A Goal-Oriented Representation of Service-Oriented Software Design Principles

by

Alireza Moayerzadeh

A research paper submitted in conformity with the requirements for the degree of Master of Science, 2008

Department of Computer Science

University of Toronto
Abstract

A Goal-Oriented Representation of Service-Oriented Software Design Principles

Alireza Moayerzadeh

Master of Science

Graduate Department of Computer Science

University of Toronto, 2008

Service-oriented architecture (SOA) embodies a set of principles including service abstraction, composability, discoverability, and reusability, among others. Although these principles are widely circulated by SOA technology vendors, there have been few efforts to collect, organize, and elaborate on these principles for the purpose of guiding system design. In this paper, we explore how service-oriented design principles can be organized in a goal graph representation and used in system design. We propose a method to extract SOA design principles from textually represented service-oriented knowledge sources. Next, we apply our method on an SOA knowledge source, extract SOA design knowledge-base organized by design principles and presented by goal graph, and explore application of such knowledge-base.
Content

61.
Introduction

82.
SOA design knowledge

82.1
Knowledge source for service-oriented design

92.1.1
Structure of the knowledge source

112.2
Resulting goal-graphs

122.2.1
Design principle goal-graphs

132.2.2
Design pattern goal-graphs

162.3
Analyzing design alternatives using goal-graphs

202.4
Relation of design principles

202.5
Project-specific goals

222.6
Application example

273.
Knowledge extraction method

273.1
Related work

293.2
Expectations

343.3
Procedure

363.3.1
Normalization of naming

373.4
Representational framework

404.
Knowledge extraction

404.1
Extracting design principle information

404.1.1
Softgoals

434.1.2
The rest of design knowledge

454.2
Extracting design pattern information

474.3
Integrating design principle goal-graphs

514.3.1
Integrating all subareas

535.
Alternative knowledge source

535.1
Structure of the knowledge source

575.2
Resulting goal-graphs

626.
Conclusions

666.1
Limitations

676.2
Future work

69References

70Appendix A – Design principle graphs

82Appendix B – Design pattern graphs

90Appendix C – Principles and patterns cross-reference

List of Figures

12Figure 1 – Goal-graph for Service Autonomy design principle

13Figure 2 – Goal-graph for Contract Serialization design pattern

15Figure 3 - Full graph of integrating Service Contracts and Service Autonomy principles

18Figure 4 - Effect of choosing shared logic autonomy

19Figure 5 - Effect of choosing pure autonomy

21Figure 6 - High-level softgoals of integrating all chapters

24Figure 7 - Evaluation of choosing shared-logic autonomy level on high-level goals

25Figure 8 - Evaluation of choosing pure autonomy level on high-level goals

37Figure 9 – Symbols used in our models

42Figure 10 - Initial integration of softgoals of Service Contracts design principle

43Figure 11 – Integration of softgoal only knowledge for Service Contract design principle

44Figure 12 - The rest of design information (not fully integrated) about Service Contract principle

45Figure 13 - Final graph for Service Contracts design principle

46Figure 14 - Design information about Contract Centralization pattern

48Figure 15 - Softgoal-only graph for service autonomy principle

49Figure 16 - Initial Softgoal integration of service contract and service autonomy

55Figure 17 - Self-Service: Directly Integrated Single Channel application pattern. (from [10])

58Figure 18 - Goal-graph of Access Integration: Single Sign-On pattern

58Figure 19 – Goal-graph of Access Integration: Personalized Delivery pattern

1. Introduction
Service-oriented architecture (SOA) is an architectural model that aims to enhance the agility and cost-effectiveness of an enterprise while reducing the overall burden of IT on an organization. It accomplished this by positioning services as the primary means of providing functionality [15]. A service is a unit of potentially independent logic which contributes to providing required functionality in a solution designed with service-orientation in mind. SOA promises that proper use of services as building blocks of business applications will bring about benefits such as increased intrinsic interoperability, increased business and domain technology alignment, increased business agility, and reduced IT burden within an organization. As a result, SOA is being embraced by the software community.
Like any other architectural model, using SOA in system design requires following a set of design principles such as service abstraction, service autonomy, and service discoverability. While these principles are promoted by vendors providing the technology for implementing SOA, the main focus is usually on the technology rather than the concept and rationale of design principles. Such introduction of design principles from a perspective relevant to the technology and SOA vendor keeps designers from gaining an objective and complete understanding of principles which ultimately leads to poor vendor-biased designs.
In addition, there have been few efforts to collect, organize, and elaborate on these principles for the purpose of guiding system design. When these principles are elaborated, there are complementary as well as conflicting aspects that can be uncovered. Recently, more comprehensive attempts to articulate these design principles have emerged in the literature. However, while the textual format is necessary for the exposition and explanation of concepts, it does not lend itself easily for visualizing the relationships and interactions among inter-related concepts and principles.

To address the mentioned issues, we propose to use a goal-oriented modeling approach to represent design knowledge in SOA. Also, we propose to use well-developed goal-oriented analysis techniques to provide analysis support and guide system design. First, we present a set of SOA design knowledge presented by our modeling approach and demonstrate its applications in system design. Next we go through details of the method we used to extract knowledge from a textually represented source and represent it using goal-oriented concepts. Then we elaborate on how we used our method to obtain the results presented earlier. Next, we show how to use other sources to add more design knowledge to the already gathered body of SOA design knowledge. Finally, we present conclusions and lessons learned and discuss how structure of a knowledge source affects the extracted knowledge.
2. SOA design knowledge
In this section, we introduce a knowledge source on SOA design and represent SOA design knowledge from this source using goal-graphs. Then, we show how to use these goal-graphs to support system design in various scenarios.

2.1 Knowledge source for service-oriented design

As software community embraces service-oriented architecture, a number of resources from various SOA players emerge as prominent SOA references. [13] provides an in-depth overview of service-orientation, its history, its fundamental characteristics and concepts. It also covers key web service related specifications and technologies such as WS-* family of standards. It then provides a comprehensive overview of service-orientation support in .NET and J2EE.

[3] talks about fundamental concepts involved in service-oriented architecture. Then, it elaborates on design principles involved in building effective service-oriented system while trying to stay away from any specific SOA implementation technology. Finally, it provides a comparison of service-orientation and alternative methodologies.
[10] talks about using patterns for e-business purposes and then lists and elaborates on patterns used in using web services, the most prominent form of service orientation. It continues with chapters on available technology options covering IBM’s service-oriented middleware offerings, various available services buses, service directories and gateway, and IBM’s vision of an on-demand service-orientation architecture.

From the available knowledge sources we choose “SOA – Principles of Service Design” [3] to illustrate our method and its usefulness. The advantage of [3] is that it has the most systematic approach to organizing service-oriented design knowledge. More importantly, it is almost free from technology-related content and contains discussions about the real knowledge involved in designing service oriented. Therefore, it makes the most suitable starting point for constructing a goal-oriented knowledge-base of SOA design knowledge.
2.1.1 Structure of the knowledge source
The book is composed of three main parts: The first part is an introduction on service oriented and the fundamental knowledge to start with SOA. The second part contains detailed explanation on eight principles of service design. The last part contains supplemental information such as supporting practices and comparing service orientation to other design paradigms.

The second part contains most of the design knowledge we are trying to extract about SOA design principles. This part consists of eight chapters, starting from chapter 6: Service Contracts (standardization and design), Service Coupling (intra-service and consumer dependencies), Service Abstraction (information hiding and meta abstraction types), Service Reusability (commercial and agnostic design), Service Autonomy (processing boundaries and control), Service Statelessness (state management deferral and stateless design), Service Discoverability (interpretability and communication), and Service Composability (composition member design and complex compositions). Each chapter contains detailed information on the design principle in question.
There are also eight design patterns that help applying the service design principles. These design patterns should not be confused with the well-known object-oriented design pattern concept introduced in [6]. Patterns described in [6] encapsulate well-known solutions to common design problems while patterns discussed here help designers in achieving the service oriented design principles. Implementing one pattern usually affects more than one principle and achieving an accepting level of each principle in design may require implementing more than just one pattern.

These design patterns are mentioned in text whenever it is relevant to the principles, so information about them are scattered in various chapters. Goal-graphs are built from extracted design knowledge based on both design principles and design patterns. Principle-based graphs show the design knowledge organized based on design principles and Pattern-based graphs present the design knowledge organized based on patterns. It should be noted that since [3] is not about implementing the patterns, information about patterns are mostly rationale-related. It is not surprising though, since [3] is about SOA design principles and information about patterns are mentioned only in context of explaining those principles. In fact, [3] provides a table (see Appendix C) indicating occurrences of design patterns in book chapters. Finally, it should be noted that goal-graphs are meant to accurately convey knowledge from the source while highlighting interconnection among design elements. However, extra element relations are sometimes necessary to integrate separate pieces of extracted knowledge (see 4 on conclusion list of section 6).

2.2 Resulting goal-graphs

The main result of applying the extraction method is a goal-graph for each design principle. Design knowledge about each principle is summarized in one goal-graph. Also, to demonstrate how our method can be used to organize knowledge area according to an alternative perspective, a goal-graph is extracted for each design pattern. However, it is important to note that since Erl’s book is focused on design principles, principle-based goal-graphs are the main results.
Goal-graphs contain softgoals and tasks represented by oval-like shapes and tasks represented by hexagons. They are connected using positive and negative contribution links represented by arrows. Task elements can be decomposed using AND-decompositions (straight lines) and OR-decompositions (straight lines with an small crossing line). Also, element names in the form of Type[Topic] should be read as “Type of Topic”. For example, Performance[Service] softgoal indicates the “performance of service” concept. (see 3.4 for our representational framework)3.4.
2.2.1 Design principle goal-graphs
Figure 1 shows the goal-graph for the Service Autonomy design principle using our representational framework. For example, satisficing Predicability[ServiceBehavior] softgoal makes Composability[Serivce] satisficed and choosing Employ[Shared-DataAccess] task denies Consistency[ResponseTime] softgoal.

[image: image1.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

BusinessAgility

[Company]

Security

[Environment]

Performance

[Serivce]

+

+

+

+

+

+

+

+

+

+

+

+

-

+

+

+

++

+

+

MinimizingFunctional

Redundancy[Service]

LowCost

[Hardware]

Consistency

[ResponseTime]

Employ[Shared

DataAccess]

-

+

Implement

[ServiceContract

Autonomy]

Implement

[SharedAutonomy]

Implement

[SharedLogic

Autonomy]

Implement[Pure

Autonomy]

LowCost

[Production]

+

-

+

+

+

+++

+

Figure 1 – Goal-graph for Service Autonomy design principle

2.2.2 Design pattern goal-graphs
Figure 2 shows the goal-graph for Contract Centralization design pattern.

[image: image2.emf]Employ [Open

Standards]

Remove

[ExtraService

EndPoints]

ProvideOne

[Service

EndPoint]

Decouple

[Consumer,

Service]

MinimizeCoupling

[Services]

Employ

[Contract-

FirstDesign

Approach]

Document

[Existing

Couplings]

+

+

+

Employ

[Software

Reusability

Principles]

RemoveCoupling

[Consumer,

Implementaion]

RemoveCoupling

[Contract,Logic]

MinimizeCoupling

[Contract,

Functional]

PreventCoupling

Propagation

[Technology]

IncreaseAwareness

[IndirectCouplings]

MinimizeEffect

[Negative

Couplings]

+

+

+

+

+

+

+

+

+

+

MinimizeCoupling

[Service,Service]

+

+

Figure 2 – Goal-graph for Contract Serialization design pattern

An interesting point is the frequency of element types in principle goal-graphs compared to pattern goal-graphs. In principle goal-graphs, appearance frequency of softgoals is more than that of tasks. Pattern goal-graphs show slightly different statistics. Although softgoals are still more than tasks, tasks appear more frequently in pattern goal-graphs compared to principle goal-graphs. This actually is the expected result since chapters talking about principles are more likely to contain information about rationale and goals, and chapter talking about patterns are more likely to be filled with information about how to solve common problems. Also, the fact that even pattern graphs contain more softgoals than task can be explained by pointing out that [3] is generally a book about design principles and information about patterns are only mentioned in context of explaining those principles, so high appearance frequency of softgoals in pattern goal-graphs is not surprising.
[image: image3.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service,

OtherServices]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

BusinessAgility

[Company]

Security

[Environment]

Performance

[Serivce]

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

+

Interoperability

[Service]

MinimizingData

Transformation

[Service]

Predictability

[Service]

Interpretability

[ServiceContract]

Standardization

[ServiceData

Representation]

Maintainability

[Service]

FastDelivery

[Service]

EasyNavigation

[Service

Inventory]

Standardization

[ServiceFunctional

Expression]

MinimizingOverhead

Bandwidth[Service]

Standardization

[ServiceContract]

Standardization

[ServicePolicies]

+

MinimizingOverhead

CPU[Service]

RepeatedUsage

[ServiceLogic]

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

-

EnforcePolicy

[Design

Standards]

Adjust[Old

Organizational

Standards]

Employ

[Appropirate

Tools]

Develop

Knowledge

[ToolUsage]

++

LowCost

[Development]

RetainingControl

[ServiceDesign]

-

Employ

[ContractFirst

Design]

+

Employ

[Naming

Conventions]

+

Unify

[DataModel]

+

UserPattern

[Schema

Centralization]

+

MinimizingCoupling

[Contrct,Logic]

Minimizing

[Functional

Redundancy]

LowCost

[Hardware]

Consistency

[ResponseTime]

Employ[Shared

DataAccess]

-

Implement[Service

ContractAutonomy]

Implement[Shared

Autonomy]

Implement[Shared

LogicAutonomy]

Implement[Pure

Autonomy]

LowCost

[Production]

+

+

+

+

++

+

+

+

+

+

+

+

Figure 3 - Full graph of integrating Service Contracts and Service Autonomy principles

Semi-integrated results of extraction for all design principles and design patterns from [3] are included in Appendix A and Appendix B. These graphs show integrated goal-graphs near their final state but also contain all the design knowledge bits extracted from [3] including bits that we could not integrated into the final goal-graphs due to insufficient interconnection information.
2.3 Analyzing design alternatives using goal-graphs

A benefit of having each design principle represented by a goal-graph is that the consequences of choosing various design alternatives on other softgoals can be analyzed using the evaluation process of the NFR framework [1]. For example, consider the bottom row tasks in Figure 1 which represent four ways to satisfice RuntimeAutonomy[Service] softgoal. In other words, there are four ways to achieve service autonomy which are represented by Implement[ServiceContractAutonomy], Implement[SharedAutonomy], Implement[SharedLogicAutonomy], and Implement[PureAutonomy] tasks (the first one satisfices runtime autonomy indirectly by satisficing MinimizingFunctionalRedundency[Service] softgoal). It is possible to analyze effects of implementing each alternative using the evaluation process described in [1]. The figures below show the effects of implementing service autonomy using shared logic method or pure method. In these graphs, a check mark indicates that a softgoal is satisficed or a task is used, an X indicates that a softgoal is denied or a task is not used, and a question mark indicates that the outcome is not clear. Also, elements without any marks are those elements that their usage or satisficing is not affected by propagating the initial state of the evaluation. Finally, since we used a subset of links available in [1] (see 3.4 for our representational framework) we only used the subset of propagation rules that contain positive and negative contribution links. Simply put, a positive contribution link propagates the same satisficing state at its starting endpoint while a negative contribution negates it. (see [7] for more detail)
For instance, if in an evaluation process RuntimeAutonomy[Service] is satisficed, Predictability[ServiceBehavior] is also satisficed since there is a positive contribution link from the former to the latter. Also, if Employ[SharedDataAccess] is chosen, Consistency[ResponseTime] will be denied due to the negative contribution link between these elements. In cases which there are both positive and negative input contribution links to an element the satisficing state should be determined by designers. In real-world projects, the result of such a propagation step depends on importance of individual links and their contribution to satisficing the softgoal in question. As a result, the best approach is to let the designers themselves resolve such issues. Although doing so may reduce the evaluation from an automatic process (in NFR framework) to a semi-automatic one, there is still a step by step structure to the process, which can be facilitated using appropriate tool support [9].

[image: image4.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service,

OtherServices]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

BusinessAgility

[Company]

Security

[Environment]

Performance

[Serivce]

+

+

+

+

+

+

+

+

+

+

+

+

-

+

+

+

++

+

+

LowCost

[Hardware]

Consistency

[ResponseTime]

Employ[Shared

DataAccess]

-

+

Implement

[ServiceContract

Autonomy]

Implement

[SharedAutonomy]

Implement

[SharedLogic

Autonomy]

LowCost

[Production]

+

-

+

+

+

+++

+

?

MinimizingFunctional

Redundancy[Service]

Implement[Pure

Autonomy]

Figure 4 - Effect of choosing shared logic autonomy

[image: image5.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service,

OtherServices]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

BusinessAgility

[Company]

Security

[Environment]

Performance

[Serivce]

+

+

+

+

+

+

+

+

+

+

+

+

-

+

+

+

++

+

+

LowCost

[Hardware]

Consistency

[ResponseTime]

Employ[Shared

DataAccess]

-

+

Implement

[ServiceContract

Autonomy]

Implement

[SharedAutonomy]

Implement

[SharedLogic

Autonomy]

Implement[Pure

Autonomy]

LowCost

[Production]

+

-

+

+

+

+++

+

MinimizingFunctional

Redundancy[Service]

Figure 5 - Effect of choosing pure autonomy

The first graph reveals that although using shared logic autonomy satisfices the RuntimeAutonomy[Service] softgoal, it denies Scalability[Service] which means that it has a negative impact on scalability. Also, its effect on Performance[Service] is undecided. Next graph shows the result of analysis when pure autonomy is used to implement the service autonomy. Examining the new graph reveals that choosing pure autonomy helps satisficing Performance[Service], has a negative effect on LowCost[Production], while its effect on Scalability[Service] is undecided. As a result, choosing the pure autonomy is preferred when available.

2.4 Relation of design principles

Looking at goal-graphs of various design principles can reveal the relation of design principles with each other especially in terms of common middle and high-level softgoals. For instance, examining goal-graphs of service autonomy and service contract principles show that they mostly have high-level softgoals in common which suggests that these principles are loosely coupled. If service coupling principle is also included in the graph, a close relationship between service coupling and service autonomy will be observed since these two principles have a number of common softgoals at lower levels. Some of these coupling-related goals can be seen at the lower right side of Figure 3.

2.5 Project-specific goals

We can integrate goal-graphs of various design principles to get an integrated view of the whole SOA design knowledge area. Figure 6 shows the high-level-part of the integrated graph, which contains high-level softgoals common among most of principle goal-graphs. These high-level softgoals can be used to relate design elements to goals specific to a project which the designer is working on. From an organizational standpoint, it is desirable to analyze effects of various design decisions on such goals. Increased return of investment, increased vendor diversification options, increased organizational agility, and reduced IT burden are some examples. Integrating these goals into Figure 6 is fairly straightforward since such goals usually have fairly noticeable relations with high-level goals in the final integrated graph. For instance, there is already a ReturnOfInvestment[Company] softgoal which is exactly the same as the first example. Increasing organizational agility is same as BusinessAgility[Company]. Some of LowCost softgoals such as LowCost[Hardware] and LowCost[Development] as well as Maintainability[Serivce] obviously result in reduced IT burden, and finally, increased vendor diversification can be related to Modifiability[HostingEnvironment] and Modifiability[UnderlyingTechnology] softgoals. Having project specific softgoals enables designers to see the effects of their decisions all the way to the high-level goals of their specific project at hand using the same kind of analysis presented in 2.3.

[image: image6.emf]Maintainability

[Service]

+

Evolving[Service]

Extensibility

[Serivce]

EasyDesign

[Service]

EasyTesting

[Service]

Predictability

[UsageEnviroment]

+

+

+

+

Isolation[Service]

Reliability

[Performance]

Security

[Environment]

Availability

[Service]

+

Deferral

[StateStorage]

Scalability

[Service]

Composability

[Service]

Performance

[Serivce]

+

-

+

Reusability

[Service]

+

Discoverability

[Service]

Interpretability

[Service]

+

FastDelivery

[Service]

EffectiveSharing

[Enterprise

Resources]

BusinessAgility

[Company]

RetrunOf

Investment

[Company]

+

+

Efficiency

[Execution

Environment]

LowCost

[Hardware]

LowCost

[Development]

+

+

LowCost

[Production]

+

+

++

+

+

+

++

+

+

+

+

+

+

+

Figure 6 - High-level softgoals of integrating all chapters

2.6 Application example

Now, let’s look at the analysis in context of a real world example of Cutit Saw Ltd adopted from [3]. As explained in [3] Cutit Saws is a manufacturer and reseller of high-end hydraulic diamond chainsaws. Recently, they have released a new chain model that caught the eye of their business community, and they received orders from everywhere. However, Cutit Saws has not been able to keep up with the demand due to outdated IT infrastructure among other reasons. As a result, they decided to use service oriented design to build their new IT system to address the needs of this growing company for the next five years. They built various web services to support their business processes. Now, they are looking at various service capabilities to make sure their services will provide desirable performance required for the anticipated growth of the next five years.

The example in [3] provides a review of current implementation of services and recommends implementing a higher level of autonomy for a specific service capability but doesn’t compare applicable autonomy levels. The example also provides a brief and textual analysis of effects of the proposed implementation on other services. Here, we use our analysis technique to compare various applicable autonomy levels and visualize their effect on other softgoals including project specific goals.

Since softgoal-graph of service autonomy is available (Figure 1), it is possible to evaluate effects of implementing each available autonomy level on the other softgoals using the same analysis explained in section 2.3 resulting in Figure 4 and Figure 5. However, as mentioned before about the evaluation process for real world examples, for each service capability results may be different from those figures since on each step the designers themselves need to determine if a softgoal is satisficed based on its input contribution links. Moreover, since it is possible to connect high-level goals to project specific goals as explained in 2.5, the designers can find out about the effects of implementing each alternative on project specific goals.

Cutit Saws’ main goal is to be able to react fast to changes in market demands and make its IT department a facilitating tool rather than an obstacle of their growth. Cutit is also interested in decreasing IT costs and in getting the most value out of their investment in upgrading the IT department. These goals translate to BusinessAgility[Cutit], LowCost[Production], and ReturnOfInvestment[Cutit] softgoals respectively, all of which are already present in Figure 6. Assuming that for a given service capability evaluation process finishes exactly as in Figure 4 and Figure 5, we can continue the evaluation process on Figure 6 to see the effect of choosing each alternative on project specific goals. Results are presented in Figure 7 and Figure 8.

[image: image7.emf]Maintainability

[Service]

+

Evolving[Service]

Extensibility

[Serivce]

EasyDesign

[Service]

EasyTesting

[Service]

Predictability

[UsageEnviroment]

+

+

+

+

Isolation[Service]

Reliability

[Performance]

Security

[Environment]

Availability

[Service]

+

Deferral

[StateStorage]

Scalability

[Service]

Composability

[Service]

Performance

[Serivce]

+

-

+

Reusability

[Service]

+

Discoverability

[Service]

Interpretability

[Service]

+

FastDelivery

[Service]

EffectiveSharing

[Enterprise

Resources]

BusinessAgility

[Cutit]

RetrunOf

Investment[Cutit]

+

+

Efficiency

[Execution

Environment]

LowCost

[Hardware]

LowCost

[Development]

+

+

LowCost

[Production]

+

+

++

+

+

+

++

+

+

+

+

+

+

+

?

Figure 7 - Evaluation of choosing shared-logic autonomy level on high-level goals

Here, in both cases BusinessAgility[Cutit] and ReturnOfInvestment[Cutit] softgoals are satisficed due to positive contribution from Composability[Service]. The only difference here is LowCost[Production] which is undecided in case of choosing pure autonomy. The collective conclusion is that for the service capability in question, shared autonomy is a better option.

[image: image8.emf]Maintainability

[Service]

+

Evolving[Service]

Extensibility

[Serivce]

EasyDesign

[Service]

EasyTesting

[Service]

Predictability

[UsageEnviroment]

+

+

+

+

Isolation[Service]

Reliability

[Performance]

Security

[Environment]

Availability

[Service]

+

Deferral

[StateStorage]

Scalability

[Service]

Composability

[Service]

Performance

[Serivce]

+

-

+

Reusability

[Service]

+

Discoverability

[Service]

Interpretability

[Service]

+

FastDelivery

[Service]

EffectiveSharing

[Enterprise

Resources]

BusinessAgility

[Cutit]

RetrunOf

Investment[Cutit]

+

+

Efficiency

[Execution

Environment]

LowCost

[Hardware]

LowCost

[Development]

+

+

LowCost

[Production]

+

+

++

+

+

+

++

+

+

+

+

+

+

+

?

Figure 8 - Evaluation of choosing pure autonomy level on high-level goals

However, there is more to the results than this analysis reveals. If we consider how Composability[Service] is satisficed, we see that in case of shared logic autonomy this softgoal is satisficed despite the negative contribution from Performance[Service] softgoal, while in case of pure autonomy the goal is satisficed by only receiving positive contributions. It can be argued that the softgoal in question is satisficed more strongly in the second case. There is, unfortunately, no such notion in our representational framework, so there is no way to model the strength on which a goal is satisficed or denied. In our example, since BusinessAgility[Cutit] is the main softgoal the difference in strength might worth the extra cost incurred by choosing the pure autonomy level. This is a kind of decision only designers with enough field expertise can make, which emphasizes the role of designers in the evaluation process.
3. Knowledge extraction method

Goal-graphs presented in the previous section were extracted and assembled using a structured method we devised to extract design knowledge from textually represented knowledge sources. In this section we introduce the method we used in detail including our expectations, anticipated problems and proposed workarounds for them, and representational framework used to visualize knowledge which is based on the NFR framework [1]. However, before starting to construct our extraction method, we briefly review candidate goal-oriented methods and other relevant work.

3.1 Related work

We intend to model design knowledge in order to support design-time analysis of non-functional requirements. Such support is provided by goal-oriented methods which are used to elicit and model system requirements.
KAOS framework [5] is a goal-oriented approach to software requirements acquisition. Requirements are acquired as instances of a conceptual meta-model. A conceptual meta-model is a graph whose elements represent goals, actions, agents, entities, or events in a software systems. These elements are then connected by semantic links to describe the requirements in the system. [5] also describes a method to extract such elements from textual representation of requirements by scanning text and presenting information using the semantics mentioned before.

NFR [11, 1] is a framework for representing and using nonfunctional requirements during the development process. Central to NFR is the notion of a goal-graph which consists of softgoals connected with links. A softgoal is a concept which represents a goal without a clear-cut definition of whether if it is satisfied or not, so it provides a means to model the qualitative aspects of a system such as its nonfunctional requirements. Relations among various softgoals are modeled with links. For instance, link a negative contribution link from one softgoal to another indicates that meeting the former softgoal has a negative effect on meeting the latter softgoal, or a Make link from one goal to another means that meeting the former goal is enough to meet the latter goal. However, since softgoals are not satisfied like regular goals, NFR talks about satisficing a softgoal to emphasis the difference. Finally, NFR supports an evaluation process which allows designers to propagate effects of satisficing or denying a set of softgoals on the rest of a given goal-graph.

i* [2] is a full-fledged framework for modeling the organizational context and rationale that lead up to various requirements in the system. To model the organizational context, i* uses Strategy Dependency (SD) graphs. An SD graph contains the various actors in the system and using Dependency links, it documents how each actor depends on other actors to provide certain resources, perform other tasks, satisfy goals, or satisfice softgoals it requires in order to function. To model the rationale of each actor, i* uses Strategy Rationale (SR) graphs. An SR graph contains resource, tasks, goals, and softgoals important to each actor and models relations among these elements using various types of links such as contribution, decomposition, and means-end links. Lastly, i* too supports a well-defined process for evaluating design alternatives [7].

[12] uses NFR models to describe patterns and documents the rationale behind using them in various design situations. It proposes a systematic way to model patterns expressed in textual format using NFR. The design patterns from [6] are used as the source knowledge area.
3.2 Expectations
We expect the method to support the following list of features:

1. An integrated view of the knowledge area: An integrated view of the knowledge area is a representation of design knowledge, for instance in form of a graph or table, that presents design information contained in a knowledge subarea, for instance a book chapter, in a single and easy to navigate view. Such views can help designers to easily review and navigate important points involved in design of a feature related to that part of the knowledge area. For instance, an integrated view about caching options provided by a server side scripting language presents available caching options and relations of options with each other. Also, the integrated view should preferably be available on various detail levels to provide better navigation support for the knowledge area.

2. Analysis support: The representation framework should enable algorithmic analysis on the extracted knowledge. Such support is necessary to guide system design by enabling designer to investigate the effects of picking different design alternatives on various aspects of their software system.
3. Relating detailed decisions to the big picture: Each software project has its own specific goals not necessarily discussed in the knowledge area in question. In fact, these are the goals which almost all detail levels are made to meet them. For example, gaining business agility might be the main reason for creating a new IT system in a manufacturing company. However, a software designer of such IT system will not find much about the effects of choosing different caching technologies on business agility. The representation framework should provide a means to relate such project-specific goals to the design knowledge extracted from the knowledge area, because meeting such specific goals is the ultimate purpose of software designers after all.
4. Structuring knowledge according to different criteria: It is often desirable to structure and present the same body of knowledge according to different information types present in a knowledge area. For instance, a book on enterprise software design may contain information on both design principles of enterprise systems and common architectural patterns used in enterprise software. A flexible representational framework allows the knowledge area to be structured and presented according to both formats.
To achieve the items listed above, as mentioned before, we use a goal-oriented representational framework which is completely explained in section 3.4. Considering the fact that our target knowledge areas are most likely large source such as books or online knowledge bases, and having in the mind the general knowledge extraction process of goal-oriented methods, we expect that the following problems will arise during the process of converting textual knowledge into format of our proposed goal-oriented representational framework:
1. Managing size of extracted knowledge: A large knowledge area such as SOA design naturally contains a large amount of design knowledge. However, since the extracted knowledge is initially not integrated, approaching to such large knowledge areas without a careful plan leads to an unmanageable integration surface. To address this problem, it is recommended that the knowledge area be divided into smaller and more manageable subareas. Integration should be performed first on the subarea level and then on the all sub areas to create an integrated view of the whole knowledge area. It is obvious that each subarea can be further divided to reach a manageable size for knowledge extraction and integration. It should be noted that since divided areas usually need to be integrated, dividing excessively may result in extra effort in integration.
2. Complex goal-graphs: As we usually deal with large knowledge areas, we get large and complex graphs. This problem, however, is somewhat present in all goal modeling frameworks. Since this problem is similar in nature to the first problem, dividing subareas and presenting graphs for each subarea can help in reading and following the graphs.
3. Naming inconsistency: Since representational elements such as softgoals and tasks are extracted from text and extraction is a manual process, it is easy to introduce inconsistency to names of extracted elements. For instance, it is possible that a different name be assigned to information about a same softgoal extracted from various parts of text. Such inconsistencies lead to serious integration problems. Since un-integrated knowledge is not useable by its own, they limit the explicitly expressed knowledge and thus the whole usefulness of the model.
To fix this problem, set of names used for softgoals and tasks needs to be normalized. A simple way to enforce this is each time a new name is encountered during the extraction, it should be compared against the currently extracted names and if there is a name that already conveys the same meaning, the latter be used. Normalization should preferably be performed by someone with expertise on the knowledge area since modeling different softgoals as similar softgoals introduces false information into the extracted knowledge. More explanation and an example are provided in 3.3.
4. Missing links: Sometimes integrating knowledge from a subarea results in a number of disconnected graphs rather than a complete connected graph and thus is not suitable for analysis. Such situations can happen due to insufficient extracted knowledge, so the first way to resolve them is to search the subarea for text containing information about elements from various disconnected graphs. Such problems also happen due to poor naming the graph element, but as discussed before, normalizing names can fix the problem in such cases. It is also possible that there is information in other subareas that can connect the disconnected part. This situation can suggest that subarea is not divided properly since information in subareas is not coherent enough to allow integration. Finally, information connecting the disconnected parts might be assumed explicitly in the context but not expressed explicitly in the text. In such cases it is safe to add the implicit information to graph in order to facilitate the integration. However, extra care should be taken to prevent the addiction of false and fabricated information to the graph.
5. Traceability: Since goal-graphs are only complementary to the main knowledge source, it is often desirable to refer to the part of text that a link or a softgoal is extracted. In order to do so, a reference to the place where each relation is extracted should be maintained. Depending on the knowledge area page numbers, URLs, or other resource identifiers might be used to represent such information. Also, links that are added through other means such as adding implicitly information (as described above) should be marked to document their origin. Maintaining such information combined with appropriate tool support can provide a navigable view of the knowledge area.
6. Conflicts and errors: Since the extraction and integration processes are manual, it is likely that conflicting and bogus information is extracted. Such problems can have a number of causes such as bogus knowledge extraction, incorrect normalization, assuming false context information and adding it to the integrated graph, or even conflicting information in the original text. However, by dividing knowledge area into smaller subareas, such errors can be detected more easily. It is a good idea to check integrated graph of each subarea for such errors before integrating the subareas together since such errors will propagate to the higher level graphs if they are ignored.
3.3 Procedure

Considering the anticipated problems in the previous section, in order to create integrated views representing information in a given knowledge area a three-step method is proposed: dividing the knowledge area, extracting information from text of each subarea and making a goal-graph using our representational framework described in 3.4, and integrating information obtained from previous steps.

1. The first step is to break up the knowledge area into manageable subareas. Each subarea will later be studied to have its design knowledge extracted. Thus, division should be performed so that each subarea contains information about the same subject matter. For instance, for a server web-development technology possible subareas can be generating HTML content, working with database, caching, state management, and authentication.

2. The second step is to extract design information from text in each subarea. To achieve this, a process similar to requirements extraction process from [5] is used. To get design information, text has to be searched for sentences and paragraphs containing desired information. More specifically, sentences which show support or denial of various goals should be found and modeled by contribution links. Also, sentences that show various ways involved in completing various tasks should be found and modeled with task decomposition links. For example, consider the following text snippet from state management section of an ASP.NET reference [4]:
Because data stored in application state is not durable, it is lost if the host containing it is destroyed. If you want state to survive these types of failures, you should store it in a database or other durable store.
Converting this snippet using our representational framework:

Employ[DurableStore] task contributes positively to Durability [ApplicationStateInfo] softgoal.
Moreover, it is easy to show the information above as a simple graph with two elements and a positive contribution link to a goal-graph using the same notation and semantics of our representational frameworks. Also, the extracted piece should be marked with the place, in this case the page number, which it was extracted from to enable further references to the text.
3. The third step is to combine all simple graphs resulted from previous steps. Integration is performed on two levels or more levels depending on how the knowledge area is divided. First, all graphs from each subarea are combined to create a graph representing design knowledge of that same subarea. Later on, all subarea graphs are combined to create a comprehensive graph for the whole knowledge area.

The integration process is fairly simple. For each subarea, all of the small two node graphs are considered together, same softgoals and tasks are found and represented by one symbol instead of using a symbol for each occurrence. In models where one type of element appears more frequently than the other, it helps to integrate the more frequently appearing elements first and then integrate the other element type.

3.3.1 Normalization of naming
Names of tasks and softgoals need to be normalized to facilitate integration. As mentioned in 3.2, one method is to normalize names as knowledge is extracted from the text. Another method is to defer normalization until the integration. That is, all names in one subarea are considered together and normalized at the same time. This method yields more consistent normalized set and more descriptive names since all the semantic variations of the same name are considered at the same time instead of just choosing the first occurrence as the canonical name. However, this method requires more effort and is suitable when subareas are relatively small. This method also requires further normalizations across all subareas on to facilitate integrations of higher level subareas.
Adopting a consistent naming convention can facilitate normalization. We recommend naming convention of NFR [1] for softgoals. This convention expects names in the form of Type[Topic]. Type indicates the general category of the softgoal and Topic further specializes of that type. For instance, LowCost[Development] and LowCost[Hardware] are two softgoals with different topics. A rule of thumb for a conforming softgoal name is that it should convey “Type of Topic”. For instance, LowCost[Development] indicates “LowCost of Development”. For a task, Type is usually a verb and Topic is its object. Employ[DurableDataStore] is an example of a good task name.
3.4 Representational framework
We use a representational framework with semantics mostly same as semantics of NFR framework [1] while borrowing some concepts from i* framework [2]. To be more specific, we model knowledge using softgoals and tasks, with softgoals having the same semantic as in NFR and i* and tasks having the same semantics as in i*. Softgoals are connected to each other using positive and negative contribution links. Tasks can be connected to each other using decomposition links. Finally, tasks can also be connected to softgoals using positive and negative contribution links. Semantics of all links and elements are same as their equivalent counterparts in NFR and i* framework.
[image: image9.emf]Maintainability

[Service]

LowCost

[Production]

+

Configuration

[ServerSettings]

Employ[SOAP

Server]

Granting[Web

Permissons]

(a)(b)

Figure 9 – Symbols used in our models

Figure 9 shows the symbols used to presents softgoals, tasks, and various links in our representational framework, which is same as symbols of i* framework. Figure 9 (a) shows two softgoals connected using a positive contribution link, and expresses the fact that Maintainability[Service] softgoal contributes positively to LowCost[Production] softgoal. Figure 9 (b) shows Employ[SOAPServer] task decomposed into two alternative tasks Configuration[ServerSettings] and Granting[WebPermission].
As mentioned, most of our representational framework is borrowed from NFR framework. It is due to the fact that we expect to be able to model rationale behind design choices and support analysis of design alternatives, and NFR and i* frameworks have proved useful in that area. Also, we want to have a simple and lean framework just expressive enough to support our expectations. That is why we have chosen NFR over i* and also stripped NFR of its advanced features and used only the bare minimum we considered necessary. Finally, we added the task semantic from i* because with our simplifications to NFR the approach of NFR which is modeling tasks using refined softgoals will not work, but the concept of task is necessary in modeling most knowledge about designing computer systems.
We anticipate that the described representational framework is expressive enough to support modeling and reasoning on knowledge to the extent required to meet expectation of section 3.2. However, it should be noted that our representational framework will not capture all of the knowledge presented in a given knowledge area. For instance, it is not possible to capture details such as priority of softgoals or sequence of tasks. Some of such issues such as integrating work on evaluation processes with priority support with our method are candidates for further work. Other issues, such as capturing sequence of tasks, are not significant since our framework is intended to capture answers to ‘Why’ questions instead of ‘How’ questions. It is designed to be used as a complementary representational to help alleviate problems of just using text representation. It can model rationale behind various design alternatives with accuracy on par with that of NFR framework and express goal models consistent with the content of the knowledge area.
4. Knowledge extraction
In this section, we will elaborate on the process of extracting goal-graphs from textual representation.
4.1 Extracting design principle information
To extract design principle knowledge, we use the chapter-structure of [3] described earlier in 1

 REF _Ref209197147 \r \h
2.1 because it organizes knowledge according to design principles. Therefore, each chapter in part II of the book serves as a separate subarea. Also, we use the conventions described in 3.3 to extract and to name the extracted elements. We demonstrate the process of knowledge extraction and integration for the Chapter 6 of the book which is about Service Contracts.
4.1.1 Softgoals
Textual representation needs to be scanned and the results need to be integrated. To get better results, it is also possible to further divide the subarea into smaller parts and then assemble the results into one graph. Also, due to having relatively more softgoals compared to tasks, we first integrate softgoals and added tasks later on. This practice helps in having consistent softgoals across a subarea. It also makes it easier to make all softgoal consistent since for each subarea it is possible to look at graphs that only contain softgoals.
Figure 10 shows the graph that results from putting together the knowledge extracted from the book. Each relation has been directly extracted from one or more snippets in text using the method discussed in 3. On each arrow, page numbers in text that contain the original text are mentioned. It should be noted that types and topics of softgoals are already been looked at to get to a consistent set of types and topics.
However, this graph can still be improved. For instance, using information provided in the introduction chapter of text we can argue that standardizing the functional expression of services in service inventory increases interoperability between services because parameters of service capabilities are standardized, so services can interoperate more easily. Thus, Standardization[ServiceFunctionalExpression] can be connected to Interoperability[Service] with a positive contribution link. This is an example of extending knowledge by adding easily verifiable information. It should be noted that the analyst should be completely sure of relationship of the newly added links. In other words, there shouldn’t be any guesswork involved in the newly added knowledge. Otherwise, it can lead to false information and conflicts in integration of all graphs.
Also, it can be argued that MinimizingOverhead[Bandwidth] and Minimizing Overhead[CPU] both result in increasing the runtime performance of the service. Since performance appears in graphs of other subareas, it can also be added here to facilitate integration of this subarea graph with other graphs. Adding information resulting from those kinds of analysis results the graph in Figure 11.

[image: image10.emf]Interoperability

[Service]

MinimizingData

Transformation

[Service]

Interpretability

[ServiceContract]

Standardization

[ServiceData

Representation]

Maintainability

[Service]

FastDelivery

[Service]

EasyNavigation

[Service

Inventory]

Standardization

[Service Functional

Expression]

MinimizingOverhead

Bandwidth[Service]

p

1

3

2

Standardization

[ServiceContract]

Standardization

[ServicePolicies]

+

Composability

[Service]

Minimizing

OverheadCPU

[Service]

RepeatedUsage

[ServiceLogic]

p

1

4

0

p

1

4

0

p

1

3

3

p

1

3

7

p

1

3

4

p

1

3

3

p

1

4

7

p

1

3

5

,

1

3

4

p

1

3

7

P

1

3

2

,

1

3

5

p

1

3

5

+

+

+

+

+

+

+

+

+

+

Figure 10 - Initial integration of softgoals of Service Contracts design principle

In Figure 11 links that don’t have page numbers written on them are added as a result of kind of analysis discussed above. These are examples of how this method helps reveal the knowledge that is not explicitly expressed.

[image: image11.emf]Interoperability

[Service]

MinimizingData

Transformation

[Service]

Performance

[Service]

Predictability

[Service]

Interpretability

[ServiceContract]

Standardization

[ServiceData

Representation]

Maintainability

[Service]

FastDelivery

[Service]

EasyNavigation

[Service

Inventory]

Standardization

[Service Functional

Expression]

MinimizingOverhead

Bandwidth[Sevice]

p

1

3

2

Standardization

[ServiceContract]

Standardization

[ServicePolicies]

Composability

[Service]

Minimizing

OverheadCPU

[Service]

RepeatedUsage

[ServiceLogic]

p

1

4

0

p

1

4

0

p

1

3

3

p

1

3

7

p

1

3

4

p

1

3

3

p

1

4

7

p

1

3

5

,

1

3

4

p

1

3

7

P

1

3

2

,

1

3

5

p

1

3

5

+

+

+

+

+

+

+

+

++

+

+

+

+++

Figure 11 – Integration of softgoal only knowledge for Service Contract design principle

4.1.2 The rest of design knowledge

Graphs in the previous part only contained information about links with softgoals on each side. However, text can contain other design information such as task-to-softgoal contribution links and task-to-task decomposition links. Figure 12 contains the rest of the information expressed in the Service Contract chapter.

[image: image12.emf]Standardzation

[ServiceData

Representation]

Standardization

[ServiceFunctional

Expression]

Unify

[DataModel]

+

Employ

[Naming

Conventions]

+

UserPattern

[Schema

Centralization]

Standardization

[ServiceContract]

+-

EnforcePolicy

[Design

Standards]

Adjust[Old

Organizational

Standards]

Employ

[Appropirate

Tools]

Develop

Knowledge

[ToolUsage]

+

+

LowCost

[Development]

RetainingControl

[ServiceDesign]

-

Employ

[ContractFirst

Design]

+

Figure 12 - The rest of design information (not fully integrated) about Service Contract principle

Figure 12 contains tasks that help realizing some of the softgoals presented in Figure 11. Since graphs in Figure 12 contain few softgoals, it is easy to integrate them with the softgoal-graph. Figure 13 shows the final graph for Service Contract design principle chapter.

[image: image13.emf]Interoperability

[Service]

MinimizingData

Transformation

[Service]

Performance

[Service]

Predictability

[Service]

Interpretability

[ServiceContract]

Standardization

[ServiceData

Representation]

Maintainability

[Service]

FastDelivery

[Service]

EasyNavigation

[Service

Inventory]

Standardization

[Service Functional

Expression]

MinimizingOverhead

Bandwidth[Service]

Standardization

[ServiceContract]

Standardization

[ServicePolicies]

+

Composability

[Service]

MinimizingOverhead

CPU[Service]

RepeatedUsage

[ServiceLogic]

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+-

EnforcePolicy

[Design

Standards]

Adjust[Old

Organizational

Standards]

Employ

[Appropirate

Tools]

Develop

Knowledge

[ToolUsage]

+

+

LowCost

[Development]

RetainingControl

[ServiceDesign]

Employ

[ContractFirst

Design]

+

Employ

[Naming

Conventions]

+

Unify

[DataModel]

+

UserPattern

[Schema

Centralization]

-

+

Figure 13 - Final graph for Service Contracts design principle

4.2 Extracting design pattern information

A design pattern is a formal way of documenting successful solutions to common problems [6]. As mentioned before, other than design principles, design patterns are another major type of information discussed in [3]. However, since the text is organized according to design principles, design pattern information is scattered across various chapters. The only helpful means to study them is a table in Appendix C of [3] which for each design pattern provides pointers to sections of each chapter that mentions the pattern. Still, the entire section was scanned to find pattern-related information.
The extraction process for pattern information is similar to extraction process of design principle information. The only difference is that for patterns, just sections that are pointed in the table are scanned for information relevant to the design pattern at hand. Moreover, since the amount of information about patterns is smaller compared to a design principle (a whole chapter), all information is integrated in one step and one graph. In other words, no softgoal only graph is created for patterns. For instance, the graph below represents information about “Contract Centralization” pattern.
[image: image14.emf]Employ [Open

Standards]

Remove

[ExtraService

EndPoints]

ProvideOne

[Service

EndPoint]

Decouple

[Consumer,

Service]

MinimizeCoupling

[Services]

Employ

[Contract-

FirstDesign

Approach]

Document

[Existing

Couplings]

+

+

+

Employ

[Software

Reusability

Principles]

RemoveCoupling

[Consumer,

Implementaion]

RemoveCoupling

[Contract,Logic]

MinimizeCoupling

[Contract,

Functional]

PreventCoupling

Propagation

[Technology]

IncreaseAwareness

[IndirectCouplings]

MinimizeEffect

[Negative

Couplings]

+

+

+

+

+

+

+

+

+

+

MinimizeCoupling

[Service,Service]

+

+

Figure 14 - Design information about Contract Centralization pattern

Information about this specific pattern is scattered through chapters 7, 8, and 9 in the text. Extracting pattern information is an example of how our method can collect information scattered in text to help readers look at all aspects of a design subject in one view. It also demonstrates how our method can extract and document information in text based on structuring text with respect to various subjects, which are design principles and design patterns in our example [3].
4.3 Integrating design principle goal-graphs
Although having design information of each design principle chapter summarized in one graph is useful by its own, it will help designers to get a better understanding of the knowledge area if all of graphs were integrated so the relation of chapters would be clear. It also helps designers to have the big picture in mind particularly when choosing among design choices in lower, more fine-grained levels.
To make the integration more manageable, first we combine softgoal-only graphs of each chapter and then add the rest of design information. As for the process itself, again, similar softgoals are identified among all graphs and one symbol is used to present all instances of the same softgoal, exactly the same as integrating smaller graphs in the chapter level.

[image: image15.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service,

OtherServices]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

Increase

[BusinessAgility]

Security

[Environment]

Performance

[Serivce]

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

Figure 15 - Softgoal-only graph for service autonomy principle

For instance, consider the softgoal-only graph of service autonomy principle in Figure 15. When compared to graph of service contract principle presented earlier in Figure 11, it is clear that Performance[Service] and Composability[Service] appear in both graphs. Applying the integration process, we get the graph in Figure 16.
[image: image16.emf]Composability

[Service]

Reusability

[Service]

RuntimeAutonomy

[Service]

Predictability

[Service

Behavior]

Independence

[Service,

OtherServices]

Isolation[Service]

Reliability

[Performance]

DesignTime

Autonomy

[Service]

Scalability

[Service]

Modifiability

[Hosting

Environment]

Modifiability

[Underlying

Technology]

MaximizingCoupling

[Consumer,Contract]

MaximizingCoupling

[Logic,Contract]

BusinessAgility

[Service]

Security

[Environment]

Performance

[Serivce]

+

+

+

+

+++

+

+

+

+

+

+

+

+

+

Interoperability

[Service]

MinimizingData

Transformation

[Service]

Predictability

[Service]

Interpretability

[ServiceContract]

Standardization

[ServiceData

Representation]

Maintainability

[Service]

FastDelivery

[Service]

EasyNavigation

[Service

Inventory]

Standardization

[ServiceFunctional

Expression]

MinimizingOverhead

Bandwidth[Service]

Standardization

[ServiceContract]

Standardization

[ServicePolicies]

+

MinimizingOverhead

CPU[Service]

RepeatedUsage

[ServiceLogic]

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Consistency

[ResponseTime]

+

+

+

+

+

Softgoal from Service Contract principle goal graph

Softgoal from Service Automation principle goal graph

Softgoal present in both goal graphs

Figure 16 - Initial Softgoal integration of service contract and service autonomy

Softgoals from service contract principle are on the left side, with horizontal stripes, softgoals from service autonomy principle are on the right side, with vertical stripes, and common softgoals are the ones with bold outline and no stripes. As the graph demonstrates, information about common softgoals is combined. It is easy to look at all the other softgoals from all of the knowledge area, not just the one subarea at a time.
Integration helps to reveal the knowledge about the softgoals that can only be seen when considering subareas together. For instance, in the graph of service autonomy there is a positive contribution from Performance[Service] to Composability[Service] which if the text is looked up, comes from the fact that high performance is required for services that need to participate in a large number of service compositions. However, although both softgoals are also present in graph of service contracts principle, this relation was not documented in the subarea graph in Figure 11.
Also, in the service contracts graph, there is a positive contribution link from MinimizingDataTransformation[Service] softgoal to Composability[Service] softgoal. In the integrated graph, there is a path of positive contribution links starting from MinimizingDataTransformation[Service] passing thru MinimizingOverhead Bandwidth[Service] and Performance[Service] and finishing at Composability [Service]. This path describes contribution of MinimizingDataTransformation [Service] softgoal to Composability[Service] softgoal in more detail. In other words, it explains the nature and the reason of relation between these two softgoals in a way that is only achievable by looking at the information scattered across various chapters of the text. It also partly validates the correctness of the service contracts graph since it shows that the extracted design knowledge is consistent with the more detailed service autonomy graph. Finally, the contribution link from MinimizingDataTransformation [Service] to Composability[Service] can be removed since there already is a more descriptive path.
The rest of design information can be integrated using the same process discussed in 4.1.2. The result of integrating all design information for two chapters is presented in Figure 3. More design information can be induced as a result of integration. For instance, a new LowCost[Production] softgoal is created to represent and aggregate all of cost-reducing softgoals such as LowCost[Development] and LowCost[Hardware]. More softgoals of this kind are encountered as more chapters are integrated.
4.3.1 Integrating all subareas
Figure 3 contains design information from only two chapters. The rest of chapters are integrated into Figure 3 with the same approach discussed above. Figure 6 shows the high-level softgoals and their relations resulting from of integrating all goal-graphs. This figure reveals high-level goals that are achieved by applying various principles explained in the book. The integration process also reveals common softgoals of various chapters and their individual relations. It should be noted that softgoals are made consistent and more general softgoals are used to represent similar softgoal groups. For instance, RepeatedUsage[ServiceLogic], RedundancyPrevention[ServiceLogic], and EffectiveSharing[EnterpriseResources] are represented by the latter, or Modifiability [HostingEnvironment] and Modifiability[UnderlyingTechnology] are represented by the already present Evolving[Service]. Also, all extensibility related goals such as Extensibility[Functionality] and Extensibility[ServiceContract] are represented by Extensibility[Service]. If the references to original graphs and text locations are maintained, such integrated graphs provide means to navigate all of the reasoning knowledge described in a textually represented knowledge area on various granularity levels.
5. Alternative knowledge source
In order to demonstrate how nature of information in a knowledge source affects the resulting goal-graphs, we show the results of applying goal-graph extraction process on another knowledge source.
5.1 Structure of the knowledge source
The knowledge source is a combination of a book and an online website. The book is “Patterns: Service-Oriented Architecture and Web Services” [10] that discusses common e-business scenarios, proven patterns to address them, and guidelines on how to implement such patterns using SOA and specially Web Services. The website is “IBM Patterns for e-business” [14] that is an online repository of patterns discussed in [10].
The book starts with introducing e-business patterns, various pattern types and their usage. Then, it introduces Service Oriented Architecture and describes an approach to developing service-oriented architecture. After that, technology options for various components of a service oriented system such as transport layer or service description languages are discussed. In the final chapters, different choices such as using HTTP and JMS service buses and a web service gateway are discussed through example of developing a supply change management application.
To understand the structure of pattern repository, various types of patterns should be introduced first. The book recognizes the following types of patterns on various design levels:
· Business patterns: Business patterns are high-level constructs that can be used to describe the key business purpose of a solution. They are the fundamental building blocks of most e-business solutions, and describe the interaction between the main participants in an e-business solution which are users, businesses, and data. For instance, Self-Service or User-to-Business pattern addresses cases that internal and external users interact with enterprise transactions and data.
· Integration patterns: Integration pattern combine span multiple participants in an e-business solution to provide a solution can not be built based on a single business pattern.
· Composite patterns: Composite patterns represent frequently used combinations of business and integration patterns. For instance, e-Marketplace is a composite pattern for applications that facilitate trading goods for communities of buyers and seller and promote business communities among trading partners.
· Application patterns: Application patterns provide a conceptual layout which describes interactions and relations of various application components and data within an integration or business pattern. For instance the figure below shows one possible layout for implementing a Self-Service business pattern.

· Runtime patterns: Runtime patterns define logical middleware structure that supports an application pattern. They also define role of each middleware node and interfaces between nodes.

[image: image17.png]
Figure 17 - Self-Service: Directly Integrated Single Channel application pattern. (from [10])

At the time of this writing, the repository contains 10 top level patterns and a few custom patterns:

· Business patterns: Self-service or user-to-business pattern, Collaboration or user-to-user pattern, Information Aggregation or user-to-data pattern, and Extended enterprise or business-to-business pattern.

· Integration patterns: Access integration pattern and Application integration pattern.

· Composite patterns: Electronic commerce, e-Marketplace, Portal, and Account Access.
· Custom patterns: Patterns that fall under none of three categories mentioned above are put here. The important high-level pattern in this category is Non-functional requirements pattern.

For each high-level pattern, application patterns that can be used to realize the high-level pattern are listed. Moreover, runtime patterns that can realize each application pattern are listed and discussed for each specific application pattern. To sum up, pattern repository uses a three level hierarchy of pattern:

1. High-level patterns at top level

2. Application patterns for each high-level pattern at mid-level
3. Runtime patterns for realization of each application pattern at the bottom.
Each application pattern includes a short description, a conceptual diagram showing various components of the pattern and their interactions, key features, business and IT drivers, special consideration, and limitations. Each runtime pattern includes description of the pattern and diagrams showing required middleware to realize the associate application pattern.
The only exception to the hierarchy structure is Non-functional requirements high-level pattern. For this pattern, the notion non-functional requirement replaces the application pattern. It means non-functional requirements are listed at mid-level and runtime patterns are listed for each non-functional requirement. Currently, there are two non-functional requirements available in the repository: High Availability, and High Performance.
Comparing the mentioned design knowledge structure with design knowledge structure of Erl’s book leads to a few interesting points:
· Basis of structure: The most prominent difference between two structures is the subject each source uses as a basis. For the patterns, the main subject is the business scenario and it reveals itself by having business patterns, whose aims are to address such scenarios, appear at top level. For the principles, the main subject is desired qualities and it is apparent since subareas are directly devoted to qualities such as discoverability and autonomy.

· Hierarchical vs. flat structure: Repository uses a hierarchical structure to organize more that 40 application patterns and even more runtime patterns. As we go down in the hierarchy technical details are introduced in more details, and technical details are more about ‘How’s rather than ‘Why’s. So it is expected to extract more task-based information as we go down the hierarchy. On the other hand, Erl’s book uses a flat structure and is expected to have more expressed design knowledge.
5.2 Resulting goal-graphs

According to 3.3, the first step of the extraction process is to figure out the partitioning of the knowledge into subareas. Considering the categorization of patterns explained above, a two level partitioning is suggested. First, each business, integration, and composite pattern is considered as a separate subarea. Then, each application pattern is treated as a separate subarea inside its top level subarea.
The following figures show the resulting goal-graphs two application patterns Access Integration: Single Sign-On, and Access Integration: Personalized Delivery from the Access Integration high-level subarea.

[image: image18.emf]Implement

[Security

Service]

Implement

[ClientTier]

Implement

[Application

Tier]

Implement

[SingleSignOn

Tier]

Implement

[SingleSignOn

Pattern]

Handle

Protocol

[Browser]

Handle

Protocol

[CellPhone]

Handle

Protocol

[PDA]

Employ

[UserProfile

DataStore]

Interpret[

Authentication

Requests]

Implement[

Application

SpecificLogic]

LowCost[User

Administration]

Reduce[TotalCost

ofOwnership]

SeamlessAccess[

Multiple

Applications]

Increase

Efficiency[User

ProfileMgmt]

Unification

[Security

Protocol]

LowCost

[Development]

+

+

+

+

+

++

Ease[Integrating

Legacy

Subsystems]

-

Figure 18 - Goal-graph of Access Integration: Single Sign-On pattern
[image: image19.emf]Implement

[RuleStorage&

Filtering]

Implement

[ClientTier]

Implement

[Application

Tier]

Implement

[Personalization

Tier]

Implement

[Personalized

Delivery

Pattern]

Handle

Protocol

[Browser]

Handle

Protocol

[CellPhone]

Handle

Protocol

[PDA]

Use

[Personalization

Method]

Implement[

Application

SpecificLogic]

+

+

++

Ease

[Implementation]

-

Personalize

[Participatory]

Personalize

[Prescriptive]

Personalize

[Predictive]

Increased

Perception

[UserControl&

Efficiency]

Improvement

[UserInteractions]

Fine-

GrainedControl

[UserAccess]

Implement

[DataCollector]

Adaptability

[Presented

Content]

LowCost

[Development]

+

+

+

Increase

[Usability]

+

Figure 19 – Goal-graph of Access Integration: Personalized Delivery pattern

Single Sign-On application patterns provide a means for seamless application access through unified authentication services. Personalized Delivery application pattern provides a framework for giving access to applications and information tailored to the interests and roles of a specific user or group. While both patterns try to meet goals of access integration pattern, their goal-graphs do not share much information on the goals level. In fact, the only common information is related to the tasks related to handling the client tier and application tier, which are essentially similar tasks required for implementing both patterns.
Comparing goal-graphs extracted here to goal-graphs extracted from [3] results in a number of interesting points:
· Alternative design information source: In extracting goal-graphs from [14] we noticed that some pieces of design information such as information about components of an application pattern and interactions among them is expressed using architectural diagrams rather than plain text. Such pieces are important parts of extracted design information and can be extracted by a simple technique of expressing information using sentences and applying the normal process on these sentences.
Usage of this technique however should be supervised by knowledge experts as well in order to prevent the introduction of bogus information into graphs. Also, the diagram number or the page number of the diagram may be used to mark the source of the extracted information.
· Nature of the knowledge area and its effect on extracted information: Goal-graphs extracted from [14] contain more tasks compared to the ones extracted from [3], particularly when compared to principle goal-graphs. This outcome, however, is not surprising since [14] is naturally about solving common e-business problems and the bulk of its information is about configurations of components which solve those problems. It aims to provide designers with proven solutions to satisfy immediate requirements but it does not offer much about effects of choosing each component or component relation on various software qualities. Such information, if present, is usually presented by a list as a whole result of implementing a pattern. As a result, rationale behind design decisions and more importantly the effects of low-level design decisions on high-level goals can not be analyzed properly. This is the expected result of the nature of information in [14]. That is, our method can not document and present information that is not present in the knowledge area in the first place.
· Structure of the knowledge area and integration: As seen in the goal-graphs presented earlier, lack of enough common softgoals in the extracted goal-graphs for application patterns prevents effective integration of those graphs into a high-level graph for Access Integration pattern. While single sign-on and personalized delivery patterns both help designer provide a single and consistent access to various features in the system, they are relatively separate problems that result in separate extracted design information, particularly when focus is on the implementation of solutions. Gaps between various subareas are a result of original structure of the knowledge area. When information is organized to address different concrete problems then not having enough common softgoals to integrate around is anticipated.
6. Conclusions
In previous sections, we introduced service-oriented architecture and discussed the need for organizing and analyzing SOA design knowledge to support system design. Subsequently, we demonstrated how to extract design knowledge from Erl’s SOA design book. In particular, the outcomes of this study were the following:
1. SOA design knowledge: The result of applying our knowledge extraction method is a set of graphs which visualize design knowledge about various principles of service-oriented design using goal-oriented concepts. We presented goal-graphs for a few principles in section 2 and demonstrated how to use these goal-graphs in various design scenarios including design alternative and project specific goals analyses. We believe the collective set of goal-graphs constitutes a concrete knowledge-base of SOA design knowledge in a compact and analyzable format which facilitates designing effective service-oriented systems. It can be used as a foundation to gather and integrate SOA design knowledge from various sources. Moreover, it serves as a vendor-agnostic learning resource for SOA design.
2. Knowledge extraction method: The extraction method that were used to extract SOA design knowledge from [3] [10] and [14] is general method. It is described in section 3, and its usage is demonstrated in detail in section 4. Although this method is designed to extract SOA design knowledge, there is nothing to prevent using it on knowledge areas other than SOA. The main intended application of this method, however, is to treat more SOA sources to enhance SOA design knowledge we extracted here.
Furthermore, here is a review a few important points that we found out during the course of this study:
1. Expectations: All of the initial expectations, listed in 3.2, are more or less met. Goal-graphs present an integrated view of their corresponding subarea. They also support semi-automatic analysis of design alternatives and their effects on other goals in the system. Low-level goals and tasks are related to project specific goals as illustrated in 2.5. Also, knowledge area can be structured according to different criteria as demonstrated by extracting design principle and design pattern goal-graphs from the same knowledge area. Finally, our proposed representational framework proved to be expressive enough to support the mentioned expectations particularly for rationale-intensive knowledge sources (as opposed to task-intensive knowledge sources).
2. Dividing the knowledge area: Since breaking up the knowledge area is a step which affects all other activities, it should be performed in a way that there is no significant overlap among the resulting subarea. Such overlaps lead to extra unnecessary work in extraction and integration steps. Also, it should completely cover the knowledge area as leaving some parts uncovered leads to incompleteness of extracted information. In addition, it complicates the integration step since the information explaining the relations among softgoals might reside in the uncovered parts. These hints are more important when knowledge area is divided according to a categorization other than its original structure.

3. Normalizing Names: Normalizing names of softgoals, as explained in Chapter 2, is essential to integrating the extracted knowledge. However, extra care should be taken in performing normalization. Grouping semantically different softgoals as one softgoal leads to incorrect information. On the other hand, an inflexible normalization results in graphs that are hard or even impossible to integrate. In general, the normalization policy needs to be adjusted for the knowledge area at hand.

4. Filling in implicit knowledge: Some information about the knowledge area is implied and can be deduces from the context of text. Doing so not only increases the explicitly expressed information about the knowledge area, but also facilitates the integration process by providing the missing links between softgoals. However, this method should be used only when there is no ambiguity about the information being added. Otherwise, it leads to incorrect information added to result graphs. Therefore, it is recommended that such information be added by experts on the knowledge area to prevent such problems.

Another source of extra information to extract the missing information is diagrams and graphs as explained in 5.2. Such information can be used to find the required links to integrate currently extracted pieces of information or it can be just viewed as extra information used to increase the completeness of the final graph.
5. Revealing extra information: Our method helps to expose the knowledge about the design objectives that may only be extracted when subareas are integrated together. Integration of two or more subareas enables goal-graphs of various subareas to complete missing links of one another to form a richer goal-graph. An example is further explained in Section 4.3 and demonstrated in Figure 16.

6. Corroborating goal-graphs: A sign of a good integration process is that information extracted from one subarea corroborates information extracted from other subareas. This happens when information from one subarea provides more detail about a contribution link in current graph during the integration process. For instance, as explained Section 4.3, integration reveal more details about a positive contribution link from MinimizingDataTransformation[Service] softgoal to Composability[Service] softgoal.
7. High-level integration: Another sign of good normalization is that high-level softgoals are easy to integrate since high-level goals are shared among various subareas. It should be noted that since information in each subarea is dependent on how the knowledge area is divided in the first place and how frequently high-level goals appear in various subarea graphs.

8. Organization of the knowledge source: As explained in 5.2, original organization of the knowledge area is an important factor of effective integration and analysis support. Organizing information based on solutions results in naturally separated and hard to integrate subareas while organizing information based on desired qualities and principles results in more conceptually connected subareas. This lead to better analysis support and reveals complementary characteristics and goals of various subareas.
6.1 Limitations

Although [3] is a comprehensive and well-structured SOA knowledge source, the fact remains that SOA design knowledge in this work is extracted primarily from only one source. To make a complete knowledge-base of SOA design knowledge more SOA sources should be integrated with this work using the knowledge extraction method. However, since the extraction method is explained in detail, we hope that with help form the community the SOA design knowledge-base will grow into a complete and mature source of SOA information.

Next issue is that extracting and integrating design information requires considerable effort. Moreover, it is highly recommended that people involved in extraction and especially integration be familiar with the knowledge area, since the process of choosing consistent names for softgoals and tasks and the process of adding new knowledge based on current extracted knowledge need familiarity with the area. Otherwise, it is easy to add false information to goal-graphs.
The Final issue is dependency on structure of the knowledge source. As explained before in this section, the effectiveness of the extraction method is related to the structure of design knowledge. Knowledge sources which focus on solutions rather than design concerns and principles usually do not yield useful goal-graph unless a complementary source such as knowledge of an expert on the area is used.
6.2 Future work

Future research directions of this work can be categorized into three groups:

1. Improving SOA design knowledge: Although the set of goal-graph we extracted are a good start for documenting and organizing SOA design knowledge, there is more SOA design in other SOA sources. Applying our extraction method to new SOA knowledge sources and integrating the results will improve the completeness and quality of SOA design knowledge-base. We believe that with proper contribution from the community it is possible to collect SOA design knowledge scattered in the literature and create an analyzable goal-oriented knowledge-base such design information.
2. Knowledge extraction related research: Next research path is improving the knowledge extraction process itself. For instance, since applying this method is fairly time-consuming, it is helpful to devise techniques to automate the process. The use of human-aided techniques for performing semi-automated extraction and integration process and the developing supporting design tools are interesting research paths.
3. Supporting system design: This research path concerns with finding new applications for the extracted design knowledge. One possible application involves goal-prioritization in real world projects. Real world projects always have limited budget and development time. As a result, not all high-level softgoals can be satisficed. The common solution is to prioritize goals and optimize development efforts to satisfice as many high priority softgoals as possible. Having an integrated graphs, designers can describe a proposed solution by assigning initial values to lower level goals and use an evaluation process [1], similar to the process presented in 2.3 to find out which high-level softgoals are satisficed. Used with a supporting tool such as OpenOME [9], this method can help designers find the optimal solution given the project goals and budget and time limitations.
References

[1] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J., Non-Functional Requirements in Software Engineering, Kluwer Academic Publishing (2000)
[2] Yu, E., Modelling Strategic Relationships for Process Reengineering, PhD thesis, Department of Computer Science, University of Toronto, Canada (1995)
[3] Erl, T., Principles of Service Design, Prentice Hall (2008)

[4] Microsoft Developers Network – ASP.NET State Management

http://msdn2.microsoft.com/en-us/library/bf9xhdz4(VS.71).aspx
[5] Dardenne, A., van Lamsweerde, A., Fickas, S., Goal-Directed Requirements Acquisition, in The Science of Computer Programming 20 (1993) 3-50

[6] Gamma, E., Helm, R., Johnson, R. Vlissides, J., Design Patterns, Addison Wesley (1994)

[7] Horkoff, J., Using i* Models for Evaluation, MSc thesis, Department of Computer Science, University of Toronto, Canada (2006)

[8] Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R., Formal reasoning techniques for goal models (2004)

[9] OpenOME, an open-source requirements engineering tool

 http://www.cs.toronto.edu/km/openome/
[10] Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Lou, M., Newling, T., Patterns: Service-Oriented Architecture and Web Services, IBM Red books (2004)

[11] Mylopoulos, J., Chung, L., Nixon, B., Representing and Using Nonfunctional Requirements: A Process-Oriented Approach (1992), Software Engineering Journal, Vol 18, No. 6, pp 483- 497.
[12] Gross, D., Yu, E., From Non-Functional Requirements to Design through Patterns (2001), Requirements Engineering Journal, Vol 6, No. 1, pp 18-36.

[13] Erl, T., Service-Oriented Architecture (SOA): Concepts, Technology, and Design, Prentice Hall (2005)

[14] IBM Patterns for e-business, http://www.ibm.com/developerworks/patterns/
[15] SOA Glossary, http://www.soaglossary.com

Appendix A – Design principle graphs

[image: image20.png]
Service Contract Principle: This principle focuses on standardizing various parts of service contract. A standard naming convention for service capabilities makes consumers understand the purpose and limitations of each capability better. A standard set of data types used for parameters results in a more maintainable service logic code. It also reduces the CPU and network overhead of calling and composing the service since standard data types don’t need extra data transformation.
One standardization approach is to enforce an already accepted design standard to build the contract which requires adjusting the organizational standards appropriately. Another approach is to apply software tools on service contract that analyze a given design contract and suggest required changes, but no matter which approach is used, designing the service contract before service logic greatly facilitate the standardization process since service contract can be changed without affecting the logic.

[image: image21.png]
Service Coupling Principle: This principle is about decreasing the coupling of service contract and implementation details of the service logic. Such couplings appear in three forms: The first form is coupling of service contract and logic implementation such as when service contract contains parameters such as entity ID’s which are dependent on implementation of the service. The second form is coupling of a service contract and contracts of services used in to implement the first service. The third form is coupling of a service contract and its underlying technologies, such as when service contract contains technology dependent parameters such as network sockets, database paths, or library dependent flags. Minimizing the mentioned couplings as well as documenting irremovable couplings helps optimize the coupling of service and its consumers which in turn results in more independence of service logic and its consumers. This independence leads to easier evolution of both service logic and the consumer code but requires extra care in design the service due to coupling optimization efforts.

[image: image22.png]
Service Abstraction Principle: This principle concerns abstracting various service details in order to minimize the coupling of service consumers and service implementation. Abstracting technology related details such as underlying libraries and programming related details such as algorithms used to implements the logic are two types of service details to abstract. In addition, such abstractions enable service designers to change the library or algorithm in question without affecting other parts of the service which in turn facilitates service logic evolution. Quality of service features and functional requirements are two more candidates for abstraction.

[image: image23.png]
Service Reusability Principle: This principle insists on design the service logic in a way that enables reusing of service logic for similar scenarios. Having reusable services translates into less code which in turns leads to faster development of new services especially in services required to accommodate new business requirements. Also, reusable services promote better sharing of enterprise resources, both humans and hardware, which leads to less maintenance cost and increased ROI.

There are a number of qualities that make a service more reusable:

· Services with general functionality make more reusable services, so utility services and entity services are inherently more reusable than business specific services.

· An extensible service contract facilitates reusability since the service contract can be extended to fit many purposes.

· Having agnostic service logic improves reusability of the service. Employing natively agnostic service models such as utility services or entity services is one way of achieving logic agnosticity. Exploring various business usage scenarios and designing business services is another alternative. Another useful method is abstracting the platform specific service capabilities.
[image: image24.png]
Service Autonomy Principle: This principle concerns achieving design-time and runtime autonomy. Design-time autonomy is achieved by making sure both service logic and consumers only communicate via service contract. Achieving design time autonomy enables service administrators to change the service hosting environment without worrying about its impact on consumers.

Runtime autonomy can be achieved by dedicating separate hosting environment to service or a subset of its capabilities. Depending on whether hosting resources are shared among services or dedicated to just one service or service capability, there are four levels of implementing autonomy: shared, shared logic, service contract, and pure. Different autonomy levels have specific pros and cons but generally more dedicated autonomy levels lead to the more efficient and more costly to maintain systems.

Runtime autonomy makes services isolated from each other (in terms of hosting environment and used resources), so it makes the whole system more reliable since a failure in hosting environment of one service will not bring the whole system down. Also, it promotes security by isolating services from each other. Finally, since consumers of hardware are known and limited, the utilization of hardware resources are fairly predictable.

[image: image25.png]
Service Statelessness Principle: This principle concerns state management deferral which enables high availability and scalability and thus composability for services which need to preserve state between calls. Since state is stored after and restored before a call service runtime needs to support fast state parsing and fast state transition. Also, there are four levels of implementing state deferral: No management, partial memory, full architecture, and internal, with internal being the most flexible but most expensive and no management being the cheapest and most scalable (since there is no storing and restoring of state).

[image: image26.png]
Service Discoverability Principle: This principle focuses on the features that facilitate finding of a desired service capability in an inventory of services. Documenting various aspects of a service such as its general usage, input, output, and function of each capability and also QoS information using a searchable language such as WSDL boosts discoverability of service which in turn increases reusability.
[image: image27.png]
Service Composability Principle: This principle emphasizes designing services while having service composition requirements in mind. Composability promotes reusability which in turn leads to increased business agility and increased ROI. There are two main factors that increase service composability:

· Efficient execution environment: Services with high composability are likely to be used by other services to implement new functionality, so a given capability of a such service may be called several times by various services, so as the system needs to scales over time so does the underlying services. In other words, key capabilities of composable services should be identified and made scalable, both in terms of execution and data access.

Purpose of a service needs to be general enough to fit requirements of consumer services.

Appendix B – Design pattern graphs

[image: image28.png]
Contract Centralization Pattern: This pattern is about making service contract the only interface between service consumers and service logic. Designing service contract before service logic and not providing any other interface to interact with service is the primary practice in applying this pattern to new services. For already developed services, extra service endpoints should be removed and the appropriate capability from service contract should be used instead. Not surprisingly, the main benefit of applying contract centralization is decoupling consumers from service logic.

[image: image29.png]
Contract Denormalization Pattern: Contract denormalization refers to the practice of introducing anomaly to service contract in order to accommodate various usage scenarios. The most common form of such anomalies is putting a certain service capability with various levels of granularity. For instance, consider an UpdateProductPrice capability which updates the price for a given product. If a maintenance service needs to update prices for a thousand of products, UpdateProductPrice should be invoked a thousand times. If a new but similar capability which receives a list of products and new prices is provided, only one call would be necessary which removes extra overhead in terms of network bandwidth, latency, and CPU time.

[image: image30.png]
Domain Inventory Pattern: Domain inventory pattern concerns grouping the related services together in order to facilitate service implementation. The main idea is to divide the enterprise into logically separated domains and to let each domain design and implement its own set of services. This pattern enables organizations to introduce SOA to their current system and to adopt SOA on the appropriate new domains overtime.

[image: image31.png]
Logic Centralization Pattern: Logic centralization concerns with implementing services in a domain inventory in a way that similar functionality in various capabilities and services use the same logic code. Adopting development processes that check the existence of logic in the inventory before adding it is a standard practice which helps applying this pattern.

Logic centralization minimizes logic redundancy in the service inventory, keeps the code size small and thus makes it more maintainable.

[image: image32.png]
Schema Centralization Pattern: Schema centralization is a service oriented pattern in which services are built according to entities in the system. In other words, special services called entity services are built for key entities in the system and the rest of the services which perform business operations rely only on entity services to work with data. Applying this pattern unifies the data model for all services in service inventory and therefore removes the need for data transformation and makes it easier to compose entity services to implement higher level functionality.

[image: image33.png]
Service Façade Pattern: This pattern is used when a service consumer needs to work with a server service but the output of server’s service doesn’t fit the input requirements of the consumer service. In such cases, an intermediate capability is created that has its output specially tailored for requirements of the consumer service.

Service façade pattern is most useful in cases which the consumer’s requirements are fixed such as business to business scenarios. Using this pattern allows various consumer with different requirements use the service without introducing functional redundancy to the system.

[image: image34.png]
Service Normalization Pattern: Service normalization pattern aims to minimize the functional redundancy across an inventory of services. Conducting a study to find required functionality and extension points in the system and designing the services according to results of the study is the preferred method of applying service normalization to a service domain. Normalizing a service inventory keeps its size small and therefore makes it more maintainable. Also, the fact that the study reveals common use case scenarios in the domain contributes to overall composability of the service inventory.
[image: image35.png]
Validation Abstraction Pattern: Service contracts put varying levels of constraints on input and output parameters of each service capability, so the exact constraints are dependent on service implementation. Using fine-grained constraints helps clarify the service contract but may reveal implementation details of the service while using coarse-grained constraints accomplishes the opposite. This pattern concerns with finding the right level of granularity for constraints put on parameters of various service capabilities.
Appendix C – Principles and patterns cross-reference

[image: image36.png]
PAGE
4

