

bagContainsLessThan(d,un),

bagContainsLessThan(d,ps),

bagContainsLessThan(d,pd),

bagContainsLessThan(e,fs),

bagContainsLessThan(e,un),

bagContainsLessThan(e,ps),

bagContainsLessThan(e,pd),

bagContainsLessThan(f,un),

bagContainsOtherThan(d,fs),

bagContainsOtherThan(d,fd), hasLabel(d,fs),

hasLabel(e,fd), hasLabel(f,ps),

bagContains(e,fs), bagContains(h,pd),

bagContains(g,ps), hasLabel(h,pd),

hasLabel(g,ps), bagContainsMoreThan(g,fs),

bagContainsMoreThan(h,fs),

bagContainsMoreThan(e,fd),

bagContainsMoreThan(g,fd),

bagContainsMoreThan(h,fd),

bagContainsMoreThan(g,cf),

bagContainsMoreThan(h,cf),

bagContainsMoreThan(g,pd),

bagContainsLessThan(g,un),

bagContainsLessThan(h,un),

bagContainsLessThan(h,ps),

bagContainsOtherThan(e,fd),

bagContainsOtherThan(e,fs)}

Table 3.13: The unique answer set for the logical program in table 3.12
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reduce raw materials Cost outsource units of production
improve economics of productionkeep labor costs low

Lower production costsImprove car quality
increase customer loyalty

Hurt
Help Increase return on investmentHelp

a b
c d ef

g h

Figure 3.2: The goal model used for demonstrating the bottom up propagation.

For this purpose, we need rules that can span the space of desired alternatives. From

a top-down reasoning point of view, depending on the type of incoming links to a node

P and a desired label for P , say L, we specify labels for the contributing nodes to P

that along with their links to P will evaluate the label of P as L. For example, in a

means-ends relationship among parent p and the set of children C where the desired

label for p is l, a valid set of labels for nodes in C would be one in which the minimum

label is equal to l.

There are actually two sets of rules required to accomplish this purpose: (i) Constraint

Rules: rules that determine if a set of labels for nodes in C will evaluate p to l. These

rules guarantee the soundness of the program. and (ii) Generation Rules: rules that

generate all possibilities for nodes’ labels. The possibilities will be then filtered out by

the constraint rules for this node and other nodes. These rules provide completeness

for our program.
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Figure 3.3: The corresponding evaluation result to the answer set shown in table 3.13

label(dependee, L) :- label(depender, L), label(L)

Table 3.14: Top-down evaluation rule for dependency link from dependee to depender

with L as the desired label for depender.

We provide these rules based on the type of relationship each node participate in the

model.

3.3.1 Dependency Links

The dependency links transfer the evaluation label as it is from the dependee to the

depender. Therefore, for any desired label L for node depender, we have the rule given

in table 3.14.

3.3.2 Decomposition Links

If goal g is decomposed to tasks t1, t2, . . . , tn the label of g would be evaluated as the

minimum member of L = {li : label(ti, li) : 1 ≤ i ≤ n}. Consequently, desiring label l

for g would amount to (i) having l in L and (ii) that every label in L be greater than

or equal to l.
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minLabel(t1, L) :- label(g, L), labelType(L).

minLabel(t2, L) :- label(g, L), labelType(L).

. . .
minLabel(tn, L) :- label(g, L), labelType(L).

label(t1, L) v ...v label(tn, L) :- label(g, L), labelType(L).

label(X, ps) v label(X, fs) :- minLabel(X, ps), element(X).

. . .

Table 3.15: rules for top-down evaluation along a decomposition relationship that de-
composes g into t1, t2, ..., tn.

maxLabel(t1, L) :- label(L), label(g, L).

maxLabel(t2, L) :- label(L), label(g, L).

. . . . . . maxLabel(tn, L) :- label(L), label(g, L).

label(t1, L) v ..., label(tn, L) :- label(g, L), labelType(L).

label(X, pd) v label(X, fd) :- maxLabel(X, pd), element(X).

. . .

Table 3.16: rules for top-down evaluation along a means-ends relationship between g and
t1, t2, ..., tn.

As mentioned earlier, DLV enabled us to have disjunctive expressions in the head of

rules and that’s the key for us to be able to express the space of possibilities. In the case

described above, the rules in table 3.15 generate the valid possibilities for children. This

rule schema as well as others is presented in a general form and will be instantiated and

customized by the framework for each decomposition link appearing in the goal model.

Basically, the rules consider two options: Either (i) t1’s label (l1 is l and the label

of t2, t3, ..., tn is at least l or (ii) l1 is greater than l and the set S = {l2, l3,

..., ln} contains l and moreover all its members are greater than or equal to l.

3.3.3 Means-ends Links

A symmetric argument to decomposition links holds for means-ends relationships. Table

3.16 shows the rules that we include in our framework if g has means-ends relationship

with t1, t2, ..., tn.

The rules in table 3.16 are organized such that the generated values for elements t1,

. . . , tn are such that at least one label equal to the desired label L is generated among

them and also that all their labels are less than or equal to L.
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labelSet1(b) :- label(g, ps).

labelSet2(c) :- label(g, ps).

label(b, ps) :- labelSet1(b).

label(c, fd) v label(c, pd) :- labelSet2(c).

Table 3.17: rules for top-down evaluation along incoming contribution links to a node.

3.3.4 Contribution Links

In this part, we assume that the top-down propagation along the contribution links

towards node g, only enumerates cases where after bottom-up propagation of the enu-

merated labels, g’s bag of labels can be automatically resolved into a label with respect

to table 3.8. E.g., if the desired label for node g is full satisfaction (fs), the labels of

the contributing nodes should be such that when propagated along the connecting link

between them and g, generate either fs or ps and moreover that at least one of them

generates fs in g’s bag of labels.

The rules that should be generated obviously depend on the specific desired label of

the parent element g as well as the type of incoming contribution links to node g. For

example, Rules in table 3.17 handle the case where g has two children b and c where they

have Help and Break contribution links to element g respectively and the desired label

for g is ps. In this case, all the contributed labels in g’s bag of labels should necessarily

be ps. Considering the type of contribution links from b and c to g, according to the

label propagation table (table 3.1) the label of b should be ps and the label of c should

be either pd or fd.

3.3.5 Demonstration of Top-Down evaluation

We use the same diagram as the one used in the demonstration of bottom up propagation,

however, instead of assigning initial low level labels, we set high level goals to be achieved

and expect the framework to provide appropriate solutions for us. The tool will generate

instantiated rules based on the rules introduced in this section along with the rules in

the bottom up propagation section. The answer sets of the resulting logic program, if

any, when translated back to the labels in the goal model would provide suggestions to

the analyst for achieving the preset high level goals.

Figure 3.4 depicts the goal model along with objective labels which are surrounded

in circles.

The code snippet shown in table 3.18 is the equivalent logic program to the goal

model in figure 3.4. Given this program as the input for DLV , it turns out that there’s
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reduce raw materials Cost outsource units of production
improve economics of productionkeep labor costs low

Lower production costsImprove car quality
increase customer loyalty

Hurt
Help Increase return on investmentHelp

a b
c d ef

g h

Figure 3.4: A partial goal model of GM [5] and some objective labels. The framework is
reponsible for providing solutions that satisfy these labels.

no answer set for this program.

Let’s verify the result; The outcome indicates that there doesn’t exist a valid assign-

ment of labels to leaf level elements such that both of our objective labels are entailed.

By a simple analysis we see that since lower production costs goal is decomposed into

goals keep labor costs low and improve economics of production, the label of both of the

latter goals should be at least fs. This would leave us with one choice for both these

goals: they both should be fully satisfied. Now regardless of the labels of the goals reduce

raw materials Cost and outsource units of production, we can see that if the label of keep

labor costs low is Äfs, then based on the propagation table (table 3.1) in i∗ evaluation

procedure, the label of goals improve car quality and increase customer loyalty would be

pd and ps respectively. This is in contradiction to the fact that the label of increase

customer loyalty is set to be ps as an objective label.
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isLabel(fs).
isLabel(fd).
isLabel(un).
isLabel(cf).
isLabel(ps).
isLabel(pd).

indexLabel(fd, 0).
indexLabel(pd, 1).
indexLabel(un, 2).
indexLabel(cf, 3).
indexLabel(ps, 4).
indexLabel(fs, 5).

hasLabel(e, fs).
hasLabel(g, ps).
bagContainsMoreThan(E, X) :- bagContains(E, X), bagContains(E, Y), isLabel(Y), isLabel(X),
indexLabel(X, I), indexLabel(Y, J), J > I.
bagContainsLessThan(E, X) :- bagContains(E, X), bagContains(E, Y), isLabel(Y), isLabel(X),
indexLabel(X, I), indexLabel(Y, J), J < I.

bagContains(d, L) :- hasLabel(b, L).
bagContains(d, L) :- hasLabel(a, L).
hasLabelInferred(d, X) :- bagContains(d, X), not bagContainsMoreThan(d, X), isLabel(X).

bagContains(e, L) :- hasLabel(d, L).
bagContains(e, L) :- hasLabel(c, L).
hasLabel(e, X) :- bagContains(e, X), not bagContainsLessThan(e, X), isLabel(X).

bagContains(h, pd) :- hasLabel(e, fd).
bagContains(h, ps) :- hasLabel(e, fs).

bagContains(f, ps) :- hasLabel(c, fd).
bagContains(f, pd) :- hasLabel(c, fs).

bagContains(g, ps) :- hasLabel(f, ps).
bagContains(g, pd) :- hasLabel(f, pd).

contributedTo(h).
contributedTo(f).
contributedTo(g).

hasLabel(E, L) :- isLabel(L), bagContains(E, L), not bagContainsOtherThan(E, L),
contributedTo(E).
bagContainsOtherThan(E, L) :- isLabel(L), bagContains(E, L), bagContains(E, L2), L2 <> L.

hasMinLabel(c, L) :- hasLabel(e, L).
hasMinLabel(d, L) :- hasLabel(e, L).
hasLabel(c, L) v hasLabel(d, L) :- hasLabel(e, L).
hasLabel(E, fs) :- hasMinLabel(E, fs).

hasMaxLabel(a, L) :- hasLabel(d, L).
hasMaxLabel(b, L) :- hasLabel(d, L).

hasLabel(a, L) v hasLabel(b, L) :- hasLabel(d, L).
hasLabel(X, pd) v hasLabel(X, fd) v hasLabel(X, ps) v hasLabel(X, fs) :- hasMaxLabel(X,
fs).

:- hasLabel(E, X), hasLabel(E, Y), X <> Y.

Table 3.18: The equivalent logic program for the goal model and objective labels shown
in figure 3.4
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label(E, L) ?

Table 3.19: The query that determines the labels which are true in all alternatives (models
of the logic program).

Based on the above analysis, we can lift the contradiction by either omitting the

objective label on goal increase customer loyalty or by setting the objective label to pd.

By replacing the rule hasLabel(g, ps). with hasLabel(g, pd). in the program given

in table 3.18. When this program is given to DLV as input, 7 models are returned.

By analyzing the possibilities for goals reduce raw materials Cost and outsource units of

production, we can confirm the validity of the outcome: the label of either goals can be

any value in the set {fd, pd, ps, fd} and one of the two labels should necessarily be

equal to fs.

3.4 Partial Solutions Resulting from User Inputs

We address this feature by exploiting queries in DLV . DLV have multiple modes of

querying including Cautious (or sceptical). A query is cautiously true for a substitution,

if it is satisfied in all models of the program [9]. This would be the logical dual of the

implication concept introduced earlier. We simply determine the implicated labels by

issuing the query in table 3.19.

3.4.1 Demonstration of Implicated Labels

By this point, we can see that in the example goal model given in the previous two parts

regarding bottom-up propagation and top-down evaluation, regardless of the various

labels that other elements could take in order to satisfy user goals and/or propagate

user’s initial labels, the label of some elements will be uniquely determined by user’s initial

input. For example, in the top-down evaluation demonstration (figure 3.4), consider the

soft goals Improve car quality and increase customer loyalty. We can see that if the

user specifies label fs as an objective label for goal Lower production costs, no matter

what labels are assigned to other elements, the label of these two soft goals should

be equal to pd, pd in all models. If the user can get this information from the tool

when he’s determining his objective goals as well as initial labels, he can avoid going

over all the alternatives and see the same label for these kind of elements. In order to

provide this feature, we reduce the probelm to cautious reasoning problem in answer

set programming.
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reduce raw materials Cost outsource units of production
improve economics of productionkeep labor costs low

Lower production costsImprove car quality
increase customer loyalty

Hurt
Help Increase return on investmentHelp

a b
c d ef

g h?

?

Figure 3.5: The goal model used to demonstrate how labels can be implied uniquely,
given user’s labels as input.

Cautious reasoning deals with user queries and is true for query Q and program P ,

if and only if Q is true in all models of program P . Therefore, if the query given in

table 3.19 is cautiously true for any E, L, element E has to have label L no matter

how other elements are evaluated/assigned. By running this query in cautious mode

over the program given in table 3.18 and replacing the rule hasLabel(g, ps). with

hasLabel(g, pd). (see the previous part for the reason behind this modification); the

outcome is shown in table 3.20. Our tool will translate the outcome back to goal model

labels and graphically show the result to the user.

If the size of the model grows, these queries specifically can be significantly costlier.

To address this issue, we can limit the scope of elements involved in the query. An

option would be to consider elements which are in the neighborhood of initial/objective

labels. The intuition behind this idea is that the neighbor elements are more likely to
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label(e, fs).

label(d, fs).

label(c, fs).

label(h, ps).

label(f, pd).

label(g, pd).

Table 3.20: The result of issuing the cautious query in table 3.19 on the program in table
3.18

label(h, E) ?

label(f, E) ?

label(d, E) ?

label(c, E) ?

Table 3.21: The query code snippet corresponding to the neighborhood shown in figure
3.6

be constrained than farther elements. Figure 3.6 demonstrates this idea in a sample goal

model. The cautious query issues for the model depicted in figure 3.6 is demonstrated in

table 3.21.

3.5 User Preferences in evaluation

A first step towards this ambition is to come up with a language that can express pref-

erences among soft goals and in a higher level even between the soft-goals of different

agents involved in the goal model. For this purpose, we adopt the preference language

semantics and approach proposed in [13] and adapt towards our framework. The adapted

language is capable of capturing complex multi-dimensional preferences among qualities

as well as simple ones. It’s interesting to note that usually an analyst is in charge of ad-

justing strategies for cooperative agents in the business as opposed to competitive ones. In

chapter 4 we discuss the research venues that will be opened based upon this observation.

In the following paragraphs, we elaborate on the semantics of the preference language

and the way they can be integrated in our framework for top down evaluation with

preferences.

3.5.1 Preference Language Definition and Semantics

In this part, we provide an adaptation of the language and semantics proposed in [13]

that can be directly used in our framework for evaluation.
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Figure 3.6: The tool can issue cautious queries for an element’s neighborhood. The
neighborhood scope is highlighted with a boundary line. The elements for which the
query is issues are those with a question mark and in this case, the cautious query will
return an implicated label for all of them, since they are all uniquely determined by the
choice of user for the initial objective label for the goal Lower production costs

Definition 3.5-1 (Basic Desire Formula). Basic desire formulas are defined using the

following rules:

• label(g, fs), label(g, fd), label(g, ps), label(g, pd) for any goal g in the goal model

are each considered a basic desire formula.

• Given basic desire formulas ϕ1 and ϕ2, each of ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2 and ¬ϕ is also a

basic desire formula.

Before moving on to preferences in higher level, we provide another definition that

ultimately let us find the most preferred solution (alternative) in a goal model.

Definition 3.5-2 (Basic Desire Semantics). Let α be an alternative solution (set of

labels assigned to the elements of the model) and let ϕ be a basic desire formula. α

satisfies ϕ (written as α |= ϕ) iff one of the following conditions hold:

• ϕ = ϕ1 ∧ ϕ2, α |= ϕ1 and α |= ϕ2

• ϕ = ϕ1 ∨ ϕ2, α |= ϕ1 or α |= ϕ2
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• ϕ = ¬ϕ1 and α 6|= ϕ1

• ϕ = label(g, fs) or label(g, fd) or label(g, pd) or label(g, ps) and in the logic model

of solution α, the atom ϕ is present.

Given the above definition we can define an ordering among solutions with respect to

basic desire formulas:

Definition 3.5-3 (Ordering between solutions w.r.t basic desire formulae). Let ϕ be a

basic desire formula and let α and β be two solutions. Alternative α is preferred to

β, shown as α ≺ϕ β, iff α |= β and β 6|= ϕ. Also α and β are indistinguishable with

respect to ϕ, written as α ≈ϕ β, iff one of the following cases occurs:

• α |= ϕ and β |= ϕ

• α 6|= ϕ and β 6|= ϕ

Following [13], we define non strict preference in the following definition:

Definition 3.5-4 (Weak Ordering between solutions w.r.t basic desire formula). Let ϕ

be a basic desire formula and let α and β be two solutions. α is weakly preferred to

β, shown as α ¹ϕ β, iff α ≺ϕ β or α ≈ϕ β.

The following interesting propositions will be given here with out proof. You can

refer to [13] for a comprehensive proof that is based on the original language but can be

directly applied to ours.

Proposition 3.5-5. if ϕ is a basic desire formula (referred to as BDF henceforth),

the relation ≈ϕ is an equivalence relation.

and Moreover:

Proposition 3.5-6. Given ϕ as BDF, the relation ¹ϕ specifies a partial order over

members of equivalence classes of ≈ϕ.

In the rest of this part, we extend the definitions and semantics to cover the second

and third sample preference formulas given earlier; namely the single and multi agent

preferences respectively.

Definition 3.5-7 (Single Agent Preference). A single agent preference formula for agent

a is of the form ψa = ϕ1 C ϕ2 C . . . ϕn where ϕi is a basic desire formula over a’s goals

for 1 ≤ i ≤ n.

Definition 3.5-8 prioritizes solutions based on single agent preferences:
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Definition 3.5-8 (Ordering between solutions w.r.t. single agent preference formula).

Let α, β be two solutions and ψ = ϕ1 C ϕ2 C . . . ϕn be a single agent preference formula.

Then we will have an extended definition for ≺, ≈ and ¹ relations:

• α ≺ψ β iff ∃i such that 1 ≤ i ≤ n and:

1. α ≺ϕi
β, and

2. ∀ (1 ≤ j < i) ⇒ α ≈ϕj
β

• α ≈ψ β iff 1 ≤ ∀i ≤ n ⇒ α ≈ϕi
β

• α ¹ψ β iff α ≺ψ β or α ≈ψ β

and the equivalence proposition also gets extended:

Proposition 3.5-9. If ψ is a single agent preference formula, the relation ¹ψ defines

a partial order on the members of equivalence classes of ≈ψ.

and on this basis, we can define the most preferred alternative solution in the following

way:

Definition 3.5-10 (Most preferred alternative solution w.r.t a single agent preference formula).

Alternative solution α is most preferred with respect to single agent preference formula

ψ if there is no solution β such that β ≺ψ α.

The last batch of definitions and propositions deal with preferences at a multi agent level,

following the third sample we’ve seen in the beginning of this section.

Definition 3.5-11 (Multiagent Preference Formula). A multiagent preference formula

is defined by the following rules:

• A single agent preference formula ψa is considered multiagent preference formula.

• if ψa and ψb are multiagent preference formulae, then ψa&ψb, ψa|ψb and !ψa are

each a multiagent preference formula;

• If ψa1 , ψa2 , . . . , ψan are multiagent preference formulae, then ψa1 C ψa2 C . . . C ψan

is a multiagent preference formula.

Definition 3.5-12 prioritizes solutions based on multiagent preference formulae.

Definition 3.5-12 (Ordering between solutions w.r.t. Multiagent Preference Formula).

If ω is a multiagent preference formula,

• α is preferred to β w.r.t to ω (α ≺ω β) iff:
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1. ω is a single agent preference formula and α ≺ω β w.r.t. definition 3.5-8.

2. ω = ψa&ψb and α ≺ψa and α ≺ψb

3. ω = ψa|ψb and we have one of:

(a) α ≺ψa β and α ≺ψb
β

(b) α ≺ψa β and α ≈ψb
β

(c) α ≈ψa β and α ≺ψb
β

4. ω =!ψa and β ≺ψa α

5. ω = ψa1 C ψa2 . . . C ψak
and 1 ≤ ∃i ≤ k such that: (i) 1 ≤ ∀j ≤ i : α ≈ψaj

β

and (ii) α ≺ψai
β - in other words with respect to all preference formulae which

are more prior than ψai
, α is indistinguishable to β, however with respect to

ψai
, α is less preferred to β

• α is indistinguishable from β, written as α ≈ω β iff one of the followings are true:

1. ω is a single agent preference formula and α ≈ω β.

2. ω = ψa&ψb, α ≈ψa β and α ≈ψb
β

3. ω = ψa|ψb, α ≈ψa β and α ≈ψb
β

4. ω =!ψa and α ≈ψa β

5. ω = ψa1 C ψa2 C . . . ψak
and 1 ≤ ∀i ≤ k, we have α ≈ψai

β.

• α ¹ω β iff α ≺ω β or α ≈ω β

Proposition 3.5-13. if ω is a multiagent preference formula, then:

1. ≈ω is an equivalence relation; and

2. ¹ω induces a partial order on the set of representatives of the equivalence classes

of ≈ω.

and the last definition in the final batch characterizes the most preferred solution when

having a multiagent preference formula.

Definition 3.5-14 (Most Preferred Solution). Given a multiagent preference formula

ω, we say that an solution α is the most preferred one w.r.t to ω iff there is no solution

β such that β ≺ω α.

In the following paragraphs, we integrate this language along with its semantics into

our framework which enables the framework to find solutions that are the most preferred

ones with respect to a user preference.
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:v Conj. [Weight:Level]

3.5.2 Weak Constraints in DLV
Integrity constraints in DLV have to be always satisfied in models, whereas weak con-

straints should be satisfied if possible. In other words if a weak constraint is not satisfied

in model m, m would not be necessarily disqualified to be among the models in the out-

put. According to [1], the answer sets of a program P with a set W of weak constraints

are those answer sets of P which minimize the number of violated weak constraints and

are called best models of (P, W). Obviously, a program may have more than one best

model when they share the same number of violated weak constraints.

Weak constraints are specified in the following format:

where Conj is a conjunction of literals and Weight and Level are both positive inte-

gers. Level specifies the priority level of the constraint: the higher the number Level

is, the higher prior is the weak constraint. For each violated weak constraint rule r, the

weight associated to rule r will be added to the sum of other violated constraints having

the same priority (represented by Level). The best model would be the model that has

the least weight within the highest priority level. In the rules presented in this work, we

assume the same level (1) for all weak constraints.

Effectively, one can quantify qualitative constraints and preference with this feature.

Following a similar approach in [13], we quantify our framework’s preferences using weak

constraints. The general intuition behind this approach is to assign lower weights to

more preferred models.

We consider preference formulas in order of complexity: In the first take, let’s consider

basic desire formulas (BDF’s). Assuming ϕ be a BDF, we add an atom called nϕ to the

program that corresponds uniquely to ϕ. Moreover, we add a predicate called satisfy

that holds in a model m for atom nϕ iff m |= ϕ. The following rule is thus added to the

program for a given BDF:

Πϕ = satisfy(nϕ) :- expand(nϕ)

where exapnd(nϕ) is the formula corresponding to ϕ itself. Having this predicate in

the model, we can write a weak constraint based on the introduced predicate: We assign

a weight of 1 to the case where satisfy(nϕ) is not present in the model.

Proposition 3.5-15. Given a basic desire formula ϕ and goal model M , the answer

set of the program Π = ΠM∪Πϕ∪ { :v not satisfy(nϕ) [1] } corresponds to solutions

that are most preferred w.r.t. ϕ. (note that when the priority of the weak constraints
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are not set, by default, they are assumed to be 1.)

As the preference formulas get to the more complex levels (single agent and mul-

tiagent), we need a more complex weighting mechanism that can distinguish between

models based on the preference formulas they satisfy. Since our preference language

structure is very similar to the one defined in [13], we adopt the notion of admissible

weight function from [13] in order to extend the weighting mechanism to more complex

forms of preferences.

Definition 3.5-16 (Admissible Weight Functions). A weight function wΨ is called an

admissible weight function w.r.t. Ψ if for any two alternatives α, β, we have:

1. wΨ(α) < wΨ(β) if α ≺Ψ β

2. wΨ(α) = wΨ(β) if α ≈Ψ β

With an admissible weight function, we can bridge the gap between the weak con-

straint feature in DLV and the semantics of preference in our framework:

Proposition 3.5-17. If wΨ is an admissible weight function w.r.t Ψ, an alternative

o which minimizes wΨ is a most preferred alternative w.r.t. Ψ.

This proposition reduces the problem of finding a most preferred alternative to the

problem of finding an admissible function for the various preference formulas we have

and using the weak constraint feature in DLV to find the alternative corresponding to

the answer set that minimizes this function. The following propositions propose such a

function for the single agent and multiagent preference formulae.

Proposition 3.5-18. Given ψ = ϕ1Cϕ2 . . .Cϕn as a single agent preference formula,

the following weight function is admissible w.r.t. ψ:

wψ(o) =
1∑

i=n

2n−i.wϕi
(o) (3.3)

where wϕi
(o) = 1 iff o 6|= ϕi and wϕi

(o) = 0 otherwise.

The correctness of proposition 3.5-18 follows from the fact that the priority of BDF

ϕi is strictly higher than ϕj for i < j.

The next proposition deals with multiagent preference formulas:

Proposition 3.5-19. Given Ψ as a multiagent preference formula, wΨ is an admis-

sible weight function w.r.t. Ψ where:
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1. wΨ = wΨ1 + wΨ2 if Ψ = Ψ1|Ψ2

2. wΨ = wΨ1 + wΨ2 if Ψ = Ψ1&Ψ2

3. wΨ = max(wΨ1)− wΨ1 if Ψ =!Ψ1

4. wΨ = wΨ2 + max(wΨ2)× wΨ1 if Ψ = Ψ1 C Ψ2

where max(wx) is the maximum weight that an alternative can potentially gain by the

weight function wx plus 1 (The addition of 1 is necessary for meeting the first condition

of admissible weight function).

In order to incorporate this weighting mechanism in logic program, we need to inject

some predicates as well as some logic to compute the weight of an answer set and find

the answer set with minimum weight. To this end, we add the predicate w(p, n) to the

program where p is the unique name corresponding to a preference formula and n would

be the weight of the answer set w.r.t. preference p. We also add the predicate max(p,

m), where p is the unique name of a preference formula and m is the maximum weight

that an alternative can achieve w.r.t. preference p. Now we need some logic to define

the existence of these predicates within our answer sets. Instances of the rules given in

table 3.22 will be generated by the framework based on the preferences that the analyst

specify in the front-end of the framework and will be injected to the logic program.

Given above rules, the engine will return the most preferred models. In case the user

desired more coverage, we can use the costbound feature in DLV to return all the models

with cost less than a certain number and gradually increase that number. We leave the

elaboration on this feature for future work (see chapter 4).

3.5.3 Demonstration of user preferences in Top Down Evalua-

tion

For the sake of presentation, we extend the same goal model as the one discussed in

the top down evaluation section and study the effect of having preferences in the user’s

objectives. Consider the goal model given in figure 3.7. We can see that in order to satisfy

the goal improve economics of production, the planner has a choice of either satisfying the

goal reduce raw materials Cost or outsource units of production. Now suppose that the

user has specified the single agent preference formula ψ in table 3.23 which is a preference

specified over BDF’s ϕg and ϕi.

The semantics of single agent preference formula implies that ψA favors the alterna-

tives in the following order:
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Basic Desire Formula
For each BDF ϕ we add
the logic required for
generating the predicate
satisfy along with the
following rules for weight-
ing the answer set w.r.t.
ϕ

w(nϕ, 0) :- satisfy(nϕ).

w(nϕ, 1) :- not satisfy(nϕ).

max(nϕ, 2).

Single agent preference
formula
ψ = ϕ1 C ϕ2 C . . . C ϕp w(nψ, S) :- w(nψ1, s1), ...w(nψp, sp), S =∑1

i=p 2p−i × si.
max(nψ, 2p).

Multiagent preference formula Ψ
Ψ is a single preference for-
mula

The same rules as the case of single agent preference formula.

Ψ = Ψ1|Ψ2 or Ψ = Ψ1&Ψ2 w(nΨ, S) :- w(nΨ1, S1), w(nΨ2, S2), S = S1 + S2

Ψ =!Ψ1 w(nΨ, S) :- w(nΨ1, S1), max(nΨ1, M), S = M - S1.

max(nΨ, S) :- max(nΨ1, S1), S = S1 + 1.

Ψ = Ψ1 C Ψ2 w(nΨ, S) :- w(nΨ1, S1), w(nΨ2, S2), max(nΨ2, M2), S

= S2 + M2 × S1.

w(nΨ, S) :- max(nΨ1, M1), max(nΨ2, M2), S = M2 +

M1 × M2.

Table 3.22: The logic required for generating satisfy and max predicates as required
part of implementing preferences semantics in DLV

ϕg = hasLabel(g, fs) ∨ hasLabel(g, ps)
ϕi = hasLabel(i, fs) ∨ hasLabel(i, ps)
ψA = ϕi C ϕg

Table 3.23: The preference formula used for demonstrating user preference in top down
evaluation.
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reduce raw materials Cost outsource units of production
improve economics of productionkeep labor costs low

Lower production costsImprove car quality
increase customer loyalty

Hurt
Help Increase return on investmentHelp

a b
c d ef

g h Product Time to Market
HurtHurt

i

Figure 3.7: The extended goal model of GM.

1. BDF’s ϕi and ϕg are both implied (o |= ϕi and o |= ϕg)

2. o |= ϕi and o 6|= ϕg

3. o 6|= ϕi and o |= ϕg

4. o 6|= ϕi and o 6|= ϕg

In other words the user strictly prefers the soft goal (quality) Product Time to Market

over increase customer loyalty and doesn’t care either the soft goal Increase return on

investment is satisficed or not. The code snippet shown in table 3.24 is the extended

logic program that corresponds to the goal graph in figure 3.7 and the above preference

formulae.

The answer sets returned by the ASP engine for the program in table table 3.24 are

listed in table 3.25.
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#maxint = 5.

isLabel(fs). indexLabel(fd, 0).
isLabel(fd). indexLabel(pd, 1).
isLabel(un). indexLabel(un, 2).
isLabel(cf). indexLabel(cf, 3).
isLabel(ps). indexLabel(ps, 4).
isLabel(pd). indexLabel(fs, 5).
hasLabel(e, fs).

bagContainsMoreThan(E, X) :- bagContains(E, X), bagContains(E, Y), isLabel(Y), isLabel(X),
indexLabel(X, I), indexLabel(Y, J), J > I.
bagContainsLessThan(E, X) :- bagContains(E, X), bagContains(E, Y), isLabel(Y), isLabel(X),
indexLabel(X, I), indexLabel(Y, J), J < I.

bagContains(d, L) :- hasLabel(b, L).
bagContains(d, L) :- hasLabel(a, L).
hasLabelInferred(d, X) :- bagContains(d, X), not bagContainsMoreThan(d, X), isLabel(X).

bagContains(e, L) :- hasLabel(d, L).
bagContains(e, L) :- hasLabel(c, L).
hasLabel(e, X) :- bagContains(e, X), not bagContainsLessThan(e, X), isLabel(X).

bagContains(h, pd) :- hasLabel(e, fd).
bagContains(h, ps) :- hasLabel(e, fs).
bagContains(f, ps) :- hasLabel(c, fd).
bagContains(f, pd) :- hasLabel(c, fs).
bagContains(g, ps) :- hasLabel(f, ps).
bagContains(g, pd) :- hasLabel(f, pd).
bagContains(i, pd) :- hasLabel(b, fs).
bagContains(i, pd) :- hasLabel(b, ps).
bagContains(i, un) :- hasLabel(b, un).
bagContains(i, ps) :- hasLabel(b, pd).
bagContains(i, ps) :- hasLabel(b, fd).
bagContains(f, pd) :- hasLabel(a, fs).
bagContains(f, pd) :- hasLabel(a, ps).
bagContains(f, un) :- hasLabel(a, un).
bagContains(f, ps) :- hasLabel(a, pd).
bagContains(f, ps) :- hasLabel(a, fd).

contributedTo(h).
contributedTo(f).
contributedTo(g).
contributedTo(i).

hasLabel(E, L) :- isLabel(L), bagContains(E, L), not bagContainsOtherThan(E, L),
contributedTo(E).
bagContainsOtherThan(E, L) :- isLabel(L), bagContains(E, L), bagContains(E, L2), L2 <> L.

hasMinLabel(c, L) :- hasLabel(e, L).
hasMinLabel(d, L) :- hasLabel(e, L).
hasLabel(c, L) v hasLabel(d, L) :- hasLabel(e, L).
hasLabel(E, fs) :- hasMinLabel(E, fs).

hasMaxLabel(a, L) :- hasLabel(d, L).
hasMaxLabel(b, L) :- hasLabel(d, L).
hasLabel(a, L) v hasLabel(b, L) :- hasLabel(d, L).
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hasLabel(X, pd) v hasLabel(X, fd) v hasLabel(X, ps) v hasLabel(X, fs) :- hasMaxLabel(X,
fs).

:- hasLabel(E, X), hasLabel(E, Y), X <> Y.

positiveBag(E) :- bagContains(E, ps), contributedTo(E).
positiveBag(E) :- bagContains(E, fs), contributedTo(E).
negativeBag(E) :- bagContains(E, pd), contributedTo(E).
negativeBag(E) :- bagContains(E, fd), contributedTo(E).
hasLabel(E, fs) :- bagContains(E, fs), not negativeBag(E), contributedTo(E).
hasLabel(E, fd) :- bagContains(E, fd), not positiveBag(E), contributedTo(E).
hasLabel(E, cf) :- positiveBag(E), negativeBag(E), contributedTo(E).

:- hasLabel(E, cf).

% predicates for preferences
w(ng, 0) :- hasLabel(g, fs).
w(ng, 0) :- hasLabel(g, ps).
w(ni, 0) :- hasLabel(i, fs).
w(ni, 0) :- hasLabel(i, ps).

w(ng, 1) :- not hasLabel(g, fs), not hasLabel(g, ps).
w(ni, 1) :- not hasLabel(i, fs), not hasLabel(i, ps).

max(ng, 2).
max(ni, 2).

w(n, S) :- w(ni, Si), w(ng, Sg), S = Sg + Si2, Si2 = Si * 2.
max(n, 4).

: w(n, C). [C:1]

Table 3.24: The logic program that corresponds to the goal model in figure 3.7 and the
preferences given in this section.

model 1
Best model: {hasLabel(e,fs), hasLabel(d,fs),

hasLabel(c,fs), hasLabel(h,ps), hasLabel(a,fs),

hasLabel(f,pd), hasLabel(b,fd), hasLabel(g,pd),

hasLabel(i,ps) }
model 2
Best model: {hasLabel(e,fs), hasLabel(d,fs),

hasLabel(c,fs), hasLabel(h,ps), hasLabel(a,fs),

hasLabel(f,pd), hasLabel(b,pd), hasLabel(g,pd),

hasLabel(i,ps)}
Table 3.25: Answer sets returned by the ASP engine for the program depicted in table
3.24. The answer sets are filtered by the predicate hasLabel.
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Figure 3.8: The alternatives corresponding to the answer sets given in table 3.25.

The corresponding alternatives to the answer sets given in table 3.25 are shown in

figure 3.8.

3.6 Organizational strategies as Game strategies

Each company’s mission is to maximize its own achievements. The mission of the com-

pany can be formulated as a preference formulae; a company’s mission might be to in-

crease its profit regardless of the environmental effects that its process imposes, whereas

other companies might specifically want to prioritize environmental issues over their

profit to some extent. Due to limited resources, there’s always competitions involved in

business and thus only the companies that follow the right path can survive in terms of

satisfying their preferences. The score of a company in this competitive game can be

considered to be the level to which the company is able to satisfy its preferences. As can

be seen in the following paragraphs, our approach to organizational strategic preferences

provides the ground for quantifying the success of a company and also enables us to use

game theoretic quantitative theorems in organizational domain.

Definition 3.6-1 (Strategic Score). Given G as an organizational goal model involv-

ing the set of agents A = {a1, a2, . . . an} where each ai(1 ≤ i ≤ n) has a single agent

preference formula called ψa and an admissible weight function wi(o), the score of an

agent ai ∈ A w.r.t. an alternative o is identified by s(ai, o) and is the value of the weight
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function for the current alternative: s(ai, o) = wi(o)

In a competitive corporate environment, each party tries to maximize its own score

at the expense of others; it can also be the case that several parties form a cooperative

group to maximize their collective preferences.

An important aspect of real world organizational environments is that they are dy-

namic: each organization seeks better strategies at each point of time and in terms of

goal models, might modify its solution alternative or even change its goal model to cope

with the constant ongoing competition.

Now, assuming that we have the complete goal model of an agent or in other words

the rules of the game are completely defined for the agent, then what would be the best

game that an agent can play? and moreover, is there an equilibrium state where each

agent is playing its best game assuming that other agents are playing their best games?

Definition 3.6-2 (Strategic Equilibrium). Given goal model G that involves agents

{ai : 1 ≤ i ≤ n} with single agent formulas ψai
: 1 ≤ i ≤ n and score functions

sai
: 1 ≤ i ≤ n, an alternative solution (game) is considered a strategic equilibrium if

each agent can’t gain more score given that other agents don’t change their strategy.

The value of finding strategic equilibriums in strategic organizational modeling is in

that they can be regarded as the potential outcome of the competition. This metric can

be used to evaluate how a change in an organization’s strategy would actually work in

the marketplace: If the change leads to an equilibrium where the goal of the designer is

better met (for example environmental issues are better addressed) then that change can

potentially regress the market towards the designer’s goal. After characterizing strategic

equilibriums and given our computational framework, our next target is to compute these

states.

The most appealing set of strategies (games) are those that to some sort maximize

the overall and individual score of agents. More specifically, we look at the games (o)

that maximize the sum of agents’ scores:
∑n

i=1 sai
(o).

Theorem 3.6-3 (Existence of Strategic Equilibriums). Given strategic game χ =<

G, A, S > where G is a goal model involving the set of agents A = {a1, a2, . . . , an}
with strategic score functions S = {sa1 , . . . , san}, every solution omax that maximizes

s∗(o) =
∑n

i=1 sai
(o) corresponds to a strategic equilibrium.

Proof: Proof by contradiction: If agent a can play a better strategy while other agents’

strategies are fixed, then the new set of strategies for all agents have a higher value for

the function s∗(o) =
∑n

i=1 sai
(o). However, this is in contradiction with the assumption

that omax is a solution with maximum value for s∗(o). ¤
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It follows that we can compute the a subset of equilibrium states by finding solutions

that maximize the value of function s∗(o)

Proposition 3.6-4. Given strategic game χ =< G, A, S >, answer sets with min-

imum value for the function s∗
−
(o) = −s∗(o) correspond to solutions that are strategic

equilibriums.



Chapter 4

Conclusion and Future Work

In this work, we have revisited evaluation in i∗ models and provided extensions to the

available evaluation use cases. The extended use cases let the requirements analyst

navigate through alternative solutions by translating user’s desired labels for high level

goals along with the model structure into logic rules and using an ASP (answer set

programming) engine to return all the minimal answer sets for the program consisting

of these rules. An i∗ goal model analysis tool such as OpenOME can be integrated with

our framework and translate the solutions provided by the framework back into visual

representation for the user. In the process of finding the alternative evaluations for high

level desired labels, the analyst can specify preferences among them and the framework

accordingly creates logic rules that reflect these preferences and first returns the most

preferred solutions. The framework also enables the analyst to know the deterministic

partial solutions resulting from her inputs by running cautious queries on a certain subset

of the model such as a neighborhood of the analyst’s last modification point.

We have also provided computational machinery for automated support of these use

cases where possible. For this purpose, the constraints and objectives of the problems in

each use case is translated to logic rules and fed into an answer set programming engine;

ultimately, the framework receives the computed answers from the ASP engine. A front-

end application such as OpenOME can visualize the answers for users by translating the

answers back to its visual elements of i∗ model. At its current form, the framework is

capable of translating i∗ models into logic programs using the rule schemas proposed

throughout the paper. In future work, we intend to incorporate the current implemen-

tation as well as the UI prototypes provided in chapter 2 into an OpenOME plug-in to

visually interact with the user when running the use cases. The current implementation

is being tested on moderate size goal models with less than 30 nodes and it’s our intention

to test its performance against larger goal graphs. Also the range of goal graphs that
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are being tested need to be expanded to include special cases such as goal graphs with

cycles, etc.

The scope of this work doesn’t span introducing new refinements for better fulfillment

of high level goals or changing the structure of the goal model, however it provides grounds

for having the notion of structure changing actions that represent the act of changing the

structure of the goal model (such as adding or removing agents, goals, etc...) and thus

proposing new refinements (such as new dependencies, decompositions, etc) which could

potentially provide a better solution than the existing ones. The actions that change the

structure of the model can be learned from real business experiences.

One possible approach for minimizing human intervention when resolving conflicts

in the propagation process is to ask the analyst to specify priorities among incoming

contribution links to nodes and when a conflict arises, favor the contributed label from

the incoming links with highest priority over other conflicting labels. The implementation

of this approach should be straightforward , however there needs to be experimental

evaluations to assess its feasibility in real case requirements analysis scenarios. The idea

is to factor human’s knowledge of the domain in the form of priorities among contributions

to elements in the model. On the other hand, the computational machinery provided

in this work can be extended to support the use cases required for this approach, if it’s

found useful.

It is also noteworthy to mention that despite our concentration on i∗ evaluation

procedure, the framework has the potential to be used for other evaluation procedures

of i∗ or even other types of goal models as well, as long as the evaluation procedure and

the model structure can be encoded using logic rules.

Our view of organizational strategies as games can be potentially extended by char-

acterizing more strategic equilibriums than the specific case mentioned in this work or

even all of them. Also, one can view the game being played among cooperative agents

where several parties form a cooperative group to maximize their collective preferences

as opposed to their individual scores.
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