USING META-MODEL-DRIVEN VIEWS TO ADDRESS SCALABILITY IN

I* MODELS

by

Zheng You

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright © 2004 by Zheng Y ou

Revision

Date

By

Remark

4.4

9/1/2004

Jane You

Final revision from Eric.

All queries tested again in ConceptBase.

4.3

8/19/2004

Jane You

1. Abstract (first draft)

2. Appendix (first draft)

3. Bibliography (not sure about how to
reference some technical reports)

4. Inconsistency of notations in diagrams of
chapter 8 is fixed.

5. File formatted according to the SGS request

4.2

8/14/2004

Jane You

All chapters proofread and revised (first round)
Partsto add:

1. Abstract

2. Appendix

3. Bibliography

4. Bugsin diagrams to fix

4.01

8/7/2004

Jane You

Chapter 1~4, 9: proofread and revised
(suggestions from Eric also implemented)
Chapter 5~7: waiting for proofread
Chapter 8: proofread yet NOT revised

Abstract

Using Meta-Model-Driven Views to Address Scalability in i* Models

Zheng You
Master of Science
Graduate Department of Computer Science
University of Toronto

2004

This thesis proposes an extension to the i* framework to address scalability
issues. The notion of “view” is exploited to selectively present portions of an i*
“baseline model”, which contains all modeled objects for a given application
using i* notations. We first reformulate the i* framework and define four types
of views—Actor Class, Strategic Dependency, Strategic Rationale, and
Evaluation Results. Next, we define sub view types based on the four types of
views and supply a view management framework. The views and sub-views are
defined using meta-models, and formalized using the Telos conceptual modeling
language. Each view type is associated with a formally defined “selection rule”
so that the projection of a specific view from a baseline model can be automated.
Relationships among views are depicted in View Maps. Illustrative examples are
taken from the London Ambulance Service and the Trusted Computing Group

case studies.

Acknowledgements

John for reviewing the thesis
Linda Liu in contributing ideas in the representational constructs
Concept Base team in providing the tool support

Jennifer in contributing the original TCG case study and offering comments
on the result

Eric Yu for revising the thesis and comments

Contents

1 Introductionccccicirsmresss s s s s s s s n s nmnmnmnmn s 1
0 A Y/ o (V7= o o PP RPN PRPR 1
1.2 TheLondon Ambulance Service Computer-Aided Despatch System................ 2
1.3 Research Objectives and APProach...........ccoceveeiieeiciee e 7
14 RE@EAWOIK......oi ittt et sne e nnee s 9

14.1 Scalability handling in KAOS and EKD.........cccocoviiiiiiiiienieecee e 9
1.4.2 Scalability handling in Object-Oriented and SADT modeling techniques11
15 TheSISOrganiZation........ccceeiueeiueeiieeiee e e stee e seeesiee st sree s e sneeenees 14

2 The Original i* FrameworkK....c.ccccismsmsmsmsmsassnsmsassnsnsansnsnnansns 15

2.1 MOAEliNG FEAUIES.........cccieeecee ettt e e e 15
211 The Strategic Dependency Model.............cooveeiiie e 15
212 The Strategic Rationale Modelcoovveiiiiiiiee e 17

2.2 Representational CONSIIUCES.........cuceeiiuireiiiieeciiee e e e sree e enee e 19
221 The Strategic Dependency Model.............cocvveiiiee v 21
222 The Strategic Rationale Modelcoovveiiiiiicie e 23

P T U 1 01017 VPO 26

3 Reformulating the i* Framework Using the Concept of View 27

1300 R 1 0140 (11 o o RPN 28
3.2 Realigned Graphical NOtatioNSccceeeiiuiieiiiee e 31
321 The ACLOr ClIaSS VIBWcccvieiiiiiiie et 32
3.2.2 The Strategic DependenCy VIEWcceeoieeeeiieeeciee e eee e 35
3.2.3 The StrategiC Rational@ VIEW............c.coeiiiieiiiie e 37
324 The Evaluation RESUILS VIBWcoovieiiiiiiieciece e 41
3.3 Representational CONSIIUCES.........c.eeeiiuireiiiieeeiiee e e e e 44
331 The ACLOr ClIaSS VIBWcccvieiieiiie et 44
332 The Strategic DependenCy VIEWcceeeveeeeiieeiciee e eiee e see e 47
3.33 The StrategiC RationNale VIEW...........c.oeeiiuiieiiiee e 49
334 The Evaluation RESUIES VIBWcooviiiiiiiiiecieeeeeeseee e 53

34 DISCUSSION ...ceuiiieiiesitiesieeestee st e st e st e st e e sbeesteesabeesbeeenbeesseeebeesnbeesneeenseeenneenes 54
4 Managing i* Models Using VieWsS.....ccceummsmssmsmssmssssssssnsnnsnnsnnnns 63
4.1 View EXeNSION FEAIUMESooiiieiieeiie et 63
I VA 1 TV o TSRS 64
4.3 Representational CONSIIUCES.........cccuveeiiiieeiiieeciee e e e e e e e 65
4.4 Meta-concepts Essential to Selection RUIES...........ccceevviveiciei e, 70
4.4.1 Plain and Specified aCtorcccvveiiiie i 70
4.4.2 ACLOT @SSOCIALION. ...eeevieieeiiee et siee ettt et sbe e e neesnne e 71
4.4.3 Parent Versus Chilarenoooee e 71
4.4.4 Incoming versus outgoing dependencyccveeceveeeveeeeciee e 73
445 EXEErNal 1INKS.....coiiiiiieeiee e 76
4.4.6 ANCESLOr VErSUS AESCENTENLE........ccuvieeeeieiesiie et 77

I U 11010072 VPP PEPRTT 79

5 Actor Class VIeWS ..cccremrsmsssssssssssssssssssssssssssnssssnssnssssnnsnnsnnsnnnnss 80
5.1 OVEIVIBW ..ttt sttt ettt e et e s b b e e nbe e s abe e s neeenbeeennee e 80
52 DetalSof the AC VIBWS.....cooiiiieeiie ettt 82
521 BaSiC ACLON ClasS VIBW......cc.eeiiieiiieiie ettt 82
5.2.2 SINGIE-NEIWOIK VIEBW ...ttt 85
5.2.3 SiNGle-Plain-ACLOr VIEWcc.eeeieiieecie e 88
5.2.4 ADStract-ActorS-ONIY VIEWcccuveeeciie et 91
525 Plain-ACtOrs-ONlY VIBW..........oviiiiie et 92
5.2.6 AGENS-ONIY VIBW ...ttt e e 9
5.2.7 Direct-Replaceable VIEWcccvveiiiie e 96

5.3 SUMIMEAIY ..ttt e st e e e e e e e e s bbbe e e e e e e e e e s nsnrbaneeaeens 99

6 Strategic Dependency VieWsS....ccicuceimimsamsmsnsmsmsassnsnsnnsnsnsnnsns 100
B.1 OVEIVIBIW ...ttt ettt ettt et e bt e s st e e nbe e e nbeeaneeennee s 101
6.2 DetallSOf the SD VIBWS......cociiiiiieeese e 102
6.2.1 Plain- versus Specified-Actor-Based SD VIeWccccceeveeeevieeecieenne, 102
6.2.2 SiNGIE-ACLOr-FOCUS VIBW.........eeeeeiiie et 108
6.2.3 Pair-WiSE-ACLOIS VIBW ...ttt 113

6.3 SUIMMBIY .eeiiiiiiiiiiiiiite et e e e e e e s e e e e e s e s s bbb e e e e e e e e e e e s s ssbanneaeeens 114

7 Strategic Rationale Viewsc.ccvmssmsmssmsssssssssssssssssssssnssnnsnsns 115
T 1 OVEIVIBIW .ttt sttt ettt e et e et e esabeesbeeenbeesneeennee s 116
7.2 DetallSOf SR VIBWS....c.eiiiiieiie et 118
7.2.1 Single-Actor-FOCUS SR VIBWooveiiieeiieeeeee e 119
7.2.2 Single-Actor-Internal or External VIiewcccceveeivieeccciie e, 123
7.2.3 Internal-Non-functional and Functional Viewcccccevveiiienienninnns 126
724 SiNGIe-SOftgoal VIBWc.eeeeecie et 130
7.25 Single-Affected-Dependum or ACtOr VIEWccccveeevieeeiiieeciee e, 132

7.3 SUIMMEBIY ceeeiiiieeeeeeeiitte e e e s st e e e e e e e s st bbb et e e e e e e e e s assbbeeeeeeeeeessnssbanneaeeens 136

8 Application--Represent the Trusted Computing Group Case

3 T 137
ST R © < oV SRR SPPR 139
8.2 ACLOr ClBSS VIBIWSeiiiieiiieeiee ettt ettt ettt 141

821 ThEeBaSIC AC VIEBWooiiieiie ettt 142
8.2.2 SINGIE-NEIWOIrK VIEWS........oeeiiie et 143
8.2.3 Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views....... 145
8.2.4 SiNGle-Plain-ACLOr VIBWSoeeiiieeiiee e e e e 147
8.25 Direct-Replaceable VIEWS..........ccvve i 150
8.2.6 DS o USRS 153
8.3 StrategiC DependenCy VIBWSc.cceiuireiiiee ettt see e 160
831 The BaSIC SD VIBW......cociiiiiiiiie sttt 162
8.3.2 SiNgle-ACtOr-FOCUS SD VIBWScociuieeiiieeciieeeceee e sreeeeneeesnea e 163
8.3.3 Pair-WiSe-ACLOrS SD VIBWS........coeiiiiiiiesiie e eiee st 168
8.34 DS o USSP 170
8.4 StrategiC RaiONAIE VIBWS........coiiiiieeceiee ettt e 172
84.1 The Single-Actor-Focus SR View for agent TCG.........cccceeecvveevveeeneen. 174
8.4.2 Single-Actor-Internal and External VIEWS...........cocoveeviieeiiee e, 175
8.4.3 Internal-Functional and Non-functional VIews..............ccceveeiieenienninnnn 176
8.4.4 SiNglIe-SOftgoal VIBWSoeeieie e 178

8.4.5 Single-Affected-Dependum or ACLOr VIEWS.........cccueeevveeeiveeecieeesieeens 181

8.4.6 DS o USSR 184

85 Contributions and RESUILS.........cccueiiiiiiiiiiesieee s 185

9 ConClUuSIONS ..ccermmmssmssssssss s s s s s s s n s n s n s am s namnannnnnns 189
9.1 SUMMArY Of RESUILS. ...t e 189
0.2 CONLIBDULIONS.cuiieiie ettt anes 191
0.3 FULUIE DIrECLIONS ... veiiiiieiiieeiie ettt sttt st 192
931 Meta-model related FutUre WOrKoocvveieeiiienieeseeee e 193
9.3.2 Use generic knowledge-base driven techniques...........cccccveevveeecieeenne, 193
9.3.3 Guidelines for the modeling ProCess.........ccvveveeeiiiee e 194
9.34 Broader appliCatioNScccvveiiiie e 195
APPENAIX cerniinrinmsnnansn st sansasssa s s s s s a s aan s naaaanannnnnnnnnnn 195
A Transformation of FOL formula...............cooovviii i, 195
A.l Transform definition of metaclassescocevviie i el . 195

A.2 TransfOrmM QUENIESovv e e eee e e e 197
A.3 Transform eXPreSSIONSovuveereeieeee e e e eeeveineieneneeeeneen. 199

B Queriesin O-Telosformatc.coviviiriiiiiie e e 200

C TheLondon Ambulance Service Computer Aided Despatch System 212
Bibliographycccieiieisiisissnss s s s s s n s nanann n 212

(??Do | provide Table of Figures or not?? The file is a bit too long)

viii

1 Introduction

1.1 Motivation

The i* framework is a conceptual modeling technique that supports goal- and
agent-based reasoning. It was first proposed in Yu's 1994 PhD thesis—Modeling
Strategic Relationship for Process Reengineering (Yu 1994). The i* framework was
aimed at helping in process modeling, process design, and process analysis from a
social and intentional perspective: A Strategic Dependency (SD) model is used to
express “the intentional relationships among agents’; whereas a Strategic Rationale
(SR) model is used to show “how processes are comprised of intentional elements
[of the agents].” Applications of the framework were demonstrated in four areas:
requirement engineering, business process reengineering, organizational impact
analysis, and software process modeling. In addition to enhancing the argument by
working examples, formal constructs of the framework were also presented in (Yu
1994).

A common challenge encountered by users of the i* framework is that the
approach is difficult to scale up. Multiple factors may be contributing to the
scalability challenge. The i* framework adopts a partial, semi-formal, and
gualitative modeling approach that accommodates uncertainty and incompleteness in
the real world. While tool support is possible to a certain degree, intensive human
interaction is nevertheless required during modeling and analysis. As the size of an

application increases, the complexity of modeling and analysis also increases.

The original purpose of the i* framework was to perform process analysis and
process redesign (Yu 1994). These two activities require traversing of the modeled
structure by i* users; therefore, human decision is required at each step. Moreover,
the model evaluation process adopted from the NFR framework (Chung et al. 2000),

CHAPTER 1. INTRODUCTION 2

used to evaluate the effects of process elements on organizational goals, also
requires intensive human interaction. For ease of human interaction, i* models must
be visualized. However, any visualization is subject to the constraints of media
ability and human comprehension. For example, when visualized, a diagram may be
entitled to a limited space, a list may be confined to a finite length, and only two
dimensions might be displayed for a matrix in a tabular format. While conceptually
an i* model could grow infinitely, it can become intellectually unmanageable

beyond a certain size.

We illustrate the scalability challenge in the next section using the London

Ambulance Service (LAS) case study.

1.2 The London Ambulance Service Computer-Aided

Despatch System

The London Ambulance Service Computer Aided Despatch (LAS-CAD) system is
a well known software failure and has been used by the research community as a
standard exemplar. It was introduced to the software engineering community at the
8™ International Workshop on Software Specification and Design (IWSSD), using
the Report of the Inquiry into the London Ambulance Service (LAS-Report 1993) as
the primary source of information. Kramer and Wolf (Kramer and Wolf 1996)
summarized the results of how several workshop participants handled the exemplar.
Others, like Breitman et al. (Breitman et al. 1999) and Letier (Letier 2001) also used
the LAS. Breitman et al. (Breitman et al. 1999) surveyed the possibility of the uses
of newly—as of 1999—emerged requirements engineering (RE) techniques to
identify LAS problems early on; and Letier (Letier 2001) used LAS as a case study
for the KAOS goal-oriented requirements approach.

A case study using the i* modeling and evaluation techniques was also performed

using a project-specific approach to resolve scalability issues (You 2003). Four i*

CHAPTER 1. INTRODUCTION 3

models® representing different aspects of the LAS case study, encompassing a total
of 79 diagrams, were produced, including the evaluation (analysis) diagrams.
Approximately 40 different forms of actors were presented in the four models. The
study focused on the analysis of user-oriented questions, such as “Why is the manual
system not able to meet the performance requirements?” and “How would an

automated system help achieve the performance goals?”

The following sample indicates how large and complex an i* model can become.
Figure 1.2-1 is a graphical representation of a partial i* model from the LAS case
study, which involves only four actors (Ambulance Crew, Resource Allocator,
Incident Reviewer, and LAS Management) and part of their inter-relationships.
Figure 1.2-2 shows the corresponding formal representation in Telos. Telos is a
conceptual modeling language adopted by Yu (Yu 1994) to embed i* concepts.
Telos also serves as the internal representation language in the Organization
Modelling Environment (OME) tool (OME 2003) supporting i* modeling. Modelers

of i* work with the graphical models and do not need to see the Telos code.

! In thisthesis, we reserve the term “model” for an entire representation (using i* meta-concepts) of a certain
organization configuration, and therefore SD and SR, athough called “models’ in Yu's original thesis, are
called “views’. Thedefinition of SD, SR, “modéd” and “view” will be presented in later chapters.

CHAPTER 1. INTRODUCTION

Incident Reviic:
Specifies
gl Rrauee) bensaeery A Revimer (vt
Crew Incinfa]
CO
Az ‘assigner
Specifies epecifies anageme > Timeliness R [REV‘EWE"
‘ [Revievving Incinta)
Bl - —
N\ [ratthin 11 Timeliness Incident
A\ ming| Mobilizatiory Rewewer
T BePassed
(e = (AR 1
O o, Incinta]
- -
LA B s ’
2N ~ .
. * -
.
Resaurce *
Allocator ~
z O .
4
N E,
\
i -~
Optimal Timeliness LY .
Mobingt] Mokilization ac:mame ' [T = ~
[\nclnfo] 3| Incldem Save *
Infarrmation reviewed LY
1 \ \ Foaper-based Incident Incinfo .
i Wy, e |
iodule
k= ' \ UPIES, ‘\ .‘_\\ 3
~ b \ '
0
’

Bccuracy \
Accuracy l [\nc\nfo]
[Amb\nfo]

aper base

-
Q
3

£378

i

5@

L:
2
L
2

-

=

-31—___

Imormatlon
(nlachine-base}

. pands 5 40
* lhe qualnv Rsmonale 3 i
y 7 :
Accurac PU&YE
{ambifal I ﬂpabmyn ; :
. 1£ + 0} -
\ \nd\wu \ ,a
) Iy fconeraicd N\ | 4 I
N I [hohinst] W P 1
b o Inciclert I
\‘ ll / N A 4 Reviewving "‘- -
b / oy) Pl Module 23 N
k vy e W Ny e hiscer 3
b I NN v ~—=7 sy)
Sec ¢ A v | Softwaars
—— VR ‘f) \, 'I
4 - P
Resource e daf 7w a - el - Lo
Allocating 17y iacater Jy .\
Module L L)
b 1 By Human 1
Rachine-base) N, 1
‘. .' f . il ;"
b —— 1 L
= C— e

Figure 1.2-1 A partial model

from the LAS-CAD case study

% plain actor Ambulance Crew %

name
displayName : “Ambulance Crew”

specifiedByLink
: AmbulanceCrew_Agent
END

% agent Ambulance Crew %

name

displayName : “Ambulance Crew”
specifiesLink

: AmbulanceCrew_PlainActor
children

: AC_QualityService

: AC TimdinessService

: AC _TimdinessArrival Location

: AC_AccuracyAmblnfo

TELL SimpleClass AmbulanceCrew_PlainActor IN ActorElementClass WITH

TELL SimpleClass AmbulanceCrew_Agent IN AgentElementClass WITH

CHAPTER 1. INTRODUCTION

[outDepL'i.r.1ks
: AC_TALtoOptimalLink]
END

% softgoal Timeliness[Arrival Location] insde agent Ambulance Crew %
TELL SimpleClass AC_TimelinessArrivalLocation IN SoftGoal ElementClass WITH
parent
: AmbulanceCrew_Agent
outDepLinks
: AC_TALtoOptimalLink
links
: AC_TALtoTS AndContributionLink

|abel
: UndecidedElementL abel
END

% plain actor Resource Allocator %
TELL SimpleClass ResourceAllocator_PlainActor IN ActorElementClass WITH
name
displayName : “Resource Allocator”
specifiedByLink
: ResourceAllocator_Position
END

% position Resource Allocator %
TELL SimpleClass ResourceAllocator_Position IN PositionElementClass WITH
name
displayName : “Resource Allocator”
specifiesLink
: ResourceAllocator_PlainActor
occupiedByLinks
: RAMOccupiesRA
: HRAOccupiesRA
children
: RA_OptimaMoblnst
: RA_TimdinessArrival Location
: RA_AccuracyAmblnfo
: RA_BeGeneratedM obl nst
[inDepLinks
: OptimaltoOptimalLink_RA]

END

% occupies link from agent Resource Allocation Module to position Resource Allocator %
TELL SimpleClass RAMOccupiesRA IN OccupiesLinkClass WITH
from
: ResourceAllocationModule Agent
to
: ResourceAllocator_Position
END

% agent Resource Allocation Module %

CHAPTER 1. INTRODUCTION 6

TELL SimpleClass ResourceAllocationModule Agent IN AgentElementClass WITH
occupiesLinks
: RAMOccupiesRA
children
: RA_BeGeneratedMoblnst_ByAlgorithm
END

% agent Human Resource Allocator %
TELL SimpleClass HuamnResourceAllocator Agent IN AgentElementClass WITH
occupiesLinks
: HRAOccupiesRA
children
: RA_BeGeneratedMoblnst ByHumanDecision
END

% dependency link from softgoal Timeliness [Arrival Location] insde agent Ambulance Crew to softgoal
dependum Optimal [Moblnst] %
TELL SimpleClass AC_TALtoOptimalLink IN DependencyLinkClass WITH
from
: AC TimdinessArrivalLocaltion
[: AmbulanceCrew_Agent]
to
: AC _OptimaMoaoblnst RA
END

% dependency link from softgoal dependum Optimal [Moblnst] to softgoal Optimal [Moblnst] inside position
Resource Allocator %
TELL SimpleClass OptimaltoOptimalLink_RA IN DependencyLinkClass WITH
from
: AC _OptimaMoaoblnst RA
to

: RA_OptimaMoblnst

[: ResourceAllocator_Position]
END

% softgoal dependum Optimal [Moblnst] %
TELL SimpleClass AC_OptimaMoblnst RA IN DependumElementClass, SoftGoal ElementClass WITH
inDeplinks
: AC_TALtoOptimalLink
outDepLinks
: OptimaltoOptimalLink_RA
label
: Undeci dedElementL abel
END

% softgoal Optimal [Moblnst] inside position Resource Allocator %
TELL SimpleClass RA_OptimaMoblnst IN Softgoal ElementClass WITH
parent
: ResourceAllocator_Position
inDepLinks
: OptimaltoOptimalLink_RA
label
: Undeci dedElementL abel

CHAPTER 1. INTRODUCTION 7

|[END

Figure 1.2-2 Partial representation of the model in TELOS showing the size of the

underlying constructs

Our experience with the LAS case study indicates that it is difficult indeed to
accommodate all elements of a model in one representation that is still intellectually
comprehensible. Although Figure 1.2-1 contains only 82 elements out of some 400,

some i* users may already found this partial model difficult to read.

The LAS case study is considered to be only a medium-scale application. In fact,
an i* model can increase in size and complexity to the extent that communications
via the models become impossible — let alone the resolving of practical questions. In
the literatures on i*, various ad-hoc practices have been used to reduce the large
model into segments. The research reported in this thesis aims to introduce

systematic methods to deal with scalability issues of i* models.

1.3 Research Objectives and Approach
Objectives

The objective of this research is to seek a systematic method to break down a
large and complex i* model into segments that are self-contained, and
comprehensible to humans. Thus, when using these segments in combination, users
of i* are able to achieve the same as they could with the entire model. Meanwhile,
we also intend to offer a systematic approach to maintain the connections among

these segments.

Approach

We found that we need to reformulate the i* framework before new guidelines to
deal with scalability can be introduced. Thus, the approach taken is, first, to provide

a generic and formalized representation of the i* framework. The missing

CHAPTER 1. INTRODUCTION 8

representational constructs for some of the graphical notations — such as role — are
clarified, and the inconsistency in the formal constructs between Y u’s original thesis
and the Organization Modelling Environment (OME) tool are aligned. During this
process, we did not introduce major new concepts to i* since our objective is not to
redesign the i* framework but, rather, to resolve the scalability issues that arise

while using i* in practice.

After the existing i* concepts had been clearly presented, a framework extension
that contains different types of views (a projection over a model according to some
criteria) and that supports view management was proposed. The views and sub-
views are defined using meta-models, and formalized using the Telos conceptual
modeling language. Each view type is associated with a formally defined “selection
rule” so that the projection of a specific view from a baseline model can be
automated. This formalization makes the view extension extensible, and makes it
economic to maintain: New view types can be added by specifying a new class in
Telos, and a view can be updated by changing its associated selection rule.

Relationships among views are depicted in View Maps.

Then we studied the details of each type of view in the extension. Every view
type is presented based on the following four aspects: an informal description of
what type of elements from an i* model is to include; a sample view based on the
LAS case study showing the elements actually qualified; brief justifications for the
strengths and constraints of the view; and the formalized selection rule used to

derive this type of view from an i* model.

The view extension and the selection rules were further validated in the research.
The extension was validated against a larger and more complex case study—Trusted
Computing Group, a previous study which had to cope with complexity in the

absence of a systematic method. The rules were translated into ConceptBase, a

2 We useitalics to highlight the first mention of a concept in a section. In most cases, we do not highlight the

same element again in the same chapter.

CHAPTER 1. INTRODUCTION 9

deductive object base supporting Telos data models, query classes and tested for
validity.

1.4 Related Work

When real-world applications increase in size and complexity, the various models
that try to abstract the applications grow accordingly. Diagrams serve as the vehicle
of communication and comprehension of these models, and “the usefulness of any
diagram is inversely proportional to the size and model depicted” (Feldman and
Miller 1986). Not surprisingly, all modeling techniques—whether intended to model
concepts, processes, states, or intentions—experienced scalability problems.
Solutions to these problems had been developed by various research and industry
groups to enhance communication among analysts, designers, and domain experts; to
coordinate efforts contributed by distributed teams; and to manage large and

complex projects using qualitative guidelines.

In this section, we first summarize the approaches taken in techniques closely
related to i*—KAOS and EKD. KAOS is a goal-oriented requirements acquisition
process (Lamsweerde 2003), and EKD is an enterprise knowledge modeling process
that embraces goal- and agent-oriented elements (Bubenko et al. 2001). We also
survey some well-established modeling techniques in their approaches to dealing
with large-scale applications. These well-established techniques include Conceptual
Models (Feldman and Miller 1986; Garlson et al. 1990; Harel 1988), State-Chart
diagrams (Harel 1988), and the SADT approach. Some of these techniques have
been adapted to modeling frameworks such as IDEF—the NASA standard, and
UML—the de-facto industrial standard for object modeling.

1.4.1 Scalability handling in KAOS and EKD

Neither KAOS (Lamsweerde 2003) nor EKD (Bubenko et al. 2001) have claimed
to have any problem with scalability, including their built-in diagrammatic

representation of the models. One reason for the smooth process is that KAOS and

CHAPTER 1. INTRODUCTION 10

EKD have simpler semantics than i*, since both allow only “AND” and “OR”
decomposition of a goal. Thus, the corresponding goal model follows a strict tree
structure, which can be easily expanded or contracted at each node. Partial details of
a model can always be obtained by selecting a sub-tree, and the connections to the
rest of the model are maintained by the edges between parent node and its off-
springs. The i* framework (Yu 1994), on the other hand, encompasses richer
semantics at the meta-level by allowing cross-relationships among elements and,
therefore, its diagrammatic form exhibits a network graph structure. Typically, it is

more complicated in separating elements in a network graph than in a tree structure.

Despite the major differences in meta-level concepts, KAOS, EKD and the
proposed view extension share some common strategies in terms of project
management. These strategies include organizing a project into sub-models (term
used in KAOS and EKD) or views (term used in this thesis), introducing hierarchies

to modeled contents, and applying queries to facilitate information access.

Both KAOS (Lamsweerde 2003) and EKD (Bubenko et al. 2001) have multiple
sub-models, each focusing on a specific perspective, and each grouping a set of
closely related meta-concepts. For example, there are goal centered models to
address stakeholder intentions, process models to address dynamic issues, and agent
models to address agent responsibilities. In the first part of our view extension, we
followed a similar approach and categorized the meta-level concepts in the i*
framework into four groups, which we call views. Views differ from sub-models in
that our view extension enforces strict consistency among different types of views
that are derived from the same underlying i* model. Changes in the underlying
model shall be reflected in all related views. Sub-models in KAOS or EKD are
typically constructed separately and, thus, are loosely coupled.

KAOQOS uses supports from its GRAIL tool (Lamsweerde 2003) to preserve model
consistency and maintain one hierarchy for each type of modeled elements including
concept, diagram, and model. Each entry in any of these hierarchies is uniquely

identified by a combination of their type and name. EKD achieves a similar

CHAPTER 1. INTRODUCTION 11

functionality in its KETH tool (Bubenko et al. 2001) by introducing hierarchies to
the repository of knowledge. Since these hierarchies might be built by different
human users, Janie et al. suggest that synonyms be replaced by a common (unique)
term throughout the entire organization (Bubenko et al. 2001). In the second part of
the view extension, hierarchies of views are introduced. These hierarchies are
visualized in a built-in type of diagram, which we call view map, offered by the
extension. We suggest each view be identified with a unique ID. We provide basic
guidelines for building the hierarchy according to view types and the view
decomposition procedure. But hierarchies in KAOS and EKD depend completely
upon human decision and vary from project to project, so there lack reusable

guidelines.

Both GRAIL and KETH (tools for KAOS and EKD) provide text search engines.
The search engine is to help users locate specific information without having to
browse the whole hierarchy. In our view extension, selection rules are formulated in
First Order Logic for each view, and they are Telos-compatible. These rules select
modeled elements from an i* model based on their types, which correspond to i*

meta-level concepts. Thus, our solution can be fully automated.

In brief, even though KAOS and EKD are considered more as requirements
engineering (RE) processes, and i* is considered as RE notations, when comes to
scalability issues, they do share common approaches as far as managing a real-world

project is concerned.

1.4.2 Scalability handling in Object-Oriented and SADT modeling

techniques

Over the years, research on scalability-related problems has been conducted on
functional modeling (IDEFO 1993), conceptual schema modeling (Feldman and
Miller 1986; Harel 1988; Garlson et al. 1990; Gandhi et al. 1992; Campbell et al.
1996), and dynamic feature modeling techniques (Harel 1988; Damm and Harel

2001; Douglass 2003). Each technique has built-in meta-level concepts on which a

CHAPTER 1. INTRODUCTION 12

set of well-defined rules relies to abstract important information from details.
Applying these rules enhances the capability of dealing with large complex models

by a specific approach.

Our view extension is inspired by these early researches mentioned in the
previous paragraph. The influences appear in three major directions. First, views of
i* are represented (graphically) and decomposed in a similar manner as of IDEFO.
Next, the two-level abstraction offered in the original i* framework conforms to
what was proposed in the higraph-based visual formalization. Finally, focusing on
representation is the approach embraced by both this thesis and other conceptual
modeling researches (Feldman and Miller 1986; Garlson et al. 1990; Campbell et al.
1996; Castano 1998).

IDEFO, derived from Structured Analysis and Design Technique (SADT), is a
well-formed graphical language that focuses on functional modeling of a system
(IDEFO 1993). Each IDEFO model is generated by decomposing a single system
function step-by-step, and scalability issues are addressed by a set of rigorous and
precise rules along this decomposition process. Auxiliary techniqgues—such as a
consistent naming convention and a reference structure—are applied. The former
mitigates reader confusion among various elements in the model, while the latter
provides an overview of a project and allows quick access to a reader-interested part.
This research follows the same approach by introducing a view extension to i*,
which provides built-in support for a reference structure over the views. The
reference structure follows a tree-like topology, and each node in the reference
structure corresponds to a view (in i* view extension) or a diagram (in IDEFO).
Every node should be uniquely referenced across the entire application, and each

may have parent or child nodes according to the reference structure.

Even though the fact is not explicitly stated, influences from the higraph-based
visual formalism presented in (Harel 1988) can be found in most conceptual schema
(Garlson et al. 1990; Gandhi et al. 1992; Campbell et al. 1996) and dynamic feature

modeling techniques (Damm and Harel 2001; Douglass 2003). This visual formalism

CHAPTER 1. INTRODUCTION 13

introduces hierarchies into flat models. In a higraph-based model, blobs denoting
elements at a certain level of abstraction are connected by hyperedges — implying
connecting multiple basic modeling elements. In the application provided in (Harel
1988), blobs are mapped to states, and hyperedges are mapped to events. A state, or
parent blob, can contain sub-states, or sub-blobs; this semantic makes it possible to
introduce hierarchy into state-charts. Later, Harel extended this approach to Live
Sequence Charts (LSC) (Damm and Harel 2001). Both approaches were adopted by
UML in resolving scalability issues (Douglass 2003). Similarly, in (Garlson et al.
1990), the concepts of complex entity, complex attribute, and complex relationship
were defined to introduce hierarchy into a flat E-R model. A suitable analogy would
be the complex entities and attributes to parent blobs, and complex relationships to
hyperedges. The original i* framework (Yu 1994) applied a 2-level abstraction
hierarchy over i* models. Actors in the Strategic Dependency (SD) view can be
treated as a parent blob which contains internal elements that are shown only in the
Strategic Rationale (SR) view. Contribution-links appearing in the SD view are
hyperedges in that they may combine multiple links from different internal elements

towards some same external elements.

Conceptual schema, such as class diagrams and ER charts, are extensively used
for modeling data. Algorithms (Feldman and Miller 1986; Campbell et al. 1996;
Castano 1998) and proofs (Garlson et al. 1990) were employed to explore possible
means in abstracting the flat-structured conceptual models into a nested style.
Authors of the methods claim that they took a “reverse-engineering” approach by
focusing on reformulating an existing model rather than constructing a new one. Our
view extension follows a similar philosophy. We reduce models in a “flat” manner
and do not introduce abstract elements in views, yet other approaches try to define
abstract elements (at a higher abstraction level) that correspond to some basic
elements (at the flat structure level). Moreover, our selection rules are based purely
on the types of i* meta-concepts and can be fully automated, while the other

approaches require intensive human interaction (Feldman and Miller 1986).

CHAPTER 1. INTRODUCTION 14

In brief, our view extension presented in this thesis is influenced by the
scalability-handling techniques applied and proposed in a number of existing
modeling methods. Yet we have encountered different challenges and thus led to
adaptations. One reason is that i* embraces a richer set of meta-concepts so that
meta-model driven rules can be defined to partition elements according to their
types. Another is i* introduces intentional and social aspects to a model, which are

not accommodated in other formalities.

1.5 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the original i* framework
presented in Yu's 1994 thesis, and the formal constructs used in the Organization
Modelling Environment (OME) tool (OME 2003). Chapter 3 presents the first part
of the proposed view extension, which is a reformulation of the i* framework based
on a consolidation of the changes made to i* over the past 10 years. Graphical
notations of new concepts are synthesized from previous literature of our research
group, and formal constructs of some newly introduced concepts are presented for
the first time. Chapter 4 presents the second part of the proposed view extension,
which is described from three aspects: its features and the view map; its formal
constructs; and critical concepts related to the selection rules. Chapters 5 to 7
describe in detail selection rules associated with each view. Examples from the LAS
case study are presented to illustrate the use of each type of view. Chapter 5 focuses
on Actor Class views; Chapter 6, on Strategic Dependency views; and Chapter 7, on
Strategic Rationale views. Chapter 8 validates the proposed extension over the
existing Trusted Computing Group (TCG) case study, and Chapter 9 draws

conclusions and proposes relevant future work.

master-thesis-v4.4.doc

2 The Original i* Framework

In this chapter, we summarize the modeling features of the i* framework and
review its formal constructs from Yu (Yu 1994). Examples from the London
Ambulance Service (LAS) case study are cited to illustrate various meta-level

concepts.
2.1 Modeling Features

2.1.1 The Strategic Dependency Model

Actors are strategic in i*: they have “motivations, intents, and rationales
behind [their] actions” (Yu 1994). An actor can be further differentiated into
roles, agents, and positions. A role is “an abstract actor embodying expectations
and responsibilities.” An agent represents a physical actor — human or machine —
who can play different roles. A position represents a group of responsibilities
that can be occupied by one agent; as well, a position can cover more than one
role. There is also a defined aggregation (PART) relationship among the same
type of actors, and an instantiation (INSTANCE) relationship between two
agents. The graphical notations of the two relationships were briefly introduced
in one example (Yu 1994). Figure 2.1-1 shows graphical notations of various
forms of actors. A plain circle (e.g., Ambulance Crew®) denotes a (plain) actor;
a circle with a curved line across the bottom denotes a role (e.g., Remover
[Duplicated Inclnfo]); a flower shape denotes a position (e.g., Resource
Allocator); and a circle with a bar across the top denotes an agent (e.g., Incident

Reviewing Module).

3 We use bold to highlight the first mention of an element in the models. In most cases, we do not highlight

the same element again.

master-thesis-v4.4.doc

The Strategic Dependency (SD) model is used to express the “intentional
description of a process in terms of a network of dependency relationships
among actors.” Dependency relationships are represented by dependable
elements, and actors depend on one another for goals to be achieved, tasks to be
performed, softgoals to be satisficed, and resources to be furnished. The symbol
“D” in the dependency link indicates the direction of dependency. Yu also “call[s]
the depending actor the depender, the actor who is depended dependeg], and] the
object around which the dependency relationship centers dependum (Yu 1994).
Figure 2.1-1 shows the graphical notation of the different dependency types.

Deapentlor Dapeandum Dependee

Resource
Allocator
Resource
Allacatar

Ambulance
Crewy
Resource
Allacstar

Remover
[Duplicated
Inclnfol

FeRemoyved
[Duplicated
Incinta)

o —

Retmove 2%
[Duplicated Incident
Imlinto] Revigwer]

Resource
Allocstar

i T,
Incidert
Reviesying
Mocule

Optimal
[fiokinzt]

{c) Softgoal Dependency

FEvIE e
Incicert
Information
[rachine-base)

{d) Resource Dependency

Figure 2.1-1 Dependency types

Figure 2.1-2 shows a partial SD model from the LAS case study. This model
shows the dependency relationship among actors Resource Allocator,
Ambulance Crew, Incident Reviewer, and LAS Management. Relationships

among these actors are also presented. For example, either a Resource Allocation

master-thesis-v4.4.doc

Module or a Human Resource Allocator occupies the position of Resource
Allocator. The latter depends on the Ambulance Crew to ensure the Accuracy of
Ambulance Information (Amblnfo), and, in turn, the Ambulance Crew depends
on the Resource Allocator to provide Optimal Mobilization Instruction
(Moblnst).

Ambulance
Cren

Aszsigner
[Reviewed
Incinfa]

Optitnal Timsli
IMEeNess
[Mabirist] [Mokilization]

Incidert
Reviewer

Resource

Allacator Reviewed

Incidert
Information
machine-hazed)

Incicent
Reviewving
Mocule

Accuracy
[&mblnfo]

Reviewed
Incidert
Information
[paper-based)

Hurman
Resource
Allocator

Resource
Allocator
Module

CA Agent

Figure 2.1-2 A partial SD model from the LAS case study

2.1.2 The Strategic Rationale Model

The Strategic Rationale (SR) model is aimed to “provide the intentional
description of processes in terms of process elements and the rationales behind
them.” This implies that the layout of the reasoning structure internal to an actor,
based on inter-actor relationships presented in the SD model, is represented in
the SR model. In this internal structure, intentional elements — goals, tasks,

resources, and softgoals — are connected by intentional links (Yu 1994).

Two classes of intentional links are defined in (Yu 1994). Task decomposition
link, denoted by —+, expresses “a task in terms of its decomposition into sub-
components.” (Yu 1994) distinguished (semantically but not graphically) among

four types of task decomposition links according to the type of sub-components.

master-thesis-v4.4.doc

A task can be decomposed to a sub-goal via a subgoal decomposition link, to a
sub-task via a subtask decomposition link, to a sub-resource via a resourceFor
decomposition link, and to a softgoal via a softgoalFor decomposition link. For
example, in Figure 2.1-3, task Provide [Optimal Moblnst] is decomposed to
softgoals Accuracy [Amblnfo] and Accuracy [Inclinfo] via two softgoalFor

links, respectively.

Several types of means-ends links, denoted by —, were also defined and the
“arrowhead points from the means to the end.” A goal specified as the end can be
achieved by means specified as tasks through goal-task means-ends links
(GTLink). For example, goal BeCollected [Incinfo] can be achieved by
information passed either task By database or network or task By paper-based
forms (Figure 2.1-3). Similarly, a resource specified as the end can be furnished
by means specified as tasks through resour ce-task links (RTLink). A softgoal can
be satisficed by means specified as tasks or softgoals through softgoal-task

(STLink) and softgoal-softgoal (SSLink) links, respectively. A softgoal-link can
contribute positively (denoted by +) or negatively (=) to the softgoal specified as

the end, and they are shown graphically as curved arrows. For example, task
Provide [Optimal Moblnst] contributes positively to softgoal Optimal
[Moblnst] through the softgoal-task (means-ends) link, and softgoal Timeliness
[Arrival Location] contributes positively to softgoal Timeliness [Service]
through a softgoal-softgoal (means-ends) link (Figure 2.1-3). The framework
also allows task-task links that specified tasks as both the end and the means.
(Yu 1994)

Figure 2.1-3 shows the process elements (activities, plans) and initiatives
behind the intentions of position Resource Allocator. This internal structure can
help us select among alternative activities or plans. For example, achieving the
top-level goal BeCollected [Inclnfo] requires only one of the two alternatives—
collect incident information By paper-based forms versus By database or
network—being performed. Selecting the former will result in the top-level

softgoal Timeliness [Mobilization] being harmed — via the negative contribution

master-thesis-v4.4.doc

link from the former, while selecting the latter will not. If timeliness is a major
concern of Resource Allocator, the latter alternative (collect incident information
by database or network) thus needs to be chosen. We see from the example that
by using the SR model, users may obtain a better understanding of how the top-
level goals can be achieved, and how these goals relate to each other.

Remover
[Dupiceted Assigrar
Incinfa) [Revewed
Incindoj
e
TTERS

O

i
{ [Revewed
IR ncinto) I
N "
| 23
o HES

Y
J h
. l i
2, Sava !
.!.Iocao A
ole i,k Fj%gmwcc By Human\, 'y i
Mctine cazgd) 1 S,
Algoritm H -7
] '

aw
1

Figure 2.1-3 A partial SR model from the LAS case study

2.2 Representational Constructs

Meta-level concepts of the i* framework, and their relationships, are
embedded into the conceptual modeling language Telos (Koubarakis et al. 1989),
which results in “an object-oriented representational framework with
classification, generalization, aggregation, attribution, and time” (Yu 1994). Two
levels of classes are involved in this formalization: Concepts from the i*
framework are defined at the meta-class level in Telos, and domain class are
defined as instances of some meta-class and at the simple-class level (Yu 1994).
Figure 2.2-1 shows the definition of the meta-class AgentElementClass and one

of its instances at the domain level, specified as a simple class. Text quoted by

master-thesis-v4.4.doc

%% are comments. In order to distinguish the objects internal to an actor, we
prefix such objects with the acronyms of actors. For example, we prefix softgoal
Quality [Service] inside agent Ambulance Crew as AC_QualityService, where
AC is the acronym for Ambulance Crew. We apply this naming convention

throughout this thesis.

% Tel os representation of concept agent %
TELL Metad ass AgentEl enent G ass ... WTH
attributes
name : String;
children: Intentional El ementCl ass
END

% Tel os representation of domain class Anbul anceGrew %
TELL Si npl ed ass Anbul anceCrew _Agent | N Agent El ement d ass | SA
Anmbul anceCrew Actor WTH
name
di spl ayNarme : “Anbul ance Cew
children
: AC QualityService
: AC TinelinessService
: AC TinelinessArrival Location
: AC_AccuracyAnbl nfo

END

Figure 2.2-1 Definition of meta-level class AgentElementClass and a domain class
that instantiates it denoting the class of agent Ambulance Crew from the LAS case

study

However, the formal constructs shown in Yu's original thesis and the
Organization Modelling Environment (OME) tool differ in class and attribute
design. For example, Yu formulated a goal dependency using an instance of
GoalDependsClass, while OME using one instance of GoalElementClass and two
instances of DependencyLinkClass. The OME tool style conforms to Yu's
original proposal since the two are equivalent in semantics: all i* semantics are
naturally implemented in the OME tool. We favor the OME tool style in that it is

master-thesis-v4.4.doc

widely used and provides a measure to verify the validity of the models so that
human interference can be minimized.
2.2.1 The Strategic Dependency Model

ObjectClass

SR

OccupiesLinkClass ElementClass LinkClass

occu M Wsunks
/ \f:;.'nT\:. Agen
from/to

Pasition
ElementClass
DependencyLinkClass

ElementClass

covel sLink\ /

ActorElementClas IntentionalElementClass

: PlaysLinkClass /
CoversLinkClass BubElemantClags
M LEGEND
coveres inks
RoleElementClass GoalElementClass —>> generalization
TaskElementClass —= attribute class

ResourceElementClass
SoftGoalElementClass

Figure 2.2-2 A partial meta-model of the SD model in Yu’'s thesis

Figure 2.2-2 shows a partial meta-model of the SD model adapted from Yu's
original thesis. There are two categories of objects in the SD meta-model: the
Element(meta)Class and the Link(meta)Class. An instance of LinkClass (e.g.,
AC TALtoOptimalLink in Figure 2.2-3) shall have some instances of
ElementClass as its two critical attributes from and to. The instance of
ElementClass that is specified as from (e.g., Ambul anceCr ew_Agent) denoting the
source element from where the link starts, and similarly to where the link ends
(e.g., AcC_Optimal Mobinst_RA). An instance of ElementClass (e.qg.,
Anmbul anceCrew_Agent) may have some instances of LinkClass (e.qg.,

AC_TALt oOpt i mal Li nk) as its attribute links.

Figure 2.2-3 shows the formal representation of some of the elements that
appear in Figure 2.1-2. Text quoted by %% on top of each simple class denotes

the name of the corresponding element shown in the graphical representation.

master-thesis-v4.4.doc

% he actor Amrbul ance O ew
TELL Si npl ed ass Anbul anceCrew Actor I N AgentEl enentd ass W TH
nane
di spl ayNarme : “Anbul ance Cew
l'i nks
AC _TALt oOpt i mal Li nk
END

% he position Resource Al locator%
TELL Si npl ed ass ResourceAl |l ocator_Position IN PositionEl erentd ass WTH
l'i nks
Optimal toQpti mal Li nk_RA

END

% he dependency |ink from Anbul ance Crew to the softgoal dependum Opti nal
[Mobl nst] %
TELL Sinpled ass AC TALtoOpti mal Li nk I N DependencyLi nkd ass W TH
from
Anbul anceCr ew_Agent
to
AC_Opti nal Mobl nst _RA
END

% he dependency link fromthe softgoal dependum Optimal [Mblnst] to Resource
Al'l ocat or %
TELL Sinpled ass OptimaltoOptimal Li nk_RA | N Qut goi ngDependencylLi nkd ass W TH
from
AC_Opti nal Mobl nst _RA
to
ResourceAl | ocat or _Position
END

% he softgoal dependum Qpti mal [Moblnst] %
TELL Sinpled ass AC Optinal Mobl nst _RA | N Dependuntl ement d ass,
Sof t Goal El ement 0 ass W TH
l'i nks
AC _TALt oOpt i mal Li nk
Optimal toQpti mal Li nk_RA
END

Figure 2.2-3 Representation of a partial SD model from the LAS case study

master-thesis-v4.4.doc

2.2.2 The Strategic Rationale Model

In Yu’s thesis, the meta-model of SR includes every segment shown in the SD
model plus those shown in Figure 2.2-4. This meta-model conforms to the

intuitive description of the SR model in Section 2.1.2.

LinkClass TaskDecompositionLinkClass

SubgoalTDLinkClass SubtaskTDLinkClass ResourceForTDLinkClass ~ SoftgoalEorTDLinkClass

= o =i . =+
: 2|8 3
GoalElementClass TaskElementClass ResourceElementClass SoftgoalElementClass
o ‘{‘[o{(\ \M /
GTLinkClass RTLinkClass STLinkClass SSLinkClass

. —= generalization
MeansEndsLinkClass 3

—= attribute class

Figure 2.2-4 Partial meta-model for the SR model

Figure 2.2-5 shows the formal representation of some of the elements that
appear in Figure 2.1-3. The text quoted by %% on top of each simple class
denotes the name of the corresponding element shown in the graphical

representation.

In SR models, both the from and to attributes for an instance of
DependencyLinkClass (e.g., AC_TALt 0Opti mal Li nk) can represent some instances
of IntentionalElementClass (e.g., from AC TinmelinessArrivalLocaltion to
AC_Opt i mal Mobl nst _RA), while in the SD model, one of them must be an instance
of ActorElementClass (e.g., the same link from Anmbul anceCrew_Agent to

AC_Opt i mal Mobl nst _RA).

%act or Arbul ance O ew
TELL Si npl ed ass Anbul anceCrew _Agent | N Agent El enent d ass W TH
name

master-thesis-v4.4.doc

di spl ayNarme : “Anbul ance Cew
children
AC Qual ityService
AC Ti nel i nessService
AC Ti el i nessArrival Location
AC_Accur acyAnbl nf o

END

%softgoal Tinmeliness [Arrival Location] inside boundary of actor Anmbul ance Crew
TELL Sinpled ass AC TinelinessArrival Locati on I N Sof t Goal El enent 0 ass W TH
par ent
Anbul anceCr ew_Agent
l'i nks
AC _TALt oOpt i mal Li nk
AC TALt oTS _AndContri buti onLi nk

END

%posi ti on Resource Allocator%
TELL Sinpl ed ass ResourceAl |l ocator_Position IN PositionEl erentd ass WTH
children
RA_Opti mal Mobl nst
RA Ti nel i nessArrival Locati on
RA_Accur acyAnbl nf o
RA BeCener at edMvbbl nst

END

%mgent Resource Allocation Mdul e%
TELL Si npl ed ass ResourceAl | ocati onMdul e_Agent | N Agent El enrent Cl ass WTH
children
RA BeCGener at edvbbl nst _ByAl gorithm
END

%gent Hunman Resource Al | ocat or %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El ement C ass W TH
children
RA BeCGener at edMbbl nst _ByHurmanDeci si on
END

master-thesis-v4.4.doc

% he dependency link fromsoftgoal Tineliness [Arrival Location] in the boundary
of actor Ambul ance Orew to the softgoal dependum Optinmal [Mbl nst] %
TELL Sinpled ass AC TALtoOpti mal Li nk I N DependencyLi nkd ass W TH
from
AC Tinmel inessArrival Local tion
to
AC Opti mal Mobl nst _RA
END

% he dependency |ink from softgoal dependum Optimal [Mblnst] to softgoal
Optinmal [Mblnst] inside boundary of position Resource All ocator%
TELL Sinpled ass OptinaltoOptimal Li nk_RA I N DependencylLi nkCd ass W TH
from
AC Opti mal Mobl nst _RA
to
RA_Opt i nal Mobl nst
END

%soft goal dependum Optinal [Moblnst] %
TELL Sinpled ass AC Optinal Mobl nst _RA | N Dependuntl ement d ass,
Sof t Goal El ement d ass W TH

i nDepl i nks
AC _TALt oOpt i mal Li nk
out DepLi nks

Optimal toQpti mal Li nk_RA
END

%softgoal Optinmal [Mblnst] inside the boundary of position Resource All ocator%
TELL Sinpled ass RA Optinal Mblnst | N Softgoal El ementCd ass WTH
par ent
Resour ceAl | ocat or _Posi tion
l'i nks
Optinal t oOpti nmal Li nk_RA

END

Figure 2.2-5 SR presentation in Telos

master-thesis-v4.4.doc

2.3 Summary

This chapter outlines in brief features of the original i* framework described
by Yu (Yu 1994). These features are graphically presented using two models: the
Strategic Dependency (SD) model and the Strategic Rationale (SR) model.

Meta-level concepts such as “actors’ and “dependencies’ are introduced in the
SD model, while intentional links such as “means-ends’ and “decomposition” are
explained in the SR model. Graphical notations of these concepts are illustrated

using samples from the LAS case study.

We omit the concept of dependency strength originally presented by Yu,
because this concept does not play a role in our view extension, nor was it
widely referenced in previous literatures. Nevertheless, dependency strength

could be used in the future as a criterion in simplifying complex i* models.

Formal constructs of the meta-level concepts were adapted into Telos using
the OME tool style, which differs from what was presented by Yu (Yu 1994).
Sample domain classes from the LAS case study were cited in demonstrating

these formal constructs.

master-thesis-v4.4.doc

3 Reformulating the i* Framework Using the

Concept of View

Over the past 10 years, new concepts were introduced to the i* framework and
existing concepts were refined. The definition of the Goal-oriented Requirements
Language (GRL) framework elaborates on the incorporation of concepts from the
NFR framework into the i* framework, anticipated by Yu (Yu 1994). The latest
GRL version was presented in 2003 (GRL 2003).

Besides the definition of GRL, one major milestone was the separation of the
actor diagram from the SD diagram, another was the release of the Organization

Modelling Environment (OME) tool which implemented the meta-model of i*.

Yu (Yu 1994) formally proposed three specified types of actors — roles, agents,
and positions—and three intentional links—plays, covers, occupies. Two other
types of links—Instances and PART—were well established in OO modeling, so
Yu just gave their graphical notation yet not emphasized. It was not until 1997
that the concept of agents (one type of specified actors) was explicitly depicted
(Yu 1997; Chung et al. 1997). Liu and Yu first emphasized graphical notations
for role, agent, position, and the links among them (Dubois et al. 1998). They
refined this line of concepts and their graphical notations, built the specified
actors hierarchy, and formalized graphically three types of links (is-A, INS, and
is-Part-of) among these specified actors (Yu and Liu 2000). However, in their
2000 publication, various types of actors and the three types of links were shown
in the SD model. In 2002, specified actors and the links among them were first

shown separately in a so-called Actor Diagram (Liu et al. 2002).

The OME tool (version 2) was released in 1998; OME version 3 (the current
version is 3.13) supports GRL, i*, NFR, and other kinds of frameworks. Some

new graphical notations that had not appeared in publications were added

master-thesis-v4.4.doc

recently. These new notations smooth the merging of NFR approach into GRL.
The GRL framework implemented in the current OME tool supports specified
actors and their corresponding links, which are initially specified in i* but
omitted in the standard submission of GRL. These effects result in the

differences in modeling features between the OME tool and Yu’s original thesis.

Changes made to i*, as discussed in previous paragraphs, appeared in various
literature produced by the i* research group. Lacking adequate explanations,
these changes confused readers unfamiliar with the concepts. For example, such
terms as diagram and model were often interchanged (meaning some partial i*
model) in different publications, and diagrams (models) were normally presented

in an ad-hoc sequence convenient to the specific publication.

In this chapter, we attempt to consolidate what has happened over the past 10
years. The main objective is to collect, synthesize and organize concepts
scattered throughout existing literatures. Minor adjustments are made to existing
concepts to improve accuracy (of each of them) and consistency (among all of
them). As a first step, modeling constructs are organized in four types of views,
in correspondence to the two types of models (SD and SR) by Yu (Yu 1994).
This paves the way for scalability issues to be addressed in subsequent chapters.

Section 3.1 summarizes the reformulated framework and briefly justifies our
view extension; Section 3.2 discusses the reformulated i* framework in detail;
Section 3.3 presents the formal constructs of the reformulated i* framework; and

Section 3.4 discusses the relationships among the four types of views.

3.1 Introduction

We reformulate the i* framework by refining the concept of model and by
introducing the new concept of view. Initially, SD and SR are called “models” by
Yu (Yu 1994), but in this thesis we reserve the term model for the collection of
i* objects structured according to i* syntax and semantics. A model contains
information in both SD and SR, and we call a domain i* model the baseline

model. In most cases, an i* model describes a particular configuration (e.g., from

master-thesis-v4.4.doc

one type of viewpoint, at a certain period of time, and for a specific project)

among organizational actors.

A view is a partial presentation of that type of configuration. In this sense, SD
and SR are called “views’ in our extension. In fact, the extension distinguishes
among four types of views. an Actor Class (AC) view for focusing on various
forms of actors and the associations among the different forms of each actor, a
Strategic Dependency (SD) view focusing on inter-actor dependency
relationships, a Strategic Rationale (SR) view focusing on “the rationales that
actors have about adopting one configuration or another” (Yu 1994), and an
Evaluation Results (EVLR) view helping in the decision-making process over

alternative system configurations.
We reformulate the baseline model in this way for the following reasons.

First, the SD view is an abstract form of the SR view. Inter-actor
dependencies and external links and elements in the SD view can be obtained
from its corresponding SR view. From the formal construction of i* models, we
can affirm that the SD and SR views share a majority of concepts in their meta-
models, with SR having some extra concepts representing internal rationale.
Thus, any SD view can be obtained by collapsing actors’ internal structures in
the corresponding SR view, and each collapsed actor in the SD view inherits all
the external dependencies that are originally connected to its internal elements.
In this sense, we consider it more appropriate to treat them as views that project

over the same model instead of sub-models.

Second, a distinguished AC view makes actor analysis easier. In most of the
early literature, the SD view was used to identify stakeholders and perform basic
actor analyses within an organization. Questions such as “How does a plain actor
map to a specified one?’ and “What are the relationships among the specified
ones (actor associations)?’ were not emphasized. It appeared straightforward
with the examples shown in early literature, when there was no need to

distinguish among different forms of actors. Yet social configuration for a

master-thesis-v4.4.doc

medium-sized organization (e.g., 500 employees) can increase in complexity and,
thus, accommodation of actor associations (e.g., 300 “plays”’, “covers’, or
“occupies’ links) in the initial SD models becomes difficult. Showing
dependency relationships for multiple specified forms of the same actor (e.g.,
position Resource Allocator and agent Resource Allocator Module) at the same
time also appears difficult. Thus, we decide to abstract these sets of information
into a new type of view—Actor Class. Separation of the actor associations from
dependencies does not affect our analysis. The former focuses on understanding
which set of actors have something in common; the latter, on reflecting how an
organization functions among the inter-actions of actors who basically do not

share internal rationales.

Finally, the Evaluation Results (EVLR) view accommodates concepts
imported from the NFR framework. After the collaboration of i* and NFR, a
model evaluation process employing a qualitative label propagation algorithm
was implicitly adopted by i*. In accordance with this action, we distinguished
the EVLR view to present the results of the evaluation process. The evaluation
process uses the SR view to run the algorithm, so each EVLR view is built on top
of its corresponding SR view. However, users may use the same SR view to
perform different evaluations that differ in various assumptions, so one SR view

normally corresponds to a set of EVLR views.

master-thesis-v4.4.doc

3.2 Realigned Graphical Notations

Resource anagerert SPEC
bt Anoce« °
SfEcifies
-
.....
Embulance Y™ Se SE
A :
{2 Resource
Gualityy < & Allacator
! p LS 3
. Vi ‘!
] e o \‘
Location| .

move
| SSmIeNEL
oo Incinfo]

—— <igner
COVERS [REV\EWEG
infa]

= —

N
—————— Beras
= - z Revisied 1
Incinta]

e

. m
e I
+ R (e gty lRalmnale
2
4+ apabity o

[k 2o =

cccccc

\
" 57 L Y \‘/'
M
i
s e f Human e = o
e S A e Resource -
Allacatar fy N
8

R
L
B\]
o based IS, v Hurman
S o, (Beten) 4
: N
- e 0,
’

Figure 3.2-1 A partial baseline model showing some structures related to plain
actor Ambulance Crew, LAS Management, Resour ce Allocator, and | ncident
Reviewer from the LAS case study

The baseline model, which consists of i* domain classes, serves a centralized
repository for information elicited for a specific configuration of an organization.
Because multiple evaluation results can be obtained from the same baseline
model structure, each baseline model contains one basic model structure and
several sets of evaluation results that are distinguished by initial values or human
decisions for label assignments. For simplicity, we refer to the basic model
structure as the baseline model as long as no confusion will incur. Figure 3.2-1
shows a sample of the baseline model structure from the LAS case study. We use

this sample as the baseline model of the sample views shown in Section

3.2.1~-3.2.4.

master-thesis-v4.4.doc

3.2.1 The Actor Class view

As defined by Yu (Yu 1994), the i* framework supports the concept of
strategic actors. Actors can be plain or specified. A role, a position, an agent, or
an agent instance® (the term “agent instance” will be discussed later in this
section) is called a specified actor. A plain actor is an actor of unspecified type,
i.e., the modeler does not say whether it is a role, a position, an agent, or an
agent instance. Since such an unspecified actor can appear as an element in a
model, we give it the special term “plain actor”, to distinguish it from the general
notion of actor (see Section 4.4.1 for more details). Besides, we define six
relationships—plays, occupies, covers, is-A, INS, and is-Part-of—among actors
as actor associations (Koubarakis et al. 1989; Yu and Liu 2000). This type of

overall information forms the Actor Class (AC) view.

In addition to clarifying existing actor types and actor associations, we
introduce new concepts into i* framework, and they are: two new association
types—specifies and complete composition, one specified actor type agent

instance, and the external relationship inheritance rule along actor associations.

The “specifies” relationship originates from a specified actor to point to its
corresponding plain actor. Graphically, it is denoted by a dashed arrow line
labeled “specifies’, with the arrow pointing to the plain actor (Figure 3.2-2(a)).
We call the former the direct specified actor of the latter. This link reflects a
form of generalization similar to “is-A” between a plain actor and its specified
form. The “is-A” relationship, however, can only apply between actors of the
same specified type. For example, the role “Government as PC User” can only
specializes (via an “is-A” link) the role “PC User”. The “specifies’ relationship
is needed in enforcing the external relationship inheritance rule between a plain

and its specified forms.

* Instances of other forms of actor types such asroleinstance are also possible. We leave this part of

semantic for future research.

master-thesis-v4.4.doc

The “complete composition” relationship is added as a specialized form of the
“is-Part-of” relationship, which implies that the union of the parts is exactly the
same as the whole. As with “is-Part-of”, this new relationship can only apply
among actors of the same specified type. Graphically, it is denoted by a solid
arrow line labeled “And” with the arrow pointing to the “whole” and the “whole”
is highlighted using a dash-filled rectangle with dashed-border (Figure 3.2-2(b)).
This graphical notation is not to be confused with the “And” contribution
(Section 3.2.3), which can only apply between two intentional elements. The
“complete composition” relationship applies a rigorous scope of the
responsibilities and opportunities of the “whole”, basing on those of its “parts”.
In other words, any property of the “whole” must be found in one of its “parts”.
Therefore, a more accurate consistency can be enforced along this type of

aggregation relationship.

We distinguish agent instances from agents in that they have different
semantic implications. An agent instance reflects a domain-object level actor
such as a human individual (e.g., John Steven), a physical organization (e.g.,
USA Government), a specific machine, and the like. An agent reflects the
classification (at the domain-class level) of the domain-object level instances.
For example, agent Human Resource Allocator denotes the group of individuals
who are thus classified. Moreover, this change affects the syntax of the INS link.
In this reformulation, only an agent instance may instantiate (via an INS link) an
agent. Graphically, we distinguish an agent instance from an agent by
highlighting the former using a filled rectangle with dashed border (Figure
3.2-2(c)).

master-thesis-v4.4.doc

A,

Human
Resource
Allacator

; 1

| |

I ' Lzer and 0
Conterit

| Ll=zer |

™ = |

= —

Sﬂecializes

Ambulance
Creny

(a) Specifies (b) Complete composition (c) Agent instances

Figure 3.2-2 newly introduced graphical notations

An external relationship inheritance rule is defined over the reformulated
actor associations discussed previously in this section. The “specifies’ link imply
that the source (a specified actor) and the target (the corresponding plain actor)
share the exact same set of external relationships. The “is-A”, “plays”,
“occupies’, “covers’, and “INS” links all imply that the actor serving as the
source of such a link inherits all external relationships from its corresponding
target, but not vice versa. For example, in Figure 3.2-3, position Incident
Reviewer “covers’ both role Remover [Duplicated Inclnfo] and role Assigner
[Reviewed Inclnfo]. Suppose role Remover [Duplicated IncInfo] has an external
dependency G1 and role Assigner [Reviewed IncInfo] has G2, and G1 differs
from G2. According to the external relationship inheritance rule, position
Incident Reviewer has both G1 and G2 as external dependencies. The “complete
composition” and “is-Part-of” links imply that the actor serving as the target of
such a link inherits external relationships from its corresponding sets of source
actors. For example, the roles PC User and Content User (source actors) are

each a part of the combined role PC User and Content User (the target).

By applying the external relationship inheritance rules, we can specify
external relationships at a single actor, and these relationships can be referenced
by associated actors through an inheritance network along actor associations. By

this means, redundant external relationships can be avoided in an i* baseline

master-thesis-v4.4.doc

model, which leads to SD views showing no redundant dependencies from one
actor to some different specified forms of another actor.

Figure 3.2-3 shows the AC view projected from the baseline model shown in
Figure 3.2-1. By omitting dependency links and internal elements, the diagram
appears clearer and more readable. Actor associations stand out: Position
Resource Allocator can be occupied by either a Resource Allocation M odule or
a Human Resource Allocator; and position Incident Reviewer covers role

Remover [Duplicated IncInfo] and role Assigner [Reviewed Inclnfo].

Armbulance LS Incident
Ry ey

Specifies SAecifies Specifies Sé‘ecifies
COVERS

Rermover
[Duphicated
Inclnfia]

#

=

LAS Incident
Resource d I
Allocatar

NCCLUPIES

Aszigher
[Reviewerd

COVERS
- Inclmta]

Ambulance

Crenwy

DELFES NccUrES

Incident
Reviewing
Mociule a=
Abuzer
o T—

T

[occupies
Inciclent

Freviewer

Hurran
Resource
Allocator

Resource
Allocating
dadule

Incidernt
Rervisvving
hociule

Figure 3.2-3 Sample Actor Class view from the LAS case study

3.2.2 The Strategic Dependency view

The Strategic Dependency (SD) view corresponds to the SD model described
in (Yu 1994). Some minor changes originating from (Yu and Liu 2000; Liu et al.
2003) are applied, including the removal of the actor associations and the
addition of contribution links that target some external elements — dependum or

link. The purpose of the SD view is thus to express the “intentional description

master-thesis-v4.4.doc

of a process in terms of [not only] a network of dependency relationships among
actors” (Yu 1994), but also to express the intertwined negative or positive effects
towards those dependency relationships among actors. The details of the
representation of those negative or positive effects will be discussed in the next

section.

Our reformulation also introduces intentional links that end at an external
element (a dependum or a link), which we call external links (see Section 4.4.5
for more details). In addition, since the annotations (critical, open) of
dependencies are not widely emphasized in various i* modeling practices, we

omit that aspect in this thesis.

Figure 3.2-4 shows the SD view extracted from the baseline model of the LAS
case study (Figure 3.2-1). Position Resource Allocator (depender) depends on
agent Ambulance Crew (dependee) to ensure the Accuracy of Ambulance
Information (Amblnfo) (dependum); in turn, agent Ambulance Crew depends on
the Resource Allocator to provide Optimal Mobilization Instruction (Moblnst).
The Resource Allocator depends on either a CA Agent or the Incident
Reviewing Module to supply Reviewed Incident Information. If the Incident
Reviewing Module plays an Abuser role, it will hurt (an external correlation

link) the incoming dependency from the Resource Allocator.

LAS

A il Tirneliness
[Wrﬁmr;f ‘ [Reviewing
Incident
Reviewer
Tireliness F
Captirnal hakilization e
Ambulance [Mobinat] FETETE s [(OCCLpIES
Cresy Incident ¥ Incidert
Infartmation Feviewear
aper-base
r{le %wrﬁa
icicle
h P
Infarmation
Accuracy Rezource e o -
[kl Lllocatar (rjachinehase) — RE&E&%Q
L = oLl
Incidert e
Rewietwing

Module as
Abuzer

e —

master-thesis-v4.4.doc

Figure 3.2-4 Sample SD view from the LAS case study

3.2.3 The Strategic Rationale view

The Strategic Rationale (SR) view experienced major changes in the graphical
notations when i* evolved into GRL in 2001. Our view extension follows what
was defined in (GRL 2003). GRL refined the notion of belief and decision point.
It also distinguished correlation links from contribution links and defined labels

for contribution and correlation links.

Although logically defined by Yu (Yu 1994), the graphical notation of belief
was not presented until the introduction of GRL (GRL 2003). As stated in GRL,
“[bleliefs make it possible for domain characteristics to be considered and
properly reflected into the decision making process, and hence facilitating later
review, justification and change of the system, as well as enhancing
traceability.” Since beliefs are held by some stakeholders, it shall not appear as a
dependum and, hence, shall never appear in the SD view. Belief and the other
four that appear in the SD view—goal, task, softgoal, resource—are called

intentional element in total. The graphical notation of a belief is shown in Figure

3.2-5.

Figure 3.2-5 Graphical notation of belief

GRL (GRL 2003) distinguishes among four classes of intentional links. A goal
(ends) can be achieved by different tasks (means), and this relationship is
expressed by the means-ends link (the original GTLink). A task (or goal) can be
decomposed into sub-components—sub-goals, sub-tasks, sub-softgoals, and sub-
resources. This relationship is expressed by the decomposition links. This link
type remains the same as what was initially defined by Yu (Yu 1994).
Contribution (combination of the original STLink and SSLink) and correlation

(newly added type) links are used to express a direct or indirect effect from a

master-thesis-v4.4.doc

descendent to an ancestor softgoal. Graphical notations of the four classes are

shown in Figure 3.2-6.

SR

(a) Means-ends (b) Decomposition (c) Contribution (d) Correlation

Figure 3.2-6 I ntentional link types

Moreover, an effect could be positive (make, help, or some+), equal, unknown,
or negative (break, hurt, or some-). In GRL (GRL 2003), make implies a
sufficiently positive effect; help, a partially positive effect; and some+, a
positive effect with unknown extent. Similarly, break implies a sufficiently
negative effect; hurt, a partially negative effect; and some-, a negative effect
with unknown extent. Equal implies an identical effect, while unknown implies a
possible positive or negative effect. In addition, direct effects to a softgoal could
be AND or OR, meaning all the off-springs must be met or only one of the off-
springs need to be met for the corresponding softgoal to be satisficed. Graphical
notations of these effect labels are presented in Figure 3.2-7 for contribution
links and in Figure 3.2-8 for correlation links. Alternatively, words (e.g.,
BREAK) can be used to label the links instead of the symbols (e.g., =).

master-thesis-v4.4.doc

BRE&E ~ HORT S0OME- UWNENOWN S0ME+ HELF LMIAKE

ARA

EQUAL

Figure 3.2-7 Effects of contribution links

A

1

+ i
+ 1=

I

1

1

+

+7

f f f f oo 2
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

W
BRE&K HORT SOME- UNENOWH SOME+ HELF MAKE EQUAL

Figure 3.2-8 Effects of correlation links

Liu and Yu defines the notation of decision point in the i* framework (Liu et
al. 2003). A decision point is a goal that requires more than one task.
Graphically, it is denoted by a goal highlighted using a solid-filled solid-border
rectangle. Figure 3.2-9 shows goal BeCollected [InclInfo] as a decision point
since it can be achieved by using either paper-based forms or machine-based
mechanisms. Since this notation does not affect our view extension, we only

denote it graphically.

master-thesis-v4.4.doc

BeCollected
[Ineinio]

or network

Figure 3.2-9 graphical notation of decision point

Figure 3.2-10 shows the SR view corresponding to our baseline model from
the LAS case study (Figure 3.2-1). The view shows the intentional elements that
are required to achieve top-level goals of the position Resource Allocator. We
call intentional elements that reside internal to an actor as internal elements. For
example, softgoal Optimal [Moblnst] and Timeliness [Mobilization] are

internal elements to position Resource Allocator.

Incidert
Reviewer

BiePassed
[Feviewed
Incinfo]

e

-)

S -~ (occupies
- Incident

~ Reviener

Resource
Allocator

i
-
‘ampulance | Y
Cresw ™~
Quality 2
[Service]

L4
"
I inETPEss
. [Srtal
1 Location]
.
\. \‘
N\ facourac] Timeliness I
*\ | Gt (=eree]
) .
. I
s ccuracy .
. ‘nccuracy oo ,

[&miinfo]

Incidart
Infarmation
tnjachine-baser)

.
I 1

!
4 ~

I
’ I
. Incidert % _ 1.
’ Reviewing I =™ &
,' Module as ~
. ALhuzer [}
=—=_ Buwy]|
» | Softweaare
1 I
.

Ul
Feceneratedy,
[Fokinst]

Resource Human W\ "
Allocating \ Resource kN
Madule By . Allacator .
cl"nneiﬁas 1 By Hurman \
kil Decizion H
1 I .
£y . \‘ s
A —_—— * -~ -

Figure 3.2-10 Example of the SR view from the L AS case study

master-thesis-v4.4.doc

3.2.4 The Evaluation Results view

The Evaluation Results (EVLR) view presents graphically the results of the
evaluation process over an i* model. A qualitative evaluation process of i*
models was adapted from the NFR framework (Chung et al. 2000) in GRL (GRL
2003), its purpose is to assess the feasibility of certain alternatives in achieving

organizational level goals.

The evaluation process labels each process element according to some initial
assumptions of leaf nodes in the SR view. A leaf node is an intentional element
that normally has no incoming intentional links; a top level node is one that
normally has no outgoing intentional links. The evaluation process propagates
labels from leaf nodes step-by-step to top-level nodes, from internal elements to
their incoming dependums, and from that dependum to the internal elements that

reside inside the corresponding depender.

The original label propagation algorithm is defined for the NFR framework
(Chung et al. 2000), and has been adapted to the richer i* notations throughout
the literature (e.g., Liu et al. 2003) and in case studies (e.g., Horkoff 2004). In
this thesis, we do not define the propagation rules, because the topic itself
deserves further research and a uniformed label propagation algorithm in i* is
yet to be defined. Consequently, scalability issues specific to this type of view is
not studied in detail. However, we summarize some basic notations that are
generically accepted in the EVLR view.

GRL distinguishes among six types of intentional element labels, each
denoting a qualitative level of the satisficeability of the node; they are Satisficed,
Weakly Satisficed, Conflict/irresolvable, Undecided, Weakly Denied, and Denied.
Figure 3.2-11 shows their graphical notation.

/ N 3

(a) Satisficed (b) Weakly Satisficed (c) Undecided

master-thesis-v4.4.doc

’ 4 A =

[
(d) Weakly Denied (e) Denied (f) Conflict

Figure 3.2-11 L abel types

The current OME tool distinguishes the labels from the way they are assigned.
A starting label is a label assigned to a node (normally leaf node) by the modeler,
and we highlight the corresponding node with a dashed-border solid-filled
rectangle (Figure 3.2-12(a)). An automated label is a label that propagates
automatically from a node’s descendents to it, and, hence, there is no graphic
change to the corresponding node (Figure 3.2-12(b)). A human-decision-involved
label is a label that is assigned by the modeler according to what is contributed
by its descendents, and it is denoted by highlighting the corresponding node with
a solid-border solid-filled rectangle (Figure 3.2-12(c)). This notation appears
graphically the same as the decision point, so we recommend that this not be
used to highlight decision point in the EVLR view. An imported label is a label
that is propagated from previous evaluation steps that are not shown in the
current diagram, and is denoted by highlighting the corresponding node with a
dashed-border dashed-filled rectangle (Figure 3.2-12(d)). As mentioned in the
previous paragraph, these graphical notations do not play a critical role in our

view extension, so we define them only graphically.

fa) Starting lakhel iby Automated label (¢} Human-decision-involved label (d) Imported label

Figure 3.2-12 methods of label assignment

Figure 3.2-13 shows the EVLR view obtained by performing the evaluation
process using the sample SR view from the LAS case study (Figure 3.2-10).

During the evaluation, four process elements were selected to assign the starting

master-thesis-v4.4.doc

labels: softgoal Accuracy [Ambl

nfo] was considered weakly satisficed, task

generate mobilization information By Machine-based Algorithm and Pass
paper-based form, and softgoal Buggy [Software] were considered satisficed
initially. No human decision is involved in the label propagation process nor any
imported labels from other segments of the baseline model that are not visualized
in this view. According to the label propagation algorithm adapted in (Liu et al.

2003), the weakly satisficed label

of softgoal Accuracy [Amblnfo] contributes a

weakly denied label to both the top-level softgoal Quality [Service] through an
AND link and the incoming dependum Accuracy [Amblnfo] from the Resource
Allocator. The former label, together with the undecided label propagated from

softgoal Timeliness [Service] via

another AND link, makes the label of Quality

[Service] undecided. Following a similar procedure, the labels are propagated
step-by-step until all top-level nodes are label ed.

et T

A il Qualrly
ety
‘ [Arrlvel I
Lucatlon

Tlmellnes
EI’VICE]%

Optlmal
[Moblnst]
Ty
\
[
1 Resource
Allocator
'
I +

Accuracy
[Ambintg
ACCUracy v Rt
Ambinty
[L] ‘ tha quamy
\ fthe

y
\
.

b
»

s,

-

S
‘ : ACCUracy
[[Amb\nf

\'4-

!

"~
Rasuume -
Allocsting 1 'P
hiodule
chlne b
algorithl

.
Optimal] Timeline:
[Mnh\nst] MObIlIZaﬂO | BeCollectad
[Incinfo

{ |
l\

s,

anagerment

Incidert ¥ = *
FEviewer

~

)
¥y Timeliness
[Reviewing
Tirnelines:
habilization

1 BePassed
[Reviewed
Incinfo
-

T
[oCoupies
_Incickent

A
Incident
Reviesving
acule

\
I

\
: \‘“\
1
[Incinfa e

} ; the
1 /. ap
147 Cenerated he
,*- 1 Bl i A L
[X ol . 1
|| 4 > \ " Incident \
I (s p; LYY Vol Reviewing # 7 = o
) \ ‘ ’ Module &z
[, , Abuser Gungy
I ottwaugdl| |
ot 1
----- r
\\' ~. i

P
Aﬁggg{grg BvHumaﬂ -

Decizion

Figure 3.2-13 Sample Evaluation Results view based on an SR view from the LAS

case study

master-thesis-v4.4.doc

3.3 Representational Constructs

We use here the approach discussed in the original framework (Section 2.2) to
embed the reformulated i* framework into Telos. The OME style is again

selected in presenting the formal constructs.

3.3.1 The Actor Class view

AgentlnstanceElementClass

frcm\ iﬁt\ancesun ks

INSLinkClass

to
from OccuplesL|nkC|ass instancedByLinks

| occupie __\3 iesLinks
Parts - garlsOiLmks F‘OSITIOI’I/ from

Lkalais aggregationOfLinks ﬂElementCIass AgentElementClass

® playsLin

]

coversljinks

:Lm ActorElementClass
CoversLinkClass

laysLinkClass
coveredByLink to
pla yLinks
from from
|sAL|nks !

fro

CompleteCompositidn @mpleteParsotinks\p S - £ F ISALinkClass
LinkClass | Mﬁ ﬁeneralization()ﬂ_inksz |
to to
LEGEMND
== generalization —== allribute class

Figure 3.3-1 A partial meta-model of the Actor Class view

Figure 3.3-1 shows a partial meta-model of the AC view. The relationship
between ISALinkClass and RoleElementClass applies to all other element classes
shown in the meta-model, but we omitted them for the sake of simplicity. So
does the relationship between the following pairs. PartsLinkClass and
PositionElementClass, and CompleteCompositionLinkClass and
RoleElementClass. The formal definition of the “specifies’ link will be given in
Section 4.4.1 since we consider it more appropriate to put that link in our view

extension.

master-thesis-v4.4.doc

Note that an instance of the INSLinkClass always has an instance of
AgentlnstanceElementClass (e.g., John Steven) as its attribute from and an
instance of AgentElementClass (e.g., Human Resource Allocator) as attribute
to. In this thesis, we distinguish the two concepts explicitly in i* semantics for
the first time.

Figure 3.3-2 shows the formal representation of some of the elements that
appear in the AC view shown in Figure 3.2-3. The text quoted by %% on top of
each simple class denotes the name of the corresponding element shown in the
graphical representation. Note that the link names do not show in the graphical

presentation of the view.

% pl ain actor Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Anbul ance Crew
speci fi edByLi nk
ACASpeci fi esACPA
END

% agent Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Agent | N Agent El enent 0 ass W TH
speci fi esLi nk
ACASpeci fi esACPA
END

% Specifies link fromposition Resource Allocator to plain actor
Resource All ocator %
TELL Si npl ed ass ACASpeci fi esACPA I N Speci fiesLi nkC ass WTH
from
Anmbunal ceCrew_Agent
to
Anmbul anceCr ew_Pl ai nAct or
END

% pl ain actor Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Resource Allocator”
speci fi edByLi nk
RAPSpeci fi esRAPA
END

% positi on Resource Allocator %
TELL Sinpl ed ass ResourceAl | ocator_Position I N PositionEl enentd ass WTH
speci fiesLi nk
. RAPSpeci fi esRAPA
occupi edByLi nks
. RAMOccupi esRA

master-thesis-v4.4.doc

HRACccupi esRA
END

% Specifies link fromposition Resource Allocator to plain actor
Resource Allocator %
TELL Si npl ed ass RAPSpeci fi esRAPA | N Speci fiesLi nkC ass WTH
from
Resour ceAl | ocat or _Position
to
Resour ceAl | ocat or Pl ai nAct or
END

% occupi es |ink fromagent Resource Allocation Mdule to position
Resource Allocator %
TELL Si npl ed ass RAMXcupi esRA | N Cccupi esLi nkCl ass W TH
from
Resour ceAl | ocat i onModul e_Agent
to
Resour ceAl | ocat or _Position
END

% agent Resource Allocation Mdule %
TELL Si npl ed ass ResourceAl | ocati onModul e_Agent | N Agent El enent d ass
W TH
occupi esLi nks
RAMOccupi esRA
END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enentd ass W TH
occupi esLi nks
HRACccupi esRA
END

Figure 3.3-2 Actor Class view representation in Telos

master-thesis-v4.4.doc

3.3.2 The Strategic Dependency view

0b_|ECt‘C|EISS

ElementClass MLkaIass

ContnbuteeClass
ndable
d LinkClI
EGT\ /ency inkClass

IntentionalElementClass AEErERmeMLIEnR OutgoingDependency

IncomingDependency LinkClass
SubElementClass LinkClass

GoalElementClass LEGEND

TaskElementClass i
ResourceElementClass

SoftGoalElementClass

—= attribute class

Figure 3.3-3 A partial meta-model of the SD view

Figure 3.3-3 shows a partial meta-model of the SD view. In the OME style we
followed, a more rigid hierarchy was introduced into the meta-model to enforce
the application of i* semantics. For example, OME introduced the concept of
DependableElementClass, whose instance can have an instance of
DependencyLinkClass as its attribute links. An instance of
ContributionLinkClass that ends (to) at an instance of DependencyLinkClass is
considered as a construct in the SD view. This type of link was included only in
the SR view by Yu (Yu 1994). In addition, our view extension distinguishes
between incoming dependencies (instances of IncomingDependencyL inkClass)
and outgoing dependencies (instances of OutgoingDependencyLinkClass).

Details regarding these dependency links are discussed later in Section 4.3.4.

Figure 3.3-4 formally represents some of the elements that appear in the SD
view shown in Figure 3.2-4. The text quoted by %% on top of each simple class
denotes the name of the corresponding element shown in the graphical
representation. The attributes quoted using [square bracket] are calculated

attributes. They are calculated based on the information obtained from the

master-thesis-v4.4.doc

baseline model and are not originally specified in the given element. For
example, the outgoing dependency link AC_TALtoOptimalLink was initially
specified as a link of an internal softgoal AC_TimelinessArrivalLocation of
agent Ambulance Crew. However, in SD view, it is abstracted as a link of its

parent—agent Ambulance Crew.

% pl ain actor Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Anbul ance Crew
END

% agent Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Agent | N Agent El enent 0 ass W TH
name
di spl ayNane : “Anbul ance Crew
[out DepLi nks
AC TALt oOpti mal Li nk]
END

% pl ain actor Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Resource Allocator”
END

% positi on Resource Allocator %
TELL Sinpl ed ass ResourceAl | ocator_Position |IN PositionEl enentd ass WTH
name
di spl ayNane : “Resource Allocator”
[i nDepLi nks
Opti mal t oOpt i mal Li nk_RA]

END

% agent Resource Allocation Mdule %

TELL Si npl ed ass ResourceAl | ocati onModul e_Agent | N Agent El enent d ass
W TH

END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enentd ass W TH
END

% dependency link fromsoftgoal Tineliness [Arrival Location] inside
agent Anbul ance Crew to softgoal dependum Optinal [Mblnst] %

TELL Si npl ed ass AC TALt oOpti mal Li nk | N DependencyLi nkCl ass W TH
from

[: Anmbul anceCrew Agent]

to

. AC Opti nmal Mobl nst _RA

END

master-thesis-v4.4.doc

% dependency |ink fromsoftgoal dependum Optinal [Mblnst] to softgoal
Optinmal [Moblnst] inside position Resource Allocator %
TELL Sinpled ass OptinmaltoOpti nal Li nk_RA | N DependencyLi nkC ass W TH

from
. AC Opti nmal Mobl nst _RA
to
[: ResourceAl |l ocator_ Position]
END

% soft goal dependum Optinal [Mblnst] %
TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent G ass W TH

i nDepl i nks
. AC TALt oOpti mal Li nk
out DepLi nks

Optinmal t oOpti mal Li nk_RA
END

Figure 3.3-4 SD view representation in Telos

3.3.3 The Strategic Rationale view

We argued previously (Section 3.1) that SR view is the detailed form of a SD
view, so modeling constructs for the SR view is a superset of those for the SD
view. The same analogy applies to the formal constructs between SR and SD.
Thus, it appears sufficient for us to just show the representational constructs in

the SR view that are not covered in the SD meta-model.

We use two diagrams to exhibit the meta-model for the SR view. Figure 3.3-5
focuses on presenting the hierarchy of element classes in the SR view while
Figure 3.3-6 focuses on showing various link classes that are supported in the SR

view. Besides,

Figure 3.3-5 shows the hierarchy of element classes. There are five meta-level
classes that have corresponding graphical notations: GoalElementClass,
TaskElementClass, ResourceElementClass, SoftgoalElementClass, and
BeliefElementClass. Others are intermediate classes that only help
implementation of i* semantics. For example, the inheritance relationship from
GoalElementClass and TaskElementClass to DecomposableElementClass
enforces a rule in i* that only a goal (instance of GoalElementClass) or a task

(instance of TaskElementClass) can be decomposed. Another example is the use

master-thesis-v4.4.doc

of SubElementClass and IntentionalElementClass. From the partial meta-model
of the SD view (Figure 3.3-3), we know that a sub-element (instance of
SubElementClass) is dependable while an intentional element (instance of
IntentionalElementClass) is not. BeliefElementClass does not subclass
SubElementClass, so a belief (instance of BeliefElementClass) is not dependable.

This semantic implies that a belief shall never be a dependum.

Figure 3.3-6 focuses on showing various link classes and their semantics that
are supported in the SR view. For example, a means-ends link (instance of
MeansEndsLinkClass) can only starts from a task (instance of TaskElementClass)
and ends at either a goal, a task, or a resource (specified instance of
EndsElementClass). Besides, to distinguish dependency from other non-actor-
association links, we group the four types of links—means-ends, decomposition,
contribution, and correlation—into intentional links (instances of

IntentionalLinkClass).

>3 IntentionalElementClass

DependableElementClass / \
SuZ?ementClass EndsElementClass Recampesabl
mentClass

GoalElementClass esoirceElementClass BeliefElementClass
TaskElementClass SoftGoalElementClass

CantributeeClass LEGEND

/ === generalization

. —= attribute class
ObjectClass

Figure 3.3-5 A partial schema showing Element hierarchy in the SR view

master-thesis-v4.4.doc

DecomposableElementClass LinkClass Tasiflpmeniiass

W0 A =

DecompositionLinkClass /MeansEndsLinkCIass
. IntentionalLinkClass

5.0‘?' 5
SubElementClass EndsElementClass

BreakCorrelationLinkClass —== CorrelationLink(lass \
ContributorClass /,,,ﬁ
o
WCOntributionLinkCIass/ EEGERG
N == generalization
—= attribute class

OrContributionLinkClass

Figure 3.3-6 A partial meta-model showing the links supported by SR view

Figure 3.3-7 shows the formal representation of some of the elements that
appear in the SR view shown in Figure 3.2-10. The text quoted by %% on top of
each simple class denotes the name of the corresponding element shown in the

graphical representation.

% pl ain actor Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Anrbul ance Crew’
END

% agent Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Agent | N Agent El enent 0 ass W TH
name
di spl ayNane : “Anmbul ance Crew’
children
AC QualityService
AC TinelinessService
AC TinelinessArrival Location
AC _Accur acyAmbl nfo

END

% softgoal Tinmeliness [Arrival Location] inside agent Ambul ance Crew %
TELL Sinpl ed ass AC TinelinessArrival Location | N Soft Goal El enent C ass
W TH
par ent

Anmbul anceCr ew_Agent

master-thesis-v4.4.doc

out DepLi nks
AC TALt oOpti mal Li nk
i nks
AC TALt oTS AndContri buti onLi nk

END

% pl ain actor Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Pl ai nActor I N ActorEl enentd ass WTH
name
di spl ayNane : “Resource Allocator”
END

% positi on Resource Allocator %
TELL Sinpl ed ass ResourceAl | ocator_Position I N PositionEl enentd ass WTH
name
di spl ayNane : “Resource Allocator”
children
. RA Opti nmal Mobl nst
RA Ti nel i nessArrival Location
RA AccuracyAnbl nfo
RA BeGener at edMobl nst

END

% agent Resource Allocation Mdule %
TELL Si npl ed ass ResourceAl | ocati onModul e_Agent | N Agent El enent d ass
W TH
children
RA BeGener at edMobl nst _ByAl gorit hm
END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enentd ass W TH
children
RA BeGener at edMobl nst _ByHunanDeci si on
END

% dependency link fromsoftgoal Tineliness [Arrival Location] inside
agent Anbul ance Crew to softgoal dependum Optinal [Mblnst] %
TELL Si npl ed ass AC TALt oOpti mal Li nk | N DependencyLi nkCl ass W TH
from

AC TinelinessArrival Local tion
to

AC Opti mal Mobl nst _RA
END

% dependency |ink fromsoftgoal dependum Optinal [Mblnst] to softgoal
Optinal [Mblnst] inside position Resource Allocator %
TELL Sinpled ass OptinmaltoOpti nal Li nk_RA | N DependencyLi nkC ass W TH
from
AC Opti mal Mobl nst _RA
to
. RA _Opti nmal Mobl nst
END

master-thesis-v4.4.doc

% soft goal dependum Optinal [Mblnst] %
TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent O ass W TH

i nDepl i nks
AC TALt oOpti mal Li nk
out DepLi nks

Optinmal t oOpti mal Li nk_RA
END

% softgoal Optinmal [Moblnst] inside position Resource Allocator %
TELL Sinpl ed ass RA Optinal Mobl nst | N Sof t goal El enent d ass W TH
par ent

Resour ceAl | ocat or_Position
i nDepLi nks

Optinmal t oOpti mal Li nk_RA

END

Figure 3.3-7 SR view representation in Telos

3.3.4 The Evaluation Results view

The i* framework supports a set of qualitative labels. We formalize them

using a set of simple classes, each of which corresponds to an instance of the

meta-class IntentionalElementL abelClass. For example, the weakly denied |abel

(4) is represented by simple class WeaklyDeniedElementLabel. The formal

representation of these modeling constructs is shown in Figure 3.3-8.

., label
IntentionalElementClass =|ntentionalElementLabelClass

DeniedElementLabel
WeaklyDeniedElementLabel

UndecidedElementLabel
LEGEND WeaklySatisficedElementLabel

ConflictElementLabel
SatisficedElementLabel

instantiation —= attribute class

Figure 3.3-8 Formal representation of labelsin Telos

S3ISSYT10 VLIW

S3ASSY1D I1dWIS

master-thesis-v4.4.doc

Figure 3.3-9 shows the formal representation of two elements that appear in
the EVLR view shown in Figure 3.2-13. Each of the two elements has “label” as
its attribute, and each is assigned an UndecidedElementL abel. The text quoted
by %% on top of each simple class denotes the name of the corresponding

element shown in the graphical representation.

% softgoal Tinelines [Arrival Location] inside agent Anbul ance Crewd
TELL Sinpl ed ass AC TinelinessArrival Location | N Soft Goal El enent C ass
W TH
par ent
Anmbul anceCr ew_Agent
out DepLi nks
AC TALt oOpti mal Li nk
i nks
AC TALt oTS AndContri buti onLi nk

| abel
%an Undecided | abel is assigned to this elenent %
Undeci dedEl enent Label
END

TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent G ass W TH

i nDepl i nks
AC TALt oOpti mal Li nk
out DepLi nks

Optimal t oOpti mal Li nk_RA
| abel
%an Undecided | abel is assigned to this elenent %
Undeci dedEl enent Label
END

Figure 3.3-9 Evaluation resultsin TELOS representation

3.4 Discussion

The four views derived from the same baseline model share some common
elements and these elements serve as connectors among the views. Given a
baseline model, the information contained in it can be partitioned into three basic
views. Basic AC view, Basic SR view, and basic EVLR view. Actors (plain or
specified) show in both the AC and SR view, yet the former contains actor
associations while the latter focuses on dependencies. Any SD view can be

viewed as an abstraction of its corresponding SR view. Any EVLR view contains

master-thesis-v4.4.doc

all elements in its corresponding SR view along with label assigned to the

elements as attributes during an evaluation process.

The inter-view relationship can be seen more clearly in the underlying Telos
representation. We use Figure 3.4-1 to show the formal constructs of a partial
baseline model, denoting parts belonging to different views using different
special effect. Then we show separately the corresponding formal representations

in different views.

In Figure 3.4-1, we italicize the attributes that belong only (meaning do not
belong to the SR view) to the AC view; we bold the attributes that belong to both
SD and SR views; and the attributes without special effects belong to only the SR
view. For the calculated attributes in the SD view, we put them in [square
bracket]. Intentional elements are assigned labels in the EVLR view, so we

underline those attributes shown only in the EVLR.

% pl ain actor Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Pl ai nActor I N ActorEl enentd ass WTH
nane
di spl ayNane : “Anbul ance Crew
speci fi edByLi nk
ACASpeci fi esACPA
END

% agent Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Agent | N Agent El enent 0 ass W TH
name
di spl ayNane : “Anrbul ance Crew’
speci fiesLi nk
ACASpeci fi esACPA
children
AC QualityService
AC TinelinessService
AC TinelinessArrival Location
AC _Accur acyAmbl nfo

[out DepLi nks
AC TALt oOpti mal Li nk]
END

% Specifies link fromposition Resource Allocator to plain actor
Resource All ocator %
TELL Si npl ed ass ACASpeci fi esACPA I N Speci fiesLi nkC ass WTH
from
Anbunal ceCr ew_Agent
to
Anbul anceCr ew Pl ai nAct or

master-thesis-v4.4.doc

END

% softgoal Tinmeliness [Arrival Location] inside agent Ambul ance Crew %
TELL Sinpl ed ass AC TinelinessArrival Location | N Soft Goal El enent C ass
W TH
par ent
Anmbul anceCr ew_Agent
out DepLi nks
AC TALt oOpti mal Li nk
i nks
AC TALt oTS AndContri buti onLi nk

| abel

Undeci dedEl enent Labe

END

% pl ain actor Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator Pl ai nActor I N ActorEl enentd ass WTH
nane
di spl ayNane : “Resource Allocator”
speci fi edByLi nk
RAPSpeci fi esRAPA
END

% positi on Resource Allocator %
TELL Sinpl ed ass ResourceAl | ocator_Position I N PositionEl enentd ass WTH
name
di spl ayNane : “Resource All ocator”
speci fiesLi nk
RAPSpeci fi esRAPA
occupi edByLi nks
: RAMOccupi esRA
HRACccupi esRA
children
RA Opt i nal Mobl nst
RA Ti nel i nessArrival Location
RA AccuracyAnbl nfo
RA BeGener at edMobl nst
[i nDepLi nks
Opti nal t oOpt i mal Li nk_RA]

END

% Specifies link fromposition Resource Allocator to plain actor
Resource Allocator %
TELL Si npl ed ass RAPSpeci fi esRAPA | N Speci fiesLi nkC ass WTH
from
Resour ceAl | ocat or _Position
to
Resour ceAl | ocat or Pl ai nAct or
END

% occupi es |ink fromagent Resource Allocation Mddule to position
Resource All ocator %
TELL Si npl ed ass RAMXcupi esRA | N Cccupi esLi nkCl ass W TH

from

master-thesis-v4.4.doc

Resour ceAl | ocat i onModul e_Agent
to
Resour ceAl | ocat or _Position
END

% agent Resource Allocation Mdule %
TELL Si npl ed ass ResourceAl | ocati onModul e_Agent | N Agent El enent d ass
W TH
occupi esLi nks
RAMOccupi esRA
children
RA BeGener at edMobl nst _ByAl gorit hm
END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enentd ass W TH
occupi esLi nks
HRACccupi esRA
children
RA BeGener at edMobl nst _ByHunanDeci si on
END

% dependency link fromsoftgoal Tineliness [Arrival Location] inside
agent Anbul ance Crew to softgoal dependum Optinal [Mblnst] %
TELL Si npl ed ass AC TALt oOpti mal Li nk | N DependencyLi nkCl ass W TH
from
AC TinelinessArrival Local tion
[: Anbul anceCrew Agent]
to
AC Opti mal Mobl nst _RA
END

% dependency |ink fromsoftgoal dependum Optinal [Mblnst] to softgoal
Optinal [Moblnst] inside position Resource Allocator %
TELL Sinpled ass OptimaltoOpti nal Li nk_RA | N DependencyLi nkC ass W TH
from
AC Opti mal Mobl nst _RA
to
RA Opt i nmal Mobl nst
[: ResourceAl |l ocator_ Position]
END

% soft goal dependum Optinal [Mblnst] %
TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent G ass W TH

i nDepl i nks
AC TALt oOpti mal Li nk
out DepLi nks

Optinmal t oOpti mal Li nk_RA
| abel

Undeci dedEl enent Label

END

% softgoal Optinal [Moblnst] inside position Resource Allocator %
TELL Sinpl ed ass RA Opti nal Mobl nst | N Sof t goal El enent d ass W TH
par ent

master-thesis-v4.4.doc

Resour ceAl | ocat or _Position

i nDepLi nks
Optinmal t oOpti mal Li nk_RA
| abel
Undeci dedEl enent Label
END

Figure 3.4-1 The Telos representation of a segment from the LAS baseline model

The following diagram shows the corresponding SD view of Figure 3.4-1.
Only actors and their dependency links are included, and the non-bolded

attributes are calculated ones.

% agent Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Agent | N Agent El enent O ass | SA
Anmbul anceCrew Actor WTH

name

di spl ayNane : “Anrbul ance Crew’
out DepLi nks
AC TALt oOpti nmal Li nk

END

% positi on Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Position | N PositionEl enentd ass | SA
Resour ceAl | ocat or _Actor WTH
name
di spl ayNane : “Resource All ocator”
i nDepLi nks
Optinal t oOpti mal Li nk_RA

END

% agent Resource Allocation Mdule %

TELL Si npl ed ass ResourceAl | ocati onMbdul e_Agent | N Agent El enent Cl ass | SA
Resour ceAl | ocat or _Actor WTH

END

% agent Human Resource All ocator %

TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enent C ass | SA
Resour ceAl | ocat or _Actor WTH

END

% dependency link fromsoftgoal Tineliness [Arrival Location] inside
agent Anbul ance Crew to softgoal dependum Optinal [Mblnst] %
TELL Si npl ed ass AC TALt oOpti mal Li nk | N DependencyLi nkCl ass W TH
from

Anbul anceCr ew_Agent
to

AC Opti mal Mobl nst _RA
END

% dependency |ink fromsoftgoal dependum Optinal [Mblnst] to softgoal
Optinmal [Moblnst] inside position Resource Allocator %

master-thesis-v4.4.doc

TELL Sinpled ass OptinmaltoOpti nal Li nk_RA | N DependencyLi nkC ass W TH
AC Opt T :rglmlvbbl nst _RA

: tcF){esourceAI | ocat or _Position

END

% soft goal dependum Optinal [Mblnst] %

TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent & ass W TH

i nDepl i nks
AC TALt oOpti mal Li nk
out DepLi nks

Optinmal t oOpti mal Li nk_RA
END

The corresponding AC view of Figure 3.4-1 show below keeps only actors and

their associations.

% pl ain actor Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Pl ai nActor I N ActorEl enentd ass WTH
nane
di spl ayNane : “Anbul ance Crew
speci fi edByLi nk
ACASpeci fi esACPA
END

% agent Anbul ance Crew %
TELL Si npl ed ass Anmbul anceCrew Agent | N Agent El enent 0 ass W TH
name
di spl ayNane : “Anrbul ance Crew’
speci fiesLi nk
ACASpeci fi esACPA
END

% Specifies link fromposition Resource Allocator to plain actor
Resource All ocator %
TELL Si npl ed ass ACASpeci fi esACPA I N Speci fiesLi nkC ass WTH
from
Anbunal ceCr ew_Agent
to
Anbul anceCr ew Pl ai nAct or
END

% pl ain actor Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Pl ai nActor I N ActorEl enentd ass WTH
nane
di spl ayNane : “Resource Allocator”
speci fi edByLi nk
RAPSpeci fi esRAPA
END

% positi on Resource Allocator %
TELL Sinpl ed ass ResourceAl | ocator_Position I N PositionEl enentd ass WTH
name
di spl ayNane : “Resource All ocator”

master-thesis-v4.4.doc

speci fiesLi nk
RAPSpeci fi esRAPA
occupi edByLi nks
: RAMOccupi esRA
HRACccupi esRA
END

% Specifies link fromposition Resource Allocator to plain actor
Resource Allocator %
TELL Si npl ed ass RAPSpeci fi esRAPA | N Speci fiesLi nkC ass WTH
from
Resour ceAl | ocat or _Position
to
Resour ceAl | ocat or Pl ai nAct or
END

% occupi es |ink fromagent Resource Allocation Mddule to position
Resource Allocator %
TELL Si npl ed ass RAMOXcupi esRA | N Cccupi esLi nkCl ass W TH
from
Resour ceAl | ocat i onModul e_Agent
to
Resour ceAl | ocat or _Position
END

% agent Resource Allocation Mdule %
TELL Si npl ed ass ResourceAl | ocati onModul e_Agent | N Agent El enent d ass
W TH
occupi esLi nks
RAMOccupi esRA
END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enentd ass W TH
occupi esLi nks
HRACccupi esRA
END

The corresponding SR view of Figure 3.4-1 shown below keeps actors, their

external dependencies, and their internal structures.

% agent Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Agent | N Agent El enent C ass | SA
Anmbul anceCrew Actor WTH
name
di spl ayNane : “Ambul ance Crew’
children
. AC QualityService
AC Tinel i nessService
AC TinelinessArrival Location
AC_Accur acyAmbl nfo

END

% softgoal Tinmeliness [Arrival Location] inside agent Ambul ance Crew %

master-thesis-v4.4.doc

TELL Sinpl ed ass AC Ti nelinessArrival Location | N Soft Goal El enent C ass
W TH
par ent
. Anbul anceCr ew_Agent
out DepLi nks
AC TALt oOpti mal Li nk
i nks
AC TALt oTS AndContri buti onLi nk

| abel

Undeci dedEl enent Label

END

% positi on Resource Allocator %
TELL Si npl ed ass ResourceAl | ocator_Position | N PositionEl enentd ass | SA
Resour ceAl | ocat or _Actor WTH
name
di spl ayNane : “Resource Allocator”
children
RA Opt i nmal Mobl nst
RA Ti nel i nessArrival Location
RA AccuracyAnbl nfo
RA BeGener at edMobl nst

END

% agent Resource Allocation Mdule %
TELL Si npl ed ass ResourceAl | ocati onMbdul e_Agent | N Agent El enent Cl ass | SA
Resour ceAl | ocat or _Actor WTH
children
RA BeGener at edMobl nst _ByAl gorit hm
END

% agent Human Resource All ocator %
TELL Si npl ed ass HuammResour ceAl | ocat or _Agent | N Agent El enent Cl ass | SA
Resour ceAl | ocat or _Actor WTH
children
RA BeGener at edMobl nst _ByHunanDeci si on
END

% dependency link fromsoftgoal Tineliness [Arrival Location] inside
agent Anbul ance Crew to softgoal dependum Optinal [Mblnst] %
TELL Si npl ed ass AC TALt oOpti mal Li nk | N DependencyLi nkCl ass W TH
from

AC TinelinessArrival Local tion
to

AC Opti mal Mobl nst _RA
END

% dependency |ink fromsoftgoal dependum Optinal [Mblnst] to softgoal
Optinal [Moblnst] inside position Resource Allocator %
TELL Sinpled ass OptimaltoOpti nal Li nk_RA | N DependencyLi nkC ass W TH
from
AC Opti mal Mobl nst _RA
to
RA Opt i nmal Mobl nst

master-thesis-v4.4.doc

END

% soft goal dependum Optinal [Mblnst] %
TELL Sinpl ed ass AC Opti nal Mobl nst_RA | N Dependuntl enent C ass,
Sof t Goal El enent O ass WTH

i nDepl i nks
. AC TALt oOpti mal Li nk
out DepLi nks

Optinmal t oOpti mal Li nk_RA
| abel

Undeci dedEl enent Label

END

% softgoal Optinmal [Moblnst] inside position Resource Allocator %
TELL Sinpl ed ass RA Opti nal Mobl nst | N Sof t goal El enent d ass W TH
par ent
Resour ceAl | ocat or _Position
i nDepLi nks
Optinmal t oOpti mal Li nk_RA
| abel

Undeci dedEl enent Label

END
In the EVLR, a label attribute is associated with correspondi ng
intentional el enent tokens.
TELL Sinpl ed ass RA Optinal Mobl nst | N Sof t goal El enent d ass W TH
par ent

Resour ceAl | ocat or _Position
i nDepLi nks

Optinmal t oOpti mal Li nk_RA

| abel

Undeci dedEl enent Label

END

Besides what was formally proposed in this thesis, we uniquely named each
simple class in our sample. Naming convention is beyond the scope of this
research so we will not enforce the use of any specific style. The style chosen
proved to be sufficient in identifying elements from the LAS case study, but we

do not guarantee it will generalize to other applications.

master-thesis-v4.4.doc

4 Managing i* Models Using Views

As a sub-step in our view extension to effectively represent large-scale and
complex i* models, we separate meta-concepts in the Actor Class (AC) view
from the Strategic Dependency (SD) view. However, for a sufficiently large-
scale application, a basic (AC, SD, or SR) view itself can become complex, and
difficult to comprehend. So we need to break down each basic view until the

information contained in a view is readily comprehensible.

While scaling down a complex baseline model into multiple views, the number
of views can grow. The approach itself introduces a new line of complexity into
representing and traversing the model. As a result, we introduce a view
extension as a separate project management framework alongside the core i*
framework. The purpose of this view extension is to offer a reference structure
so that users can maintain a relationship among various views and locate

information effectively from other views.

Section 4.1 explains the features of the view extension; Section 4.2 presents
the representational constructs of the view extension; Section 4.3 defines related
meta-concepts that are used in the selection rules; and Section 4.4 briefly

summarizes contributions of our view extension.

4.1 View Extension Features

We use a View Map (VM) to visualize relationships among various views in
the reference structure. Unique names are given to models, views, links and
elements to provide a referencing structure. This strategy is important to support
cross diagram references and, thus, minimize manual efforts (given the fact that

these references have to be maintained manually at present).

In the reformulated i* framework (Section 3), four types of views—AC, SD,
SR and EVLR—are defined. To address scalability, our extension further

63/231 9/1/2004

master-thesis-v4.4.doc

distinguishes among various sub view types. The views are defined using Telos:
Use meta-classes to encode view types (e.g., BasicViewClass), and use simple
(domain) classes to encode an actual view (e.g., theBasicACView) obtained from
an existing baseline model. In this regard, adding or deleting or updating a view
type can follow a systematic and formal approach. Thus, it is easier for users to
maintain and evolve over time this view extension and to make use of tool

support.

Elements in a view are not selected arbitrarily; rather, a selection rule is
bound to each specified view type. Applying a selection rule to the baseline
model or some intermediate view, we find that the resulting elements constitute a
corresponding sub-view of the input element. Selection rules are defined in
Telos-compatible First Order Logic (FOL) and can be implemented using Telos
gueries (instances of QueryClass). See Appendix for more details regarding the

translation from FOL formulato O-Telos classes.

The reformulated i* framework discussed in chapter 3 distinguishes the
baseline model from views. Our extension distinguishes between basic and
partial views. For any real-world application, one or more i* models can be
constructed according to different social settings, different view-points, or
different time periods. We define each of these models as the baseline model for
the specific settings and viewpoints. Corresponding to the four view types, four
basic views are derived from each baseline model, one for each view type. Basic
views are derived according to the type of meta-level concepts each specific
view type support (see Section 3.3 for more details). Partial views,
corresponding to one or more sub- view type, are derived from a basic view or
another partial view according to the selection rules associated with the sub-

view type.

4.2 View Map

In a view map, we use a heavy-border box to denote a basic or an initial view

(the view all other views are based on in a view map), and we use a regular-

64/231 9/1/2004

master-thesis-v4.4.doc

border box to denote a derived view (views other than the initial one in a view
map). The decomposition from one view into multiple child views is denoted by
branches; this type of reduction is total. In other words, the union of modeled
elements in child views is equivalent to the set of modeled elements in the parent
view. The projection over one view to a sub-view is denoted by dashed arrow-
lines. The view decomposition and projection links connect sub-views of type
AC, SD, and SR. In the EVLR view, we use a solid arrow-line to denote the

direction of label propagation. Figure 4.2-1 shows the graphical notations of the

concepts.
I View Description I | View Description . - = —_—
basic or initial view derived view view decomposition view projection label propagation
lirk: link direction

Figure 4.2-1 Graphical notationsin View Map

Figure 4.2-2 illustrates the generic view map that fits for all i* models. For
any i* model constructed for a given organizational configurations, The Baseline
Model can be decomposed into four basic views. The Basic AC View, The

Basic SD view, The Basic SR view, and The Basic EVLR view.

I Tha Baselina Modse| I

| mheBascacview | [TheBascsoview | [TheBascsrview | | TheBascEVLRView |

Figure 4.2-2 Generic View Map showing relationship of the baseline model and the

basic views

4.3 Representational Constructs

Each type of view is defined by a meta-level view class, and concrete views in

an application are instances of the meta-level view classes. Selection rules are

65/231 9/1/2004

master-thesis-v4.4.doc

encoded in query classes and are attached as the selectionRule attribute to each

specific type of view class.

META-META CLASSES

. selectionRule
ViewMetaClass = QueryClass

META CLASSES
ViewCl gnolect o objsctC
BaselineModelClass > VIEWLlass = ObjectClass
basic\iews
theBaselineModel
childViews
BasicViewClass
PartialViewClass [AC|SD|SR|EVLR]ViewClass

\ X arent"-.-'lewa

Basic[AC|SD|SR|EVLR]ViewClass Partial[AC|SD|SR|EVLR]ViewClass

LEGEND

[instantiation —== atfribute class == generalization

Figure 4.3-1 A partial meta-model of the view extension showing meta-level

relationship among the baseline model class and other view classes

Figure 4.3-1 shows the part of the meta-model that defines the relationship
among a baseline model and its child views. Formally, we consider a baseline
model as a specific view (the whole); an instance of BaselineModelClass takes
an instance of a BasicViewClass as attribute basicViews, while the latter takes
the former as its attribute theBaselineModel. Besides, the above figure also
shows two lines of specializing view classes. One of them is in accordance with
the four view types, and the other is in accordance with the distinction between
basic and partial. After combination, we obtained eight sub- view classes,
including BasicACViewClass, BasicSDViewClass, BasicSRViewClass,
BasicEVLRViewClass, PartialACViewClass, PartialSDViewClass,
Partial SRViewClass, and PartialEVLRViewClass. We use short-hand style

66/231 9/1/2004

master-thesis-v4.4.doc

Basic[AC|SD|SR|EVLR]ViewClass in Figure 4.3-1 to reference the four basic
view classes.

META-META CLASSES

. selectionRule
ViewMetaClass ——— = QueryClass

META CLASSES

ngObJects

BaselineModelClass ViewClass

heBaselineModel
chlld\."l ewWs

Ba c\.r'lewf‘..lass F’amaIV|ewClas

— = ObjectClass

hasicVie

parentViews LinkClass

BasmACVnewClass

cv 1
- / aSiﬁgle etworki— oal_7
/ View Link 8
anAgentsOnlyView
SIMPLE CLASSES
; i pyv_1
theBasicSDView LEGEND

- J instantiation —== atiribute class _== generalization

Figure 4.3-2 A partial meta-model of the view extension showing the hierar chy of

inheritance

Figure 4.3-2 shows the relationships among the meta-level classes and
concrete views residing in an i* model. Each i* model corresponds to a singleton
instance of BaselineModelClass—theBaselineModel. Instances of any
BasicXXViewClass are also singletons, and here “XX” stands for one of
AC|SDISRIEVLR. For example, theBasicACView is the singleton instance of
meta-class BasicCACViewClass. Each view is constituted by a sub-set of domain
classes existed in the baseline model. For example, aSingleNetworkView

(indirect instance of PartialACViewClass) contains Goal 7 (instance of

67/231 9/1/2004

master-thesis-v4.4.doc

GoalElementClass) and Link 8 (instance of LinkClass) as contents of its
attribute grlObjects.

META-META CLASSES
. selectionRule
ViewMetaClass = QueryClass

PlainActorsOnlyViewClass / \ \\ plainActorsOnlyRule
r

AgentsOnlyViewClass agentsOnlyRule

r

AbstractActorsOnlyViewClass abstractActorsOnlyRule

SinglePlainActorViewClass r\ = singlePlainAcotrRule

SingleNetworkViewClass = singleNetworkRule
DirectReplaceableViewClass Arﬁ- directReplaceableRule

META CLASSES

LEGEND

¥ ¥ ¥ ¥ ¥
S S

PartialACViewClass

l instantiation —= attribute class _s5 generalization

Figure 4.3-3 A partial meta-model of the view extension showing meta-level

relationships among different types of AC view classes

Figure 4.3-3 shows a partial meta-model of the view extension concerning AC
sub- view types. Query classes assigned to different types of AC views are
manifested. For example, plainActorsOnlyRule (instance of QueryClass) is
assigned to the PlainActorsOnlyViewClass as its attribute selectionRule. Each
partial view (e.g., aPlainActorsView) of a given type (e.g., Plain-Actors-Only
view type) corresponds to the resulting set of elements following the execution

of the query (e.g., plainActorsOnlyRule) attached to the view type.

Figure 4.3-4 and Figure 4.3-5 shows the similar meta-model of the view

extension concerning SD and SR views, respectively.

68/231 9/1/2004

master-thesis-v4.4.doc

META-META CLASSES

. selectionRule
ViewMetaClass : = QueryClass

PlainActorsSDViewClass
SpecifiedActorsSDViewClass

PairwiseActorsViewClass

= pairwiseActorsRule
r

SingleActorFocusViewSDClas singleActorFocusSDRule

BasicSDViewClass
META CLASSES

PartialSDViewClass

LEGEND

f instantiation —= attribute class _s5 generalization

Figure 4.3-4 A partial meta-model of the view extension showing meta-level

relationships among different types of SD view classes

META-META CLASSES
7 selectionRule
ViewMetaClass = QueryClass

S ngIeActorFocusSRViewClass;;.- singleActorFocusSRRule

InernalViewClass =singleActorinternalRule
ExternalViewClass] = singleActorExternalRule

FuntionalViewClass —— = internalFunctionalRule

MonFunctionalViewClass — G internalMonfunctionalRule
SingleSoftgoalViewClass %-nonfunctionalsmgleSc-ftgoaIRul

SingleAffectedActorViewClass '~ SingleAffectedActorRule

SingleAffectedDependumViewClass———= SingleAffected
/ DependumRule
META CLASSES

ARV R/
PartialSRViewClass

el
e

LEGEND

f instantiation —= aftribute class == generalization

Figure 4.3-5 A partial meta-model of the view extension showing meta-level

relationships among different types of SR and EVLR view classes

69/231 9/1/2004

master-thesis-v4.4.doc

4.4 Meta-concepts Essential to Selection Rules

In previous sections, we introduced the view types and their corresponding
representational constructs in Telos. In this section, we define some critical
concepts that are extensively referenced in the selection rules. Most of the
concepts come in pairs, as follows: plain vs. specified actor (Section 4.3.1),
parent vs. children (Section 4.3.3), incoming vs. outgoing dependency (Section
4.3.4), and ancestor vs. descendent (Section 4.3.6); the exceptions are actor

association (4.3.2) and external link (Section 4.3.5).

Concepts discussed in this section are derived from existing meta-concepts in
our reformulated i* framework, and some of them have been defined informally
in Section 3.2, along with the description of the graphical notations. We
emphasize in this section the formal constructs related to these concepts: without
exception, they are described in a Telos compatible First Order Logic (FOL)

form.

4.4.1 Plain and specified actor

Our extension implements the concept plain actor explicitly using meta-class
PlainActorElementClass, and the concept specified actor using meta-class
SpecifiedActorElementClass. PlainActorElementClass is equivalent to only
ActorElementClass, while SpecifiedActorElementClass is equivalent to the
generation of RoleElementClass, PositionElementClass, AgentElementClass, and
AgentlnstanceElementClass. Among specified actors, we distinguish between
abstract actors (instances of AbstractActorElementClass) and physical actors
(instances of PhysicalActorElementClass) for the former represents the
classification of similar instances while the latter represents a single instance.
AbstractActorElementClass is equivalent to RoleElementClass and
PositionElementClass, and AgentElementClass, while
PhysicalActorElementClass to AgentlnstanceElementClass. Figure 4.4-1 shows

the partial meta-model that relates to our extended actor types.

70/231 9/1/2004

master-thesis-v4.4.doc

ActorElementClass ss———— SpecifiedActorElementClass

specifiesli
T i / ‘y \ LEGEND
to

PlainActorElementClass <= SpecifiesLinkClass PhysicalActorElementClass | > generalization

specifiedBylink 7 —= attribute class
AbstractActorElementClass

PositionElementClass /

RoleElementClass T AgentinstanceElementClass
AgentElementClass

Figure 4.4-1 A partial meta-model showing relationships among extended actor

types in our extension

4.4.2 Actor association

We define actor associations informally as the general form of eight
relationships among actors, as follows: “plays’, “occupies’, “covers’, “is-A”,
“INS”, “is-Part-of”, “specifies’, and “complete composites’. Now we formally
present these concepts as subclasses of ActorAssociationLinkClass. Figure 4.4-2

shows the part of meta-model related with association links.

AssociationLinkClass
OccupiesLinkClass ISALinkClass

FartsLinkClass LEGEND
INSLinkClass —>> generalization

PlaysLinkClass

CoversLinkClass

CompleteComposition SpecifiesLinkClass
LinkClass

Figure 4.4-2 Partial meta-model showing association link classes

4.4.3 Parent versus children

The i* semantic has natural support for one level of abstraction between a
strategic actor and its internal rationales. These internal rationales are modeled
using intentional elements (goals, tasks, softgoals, resources, and beliefs) that

are connected by intentional links (means-ends, decomposition, contribution, and

71/231 9/1/2004

master-thesis-v4.4.doc

correlation). Our extension defines the relationship discussed above as parent-
children®. In other words, a strategic actor can have intentional elements as its
children, while, in turn, these intentional elements have that actor as their parent.

The partial meta-model related to these concepts is demonstrated in Figure 4.4-3.

ElementClass

LEGEND
parant —== genearalization
IntentionalElementClass ActorElementClass _
= hildren —= attribute class

Figure 4.4-3 Partial meta-model showing the parten-children relationship

For example, in the underlying representation of a partial model shown in
Figure 4.4-4, we see that simple class AmbulanceCrew_Agent (denoting agent
Ambulance Crew) has simple class AC_TimelinessArrivalL ocation (denoting
softgoal Timeliness [Arrival Location]) assigned to its attribute children. The

latter, in turn, has the former assigned to its attribute parent.

% agent Anbul ance Crew %
TELL Si npl ed ass Ambul anceCrew Agent | N Agent El enent 0 ass W TH
children
AC QualityService
AC TinelinessService
AC TinelinessArrival Location
AC _Accur acyAmbl nf o

END

% softgoal Tinmeliness [Arrival Location] inside agent Ambul ance Crew %
TELL Sinpl ed ass AC Ti nelinessArrival Location | N Soft Goal El enent C ass
W TH
par ent
Anmbul anceCr ew_Agent

END

Figure 4.4-4 Partial Telos representation showing the parent-child relationship

® This choice of terms follows from OME version 3 tool and does not imply there will be multiple layers of

parent-children relationship in the present reformulated i* framework.

72/231 9/1/2004

master-thesis-v4.4.doc

Formally, we identify the parent and children of a given element using Telos
gueries. The parent of a given intentional element can be obtained by executing
the find_parent query. Children of a given actor element are also called the
internal elements. We use query find_internal _elements to retrieve the set of
internal elements. The symbol “8” denotes for all those in the FOL formula
specified in this thesis (see the appendix for more details regarding the rules in

translating queries expressed in our FOL format into O-Telos query classes).

Queryl
find_parent(e:IntentionalElementClass)::=

8a ActorElementClassié.parent=a
Query2
find_internal_elements(a: ActorElementClass)::=

8e:Intentional ElementClass((e [a.children)

4.4.4 Incoming versus outgoing dependency

For a specific actor, or an intentional element internal to the actor, or a
dependum (external to all actors), we can distinguish the incoming and outgoing
dependencies according to the direction of the dependency links. An incoming
dependency comes from a depender to a dependum or from a dependum to a
dependee. An outgoing dependency goes from a depender toward a dependum or
from a dependum to a dependee. We formalize the distinctions explicitly using
IncomingDependencyLinkClass and OutgoingDependencyLinkClass. |nstances
of these two meta-classes are referenced by intentional elements (instances of
IntentionalElementClass) as attributes inDepLinks and outDepLinks, respectively.

Figure 4.4-5 shows the part of the meta-model that deals with these relationships.

73/231 9/1/2004

master-thesis-v4.4.doc

from o
it “A’ttorEiementClass
MNull / Empty
tcr 'aﬁ o0 o
@ - & ;' from =
: y Ih Diapandande v
: ; comingDepen e“w
DepLink
DependdmElement "t = L A s S InternalElement
Class —Uqwgﬁﬁ—??utgoingDependency\émm 1\ Class
t\ LinkClass
from
LEGEND
= generalization —== attribute class -- 2= virtual attribute class

Figure 4.4-5 Partial meta-model showing incoming and outgoing dependency links

Examining Figure 4.4-5, we observe that the virtual from/to attribute (the one
to ActorElementClass) of the dependency links applies only to SD views while
their origin (the one to InternalElementClass) applies only to SR views. So do
the inDepLinks and outDepLinks attribute of ActorElementClass and

Intentional ElementClass.

Formally, we identify the incoming and outgoing dependencies of a given
actor element using Telos queries. The incoming dependencies can be obtained
by executing the find_incoming_dependencies to_actor query. The outgoing
dependencies are obtained by executing the
find_outgoing_dependencies _from_actor query.

Query3
find_incoming_dependencies to_actor(a:ActorElementClass)::=

8l:DependencyLinkClass:
|.to=a [I (Ce:InternalElementClass: e.parent=a [11.to=€)

Query4
find_outgoing_dependencies from_actor(a:ActorElementClass)::=

8l:DependencyLinkClass:

I.from=a O (Ce:InternalElementClass: e.parent=a [1l.from=e)

As a by-product of the above definition, we can formally define dependum

element and internal element by attaching deductive rule to SubElementClass. In

74/231 9/1/2004

master-thesis-v4.4.doc

the formula below, name of meta classes (e.g., DependumElementClass) are
shown as the left-hand operand of “::=" (equivalent to), and its definition (e.qg.,

“e:SubElementClass with ‘dependum_rule’”) as the right-hand operand. The
previously defined meta-class on which this new one will be based (e.g.,
SubElementClass) appears after the semicolon and before the word “with” in the
definition. The corresponding deductive rule (e.g., “dependum_rule”) follows the
word “with” and is placed in “quotation marks’. This pattern applies to all the

definition of meta-classes using a deduction rule.

Defl

DependumElementClass::= e: SubElementClass with “dependum_rule’
dependum _rule::=

- (C&: ActorElementClass Ce.parent = @)
Def2

InternalElementClass::= e: Intentional ElementClass with “internal_rule’

internal_rule::=

Ca ActorElementClassié.parent = a

We also define queries to locate the dependers and dependees for a given
dependum (instance of DependumElementClass). There are two levels of
dependers: the actor level (shown in SD view) and the element level (shown in
SR view). We construct different queries for them in our extension. In FOL, they
are as follows:

Query5
find_depender_actor(de:DependumElementClass)::=
SaActorElementClass: [1:DependencyLinkClass:
(I.from=a [0 (Ce:InternalElementClass: e.parent=a [11.from=e)) [Il.to=de
Query6
find_depender_element(de: DependumElementClass)::=

8elInternalElementClass: [1:DependencyLinkClass: |.from=e [J|.to=de

75/231 9/1/2004

master-thesis-v4.4.doc

Query7
find_dependee_actor(de:DependumElementClass)::=
SaActorElementClass: [1:DependencyLinkClass:
(I.to=a O (CeInternalElementClass: e.parent=a [11.to=€)) [11.from=de
Query8
find_dependee_element(de:DependumElementClass)::=

8elInternalElementClass: [1:DependencyLinkClass: |.from=de [11.to=e

445 External links

To distinguish dependency from other non-actor-association links, we group
the four types of links—means-ends, decomposition, contribution, and
correlation—into intentional links (see Section 3.3.3 for detail). Intentional links
normally connect elements inside an actor boundary; however, they sometimes
extend their target outside the actor boundary, and we call these intentional links

external links.

We define external links using a query find_all _external _links.

Def3
ExternalLinkClass::=I:IntentionalLinkClass with “external_rule’
external_rule::= (I infind_all_external_links())

The query is defined recursively. We first define a sub-query
find_direct_external links. Informally, a direct external link is one that
originates from an element within an actor’s boundary and ends at a dependency

link outside the actor’s boundary. Formally, the query is defined as follows:

Query9
find_direct_external_links()::=
8l:IntentionalLinkClass:
CaActorElementClass, dl:DependencyL inkClass, e:lntentional ElementClass:

[.from=e [Oe.parent=aJl.to=dl

Then we define an external link recursively—informally, it is:

76/231 9/1/2004

master-thesis-v4.4.doc

1. A direct external link; or
2. Any link that ends at an external link

Formally, query find_all_external_links is expressed as:

Query10

find_all_external _links()::=
8l:IntentionalLinkClass: Ifind_direct_external_links() O
(O2:IntentionalLinkClass: I.to=12[J(12 (I find_all_external_links()))

4.4.6 Ancestor versus descendent

LinkClass =
m
fram —
A >
IntentionalElementClass \ InternalLinkClass E
tn
w
m
(4]
22]
=
aninternallLink &
m
0
5
aDescendentElement %
m
LEGEND 2]
—2> generalization —=attribute class — attribute ’ instantiation

Figure 4.4-6 Partial meta- and domain-model showing the ancestor-descendent

relationship

As explained in the previous sections, an actor’s internal rationales that are
modeled using intentional elements are connected by intentional links. We derive
the ancestor-descendent relationship using i* meta-concepts shown in Figure
4.4-6. Links in i* are all directed, and its source and destination are denoted by
two attributes, from and to, respectively. As aresult, we define the element at the
source end as a direct descendent of the one at the destination end, and, in turn,

the latter is a direct ancestor of the former.

% softgoal Tinmeliness [Arrival Location] inside agent Ambul ance Crew %
TELL Sinpl ed ass AC TinelinessArrival Location | N Soft Goal El enent C ass
W TH

77/231 9/1/2004

master-thesis-v4.4.doc

par ent
Anmbul anceCr ew_Agent
i nks
AC TALt oTS AndContri buti onLi nk

END

% softgoal Tineliness [Service] inside agent Anbul ance Crew %
TELL Sinpl ed ass AC TinelinessService I N SoftGoal El ementCl ass WTH
par ent
Anmbul anceCr ew_Agent
i nks
AC TALt oTS AndContri buti onLi nk

END

% and_contribution link fromsoftgoal Tineliness [Arrival Location] to
Ti mel i ness [Service] inside agent Anbul ance Crew %
TELL Si npl ed ass AC TALt oTS AndContri butionLink IN
AndCont ri buti onLi nkCl ass W TH
from
AC TinelinessArrival Location
to
AC TinelinessService
END

Figure 4.4-7 Telos representation of partial model showing the descendent-ancestor

relationship

Figure 4.4-7 shows how a direct descendent-ancestor relationship is identified
from the underlying Telos representation of an i* model. In this case, softgoal
Timeliness [Arrival Location] is a direct descendent of softgoal Timeliness
[Service]. For a more generalized definition, we say an intentional element e is a
descendent (or ancestor) of ie if and only if the former fulfills the following

conditions:

1. ieand e share the same parent;
2.
a. eisadirect descendent (or ancestor) of ie; or
b. thereexists an intentional element el such that el is a descendent (or

ancestor) of e and ie isadirect descendent (or ancestor) of el.
Formally, we define those using Telos queries as follows:

Queryll

78/231 9/1/2004

master-thesis-v4.4.doc

find_direct_descendants(ie: IntentionalElementClass) ::=

§ e IntentionalElementClass[T1:DependencyL inkClass[.to=ie J|.from=e

Queryl1?2

find_all_descendants(ie: IntentionalElementClass) ::=
§ e IntentionalElementClassl[elJfind_direct_descedent(ie) U
(d:IntentionalElementClasse.parent=d.parent [1dJfind_all_descendants(ie)
Oelfind_all_descendants(d))

Query13
find_direct_ancestors(ie: IntentionalElementClass) ::=

§ e IntentionalElementClass[T1:DependencyL inkClassl.from=ie [11.to=e

Queryl4

find_all_ancestorg(ie: IntentionalElementClass) ::=
§ e IntentionalElementClasslelJfind_direct_ ancestors(ie) U
(d:Intentional ElementClasse.parent=d.parent [1dfind_all _ancestors(ie)
Oelfind_all_ancestors(d))

4.5 Summary

In this chapter, we presented an extension for tackling the scalability issues in
representing an i* model. Scalability issues are resolved through the use of views and
their attached selection rules. A type of built-in diagram—View Map—is offered in the
extension to visualize a reference structure of multiple views derived from the same i*
model. The selection rules are built upon a set of meta-concepts that originated from the

reformulated i* framework and that was formalized in the view extension.

The extension was embedded in Telos, and the extension was specified independently
from the Telos constructs of the core i* framework. Partial meta-models were used to
illustrate view classes in our extension, as well as some meta-concepts. We present the
formal definitions in a Telos compatible First Order Logic (FOL) form so that these rules

can also be implemented using other conceptual modeling languages.

79/231 9/1/2004

master-thesis-v4.4.doc

5 Actor Class views

The Actor Class (AC) view allows use of the i* model focusing on actor associations
and actor analysis—studying the social and intentional structure among various actors
and their specified forms within an organization. However, a Basic AC view (the one
derived from a baseline model) can till appear complex. Therefore, it should be scaled

down to make each partial view, when visualized, more comprehensible.

We define six partial AC view classes in our view extension; their meta-level
constructs have been discussed in Chapter 4. In this chapter we present domain examples

(asinstances) of each partial view class and define the selection rule attached to it.

Each view type is presented from these four perspectives, and each perspective forms
a subsection: Informal Description, Example, Justifications, and Selection Rule. An
informal description consists of giving the reader a brief idea of what kinds of elements
are qualified for a specific partial view. A domain example from the LAS case study is
used to further clarify the idea. We then provide explanation of why that view type is
desirable and outline some context of use for it. Last, we provide formal definition of the
selection rule attached to each partial view class, which is embedded in Telos and
presented using Telos compatible First Order Logic (FOL). The transformation from this
FOL form to O-Telos, a Telos compatible conceptual modeling language, is provided in
the Appendix.

Section 5.1 gives an overview of the relationship between different types of AC views
using a generalized View Map; Section 5.2 presents the Basic AC view and six partial
AC views from the 4 aspects discussed in the previous paragraph; Section 5.3

summarizes the results of this chapter.

5.1 Overview

In addition to the Basic AC view, we define six types of partial AC views:
Single-Network view, Single-Plain-Actor view, Abstract-Actors-Only view,

Plain-Actors-Only view, Agents-Only view, and Direct-Replaceable view. Figure

80/231 9/1/2004

master-thesis-v4.4.doc

5.1-1 shows the relationships between different types of views. Each view has a
selection rule attached to it, and some of them require input arguments (e.g.,
Actor <n>). The application of a rule (e.g., singlePlainActorRule) over Any AC
view (the original view) will result in the corresponding partial AC view (e.g.,

Single-Plain-Actor <n> View).

Single-Plain-Actor <1= Single-Plain-Actor <2= Single-Plain-Actor <n=>
View View oot View
singlePlairfActorRule(*Any The Carresponding
AC View”, Actor<2=} Agents-Only View
agentsOrlyRule("Any AC View") .
| The Basic AC View |---ooooooo : _ o The Corresponding
direclRep'aC.E-abl Any AC View I instancesFragFlL rln\l’"ﬁn}J AC View ‘I! Abstract-ACtDrS-Dniy

DURCEREpIRCRAE. L 8Ruls { Any AL plainActorsOniRule("Any AC View") Vigh

View of Actor <i> | View", Actor<J>}_ . & View The Corresponding
| singleNetworkRule("Any AC View™) Plain-Actors-Only View
| Single-Network <1> View || Single-Network <2> View |-... [Single-Network <m> View |
LEGEND A basic view

. A
Vie Wiew - : : or the
> projestion _Edecomposi‘jon ViewName dz:'::wad ViewName ariginal vi

Figure 5.1-1 A generic view map showing a parent AC view and its possible

children

Looking at the above diagram, for any AC view, we see that it can be decomposed in
three ways: by plain actors, by connected networks, or by meta-concept types. A view-
decomposition implies the parent view (e.g., Any AC View) is equivalent to the union of
the child views (e.g., Single-Network <1> View) resulting from the decomposition. For
example, suppose there are n (where n is a positive integer) plain actorsin an AC view,
then elements in it are partitioned into n Single-Plain-Actor views, each containing
exactly one plain actor. Moreover, every element contained in the parent view is
contained by at least one of the child views. A parent view can also be projected, and so
result in a child view (e.g., Direct Relationship View of Actor <i>) that reflects only

partial information fromit.

81/231 9/1/2004

master-thesis-v4.4.doc

5.2 Details of the AC Views

5.2.1 Basic Actor Class View

Informal Description

The Basic Actor Class View enumerates all actors (plain and specified) and

their association links. The association links include the “plays,” “isA,” “is-Part-

of,” “covers,” “occupies,” and “INS.” We also need to include the “specifies’

and “And” (complete composition) links from our view extension.

The parent view of the Basic Actor Class View is the Baseline Model, so we

normally use the latter as the original view over which the selection rule is to be

applied.

Example

Since our purpose in this section is to demonstrate the use of various AC view types,
we choose four plain actors out of ten from basic AC view of the London Ambulance
Service (LAS) case study (You 2003). This partial basic AC view includes just enough
elements to show our approach. Figure 5.2-1 visualizes the part of interest. Plain actors
that are selected are as follows: Ambulance Crew, LAS Management, Resource Allocator,
and Incident Reviewer. This AC view will be used as the original view that the sub-views

are derived from throughout this chapter.

82/231 9/1/2004

master-thesis-v4.4.doc

LAS Resource Incidert
ik ‘Aiiscator
| |
| |

SAe:iiies SAacmes

Mairtainer
[Arnkinfa]

I
I
|
!
|
|
|
|
I

i
Ambulance
Crewe nagement)

Incicent
Reviewing
hacule

Resource
Allgcator
hdaciule:

Incicerit
Reviewver

Figure 5.2-1 A partial Basic Actor Class View from the LAS-CAD case study (our

original view)

Justifications

As argued previously, a distinguished Actor Class (AC) view makes actor
identification and actor analysis easier. Yu (Yu 1994) and most of the early
literature on the subject did not emphasize on questions such as “how does a
plain actor map to a specified one?’ and “what are the relationships between the
specified ones (which we call actor associations)?’ The issue appeared adequate
with the examples shown in early literature—when there was no such need to
distinguish among different forms of actors. Yet social configuration for a
medium-size organization (e.g., 500 employees) can become too complex to be
expressed in the original SD models. Thus, for ease of communication, it is

desirable to have an AC view separate from a SD view.

Separation of the actor associations from dependencies appears natural since

these entities focus on different type of analysis: the former on a vertical

83/231 9/1/2004

master-thesis-v4.4.doc

hierarchy among a plain actor and its specified forms; the latter on a horizontal
dependency network among (normally) actors originated from different plain
actors. The associations help perform actor analysis, while the dependencies help
perform process analysis. The purpose of actor analysis is to identify actors from
the application domain; the purpose of process analysis is to identify process

elements (such as goal or task).

Therefore, separation of the AC view is recommended for all application
domains that have more than 20 actors (based on our previous experience), or

any application domain that has complex social associations among stakeholders.

Selection Rule

Formally, we obtained the corresponding Basic AC View out of a Baseline

Model by applying the following query theBasicActor ClassView over the latter:
Query15

theBasicActor ClassView(m:BaselineModelClass)::=
80:0bjectClass: oldm [

o[{a]ain ActorElementClass} O {I | | in AssociationLinkClass}

In the formulae above, operator “in” denotes “instantiation”. For example,
expression “a in ActorElementClass” means “object a is an instance of class

ActorElementClass.”

In the definition of selection rules for partial views, we define for simplicity
only the element objects—instances of meta-classes suffixed by “-
ElementClass’—in the queries. Whenever link objects—instances of meta-
classes suffixed by “-LinkClass’—are not defined explicitly, it implies that a
link object, say I, should be selected if and only if it satisfies the following

conditions:

1. | existsinthe parent view (e.g., the baseline model m); and

84/231 9/1/2004

master-thesis-v4.4.doc

2. Elements assigned as both the “from” and “to” attributes of | are selected into

the child view (e.g., the basic AC view class derived from m).

Formally, we define a generic query as one to find all link objects for a given set of

element objects as follows:
Queryl6

%pv: parent view; cv: child view
find_all_links(pv:ViewClass, cv: ViewClass)::=
8 I: LinkClass: (I0pv) kL, e2:ElementClass: el,e2(]cv [l.from=el [1.to=e2)
This rule applies to all definitions of selection rules throughout this thesis, so

we will not repeat it later. But in this section, since link type “l in

AssociationLinkClass” has been specified in the rule, this rule does not apply.
5.2.2 Single-Network view

Informal Description

A Single-Network view presents a group of specified actors that are connected
with association links. Since plain actors are not included in this view, the

“specifies’ association which ends at a plain actor shall not appear, either.

Given a parent AC view and a specified actor within that view, objects that

satisfy one of the following conditions should be selected into this view:

1. The specified actor, say a;
2. A specified actor that is connected by an association link with a;

3. A specified actor that connects to any previously selected actorsin the view.

Example

Figure 5.2-2shows three Single-Network views that are derived from the
original AC view. With the plain actors removed, elements in the original view

formed 3 networks. Networks 1 and 2 have only one agent each: Ambulance

85/231 9/1/2004

master-thesis-v4.4.doc

Crew (Figure 5.2-2 (a)) and LAS Management (Figure 5.2-2 (b)), respectively.
Network 3 combined the specified actor associated with plain actors Resource
Allocator and Incident Reviewer. In most cases, each network corresponds to
the set of specified actors for a single plain actor. In Figure 5.2-2 (c), which
appears a special case, the two sets of specified actors are joined by agent CAD
Software System, which appears as the aggregation of the agent Resource
Allocation Module (specified Resource Allocator) and the agent Incident

Reviewing Module (specified Incident Reviewer).

hgirtaine:
[Ambinta]

Remowver
[Duplicated
Incinfa]

Azsigner
[Reviewed
Incinfa]

—

Resource
Allocator
Mochle

Resolrce
Allocator

Incidernt
Reviewer

g P T T a——] = | 1
I

|

e @ :@ \

|

—I ___________ !

(&) Metwork - iy Metwork2- . bm===s
AmbulanceCrew LASManagement (c) Network3-Resourceallocatar&lncidentReviewer

Figure 5.2-2 Single-Network views derived from the original view

Justifications

In most organizations, human resource staff want to identify the
responsibilities related with a given position (job profile), and when somebody is
hired to take the position, they then keep track of this relationship. This
information can be modeled in i* as follows: the responsibilities as roles, the
position as a position, and employees as agent instances. When we try to use an
i* model in analyzing the situation, the question to answer becomes “What actors

share similar responsibilities?” The next possible set of questions might be “How

86/231 9/1/2004

master-thesis-v4.4.doc

much commonality do they share?’ and “How can they work with each other in
an organization?’ To answer these questions efficiently, we need to single out

only the specified actors that have association links among them.

Grouping specified actors in connected networks appears natural when
considering questions listed in the foregoing. The purpose of an AC view is to
present actors and their associations; in an organization, this kind of work is
normally done in a plain-actor-by-actor manner. Users of the i* model may
explore all possible variations of one plain actor, study the possible roles it may
cover, the positions that are designed to fulfill it, and the actual class of
individual who are considered as this plain actor. One may even assign
employees in an organization to the plain actors. Thus, it makes sense to group

specified forms of a plain actor in one view.

The Single-Network view can be used to scale down the complexity of the
original view, yet not lose information in addressing questions related to a single

plain actor.

Selection Rule

Formally, we obtain the corresponding Single-Network view out of any given

AC view by applying the following query singleNetwor kRule.

singleNetworkRule (v:ACViewClass, a:ActorElementClass)::=
80:0bjectClass: ol] v [o[){ a, find_all_associated_actors(a) }

Queryl7

find_direct_associated actors(a: SpecifiedActorElementClass)::=
8al:SpecifiedActorElementClass T1: AssociationLinkClass:
[.from=alll.to=al l.from=alll.to=a

Query18

find_all_associated actors(a:SpecifiedActorElementClass)::=
8al:SpecifiedActorElementClassCalllfind_direct_associated actors(a) [

87/231 9/1/2004

master-thesis-v4.4.doc

(Ca2: SpecifiedActorElementClassCalldfind_direct_associated actors(a2) O
a2(Jfind_all_associated actors(a))

5.2.3 Single-Plain-Actor view

Informal description

A Single-Plain-Actor view presents the family of specified actors who can

inherit all external relationships from a given plain actor.

Given a parent AC view and a plain actor within that view, objects satisfying

one of the following conditions should be selected into this view:

The given plain actor, say a;

2. The specified actor that connected with a via a Specifies link, which we call
the direct specified actor, say dsa, of a;

3. Any specified actorsthat have a non-is-Part-of link to dsa; or any specified
actor that has an is-Part-of link from dsa;

4. Any specified actorsthat have a direct non-is-Part-of link to or an is-Part-of

link from any previously selected actorsin this view.

Example

Resource

Allocator
Incident
P Reviewer
|
|
I

Allocatar
Module

Incident
Reviewing
Module

Incident
Fevigwer

(@)AmbulanceCrew& LAS (b) Resour ce Allocator (¢) Incident Reviewer

CFE——ttE. SEwest@E 002020202020 SEeEeEEER

88/231 9/1/2004

master-thesis-v4.4.doc

Figure 5.2-3 Single-Plain-Actor views derived from the original view

Figure 5.2-3 shows all Single-Plain-Actor views that can be derived from the
original AC view. There are four plain actors in the original view, and thus we
have four Single-Plain-Actor views. The views for plain actor Ambulance Crew
and LAS Management appear extremely simple, so we show them in one diagram
(which contains two views). Note that agent CAD Software System appears in
both the partial view for plain actor Resource Allocator and Incident Reviewer,
and this implies that it can inherit external relationships from both of the plain

actors.

Justifications

The modeling process of i* is iterative. Typically, modelers identify plain
actors (AC view); next, their dependencies (SD view); and sometimes, internal
rationales (SR view) of the plain actors. When more information and a deeper
understanding of the application are obtained, modelers differentiate plain actors
into their specified forms and sometimes build a network of the specified forms
surrounding the plain actor. Subsequently, plain actors in the SD views shall be
substituted with one of its specified forms. Thus, showing all candidates for that
transition becomes a request from the modeler. The Single-Plain-Actor view is
thus designed in response to this modeler’s request, i.e., this type of view helps

obtain various SD views based on different forms of the actor.

Presenting all the specified forms that can inherit external relationships from a
plain actor in one view appears natural in partitioning. The substitute of plain
actors in the SD view is done in a plain-actor-by-plain-actor manner. Users of
the i* model may explore all possible variations of one plain actor, and choose
one from the candidates before moving on to work on another plain actor.
Switching views are not necessary for finding the right substitute for a single

plain actor.

Even though we do not claim that our view extension supports the i* modeling

process. According to earlier discussion in this section, the Single-Plain-Actor

89/231 9/1/2004

master-thesis-v4.4.doc

view may help maintain connection between the abstract information (e.g., a SD
view showing relationships among plain actors) and the particulars (e.g., the
corresponding SD view substituting each plain actor with its specified form).
Abstract information is typically collected at an earlier modeling stage. At a later
stage, when a better understanding of the application domain is developed
through the model refining process, generic information are then refined to
particulars. Displaying connections between an actor’s generic form and various
specified ones helps maintain the consistency when selecting a specified actor to
stand in for the corresponding plain one in a SD view. Therefore, this view offers

one systematic approach for modelersto follow in refining i* models.

Selection Rule

Formally, we obtain the corresponding Single-Plain-Actor view out of a given
AC view by applying the following query singlePlainActorRule; we pass the

selected plain actor (a) as an input argument to the query.

singlePlainActor Rule (v:ACViewClass, aPlainA ctorElementClass)::=
80:0ObjectClassollv ol[{ a, al=find_direct_specified_actors(a),
find_all_replacing_actors(al) }

Query19

find_direct_specified_actors(a:PlainActorElementClass)::=
Sta: SpecifiedActorElementClass[T1: SpecifiesLinkClasslllfrom=tall.to=a

Query20
find_direct_replacing_actors(a SpecifiedActorElementClass)::=
8al: SpecifiedActorElementClass T1: AssociationLinkClass[]
((I'in PartsLinkClass) [I(l in CompleteCompositionLinkClass)) [
l.from=al.to=al) O
((I'inISALinkClass) [0 (I in INSLinkClass) [I(l in PlaysLinkClass) [
(I in CoversLinkClass) [(I in OccupiesLinkClass)) [
I.from=al [l.to=a)

90/231 9/1/2004

master-thesis-v4.4.doc

Query?21

find_all_replacing_actors(a SpecifiedActorElementClass)::=
8al: SpecifiedActorElementClassCalllfind_direct_replacing_actors(a) [
(Ca2: SpecifiedActorElementClassCalldfind_direct_replacing_actors(a2) [
a2(Jfind_all_replacing_actors(a))

5.2.4 Abstract-Actors-Only view

Informal description

An Abstract-Actors-Only view presents only abstract actors including roles,

positions, agents, and any association links among them.

Example

Figure 5.2-4 shows the corresponding Abstract-Actors-Only view of the
original AC view. We see that all plain actors and agent instances have

disappeared in this view.

aintaine
[Amhlnfo]

Mobolizer
[Incinta]

Remave
Cuplicated
Incinfa)

Assigner
[Reviewed
Incinfa]

——

P e
J A LAS
danagement

Incident
Reviewing

Incident
Feviewer

Figure 5.2-4 Abstract-Actors-Only view derived from the original view

91/231 9/1/2004

master-thesis-v4.4.doc

Justifications

The Abstract-Actors-Only view focuses on the relationship between the
abstract actors, ignoring the abstraction of plain actors and the instantiation of
agents. This view may help when an organization has hundreds or thousands of
employees, devices, and machines—especially when the individual agent
instances in an organization are easily classified to a relatively small number of
agents. Under this circumstance, we strongly recommend this view be used to let

the user focus on understanding relationships between different forms of actors.

Another advantage of this view is its reusability. Since some organizations
from the same industry field may share certain organizational restructures, this
kind of view may be reused in a second or third application. For example, every
hospital should have the role of doctor, position Principle, agent Emergency, and

so forth. Reusable modeling patterns can save time and resource.

Selection Rule

Formally, we obtain the corresponding Abstract-Actors-Only view out of a

given AC view by applying the following query abstractActorsOnlyRule:

abstractActorsOnlyRule(v:ACViewClass) ::=
80:0bjectClass ollv ColIfind_all_abstract_actors ()

Query22
find_all_abstract_actors()::=
8a SpecifiedActorElementClass: (ain AbstractActorElementClass)

5.2.5 Plain-Actors-Only view

Informal description

A Plain-Actors-Only view presents plain actors, their direct specified actors,

and the “specifies’ links that connect them.

92/231 9/1/2004

master-thesis-v4.4.doc

Example

Figure 5.2-5 shows the corresponding Plain-Actors-Only view of the original
AC view. We can see that all specified actors have disappeared—except the one
that initiates the “specifies” link. Given our external relationship inheritance rule,
we need to specify just one direct specified actor for each plain actor. Therefore,

this view normally contains only (2* number of plain actors) actor elements.

Resource Incident
Allacatar Reviewer

1 |
ecifies Skeciﬂes Skeciﬂes Skeciﬂes

| I

|

|

|

|

|

|

anagemegt

-e

5

—————

I
I
I
I
1
1
I

T
Resource
nageme t Allncatar ﬁgﬁ:gfﬂr

Figure 5.2-5 Plain-Actors-Only view derived from the original AC view

I
I
I
I
I
1

€
@

Justifications

Normally, at the beginning of a modeling process or when dealing with higher
management personnel, details of an application are not a great concern. Thus,
overview questions such as “How many stakeholders are there in an
organization?’ and “Who are the stakeholders?’ may be asked. The Plain-Actors-

Only view supplies just enough information for dealing with such questions.

This grouping appears natural in that it may work only on certain phases of
the modeling process or in addressing only certain levels of management
requirements. Modeling is done in a phase-by-phase manner, so plain actor
information required in the beginning phase is not required in a later one.

Different management group requires different levels of abstract information, so

93/231 9/1/2004

master-thesis-v4.4.doc

detailed (or maybe complex) specified actor information is not required at the
CEO level. Therefore, showing only plain actors in a view does not incur much

overhead in performing higher abstraction level actor analysis.

Selection Rule

Formally, we obtain the corresponding Plain-Actors-Only view out of a given

AC view by applying the following query plainActorsOnlyRule:

plainActorsOnlyRule (v:ACViewClass)::=

80:0bjectClass: ollv Dol{ find_all_plain_actors() ,

{find_direct_specified actors(a) %0Query19% | all find_all_plain_actors()} }
Query23

find_all_plain_actors()::=

SaActorElementClass: (ain PlainActorElementClass)

5.2.6 Agents-Only View

Informal description

An Agents-Only view presents agents, agent instances, and the association

links that connect them.

Example

Figure 5.2-6 shows the corresponding Agents-Only view of the original AC
view. We can see that this view contains only agents (e.g., LAS Management),
agent instances (e.g., John Steven), and instantiation links (e.g., the INS links

between agent and agent instances) among them.

94/231 9/1/2004

master-thesis-v4.4.doc

i i
Ambulance LAS
Cres lEhagemer

Human
Resource
Allacator

Resource ncide
Allacator it 1 CA Agert
Module Macdule

Ol

Figure 5.2-6 View showing only the agents for the LAS case study

Justifications

When tackling social issues (organization modeling), sometimes we need only
analyze the relationships between physical participant classes. The Agents-Only
view can help study the static hierarchy among employees, and may help model
organization layout; therefore, this view may help process staff layout in an

organization.
However, this view is not necessary when an organization’s process can be

clearly addressed using the Abstract-Actors-Only view.

Selection Rule

Formally, we obtain the corresponding Agents-Only view out of a given AC

view by applying the following query agentsOnlyRule:

agentsOnlyRule(v:ACViewClass)::=
80:0bjectClass ollv olIfind_all_agents()
Query24
find_all_agents()::=
8a: SpecifiedActorElementClassl]

(ain AgentElementClass) [(ain Agentl nstanceElementClass)

95/231 9/1/2004

master-thesis-v4.4.doc
5.2.7 Direct-Replaceable view

Informal description

A Direct-Replaceable view presents the family of specified actors whose
external relationships can be inherited by a given specified actor, and we call the
former a direct replaceable to the latter. This direct substitution implies that in
any SD view, the given specified actor can stand in for any of the replaceables.
There may be external relationships that belong to the given actor directly but

not to its replaceables in the SD view.

Given a parent AC view and a specified actor within that view, objects

satisfying one of the following conditions should be selected into this view:

1. The given specified actor, say a;

2. Any specified actor that has any link other than “is-Part-of” from a to it; or any
specified actor that has an “is-Part-of” link to a;

3. Any specified actor that has a direct link other than “is-Part-of” to or an “is-

Part-of” link from any of the previously selected actorsin this view.

Example

Figure 5.2-7 shows Direct-Replaceable views projected over the original AC
view. In (@), direct replaceables of agent CAD Software System are presented.
In (b) and (c), the direct replaceables of position Incident Reviewer and agent
instance South RA, respectively, are shown. The given specified actor is

highlighted using a solid rectangle.

96/231 9/1/2004

master-thesis-v4.4.doc

Maoholizer GOVERS
= [Inclnra] .
emoyer
Cuplicateq —
IncInfa] OVERS

Removel
Duplicated
Inclnfo]

aintaine
[Amblinfo]

Assigner
[Reviewed|
Inelnfa]

—
B
S5a
=g
23
TT
&)

p=r3

B

g2

g5

S8

Woholizer
[Inelnra]

Incident
Reviewing|
Wodule

(a) CAD Software System (b) Incident Reviewer (c) South RA

Figure 5.2-7 Direct-Replaceable Views projected over the original AC view

Justifications

The Direct-Replaceable view provides an overview of the family of actors that
has a subset of external responsibilities and vulnerabilities to a given actor. This
family draws a scope which the given actor can cover. For example, when
introducing a new automated system to some organization, we want to know
“what responsibilities of which positions occupied by which type of agents are to
be implemented in the system.” To answer such a question, we need to find out
the corresponding actors whose external responsibilities can be covered by the
system-to-be; we can use the Direct-Replaceable view of the system-to-be to

answer it®,

Furthermore, this type of view simplifies the SD view by allowing external
dependencies to be specified in one place (as some attribute of a single actor).
For example, the two agents Human Resource Allocator and Resource Allocating
Module share most of the external dependencies (Figure 1.2.1). Under this
circumstance, we specify these dependencies to their general form—plain actor

Resource Allocator.

® Here we assume that an i* model exists for the given organization

97/231 9/1/2004

master-thesis-v4.4.doc

Studying the scope of a single specified actor may appear inefficient, yet, in
reality, model users study responsibilities in an actor-by-actor manner. Thus, we
assume little overhead incurred in using this view. In addition, omitting the
plain actor from this view shall not harm its comprehensibility, since this kind of
responsibility scope analysis is normally performed at a more detailed level.

Abstract level plain actor information appears not relevant.

Selection Rule

Formally, we obtain the corresponding Direct-Replaceable view out of a given
AC view by applying the following query directReplaceableRule. We pass the

selected specified actor (a) as an input argument to the query.

directReplaceableRule(v:ACViewClass, a:SpecifiedActorElementClass)::=
80:0bjectClass: o] v Jol{{a}, find_all_replaceable actors(a) }

Query25
find_direct_replaceable actors(a:SpecifiedActorElementClass) ::=
8al: SpecifiedActorElementClass T1: AssociationLinkClass[]
((I'in PartsLinkClass) [I(l in CompleteCompositionLinkClass)) [
I.from=al [l.to=a)
U
((I'inISALinkClass) [0 (I in INSLinkClass) [(I in PlaysLinkClass) [
(I in CoversLinkClass) [(I in OccupiesLinkClass)) [
l.from=all.to=al)

Query26
find_all_replaceable actors(a:SpecifiedActorElementClass) ::=
8al:SpecifiedActorElementClassCalll find_direct_replaceable_actors(a) O

(Ca2: SpecifiedActorElementClassCalll find_direct_replaceable actors(a2) [l
a2 [1find_all_replaceable actors (@))

98/231 9/1/2004

master-thesis-v4.4.doc

5.3 Summary

In this chapter, we presented relationships between the Basic AC view and six types of
partial AC views. Each of the views was also explored in detail. The AC views studied in
this section are: the Basic AC view, the Single-Network view, the Single-Plain-Actor
view, the Abstract-Actors-Only view, the Plain-Actors-Only view, the Agents-Only view,

and the Direct-Replaceable view.

View relationships were illustrated using a generic View Map that fits for all

applications. View decomposition and projection directions were also shown.

The AC views were presented formally and informally. An informal description gives
the reader a basic idea of what kinds of elements are qualified for a specific partial view.
The formal definition of the selection rule, which is attached to each view class, makes it
possible to automate these views in an i* modeling tool. Some discussion about the
benefits and limitations of the each view type are aso included. An original AC view
obtained from the LAS case study was used as the running example to demonstrate the

results of decomposition and projection over it.

99/231 9/1/2004

master-thesis-v4.4.doc

6 Strategic Dependency Views

The purpose of the Strategic Dependency (SD) view is to express the
“intentional description of a process in terms of a network of dependency
relationships between actors” (Yu 1994), and to express the intertwined negative

or positive contributions towards those dependency relationships, among actors.

The Basic SD view should, by definition, include all types of actors and all
dependency links or external intentional links among them. However, when a
view is visualized, it is normally redundant to show different forms of actors that
are basically related to the same plain actor in one diagram, since these actors
share most of the external relationships. For example, agent Resource Allocator
M odule and position Resour ce Allocator from the LAS case study both depend
on an Ambulance Crew to supply accurate ambulance information (Amblnfo).
Therefore, we normally present an SD view by selecting one actor (or more non-
overlapping ones) representing each plain actor. In addition, each type of Basic
SD view can still appear complex. Therefore, we need to scale down the view to

make each partial view, when visualized, more comprehensible.

We define two basic and two partial SD view classes in our view extension, and we
discussed their meta-level constructs in Chapter 4; in this chapter we present domain
examples (as instances) of each view class and define the selection rule attached to it. We
adopt the same pattern as used in the AC views, and explore each partial view from these

four perspectives. Informal Description, Example, Justifications, and Selection Rule.

Section 6.1 uses generalized View Maps to give an overview of the relationship
between different types of SD views; Section 6.2 presents two Basic SD views and two
partial SD views from the four aspects mentioned in the previous paragraph; Section 6.3

summarizes the results of this chapter.

100/231 9/1/2004

master-thesis-v4.4.doc

6.1 Overview

| The Baseline Madel |

plainActorsSDRule("The Bassline Madel") speciﬂedﬁ;{':mrs'S'DRule {"The Baseline Model",

- . g <combination =) ...
[The Basic Plain-Actor-Based D View | Bap Snscllad b Baned
LJ" .2,1 Wiew <combination n=
Basic Specified-Actor-Based Basic Specified-Actor-Based
View <combination 1= View <combination 2>
LEGEND i
Wiew View . 1 . A basic

""" = projection decomposition I ViewName d:!::d view

Figure 6.1-1 Generalized view map showing relationships between different forms

of Basic SD views

Figure 6.1-1 presents the relationship between different forms of Basic SD
views. Each Basic SD view corresponds to one Plain Actor SD view. Several
Specified Actor SD views can be derived from the Baseline Model, and the
derivation process requires actor association information so that external
relationships for a selected actor can be calculated following the external
relationship inheritance rule. For example, if agent Resource Allocator Module
is showing in some SD view standing in for plain actor Resour ce Allocator, then
it will inherit all the external relationships from position Resource Allocator
(following the “plays” link), and recursively from plain actor Resource Allocator
(following the “specifies’ link). Since all these forms of Basic SD views share
the same external relationships pattern, we do not distinguish them again when

they are scaled down further into partial views.

Any basic or partial SD view, regardless of the form of actors shown, can be
further decomposed into views smaller in size and simpler in inter-actor
relationships than the original. We illustrate this point using Figure 6.1-2. Our
first approach is to decompose an SD view (e.g., Any SD View) into Single-

Actor-Focus views (e.g., Single Actor<1> View). An SD view can also be

101/231 9/1/2004

master-thesis-v4.4.doc

decomposed into Pair-wise-Actors views (e.g., Pair-wise Actor<1>, Actor<n>

View) for the selected other actor pairs (e.g., {Actor<1>, Actor<n>}).

| Single Actor=1> \iew ‘ | Single Actor<2= \iew] ‘ Single Actor<n= View |

singleActorfocusRule(" Any SO
View", Actor=<1=)

| AnySDView |

paimiseActorsﬁyle("Any SD View”,

et Actor<1=; Actor<n=) :

L = g

Pair-wise Actor<1= Pair-wise Actor<1=, Pair-wise Actor<n-1=,
Actor<2= View Actor<n= View Actor<n= View
LEGEND ”
; The
...... View View: i derived igina)

= prajection decomposition | bl vi;w Hentione u:g;a

Figure 6.1-2 Generalized view map showing possible decomposition of “Any SD

View”

6.2 Details of the SD Views

6.2.1 Plain- versus Specified-Actor-Based SD View

Informal Description

Both the Plain-Actor-Based and the Specified-Actor-Based SD view are

designed to present inter-actor external relationships.

A Plain-Actor-Based SD view includes all plain actors as well as the external

dependency and contribution links among these plain actors.

A Specified-Actor-Based SD view includes selected specified actors that
cover the responsibilities of all plain actors in the Plain-Actor-Based form.
External dependency and contribution links among the selected specified actors

are also included in this view.

102/231 9/1/2004

master-thesis-v4.4.doc

Example

Be L ved
[seithir 11
rmins]

Las
anagermen
._p‘
Timeliness
[Reviewning
Reviewed Incidert
Incidernt I
Information

Incidert
Revigwing
Module as
Abuzer

S —

Optimal
[Miokinzt]

Ambulance
Crewy
¥

Figure 6.2-1 Partial Plain-Actor-Based SD view from the LAS case study

Figure 6.2-1 shows the external relationships between four plain actors
(Ambulance Crew, LAS Management, Resource Allocator and Incident
Reviewer) from the LAS case study, corresponding to the Plain-Actor-Based
form of an SD view. Given the external relationship inheritance rule along actor
associations, we can use the information from the corresponding actor
associations shown in Figure 6.2-2 to substitute the plain actors with one of its

specified forms.

Figure 6.2-3 presents the same part of the underlying model, yet in the
Specified-Actor-Based form. From Figure 6.2-2, we know that position Incident
Reviewer specifies plain actor Incident Reviewer, and from the inheritance rule
discussed in our reformulated i* framework we know that the former inherits all
external relationships from the latter. Thus, the position Incident Reviewer also
has the external dependency Timeliness [Incident Reviewing]. All other
substitutes of actors shown in Figure 6.2-3 adopted a similar one-to-one
manner—as described previously. Except for plain actor Incident Reviewer who
was replaced by 3 specified forms (position Incident Reviewer, agent Incident

Reviewing Module, and agent CA Agent).

103/231 9/1/2004

master-thesis-v4.4.doc

Ambulance Resource
FENY Allocator

Specializes

.O

Specializes

— T

R

Rezource

Ambulance
= Allocator

FE

VCCUPIES

Resource
Allocating
haciule

i e

e

Arnaderme i

=
O
(2]

Specializes

NS ENENT

Incicerit
Revigwer

S$ecializes

Incicdert
Fervigneer

Azsigrer
[Reviewed
Inclnfa]

Sm—

Incicert
Reviewwing
Mocule 2=
Ahuser

T
[oCCcupies
Inciclerit

Feviewer

Incicert
Reviewing
hocule

Figure 6.2-2 Partial Basic AC view from the L AS case study showing the

associations of the four plain actors

Abstract external relationships must be instantiated as well. In Figure 6.2-3,

the abstract external resource dependency Reviewed Incident Information is

replaced by two resource dependencies: Reviewed Incident Information

(paper-based) and Reviewed Incident Information (machine-based), each

directing to one of the two agents. The softgoal dependency Timeliness

[Incident Reviewing] was redirected to position Incident Reviewer. The external

correlation link, starting from role Incident Reviewing Module as Abuser, was

also refined to affect only the machine-based resource dependency towards agent

Incident Reviewing M odule; its label changes from Unknown to Hurt. The label

of the abstract correlation link is set to Unknown because position Incident

Reviewer is an abstract form of the two agents (CA Agent and Incident

Reviewing Module), yet the correlation link affects only one of them and, thus,

the combined effect is unknown.

104/231

9/1/2004

master-thesis-v4.4.doc

LAS
Py T anageme
[eithirn 11
minz)

Timeliness
[Freviewving

Inciclert
Rerviener

imelineszs

Tirneline: T
Optitnal ahilization, e
Ambulance [Mobinzt] e n, [(DCCUpiES
Crew Incident ¥ Incident
Infarmation Flevigmer
SEr-DESe
.

=R (SR
Incicent
Infartnation

ACCLFACY OLPCe achine-baze - Icient
[Amblnto] catar) H = L Reviewing

hdociul
e odule

3
=Y]
—

Incident
Reviewing
Module as

Ahuser

o —

Figure 6.2-3 The Specified-Actor-Based SD view corresponding to the Plain-Actor-

Based SD view

Justifications

Both the Plain-Actor-Based view and the Specified-Actor-Based SD view are
designed to present inter-actor external relationships. The Plain-Actor-Based
view assumes the highest level of abstraction: showing stakeholders in a plain
actor form and external relationships in a generic form. The Specified-Actor-
Based view assumes more detail: replacing plain actors with their specified
forms and refining the generic external relationships according to the set of

specified actors selected.

The separation of these two views appears natural since they serve different
purposes, and different levels of detail are required at different times. For
example, in an organization, the CEO may need very brief information, so the
very abstract form of information would be required; but an on-site manager may
need to know the exact and specified employee assignments, so a specified form

would be a must.

The two views shown in this section could be more useful during the modeling

process; however, we do not study this issue in this thesis. The modeling process

105/231 9/1/2004

master-thesis-v4.4.doc

is an ongoing one, and sometimes different levels of information are required for
storage in the same model. Using our approach, a more abstract SD view can be
systematically detailed into a concrete one with the help of actor associations
from the AC view, without duplication of any external dependencies. The Single-
Plain-Actor views (Section 5.2.3) and Direct-Replaceable views (Section 5.2.7)
are designed to serve this systematic refinement of SD views (see the

corresponding sections for more detail).

Nevertheless, external relationships should be consistently mapped between
the Plain-Actor-Based form and various Specified-Actor-Based forms.
Precautions are required when performing this conversion (mapping). There are

three general cases for this mapping:

1. The relationship is mapped as is. (e.g., Optimal [Moblnst], Accuracy
[Amblnfo]).

2. An abstract relationship is decomposed or analyzed. (e.g., Reviewed Incident
Information mapped to two resource-dependums; the Unknown correlation
link is analyzed to just affect the machine-based Incident Information and is
refined to Hurt).

3. When two plain actors are replaced by a specified one that covers both of them,
the external relationships between them become internal and will not be
included in the Specified-Actor-Based view.

Selection Rule

We need to identify clearly what type of i* objects are qualified for the SD
view in general, so we first give the definition of a generic Basic SD view.
Formally, we can obtain the corresponding Basic SD view from a Baseline

Model by applying the following query theBasicStrategicDependencyView:

theBasicStrategicDependecyView(m:BaselineM odelClass)::=

80:0bjectClass: oldm Dol){ {a|ain ActorElementClass},
{e| ein DependumElementClass}, {I | | in DependencyLinkClass},

106/231 9/1/2004

master-thesis-v4.4.doc

{1110 find_all_external_links()} }

For any given SD view, we can obtain its corresponding Plain-Actor-Based

view by applying the query plainActorsSDRule:

plainActorsSDRule (v:SDViewClass)::=
80:0bjectClass: ollv O ol { A=find_all_plain_actors(), find_inter_dependums(A) ,
find_inter_dependencies(A), find_all_inter_external_links(A)}
For any given SD view and a set of selected specified actors, we obtain its
corresponding Specified-Actor-Based view by applying the query
specifiedActorsSDRule:

specifiedActor sSDRule(v:SDViewClass, A={al,...,an}:ActorElementClass) ::=
80:0bjectClass: ollv Dol { A, find_inter_dependums (A),
find_inter_dependencies(A), find_all_inter_external_links(A) }

Query27

find_inter_dependums(A={al,...,an}:ActorElementClass) ::=
8e:DependumElementClass:
(11,12:DependencyL inkClass;al,a2: ActorElementClass: (al, a2 [1A) [
(I11.from=e=I2.t0) [(I1.to=al [J11.to.parent=al) [
(I12.from=a2 [012.from.parent=al)

Query28

find_inter_dependencies(A={al,...,an}:ActorElementClass) ::=
8l:DependencyL inkClass: [aActorElementClass,b: DependumElementClass:
(adJA) O (bOfind_inter_dependums(A)) [
(I.from.parent=a [l.to=b [|.to.parent=a [1.from=b)

Query?29

find_direct_inter_external_links(A={al,...,an}:ActorElementClass) ::=
8l:IntentionalLinkClass: [dl:DependencyLinkClass:
diOfind_inter_dependencies(A) O

107/231 9/1/2004

master-thesis-v4.4.doc

(CeIntentionalElementClass-e.parentJA [1.from=e [1.to=dl)

Query30

find_all_inter_external_links(A={al,...,an}:ActorElementClass)::=
8l:IntentionalLinkClass: |.from.parent [J A 0
(I O find_direct_inter_external_links(A) [
(O2:IntentionalLinkClass: 1200find_all_inter_external_links(A) O 1.to=12))

6.2.2 Single-Actor-Focus view

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD
and SR views. In case of an SD view, the view presents the selected actor, the
dependums to which it connects, the external links that affect those dependums,
the depender/dependee actors of the dependums, and the originator of the
external links. External links that are originated from the selected actor and the

links to which these external links end at are also included in this view.

For clarity, we restate here the informal definition of an external link. An
intentional link that ends at a dependency link is an external link, and a link that
starts from an actor and ends at an external link is an external link, also. The

formal definition of external link can be found in Section 4.4.5.

Example

Figure 6.2-4 shows the Single-Actor-Focus view of position Resource
Allocator (the given actor) from the LAS case study. This view includes softgoal
dependum Optimal [Moblnst] (a dependum) and agent Ambulance Crew (a
depender to the dependum). This view also includes the Hurt correlation link (an
external link) and role Incident Reviewing Module as Abuser who exerts a
partially negative (Hurt) effect on Resource Allocator’s outgoing resource

dependency Reviewed Incident Information (machine-based).

108/231 9/1/2004

master-thesis-v4.4.doc

LAS
Anageme

Tirmeliness B,
Optimal Mabilization e
Amnbulance [Mobinzt] FETETET m, [(OCCUpiES
Crewy Incident B\ _Incident
Infarmmation EWiEEr
Sper-base
nle |_§wrﬁu
ncice
i i
Infartmation
ACcUracy Resource e P ;
[Amiblnfa] Allocatar Crjachinebasepl) Ay e, R@\ﬁgﬁﬁg
- =7 dacule
-
Incident
Reviewing
Module as
Ah

LSEr
. E

Figure 6.2-4 Single-Actor-Focus view for position Resource Allocator from the LAS

case study

Justifications

In (Yu 1994), one use of the SD view is to perform node analyses, studying
the “confluence of various incoming and outgoing [external relationships]... at
an actor...” From the outgoing dependencies, we can determine what
opportunities are available for an actor to achieve certain goals, and what
vulnerabilities could make the achievement of those goals fail. From the
incoming dependencies, we learn the responsibilities that other actors require of
this actor. External links to the dependency links (or dependums) indicate the
extra difficulty or help this actor receives from the initiator of the link. The

formation of this view corresponds to the activities performed by i* model users.

Presenting SD views in a single actor form does not introduce a large
overhead to the analysis. All external relationships surrounding the given actor
are included in this view, so questions related to the given actor can be answered
without consulting information not presented in it. Therefore, we suggest that
when inter-actor relationships in an SD view grow complex (lots of cross-over of

links), i* users apply this approach.

109/231 9/1/2004

master-thesis-v4.4.doc

Selection Rule

Formally, we obtain the corresponding Single-Actor-Focus view from a given
SD view by applying the following query singleActor FocusSDRule. We pass the

selected actor as an input argument (a) to the query.

singleActor FocusSDRule(v:SDViewClass, aActorElementClass) ::=
80:0bjectClass ollv [l a,
find_incoming_dependencies to_actor(a), %Query 3
find_incoming_dependeums to_actor(a),
find_indirect_incoming_dependencies to_actor(a),
find_dependers to_actor(a),
find_outgoing_dependencies from_actor(a), %Query 4
find_outgoing_dependums_from_actor(a),
find_indirect_outgoing_dependencies from_actor(a),
find_dependees from_actor(a),
find_externallinks_to_incoming_dependency(a),
find_externallinks_originator_to_incoming_dependency(a),
find_externallinks_to_indirect_outgoing_dependency(a),
find_externallinks_originator_to_indirect_outgoing_dependency(a),
find_externallinks_from_actor(a),
find_externallinks to_externallinks from_actor(a),

find_externallinks_target _from actor(a) }
Query3l
find_incoming_dependums to_actor(a:ActorElementClass)::=
8d:DependumElementClass: [1:DependencyL inkClass:
I.from=d 01 [I find_incoming_dependencies to_actor(a)
Query32
find_indirect_incoming_dependencies to_actor(a:ActorElementClass)::=
8l:DependencyL inkClass: [de:DependumElementClass
|.to=de O de 1 find_incoming_dependums to_actor(a)

110/231 9/1/2004

master-thesis-v4.4.doc

Query33
find_dependers to_actor(a:ActorElementClass)::=
8al:ActorElementClass:

Cd: DependumElementClass, |:DependencyL inkClass:

d O find_incoming_dependums_to_actor(a) [

I.to=d O O find_outgoing_dependencies from_actor(al)
Query34
find_outgoing_dependums_from_actor(a:ActorElementClass)::=

8d:DependumElementClass: [1:DependencyL inkClass:

I.to=d I O find_outgoing_dependencies from actor(a)

Query35
find_indirect_outgoing_dependencies from_actor(a:ActorElementClass)::=
8l:DependencyL inkClass: [de:DependumElementClass

|.from=de [0 de [find_outgoing_dependums_from_actor(a)

Query36
find_dependees from_actor(aActorElementClass)::=
8al:ActorElementClass:

[d: DependumElementClass, |:DependencyL inkClass:

d O find_outgoing_dependums_from_actor(a) [

[.from=d [0 O find_incoming_dependencies to_actor(al)
Query37
find_externallinks_to_incoming_dependency(a:ActorElementClass)::=

8l:IntentionalLinkClass: [dl:DependencyLinkClass:

|.to=dl O dICfind_incoming_dependencies to_actor(a)
Query38

find_externallinks_originator_to_incoming_dependency(a:ActorElementClass)::=

8a:ActorElementClass: O:I ntentional Link Class:

111/231 9/1/2004

master-thesis-v4.4.doc

[Ofind_externallinks_to_incoming_dependency(a) [

(CeIntentional ElementClass:|.from=e [e.parent=a)

Query39

find_externallinks to_indirect_outgoing_dependency(a:ActorElementClass)::=
8l:IntentionalLinkClass: [dl:DependencyLinkClass:
|.to=dl O dICfind_indirect_outgoing_dependencies_from actor(a)

Query40

find_externallinks_originator_to_indirect_outgoing_dependency(a:ActorElementClass)

SaActorElementClass: [l:IntentionalLinkClass:
IOfind_externallinks_to_indirect_outgoing_dependency(a) [

(CeIntentional ElementClass:|.from=e [e.parent=a)

Query4l
find_externallinks_from_actor(a:ActorElementClass)::=
8l:IntentionalLinkClass:[k: I ntentional ElementClass:

[.from=e Oe.parent=a O |0find_all_external_links()

Query42

find_externallinks_target from actor(a:ActorElementClass)::=
810:LinkClass[I:Intentional LinkClass:
[Ofind_externallinks_from_actor (@) [01.to=10

Query43

find_externallinks_to_externallinks from_actor(a:ActorElementClass)::=
810:LinkClass-[I:Intentional LinkClass:
[Ofind_externallinks_from_actor (a) [110.to=I

112/231 9/1/2004

master-thesis-v4.4.doc

6.2.3 Pair-wise-Actors View

Informal Description

A Pair-wise-Actors view presents two selected actors and the external
relationships between them. This view also applies to both the SD and the SR

view.

Example

Figure 6.2-5(a) shows the Pair-wise-Actors view between position Resource
Allocator and agent Ambulance Crew, and Figure 6.2-5(b) shows the view
between position Resource Allocator and role Incident Reviewing Module as
Abuser. Note that in (b), agent Incident Reviewing Module appears just for
added clarity and it can be ignored.

=i (=hn=ls
Incicert

Information

% achine-baseff

Optirnal
[Moblnst]

”
Crewy

Accuracy |
[Atrklnfo]

Incident
Reviewing
fdodule

Incident
Rlevigsving
Maodule as
Abuzer

o —

(a) Ambulance Crew vs. Resource Allocator (b) RA vs. Incident Reviewing
Module as Abuser

Figure 6.2-5 Pair-wise-Actors SD views from the LAS case study

Justifications

Even though this view can sometimes dramatically simplify representation, we
do not recommend excessive use of the view—because applying it can create a
combinatorial explosion problem (number of different pairs of actors). Thus, this

view should be used conservatively and selectively, so we give these guidelines:

1. The number of total actorsis manageable (say < 20).
2. There are significant requests that the relationships between some pair of actors
be addressed.

113/231 9/1/2004

master-thesis-v4.4.doc

3. Choose only the pairsthat require this level of analysis.

Selection Rule

Formally, we obtain the corresponding Pair-wise-Actors view from a given SD
view by applying the following query pairwiseActorsRule. We pass the selected

actor pair {a0, al} asthe input arguments to the query.

pairwiseActorsRule(v:[SDViewClass | SRViewClasg], { a0, al} :ActorElementClass) ::=
80:0bjectClass ollv ol {a0, a1},
find_inter_dependums({ a0, al}), %Query27
find_inter_dependencies({ a0, al}), %Query28
find_all_inter_external_links({a0, al}) } %Query30

6.3 Summary

We presented in this chapter various views we can use to simplify the Basic SD views.
We defined the Plain-Actor-Based and Specified-Actor-Based views to represent the
inter-actor relationship network. These two types of basic views are at different levels of
abstraction and, thus, contain different levels of detail. We also defined two types of

partial Strategic Dependency (SD) views in our view extension.

The relationship between different view types was illustrated using generalized view
maps. Two View Maps are presented: one for explaining the relationship between
different forms of Basic SD views, and another for explaining the relationship between

the basic view and the partial views.

We presented the SD views from both informal and formal aspects. An informal
description gives the reader a basic idea of what kinds of elements are qualified for a
specific partial view. The formal definition of the selection rule attached to each view
class makes it possible to automate these views in an i* modeling tool. We included also

some justification for each view.

114/231 9/1/2004

master-thesis-v4.4.doc

7 Strategic Rationale Views

The Strategic Rationale (SR) view aims to “provide the intentional description
of processes in terms of process elements and the rationales behind them.” In
other words, the layout of the reasoning structure internal to an actor, based on
its relationship with others presented in the SD model, is represented in the SR
model. (Yu 1994)

The Basic SR view should, by definition, include all types of elements
involved in the SD view (actors, dependency links, and external links), and
intentional elements and intentional links inside the boundary of each actor.
However, when the view is visualized, it is extremely hard to show all
information contained in the Basic SR view just by using one diagram for most
real-world projects. The modeling tool could get out of memory when the
diagram reaches a certain size. Even though a huge diagram is produced, it
would be difficult for users to retrieve information. As a result, the Basic SR

view needs to be communicated using a set of inter-connected smaller views.

We scale down the Basic SR view first by Single-Actor-Focus views. Since
any SR view shares information external to actors with its corresponding SD
view, we can focus on a single actor each time, and proceed to other actors
through the external connection. In some cases, even a Single-Actor-Focus view
could appear complex. Therefore, we need to further scale it down to make each

sub-view, when visualized, more comprehensible.

We define in our view extension seven new partial SR view classes—besides the
Single-Actor-Focus and Pair-wise-Actors view defined in the previous chapter. The
meta-level constructs of these view classes were discussed in Chapter 4; in this chapter
we present domain examples (as instances) of the view classes and define the selection

rule attached to each of them. We adapt the same pattern as used in the AC views, and

115/231 9/1/2004

master-thesis-v4.4.doc

explore each partial view from these four perspectives. Informal Description, Example,

Justifications, and Selection Rule.

Section 7.1 gives an overview of the relationship between different types of SR views
using a generalized View Map; Section 7.2 presents the basic Single-Actor-Focus SR
view and 7 newly defined partial SR views from the four aspects discussed in the

previous paragraph; Section 7.3 summarizes the results of this chapter.

7.1 Overview

The relationship between the Basic SR view and a Single-Actor-Focus SR
view appears the same as the one presented in the SD views. Since we discussed
that in the previous chapter we do not repeat it here; furthermore, we use a

Single-Actor-Focus SR view as our original view.

Figure 7.1-1 shows a generalized hierarchy of the decomposition of a Single-
Actor-Focus SR view. Any such view (e.g., Single Actor<i> SR View) can be
further decomposed into an Internal (e.g., Single Actor<i> Internal View) and
an External view (e.g., Single Actor<i> External View). An Internal view can
be further decomposed into a Functional (e.g., Internal-Functional Elements
View) and a Non-functional view (e.g., Internal-Non-functional Elements
View), and the Non-functional view can again be decomposed into a set of
Single-Softgoal views (e.g., Single-Softgoal<j> View). An External view can be
decomposed into a set of Single-Affected-Dependum views (e.g., Single
Dependum<1> View) or Single-Affected-Actor views and (e.g., Effects to

Actor<m> View).

116/231 9/1/2004

master-thesis-v4.4.doc

. . singleActorFocusRule ("The Basi " : .
| The Basic SR view |72 SR View®, Adforss] °>| Single ﬁ.Tlc.r<:> SR View |

singlaActorihlemalRule("Single Actor <i> View™)
| Single Actor<i> Internal View]

internalFunet S t nctionalRule{*Sing
Actor <ip InternalView") le Actor <@ InternalView")
Internal-Functional View]] Internal-Non-functional View |

‘ singleActorExternalRule(}Single Actor <i= View")

nonfunctionalSingleSoftgoalRule("Internal Non- |
Functional Elempnts View™, Softgoal<i=)

Single Softgoal=1> View | """] Single Softgoal<j> View |

| Single Actor<i> External View |

externaISl‘ngleEﬁectsRulel“Smgle Actor<i= . o z
e externalSingleEffectsRule("Single Actor<i=
External View”, Depgndum=<1=) External View" k‘ctorfmﬂ |
Single Affected Single Affected Single Affected
Dependum=1>View | Dependum<k=> View | Actar<m= View

LEGEND
A basic or

- projéctian decompositon ViewName i ViewName an \?il;ﬂnal

Figure 7.1-1 Generalized view map showing decomposition hierarchy from a

Single-Actor-Focus SR view to its sub-views

The decomposed hierarchy of SR views can be used in a reverse direction to
perform the evaluation process across different EVLR views in a systematic
manner. Figure 7.1-2 shows an example of how this idea can be applied. The
sample shows the label propagation direction from Single-Affected-Dependum
views and Single-Softgoal views to External and Internal views, respectively.
From the External and Internal views to the Single-Actor-Focus view for actor
“Actor<i>", and then propagate to the Single Actor View for another actor (e.g.,
Actor<x>). However, sometimes we cannot finish label elements in one Single-
Actor-Focus view before we move to another one, and iteration among different
actors may become frequent. This issue itself deserves further research; yet it

does not affect our approach, so we disregard it in this thesis.

117/231 9/1/2004

master-thesis-v4.4.doc

| Single Actor<x> EVLR View |

3

| single Actor<i> EVLR View |

=

| Single Actor<i> Internal View |

e

| Internal-Non-Functional View |

| Internal-Functional View |

[Single Softgoal<1> View |-~ | Single Softgoal<j> View |-

| Single Actor<i> External View

Single Affected
Dependum<1= View

Single Affected | .-
Dependum=<k> View

Single Affected
Acotr<m= View

LEGEND
Labal A partial

direciion

—> e
ACLON ViEW actorl view

A basic

Figure 7.1-2 Generalized view map showing the label propagation direction for the
evaluation process using the hierarchy of SR sub-views

7.2 Details of SR Views

Since any SR view shares information external

to actors with its

corresponding SD view, we can focus on a single actor at each time and proceed

to other actors through the external information. Moreover, the purpose of an SR
view is to systematically study the internal rationales behind some external

relationships of an actor. We thus use the Single-Actor-Focus SR view as our

original view in this section.

118/231

9/1/2004

master-thesis-v4.4.doc

7.2.1 Single-Actor-Focus SR View

Informal Description

A Single-Actor-Focus view centers on a single actor and can apply to both SD
and SR views. In the case of an SR view, the view presents these elements
included in the corresponding SD view: the selected actor, the dependums to
which it connects, external links that affect those dependums, the
depender/dependee actors of the dependums, and the originator of the external
links. In addition, the internal goal-oriented structure, including intentional
elements and links internal to the selected actor, are presented only in the SR

version.

Example

Figure 7.2-1 Single-Actor -Focus SR view showing inter nal rationales of agent

Ambulance Crew from the LAS case study (the original view)

Figure 7.2-1 shows an example of a Single-Actor-Focus SR view from the
LAS case study. From the figure, we learnt that the agent Ambulance Crew has
three top-level intentional elements: softgoal Quality [Service], task RespondTo
[Moblnfo], and goal BeReported [AmbIinfo]. The view also enumerates detailed

elements and routines in achieving the top-level intentions. For example, we

119/231 9/1/2004

master-thesis-v4.4.doc

know from the means-ends links that Amblnfo can be reported (goal BeReported
[AmbInfo]) either manually (task Manual as the means to achieve goal
BeReported [Ambinfo]) or automatically (task Automatic as the means to
achieve goal BeReported [Ambinfo]). To report manually, an Ambulance Crew
need to Connect to Radio Operator, Report Location, and Report Status.

Similar information can be obtained for the Automatic report process.

Since our purpose in this section is to demonstrate the use of various view types,
completeness of a model is not critical. Thus, we choose as our starting point this Single-
Actor-Focus view, which includes just enough elements to show our approach. This SR
view will be used as the original view from which the sub-views derive throughout this

chapter.

Justifications

The Single-Actor-Focus SR view does not introduce much overhead to the
analysis process. Normally, the analysis of actor’s internal structure is taken in
an actor-by-actor manner—especially when the internal structure of an actor
appears complex (multiple top-level intentions, deep decomposition tree
structures). Node analysis questions and others regarding a given actor can be
answered by simply exploring the actor’s internal structure. Moreover, all
external relationships from the selected actor towards other actors are kept in this
view, so whenever information from other actors is required, users can trace into

other Single-Actor-Focus views without confusion.

Another benefit is, given current tool support, each diagram has to be drawn
separately and there is no support for underlying structures. If one extended actor
appears in different SR diagrams, with the model not yet stable, then significant
overhead is incurred because multiple diagrams must be fixed for any tiny
change to that actor’s internal rationale. By decomposing the Basic SR view into
a set of Single-Actor-Focus views, changes internal to an actor can be localized
to a sub-view and with a single entry. Even any external dependency changes can

be limited to n diagrams, where n is the number of actors involved in this change.

120/231 9/1/2004

master-thesis-v4.4.doc

Admittedly, while each SR diagram is simplified — focusing on a single actor
and its dependencies, the number of SR diagrams increased from 1 to m, where m
is the number of actors in the system. For this reason, we suggest users maintain

aview reference structure (using view map) for various decomposed SR views.

Each evaluation results (EVLR) view corresponds to an SR view, so
decomposing the Basic SR view may also affect the presentation of the EVLR
views. Figure 7.2-2 and Figure 7.2-3 show two Single-Actor-Focus EVLR views
from the LAS case study. The weakly denied label of softgoal dependum
BeArrived [within 11 mins] is propagated from the Single-Actor-Focus view for
agent Ambulance Crew (Figure 7.2-2) to the view for agent LAS M anagement.
The imported label is highlighted in Figure 7.2-3 using a dashed rectangle.

Since our focus of this thesis is to provide a means of representing an i*
model, we do not define here new label propagation algorithms. The EVLR
views vary according to different algorithms, so we demonstrate in this section
one way in which some decomposed EVLR views can be used. We do not discuss

in the thesis the generic scale-down rules for EVLR views.
o) @y
miUlance Quality ;. .
LTew . . :

I?epcnt
Lﬂl:dtl

ANENOrta

]
1
1
1 TITIETTES
‘I Falien

. Take T olice Cal .

& Geithe ~|1L | J

‘.. ":;.PE-:H].!: 5 an ':h'li Ign3 0 tm ?t?]? Fi
‘ o J'

Figure 7.2-2 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent Ambulance Crew from the LAS case study

121/231 9/1/2004

master-thesis-v4.4.doc

i
! B ZTTed i \
. W [reithin 1 o
1 I tminz] ! 1 \ ’
T o ..o o i ! LR Timelinessgh 1
I s [[Feparting]y 'I
i imeliness,
1o tabilizatiof I:i"]ﬁ"nfs ! |
S~ e I hﬁir%?i!in:t.ss ' [ZallTaking], : ;
obiliz st s
Ambulance I Timeliness % o
dentificati#g, I
1 r

Cresny s
3 r j{ [Decisiol \
% R - ey - g
— ¥ W Tinelness I Timeliness X)
+ Aormmunicage E [Conveying
A Y ! r A — i

r
Fealio e [e —
System o N o Timeliness,
¥ H[Reviewiredd
I -
.l
Py
Idertifier

| [Location]

o B e
Fararnunicat 3 3
I 0 Incidert p—
[Mobinzt] Reviewver Call Taker
. : Resource
Allacstar

S —

i
-
Arbulance e
ation o

(

Figure 7.2-3 Sample Single-Actor-Focus EVLR view showing evaluation results for

agent LAS (Management) from the LAS case study

Sdlection Rule

Formally, we obtain a Single-Actor-Focus view for a given actor from any
multi-actor SR view by applying the query singleActor FocusSRRule. We pass
the selected actor (a) as an input argument to the query. This one is similar to the
singleActorFocusSDRule, except if includes one extra query—
find_internal_elements. We give here the definition of the rule and extra query,
yet we omit the definition for the sub queries already defined in previously
(Section 6.2.2).

singleActor FocusSRRule(v:SRViewClass, aActorElementClass) ::=
80:0bjectClass: ollv o [{ singleActorFocusSDRule(v, a),
find_internal_elements(a) } %Query2

122/231 9/1/2004

master-thesis-v4.4.doc
7.2.2 Single-Actor-Internal or External View

Informal Description

A Single-Actor-Internal view presents the specified single actor and its

internal goal structure, formed by internal elements and internal links.

A Single-Actor-External view presents the specified single actor, its external
relationships, actors served as depender or dependee to it, and actors whose

external relationships affect or are affected by the selected actor.

Example

Figure 7.2-4 shows the Single-Actor-Internal view of agent Ambulance Crew
derived from the original view, and Figure 7.2-5 shows the corresponding
External view. In the former, internal structures of agent Ambulance Crew
remain the same as its parent view (the original view); in the latter, only internal
elements that have an external relationship are kept. For example, goal
BeReported [Ambinfo] is shown in the external view, while the two means to

achieve it are omitted.

123/231 9/1/2004

master-thesis-v4.4.doc

~
.
Befeportes
[Ambinfo]
Fespons=Th
[Miobinst]
————— BeMatified
Mctainst]
Prondde
b
4"\.
Rroper [Ons]
Trestment] o
1
y <nﬂt|owﬁu>
info
- S
Location S)
Timeliness
Nl
Enipment ~
1 -
d ==
} o —
T ey
{ Bahiottiacy | Marnzal
Properly)\ sy [im: .
rained [Staff] 1 Medicle ! 14 am: 3006-g .
ZRER d b1 Migur
Properly
Ecuipped !
j
Signs
fiotice red
Aanomated anwal signal from
WOT_ fdriity locafion e
i b i
L w;?;g Recegt
Y
Y
b Brezs contirly
‘\ ' fi et e
;\ orm i agsgéu il 4 arﬁ;ﬁﬂe .
.

Gelrrived
[wvithin 11
minz]

Collector

Ambulance [&mmiblrifa]

Infarmation

Optanal
[Mokinst]

Imefess
[arrival
Lacation]

Resource

Eebuffered
Allocatar

[Atriblnta]

Accuracy
[Arnblnfo]

Behlotifizd
iaRadic
[Makinst]

EieFed
[Makinst]

ohilization
Instruction

cehotified
iaTelephons
[Wokinst]

BeFed
[Mohinst]

Armbulance
Statinn

Figure 7.2-5 Single-Actor -Exter nal view derived from the original view
Justifications
In some cases, even a Single-Actor-Focus view could appear complex (e.g.,

our original view). Therefore, we need to scale it down further so as to make

124/231 9/1/2004

master-thesis-v4.4.doc

each sub-view, when visualized, more comprehensible. The first step we take is

to separate internal rationales from the external ones.
This separation appears natural for i* models.

Answering questions that relate to the internal process elements and routines
does not require external relationship information. From the internal view, we
can still find out what top-level intentions the actor has, what the alternatives
that will achieve those intentions are, and what the routines of each alternative
are. For example, using elements shown in Figure 7.2-4, we can also find out the
two alternative routines available to achieve goal BeReported [Amblnfo]. In

this light, external relationships of an actor are not relevant.

The elements included in the external view appear sufficient for linking
internal elements from an actor to the ones that reside in another. When tracing
to other Single-Actor-Focus views, the user needs to know only which internal
element is connected with which dependum, and which dependum is connected to
which actors other than the selected one. For example, from Figure 7.2-5 we
know that role Collector [Amblnfo] depends on goal BeReported [AmbInfo] to
furnish resource Ambulance Information. If we want to identify which internal
element of role Collector [AmblInfo] requires that piece of information, we shift
to the Single-Actor-Focus view of the role, locate the same dependum, and
follow the incoming dependency link “to” the dependum to locate the internal
depender. For this purpose, the internal goal structure of an actor does not appear

critical.

Selection Rule

Formally, we obtain a Single-Actor-Internal view from a Single-Actor-Focus
view (for actor a) by applying the query singleActorinternalRule, and a Single-
Actor-External view from a Single-Actor-Focus view by applying the query

singleActor ExternalRule.

singleActorInternalRule(v_a: SingleActorFocusSRViewClass)::=

125/231 9/1/2004

master-thesis-v4.4.doc

80:0bjectClass: ol[lv_a [Dol{ , find_internal_elements(a)}

singleActor ExternalRule(v_a SingleActorFocusSRViewClass)::=
80:0bjectClass ollv [
o[{ singleActorFocusSDRule(v, a), find internal_connectors(a)}

Query44

find_internal_connectors(a:ActorElementClass)::=
8eIntentionalElementClass: e.parent=a [
(O1:DependencyLinkClass: 11.from=e [111.to=e) O
(O2:IntentionalLinkClass: 12.from=e [11200find_externallinks_from_actor(a))

7.2.3 Internal-Non-functional and Functional View

Informal Description

An Internal-Non-functional view presents the selected actor, its top-level
softgoals, and all the descendents (reasoning structure) of these softgoals. An
Internal-Functional view presents the selected actor, its top-level non softgoals,

and all the descendents towards these (reasoning structure) non softgoals.

For clarity, we restate here the informal definition of descendent: A
descendent of a given element is a sub-element either that has a direct intentional
link to the given element or whose direct ancestor is a descendent of the given
element. The formal definition of ancestor and descendent can be found in
Section 4.4.6.

Example

Figure 7.2-6 shows an example of the Internal-Non-functional view derived
from the Single-Actor-Internal view for agent Ambulance Crew (Figure 7.2-4),
and Figure 7.2-7 shows the corresponding Internal-Functional view. In Figure

7.2-6, top-level softgoal Quality [Service] and all its descendents are shown in a

126/231 9/1/2004

master-thesis-v4.4.doc

separate view from the other two top-level intentions (task Response
[Moblnst] and goal BeReported [Amblnfo]) that are shown in Figure 7.2-7

BN
-
b
L]
A Y
*
\
"
\
.
A
]
[|}
L]
Prnperly 1
~fTomated Equped]
eRepDr‘[e 1
Amblnfo]) L]
|
(]
I
]
]
"
1
r
I
¥
| !
“‘ /! \ N
Mzl
~ L B !
b Abainto] T [Mabinst]) o
\ (Betlglifiedyial elfphoneg Vi
'\ [Mablnst])
-
-

Figure 7.2-6 Single-Actor -I nter nal-Non-functional view derived from the Single-

Actor-I nternal view for agent Ambulance Crew

127/231 9/1/2004

To

master-thesis-v4.4.doc

Properhy
Ernipped

Figure 7.2-7 Single-Actor -I nter nal-Functional view derived from the Single-Actor -

Internal view for agent Ambulance Crew

Justifications

In some cases, a Single-Actor-Internal view still appears complex (e.g., the
Single-Actor-Internal view derived from our original view). Therefore, we need
to scale it down further so as to make each sub-view, when visualized, more
comprehensible; the approach we are taking now is to separate top-level non-

functional intentional elements from the functional ones.

This separation appears natural when the internal rationale of a modeled actor
gets extremely complex, featuring numerous internal elements and intertwined
internal intentional links. When internal rationale becomes difficult, typically

functional and non-functional parts are considered separately, at different times.

128/231 9/1/2004

master-thesis-v4.4.doc

Functions of a system are normally considered first in order to verify the
workability of certain system configurations. During this process, softgoals that

do not serve as descendents of some given functionality appear irrelevant.

After these functions become relatively stable, and especially when alternative
routines are available, we record their side-effects using a contribution (and
correlation) network of softgoals. If necessary, an evaluation process can be
employed to decide the level of satisficeability of the top-level softgoals when
assuming each alternative. Resulting labels from different alternatives of the top-
level softgoals can be compared. During this process, those functional elements

that not contribute to any softgoals appear irrelevant.

However, redundancies are expected in the non-functional and functional
views since most process elements cast certain effects to some softgoals, and
since these elements may also be decomposed into softgoals. Thus, given the
current level of tool support, we do not suggest excessive use of this
separation—since any change to those overlapping elements requires

synchronization to several other views.

Selection Rule

Formally, we obtain an Internal-Non-functional view from a Single-Actor-
Internal view (for actor a) by applying the query internalNonfunctionalRule,
and an Internal-Functional view from a Single-Actor-Internal view by applying

the query internalFunctionalRule.

internalNonfunctionalRule(v_alnternalViewClass)::=
80:0bjectClass: ol[lv_a DolJ{ find_root_softgoals(a),
{find_all_descendants(sg) | sg [1 find_root_softgoas(a) }}
Query45

find_root_elements(a: ActorElementClass)::=

8eIntentionalElementClass: e.parent=a [1 - ([:IntentionalLinkClass:|.from=e)

129/231 9/1/2004

master-thesis-v4.4.doc

Query46

find_root_softgoals(a:ActorElementClass)::=

8gy: SoftgoalElementClass: sglJ find_root_elements(a)

internalFunctionalRule(v_alnternalViewClass)::=
80:0bjectClass: ollv_a Do find_root_functional s(a),
{find_all_descendants(g) | g [find_root_functionals(a) } }

Query47

find_root_functionals(a:ActorElementClass)::=
8fe:I ntentional ElementClass:
(feld find_root_elements(a)) [1- (fe in Softgoal ElementClass)

7.2.4 Single-Softgoal View

Informal Description

The Single-Softgoal view presents a selected actor, one of its top-level

softgoal, and all the descendents of the softgoal.

130/231 9/1/2004

master-thesis-v4.4.doc

Example
- \‘
Guality »
[Service] .
; i A Y
> *
Tirneliness
" \'
’ : \
*
\
]
[1
L]
Properl',-']
By T Equlpped 2
- eRepu:urte 1
ELEES
[Asrrival Amblnfu]) i
Laocation] .
I
'
I
[]
I
]
I
¥
| I
t\ 7 \ &
EGRE] F
. gp?aenpuoar‘lte] [Beplotified/iaRydio *
b Aniinta) ks [t o
h (BeMgiified\iaTel2phone 7
o [Maklnzt]) *
\‘ ‘;

Figure 7.2-8 Single-Softgoal view derived from the Single-Actor-I nter nal

Nonfunctional view presented in the previous section

The view in Figure 7.2-8 is actually the same as its parent Internal-Non-
functional view shown in Figure 7.2-6. This is because our sample contains only
one top-level softgoal Quality [Service], and no further view decomposition is
necessary. This fact reminds us that rules can be selectively applied to a given

application, and that users should only apply those rules they consider necessary.

Justifications

In the non-functional view of a single actor, relationships towards different
top-level softgoals can be intertwined, a fact that makes it difficult to study the

process elements and the rationales behind these elements for a given softgoal.

Using a Single-Softgoal view, leaf-process elements that will affect the
satisficeability of the given softgoal are distinguished. The rationale for selecting

those leaf elements also becomes obvious. Thus, it appears natural to decompose

131/231 9/1/2004

master-thesis-v4.4.doc

a Non-functional view into Single-Softgoal views when the former becomes

barely comprehensible.

However, for reasons similar to those stated in Section 7.2.3, we do not

suggest excessive use of this view.

Selection Rule

Formally, we obtain a Single-Softgoal view from an Internal-Non-functional
view (for actor a) by applying the query nonfunctionalSingleSoftgoalRule. We

pass the selected softgoal (sg) as an input argument to the query.

nonfunctional SingleSoftgoalRule(v_a:NonFuntional ViewClas,
sg: SoftGoa ElementClass)::=
80:0bjectClass: ollv_a DolJfind_all_descendants(sg) %Query12

7.2.5 Single-Affected-Dependum or Actor View

Informal Description

A Single-Affected-Dependum view presents the selected actor and a selected
dependum that the former affects. In this context, by affect we mean that
elements from the actor exert contributions to the outgoing dependency link of
the dependum. In this light, this view also includes the internal elements that

exert the effects, the dependum, and the dependee of the dependum.

A Single-Affected-Actor view presents the selected actor and a selected other
actor that the former affects. In this context, by affect we mean that elements
from the actor exert contributions to the external links exerted from the other
actor. In this light, this view also includes the internal elements that exert the

effects, and the external links that these elements affect.

Example

Figure 7.2-9 shows a sample of a Single-Affected-Dependum view of role

Ambulance Crew as Impactor from the LAS case study. Note that agent

132/231 9/1/2004

master-thesis-v4.4.doc

Ambulance Crew connecting to the dependum should be omitted from the view.
Due to limitations in tool support, we have to retain it to ensure the dependency
link (from BeArrived [within 11 mins to Ambulance Crew] does not disappear.
The two internal elements contribute negatively to the softgoal dependum

BeArrived [within 11 mins] from agent LAS Management to agent Ambulance

ANECEmEeny

Crew.

EelTved
[wwithir 11
min=]

Ambulance
Cres

Ambulance
Crewy as
Impactor

Figure 7.2-9 Sample Single-Affected-Dependum view showing one affected
dependum BeArrived [within 11 mins] from the LAS case study

Figure 7.2-10 shows a sample of a Single-Affected-Actor view for agent TCG
to affect role Hacker/Malicious User. This sample is taken from the Trusted
Computing Group (TCG) case study (Horkoff 2004)—since we do not have such
patterns in the LAS case study. From the sample, we see that internal elements of
agent TCG (e.g., Isolate Applications) cast negative effects (e.g., a Hurt
contribution) to the two external links (e.g., the Break contribution to softgoal

dependum Protect [Stored Data]) exerted from role Hacker/Malicious User.

133/231 9/1/2004

master-thesis-v4.4.doc

PC Software
Manufacturer’
SErvice
Pravider

Implement
Endlorzemert

APorymous
Data .
Exéhange] Improve [File

Storage
Security]

Certify
Machines!
Applications

g /
o -
‘ .

-
.f

i R

Hacker/
halicious User

- ~

Figure 7.2-10 Sample Single-Affected-Actor view showing the effects to Hacker

from agent TCG from the TCG case study

Justifications

In a Single-Actor-External view, multiple internal elements may contribute
different effects to the same dependum (e.g., Protect [Stored Data]) or to the
external links exerted from the same actor (e.g., Hacker/Malicious User).
Sometimes these effects get complex, and thus we further decompose the

External view to a set of Single-Affected-Dependum and Single-Affected-Actors
views.

Under certain circumstances, users may want to study the external effects of a
certain dependum on a certain actor individually. In this light, using a Single-
Affected-Dependum or a Single-Affected-Actor view provides just sufficient
information for users to understand which internal elements of an actor may
contribute what effects to a selected subject. These types of views are normally

quite simple, and users of them are not distracted by unnecessary information
towards other external elements.

However, there may exist too many external dependums or external links that

one actor can affect. Applying this type of view excessively could result in a

134/231 9/1/2004

master-thesis-v4.4.doc

huge amount of fragmented views. Thus, we suggest using this view only when it
is absolutely necessary —when the circumstances described in the above
paragraph become totally fulfilled. Or a user may combine a few of these types

of views so long as the complexity of the resulting visualization is acceptable.

Selection Rule

Formally, we obtain a Single-Affected-Dependum view from a Single-Actor-
External view (for actor a) by applying the query singleAffectedDependumRule.
We pass the selected dependum (dl) which gets affected as input arguments to
the query.

singleAffectedDependumRule(v_aExternalViewClass, dl:DependencyLinkClass) ::=
80:0bjectClass: ollv_a Do find_contribution_to_dependum(a, dl),
find_contributer_to_dependum(a, dl) }

Query48

find_contribution to_dependum(a: ActorElementClass,dl: DependencyL inkClass)::=

8l:IntentionalLinkClass:(l.from.parent=a) [I (I.to=dl)

Query49

find_contributor_to_dependum(a: ActorElementClass,dl:DependencyL inkClass)::=
8e: ElementClass: [1:IntentionalLinkClass:

(I.from=e O IOfind_contribution to_dependum(a,dl))

Formally, we obtain a Single-Affected-Actor view from a Single-Actor-
External view (for actor a) by applying the query singleAffectedActorRule. We

pass the selected actor (al) who gets affected as input arguments to the query.

singleAffectedActorRule(v_a:ExternalViewClass, al:ActorElementClass)::=
80:0bjectClass: ollv_a Dol{ find_contribution_to_actor(a,al),
find_contributor_to_actor(a,al)}

Query50

135/231 9/1/2004

master-thesis-v4.4.doc

find_contribution to_actor (a,al:ActorElementClass)::=
8l:IntentionalLinkClass: (I.from.parent=a) [
(O2:IntentionalLinkClass: (I1.from.parent=al) [1(l.to =I1))

Query51

find_contributor_to_actor (a,al:ActorElementClass)::=
8e:ElementClass: [1:ContributionLinkClass:

(I.from=e O IOfind_contribution to_actor(a,a))

7.3 Summary

In this chapter, we presented a hierarchy of partial SR views, and each of the views
was explored in detail. These eight SR views were studied in this section: the Single-
Actor-Focus SR view, the Single-Actor-Internal view, the Single-Actor-External view,
the Internal-Non-functional view, the Internal-Functional View, the Single-Softgoal view,

the Single-Affected-Dependum view, and the Single-Affected-Actor view.

The hierarchy of partial SR views was illustrated using a generalized view map. The
Single-Actor-Focus SR view is placed as the top-level node in this hierarchy. We also
presented a way of using the sub-SR views to work with the evaluation process and

showed how to organize the set of resulting EVLR views.

The SR views are presented from both informal and formal aspects. An informal
description gives the reader a basic idea of what kinds of elements are qualified for a
specific partial view. The formal definition of the selection rule attached to each view
class makes it possible to automate these views in an i* modeling tool. Some

justifications for the each view are included.

Examples from the LAS case study was used to illustrate the idea of an original
Single-Actor-Focus SR view and various types of sub-SR views it can derive, making it
possible for the reader to compare the differences between the view types. One special
example was cited from the TCG case study (Horkoff 2004) to demonstrate the Single-
Affected-Actor view, since we did not have this modeling pattern in the LAS study.

136/231 9/1/2004

master-thesis-v4.4.doc

8 Application—Re-presenting the Trusted
Computing Group Case Study

The Trusted Computing Group (TCG) case study (Horkoff 2004) was first
generated in summer 2003. The case study explored opposing viewpoints from
two groups—proponents of TCG and opponents of TCG—and, accordingly,
constructed two sets of diagrams. Each diagram is labeled as a “model” in the
TCG case study. There are approximately 120 such models in the document, and
more than half of them contain over 40 i* notations (elements and links) each.
One extreme case contains 44 elements and around 100 links. With the volume of
information trying to express in one diagram, text in each element turns out
hardly readable, and links are so intertwined that it is hard for a reader to
identify connections between the elements. The TCG case study documented in
(Horkoff 2004), which we cite as TCGCS throughout this chapter, raised

considerable scalability issues in the i* framework.

The complexity and size of TCGCS renders it a good example in validating
our newly proposed view extension. Thus, we used the resulting diagrams from
TCGCS to demonstrate that our proposed approach can simplify the
representation of the huge models, yet serve the same purpose as those diagrams
shown in the original document. In this chapter, we highlight some interesting
parts from TCGCS that are considered sufficient to illustrate the use of our view
extension. The rest of the original work can be organized following a similar

manner.

Our rework and TCGCS differ in the use of terminologies and the organization

of the diagrams.

Terminologies used in our proposed view extension differ from what was used
in TCGCS. The two sets of diagrams produced in TCGCS are considered as two
i* baseline models, representing the situations of TCG from two contrasting

viewpoints. We name the one representing the viewpoint from TCG proponents

137/231 9/1/2004

master-thesis-v4.4.doc

as “TCG.Pro,” and the one for the opponents as “TCG.Anti.” The term “model”
(diagram) from TCGCS corresponds to the concept of view in our extension.
Each view is a projection over the baseline model according to some predefined
selection rules in the view extension. In our rework, we name each derived view
following a consistent naming convention, prefixing it with the name of its

corresponding baseline model.

The manner we followed in presenting the views also differs from TCGCS.
Views (models) in TCGCS were created and documented as the need arose,
without a predefined systematic method. This practice appears natural during the
model acquisition process, yet model users may find it difficult to locate specific
information from the 120 models. We partition the views obtained by using the
view extension into four basic types (AC, SD, SR, and EVLR), and show the

views in a sequence according to their types.

Our rework of TCGCS resulted in atotal of 37 diagrams, showing the baseline
model, 15 AC views, 8 SD views, and 13 SR views. Among these views, only 2
remain exactly the same as what was demonstrated in TCGCS, 17 of which are
newly added ones, the other 18 being modified. In addition, four view maps (VM)
for showing the relationship for basic views, AC views, SD views, and SR views,
respectively, were also supplied to make attainable the relationship among views

from the same group.

EVLR views are not presented in this chapter since we found it impractical to
fit the evaluation diagrams from TCGCS into our EVLR views. A major reason
for the difficulty is that the label propagation algorithm employed in TCGCS
allows a label be propagated from a dependum to both its depender and dependee,
while we feel it only natural to propagate a label to a depender. Any dependee, in
i* semantic, should have the autonomy to decide its own label regardless of what
was assigned to its dependum. Since this issue deserves further research, and
since we cannot supply meaningful results unless this issue is properly resolved,
we have decided to omit the EVLR views of TCG in this thesis. Nevertheless, as

argued in Section 7.1, omitting the EVLR feature does not affect our view

138/231 9/1/2004

master-thesis-v4.4.doc

extension, because the EVLR views are considered as SR views with only the

evaluation will be different.

Section 8.1 presents an overview of the relationships between the baseline
models and original views that will be used in the subsequent sections; Section
8.2 to 8.4 present the partial AC, SD, and SR views we obtained from the case
study, respectively; and Section 8.5 summarizes results and contributions

resulting from this reworking of TCGCS.

8.1 Overview

Figure 8.1-1 shows the VM of the basic views for our TCGCS rework. Each
view is represented using a rectangle; the view name and view type are separated
by a semi-colon; and the corresponding visualized diagram is included in the
bracket. The views shown in a dashed rectangle do not appear in this section for
we selectively apply our approach to interesting parts. Y et they do—or should—
exist in TCGCS in order to maintain the completeness of TCGCS. The view
shown in a dotted rectangle implies it does not necessarily exist even in the
original TCGCS, and can be derived from other views. A detailed definition of

the graphical notations for a VM can be found in Section 4.2.

From Figure 8.1-1(a), we see that the proponents baseline model TCG.Pro is
decomposed into four basic views. The Basic AC view (TCG.Pro.AC) and the
Basic SD basic view (TCG.Pro.SD) are visualized in both this chapter and
TCGCS. We use these two basic views as our original view to derive a set of

partial AC and SD views in the subsequent sections, respectively.

Figure 8.1-1(b) shows that TCG.Anti, the baseline model from the TCG
opponents’ viewpoint, was not presented explicitly in TCGCS. This may because
TCG.Anti differs only in the rationales surrounding actor TCG from TCG.Pro.
The SR view for actor TCG from TCG.Anti (TCG.Anti.SR.SA-TCGQG) is the
extreme case which containing 44 elements and over 100 links in one diagram,

so we choose it as our original view to derive a set of partial SR views.

139/231 9/1/2004

master-thesis-v4.4.doc

TCG.Pro:

{Figure &.1-2*)

The Baseline Model

TCG.Pro.AC :
The Basic AC View
(Figure 8.2-2)

TCG . Pro.SD:
The Basic SD View
{Figure 8.3-2)

_ L _

TCG.Pro.5R:
The Basic SR View

(N/A)

N

| | TceProEvR:
The Basic EVLR View
| | (N/A)

TCG Anti
The Baseline Model
{NIA)

TCG.ANSR ;
——— The Basic SR View
{N/A)

TCG.ANti.EVLRE :
+—— The Basic EVLRE View
(NIA)

TCG.AMAC ;
—— The Basic AC View
| (NIA)

[TCG.Anti.SD :
The Basic SD View
| (NIA)

TCG.ANt.SR.SA-TCG :
A Single-Actor-Focus View
(Figure 8.4-2)

{b) Baseline model and basic views for TCG.Anti, and the original view used in the SR section

Figure 8.1-1 View map showing the relationships among the basic views from

TCGCS

Figure 8.1-2 shows the revised Baseline Model that we constructed according

to the diagrams presented for the TCG proponents’ viewpoint in TCGCS. This

model bears the name TCG.Pro. The original views used in the AC and SD

sections are derived from this baseline model. However, this baseline model is a

partial one, not showing the internal structures within each actor.

140/231

9/1/2004

master-thesis-v4.4.doc

HA

Malicious
Individual

Govemnment | PLAYS
:
5 : :
\ F B 3
2y [STTENT
3 £
S — i
DX ". ?sesﬁ Sen
N o 4 =} o
T <ot TSesl) o older a
R iruses/ o & SlEris
‘é’. 5 (e B2l
A, s onlen] sold g
3 pleris _
eI % . [
3

..

raﬁsz%{

“ Y

e

N ‘//(
AfinamT o U

'.

i
[
x|

[Owna/
Copyrighted
eI

PC formats]

prororTy
Crwenershid X
Unknu
" e
& ¢opyrightd
Content
a —\ He

2

Townear
+ opyrighte
£ Cwned!

opyrighted

cantent]

erice y lBemiees| = _ _\1__ _

Provider TG
Iember as
G (TCES

PC User and|
ontent Userf!

Individual b f OERATIEN Sl EEE AL e N e T T o
Cansumer

Figure 8.1-2 Revised Baseline Model representing the viewpoints from the

proponents of TCG

8.2 Actor Class Views

In this section, the selected original view (TCG.Pro.AC) is scaled down into
a set of related partial AC views; their relationship is shown in Figure 8.2-1.
TCG.Pro.AC (or AC) is decomposed into two Single-Network views: one for
producer (AC.SN-Producer) and one for consumer (AC.SN-Consumer).
AC.SN-Consumer is further decomposed in two dimensions. One dimension is
decomposed according to element types, resulting in a Plain-Actors-Only view
(AC.SN-Consumer.PlainActors), an Abstract-Actors-Only view (AC.SN-
Consumer.AbstractActors) and an Agents-Only view (AC.SN-
Consumer.Agents). The other dimension is decomposed according to plain
actors, resulting in four Single-Plain-Actor sub-views (e.g., AC.SN-
Consumer.SPA-PCUser). A set of Direct-Replaceable views (e.g., AC.SN-

Consumer.DR-IndividualConsumer) are also derived from AC.SN-Consumer.

141/231 9/1/2004

master-thesis-v4.4.doc

We have shown the decomposition of AC.SN-Consumer in Figure 8.2-1, and

there are others such as sub views of AC.SN-Producer which also belongs to this

category. Their relationship would follow the same pattern as shown for AC.SN-

Consumer in Figure 8.2-1, so we do not repeat them in this section.

[TCG.Pro]AC :
The Basic AC View
(Figure 8.2-2)

AC.SN-Producers :
A Single-Network View

AC_SN-Consumers.PlainActors
A Plain-Actors-Only View, -
(Figure 8.2-6)

{Figure 8.2-3)

AC.SN-Consumers.AbstractActors :
An Abstract-Actors-Only View, ~
(Figure 8.2-7)

AC SN-Consumers :

AC.SN-Consumers. Agents :
An Agnets-Only View, ~
(Figure 8.2-8)

A Slr;glie;b::t: gt‘;)\'{'ew AC.SN-Consumers DR-IndividualConsumer :
ure o = A Direct-Replaceable View, ~
(Figure 8.2-13)
AC SN-Consumers. DR-Government :
e A Direct-Replaceable View, ~
(Figure 8.2-14)
AC.SN-Consumers SPA-PClUser
A le-Plain-Actor Vi = -
Sing ({eFi 32 BCQ(-JQr) L AC SN-Consumers. DR-MaliciousUsers :
gt A Direct-Replaceable View, ~
(Figure 8.2-15)
AC.SN-Consumers.SPA-ContentUser :
A Single-Plain-Actor View, ~ i AC.SN-Consumers.DR-HelenDuff :
(Figure 8.2-10) E A Direct-Replaceable View, ~
(Figure 8.2-16)
AC_SN-Caonsumers SPA-MaliciousUser :
A Single-Plain-Actor View, ~ AC.SN-Consumers. DR-GeorgeHudson :
(Figure 8.2-11) A Direct-Replaceable View, ~
(Figure 8.2-17)
LEGEND AC.SN-Consumers. SPA-DataPirate :
“ A Single-Plain-Actor View, ~
...... ew View i 5
orciagon _[: .. (Figure 8.2-12)
WiewName %
ViewType[. ViewType|~] A view

Figure 8.2-1 View map for some partial AC views

8.2.1 The Basic AC view

Figure 8.2-2 shows the Basic AC view from the TCG proponents’ viewpoint,

and we name it as TCG.Pro.AC. This is an example that a basic view, direct

projection over a baseline model, still complex. In the diagram showing below,

approximately 47 actors and 50 links are presented, making it almost unreadable.

142/231

9/1/2004

master-thesis-v4.4.doc

Figure 8.2-2 Basic Actor Class View

8.2.2 Single-Network views

Applying the single network rule (singleNetworkRule) to TCG.Pro.AC, we
obtained two Single-Network views: TCG.Pro.AC.SN-Producer and
TCG.Pro.AC.SN-Consumer.

TCG.Pro.AC.SN-Producer (Figure 8.2-3) exhibits shows the associations
between three plain actors—Content Owner/Copyright Holder, PC Software
M anufacturer/Service Provider, and TCG—and their specified forms. There is

a corresponding diagram (model 4.3) to this view in TCGCS.

Since the notion of “specifies’, “complete composition”, and “agent instance”
are newly introduced in our extension, our AC views embraces extra information
(e.g., “agent TCG specifies plain actor TCG”) and distinguished agent instances
(e.g., IBM) than their corresponding original models in TCGCS. All AC views

presented in this section resemble these features, so we will not repeat this point

again.

143/231 9/1/2004

master-thesis-v4.4.doc

Eoftwrars il
anufacturel,
Service
Pravwvicler
> Mlembyg
Halder T

orte |~

Cravner s

Copyright
Haolder a=
Letende

PC
Softweare Y54
Content [=1glR) =T WIg=Ty
1 Clirl\-\-'ru_ar;_'rt Service
A opryrig]
P

FPLAYS |z Part-of

o
= anSufac;ture
d f \ oftware ervice
rgfor:%pét"ig Cormparty Proveider
_Memby

IR,

i e o] e g]

Figure 8.2-3 Single-Network view for producers from the TCG proponents’

viewpoint

TCG.Pro.AC.SN-Producer (Figure 8.2-4) is constructed based on information
collected from TCGCS (including model 4.6, model 2.6.3, model 2.6.4, and so
on). Plain actors (e.g., actor PC User), specified actors (e.g., role PC User and
Content User), and agent instances (e.g., Helen Huff) were also added. These
new actor elements are added to fill the logic gaps between actors in TCGCS so
that users can apply the external relationship inheritance rule to calculate
indirect external dependencies. In this light, actor associations expressed in AC
views can support automated substitution of actors in SD views (see Section
5.2.3 for detail).

However, with these enriched information to TCG.Pro.AC.SN-Producer, the
view appears more complex than the original one; thus, further decomposition is

required to improve its comprehensibility.

144/231 9/1/2004

master-thesis-v4.4.doc

Figure 8.2-4 Single-Network view for consumers from the TCG proponents’

viewpoint

8.2.3 Plain-Actors-Only, Abstract-Actors-Only and Agents-Only views

Figure 8.2-5 shows the Plain-ActorssOnly view derived from
TCG.Pro.AC.SN-Consumer by applying the plain actors rule
(plainActorsOnlyRule). This view contains only plain actors and their direct
specified forms, and it is named as TCG.Pro.AC.SN-Consumer.PlainActors.
The view does not correspond to any diagram in TCGCS, nor does it appear
immediately useful in this case, yet it might be in other cases. We show the view

here to demonstrate a systematic approach in deriving various types of views.

Malicious
Uzer and
Attacker

[rata Pirate

Specifies Specifies

Data Pirate

Figure 8.2-5 Plain-Actors-Only view for consumers group

145/231 9/1/2004

master-thesis-v4.4.doc

Figure 8.2-6 shows the Abstract-Actors-Only view derived from
TCG.Pro.AC.SN-Consumer by applying the abstract actors rule
(abstractActorsOnlyRule). This view contains only abstract actors and the
associations among them, and it is named as TCG.Pro.AC.SN-
Consumer.AbstractActors. The view is a revised version of its correspondence
in TCGCS (model 4.5), based on the modification we made in TCG.Pro.AC.SN-

Consumer.

Hacker!
Malicious

Incliviciual
ONSLITE!

Business
Consumer ol 125 N S et

Pirating
Group

Pirating

Malicious L
G Inclivicluzl

roup Malicious

Inclivicluzl

Figure 8.2-6 Abstract-Actors-Only view for consumer group

Figure 8.2-7 shows the Agents-Only view derived from TCG.Pro.AC.SN-
Consumer by applying the agents rule (agentsOnlyRule). This view contains only
agents and agent instances and the associations among them, and it is named as
TCG.Pro.AC.SN-Consumer.Agents. Same as TCG.Pro.AC.SN-
Consumer.PlainActors, we show this view here to demonstrate a systematic

approach in deriving various types of views.

146/231 9/1/2004

master-thesis-v4.4.doc

Firating
Inckvicksal

—————

Maicious
roup £ |,
Individes

| o
3 %
P .
Prudential Heational L o FEH ’
heurance) o Bankof W N FTTTT Mg Y o=l
B L N 1 1 —
! e
i
ot
s

Figure 8.2-7 Agents-Only view for consumers group

8.2.4 Single-Plain-Actor views

Skecmes
!
| 7 o 7 A
I Lo usey !
i and Y 1SA i
| ‘I " onsum
I A User | User and
(A =il Caontent
I ot
1 And
1A Plars
(e
User 154
. g
P
— Individual
FLAYS LAvS ansumer
IME
e d) s g4

,,,,,,

l | = 1 \5A
I USA 1 . | e o talicinus
\Bavernment, If Canadiany| "] X mdwdoatf”™— L=t
fBavemnment, [] o (—
| 1 (P rudentia | P
,,,,,, | | Insurance | 1
,,,,,, Company/ | | féig}]]ﬁﬂu?l | e
i § I\ Canada /1 . RS =
I | Malicious = If Pirating }!
Group

o

S e A [| | e
[|

[|

—————— NCompanyf 1
I

Figure 8.2-8 Single-Plain-Actor view for “PC User”

Figure 8.2-8 to Figure 8.2-11 show four Single-Plain-Actor views derived
from TCG.Pro.AC.SN-Consumer by applying the single plain actor rule
(singlePlainActorRule) for each of the four plain actors, one at atime. This type
of view contains the selected plain actor and the specified forms that can inherit

all of its external relationships. We name the four views TCG.Pro.AC.SN-

147/231 9/1/2004

master-thesis-v4.4.doc

Consumer.SPA-PCUser, TCG.Pro.AC.SN-Consumer.SPA-ContentUser,
TCG.Pro.AC.SN-Consumer.SPA-MaliciousUser, and TCG.Pro.AC.SN-
Consumer.SPA-DataPirates. These views do not have a correspondence in
TCGCS, but we show them to illustrate how a given AC view might be

decomposed according to domain knowledge plain actors.

PC Uze
and

[\ Content f5
| Llzer

o —

Individual
onsume

s

Malicious
Individual

Figure 8.2-9 Single-Plain-Actor view of " Content User"

148/231 9/1/2004

master-thesis-v4.4.doc

Shecifies

:

Hackers
Maﬂwmus

Malicious
Froup

Evil Data
Firating
ACompare/ |

Figure 8.2-10 Single-Plain-Actor view of “Malicious User (s) and Attacker(s)”

149/231 9/1/2004

master-thesis-v4.4.doc

Data Pirate
SAecifies

Data Pirate

Pirating
Inclividual

Pirating
Group

ey o]

Figure 8.2-11 Single-Plain-Actor view of “Data Pirate”

8.2.5 Direct-Replaceable views

Figure 8.2-12 to Figure 8.2-15 show Direct-Replaceable views derived from
TCG.Pro.AC.SN-Consumer by applying the direct replaceable rule
(directReplaceableRule) for the selected actors, one at a time. We use these
views to deduce inter-actor dependencies. The given actor can stand in for other
actors shown in this view in any SD view containing the latter. We highlight the
given actor using a solid rectangle. This type of substitution implies that the
given actor has either the exact same external relationship as, or a larger set of

external relationships than, the ones that are directly replaceable by it.

150/231 9/1/2004

master-thesis-v4.4.doc

Figure 8.2-12 Direct-Replaceable actors view of agent I ndividual Consumer

For example, Figure 8.2-12 shows a given actor “agent Individual
Consumer” and the Direct-Replaceable view of it. There are corresponding
diagrams (model 2.6.3 and model 2.6.4) for this view in TCGCS. We name this
view TCG.Pro.AC.SN-Consumer.DR-IndividualConsumer. From this view we
learnt that the given actor inherits all external relationships from role PC User,
role Content User, role PC User and Content User, or role Individual
Consumer as PC User and Content user, and that therefore agent Individual

Consumer can substitute any of these in an SD view.

Some other examples are the Direct-Replaceable views for agent Government
(Figure 8.2-13(a)) and role Malicious Group...Users (Figure 8.2-13(b)), and we
name them TCG.Pro.AC.SN-Consumer.DR-Government and
TCG.Pro.AC.SN-Consumer.DR-MaliciousUsers, respectively. There are

corresponding diagrams (model 2.17.1 and model 2.19.2, respectively) for these
views in TCGCS,

151/231 9/1/2004

master-thesis-v4.4.doc

Government
'5 I Aftacker and

Individual as
Government
Aftacker and
Hackers

n +

Government
cker

Hackeri
Attack alicious Use

(a) For agent Gover nment (b) For role Malicious Group...User

Figure 8.2-13 Direct-Replaceable views for specified actors

In addition, we show some views that do not exist in TCGCS but will be used
to derive SD views of agent instances such as Helen Duff and George Hudson.
Figure 8.2-14 and Figure 8.2-15 show the Direct-Replaceable views for Helen
Duff and George Hudson, and we name them TCG.Pro.AC.SN-Consumer.DR-
HelenDuff and TCG.Pro.AC.SN-Consumer.DR-GeorgeHudson, respectively.

AT
fonsume
as PC
User and
Content

et

Individual
ansurme
Fariting

Individual

Malicious
Individual

Figure 8.2-14 Direct-Replaceable view for agent instance Helen Duff

152/231 9/1/2004

master-thesis-v4.4.doc

Data
Firate

Pirating
Individual

= -

Figure 8.2-15 Direct-Replaceable view of agent instance George Hudson

8.2.6 Discussion

In this section, we demonstrate the process and results of the decomposition of the
basic AC (TCG.Pro.AC) into various forms of partial views according to the selection
rules. Relationships among these views were presented in a View Map, where each view
(diagram) is modeled as a node in a tree-like structure. This view map helps increase the

efficiency in accessing the distributed views across a document.

Arista
Records

ntertainmen
Corporation

Caontent

Ho
Attacker

FProvider
— -

(a) Model 4.3 in the original work

153/231 9/1/2004

master-thesis-v4.4.doc

orte

Oreenert
Copyright
Holder as
Lefends
" =

PC Zottwars P
Sottweare Y=4 anutacturek,
Content arufacture e Service
Craener s Service Provider
154 | Copyright Erovide % hlembe
5 Haolder — e
P

FLAYE 2 BPart-of

e A
Anufacturel
Service

Provider
C_Mernibe

Ertertainment Software
Coropetatio Comigay

(b) Single-Network view for consumers

Figure 8.2-16 Comparison of Actor Views (diagram) showing redundancy
identified

The original Basic Actor Class view from TCGCS was developed in an ad-hoc
manner, and thus contains inconsistencies. Without a systematic method, it was
difficult to identify these problem areas through its 120 diagrams. Our research
enforced for the first time a tighter relationship between the AC and the SD
views so that modeled elements are subject to a more rigorous consistency check
within one model. Using this technique, we identified redundancy, logic gaps,

and inconsistency from the original TCG case study.

First, we identified redundancy in the original model. In Figure 8.2-16(a),
there are two “plays” links to role PC Software manufacturer/ Service
Provider that originated from agents Intel and IBM, respectively. During our
revisit, we found that these links are redundant since each of them has been
implied by the “INS” links from it (e.g., Intel) to agent PC Manufacturer/
Service Provider TCG Member, and then by the “plays” link from the latter to

154/231 9/1/2004

master-thesis-v4.4.doc

role PC Software manufacturer/ Service Provider. In fact, Intel and IBM appear
to be agent instances, and in our reformulated i* semantics, they should not
relate to “plays” links. Therefore, in our modified version (Figure 8.2-16(b)),
these redundancies are removed, and Intel and IBM are highlighted as agent

instances to avoid confusion from the agent.

Next, we identified logical gaps in the way actors in the SD views are
replaced. For example, in TCGCS, role Content User in Figure 8.2-17(a) was
replaced by role Individual Consumer as PC User and Content User
(ICPCUCU) in Figure 8.2-17(b), and the latter seems to share the same set of
external relationships as the former. We inferred the human reasoning from this
transition: First, since agent Individual Consumer “plays” role Content User and
PC User, we introduce a new role ICPCUCU to cover all three actors; next, since
role ICPCUCU covers Content User, it should support all the external
dependencies of the latter. These rationales were not specified explicitly in the
original model and this fact may have led to user confusion, while the

replacement of actors cannot be automated.

Criwiied
Copyrighted
Content Be
Furchased

Owyned)
Copyrighted
Content

Affordable
rediCopyrig
Content]

[Individual

consumer

apyrignt
Ownership
Laws Be
allowed

(a) Model 2.6.3in TCGCS

155/231 9/1/2004

master-thesis-v4.4.doc

T
Copyrighted
Caontent Be
Purchased

O el o
Copyrighted Individual
Content

Affordahle
nedfC apyrig
Cantent]

apyrght
Cwnership
Laws Be
ollowed

(b) Model 2.6.4in TCGCS

Figure 8.2-17 Example of logic gaps in actor replacement

To make the transition from the model 2.6.3 to model 2.6.4 automatically
obtainable from the Baseline model, we modified these associations among agent
Individual Consumer, role Content User, role PC User, and role Individual
Consumer as PC User and Content User (ICPCUCU). Figure 8.2-18 shows the
result of our modification. We first separate this part of information from the SD
view and fit them into the AC view. Then we introduce a new role PC User and
Content User (PCUCU) as the whole for role PC User and role Content User.
From the implication of the “complete composition” links in the AC view, we
know that the new role (the whole) inherits all external relationships from its
parts. We let role ICPCUCU be a specialized form of role PCUCU through the
“ISA” link, and we know that the former inherits all external relationships from
the latter. Thus, ICPCUCU indirectly inherits all external relationships from role
Content User. The above analysis process reaches the same result as was
expected in the transition shown in Figure 8.2-17, yet this process demonstrates a

systematic approach and can be fully automated.

156/231 9/1/2004

master-thesis-v4.4.doc

Figure 8.2-18 Modified representation to fill the logic gap

Similar adaptations have been made to the substitution of PC User (Figure
8.2-19) and Hacker/Malicious User (Figure 8.2-20). Our modified versions are

shown in Figure 8.2-21(a) and (b), respectively.

ACCRES
[Threatening
Technology]
CsiSofwar
Sendces Be
Sold
CaiSofware,
Seriices
Affordable
rrechnnlngy
Innovation
Z Sofhwar
anufacturer {] PC i
Service LLgchnalogy LY} PC Lser
Frovider
Security [PC]
: PLEATS
Privacyy
[l@formationiDafa]
ompatabili
[with Existing
el Government 7T T,
Trust [PC \‘
HSa Security 1
s |[MationfState h
\ r
k s
R

(a) Diagram showing actor association

157/231 9/1/2004

master-thesis-v4.4.doc

ACcess
[Threatening
Technology]

CsiSofwar o
Servjces Be
S0l

CeiSofware,
Serices

Affordalle
rl'echnolngy

Innowation
[FC

C Softwar
anufacturer,

Seryice LLgchnology Government
Provider

as PC Lser
Security [P

fany

P rivay
[I§formation/Daga)
ampatahbili
[wvith Existing
Technola

Trust [PC
ser]

(b) Diagram showing the resulting substitution

Figure 8.2-19 Substitution of role PC User in TCGCS

Anonymaus

Malicioys
5 : Groupf
CWETNITIER i
Malicious 2o B0 Lisar Individual
Code
g
] -

Reduc
[Spam
Secure '=
ransaction s

Protect Hacker S,
[Stored Data = talicious ~
Usger "\

ationiState
1 Security He
¥

I

[|

1 ACqUIre

5 Classified

A\ A\ Electronic

nformatio

(a) Diagram showing actor association

158/231 9/1/2004

master-thesis-v4.4.doc

Bhonymous
[Data

=% Exchange]

L 7

™~ ¥
o .
anufacturer
Provider Jgp [¥irnsesi ‘_! Government
. @,‘ Malicious ““E'.'.-"'—- as PC User
foe
\ el T

-

Malicious
Grouplindividua
as_Government
Attacker and
acker/Malicioug

(b) Diagram showing the result of substitution

Figure 8.2-20 Substitution of Hacker/Malicious User in TCGCS

Hacken
Malicious
Lizer

Eovamme
Atacker
. —

Figure 8.2-21 Our modified AC views in removing the logic gaps

Finally, we identified one inconsistency (or duplicate) in the actor-type
assignment. From models 2.5.11 to model 2.5.13, agent PC
Manufacturer/Service Provider TCG Member as TCG (TCPA)
(PCMSPTCGMTCG) seems to have replaced role PC Manufacturer/Service
Provider (PCMSP) in the SD diagram. If we follow the same tacit logic
explained in the previous comment, the former (agent PCMSPTCGMTCG) has to
“plays” the latter (role PCMSP) to make the replacement in the SD view
consistent. On the other hand, agent PCMSPTCGMTCG seems related with agent
TCG (TCPA) in some way. Since TCG is a group, most likely the former should
be “is-Part-of” the latter. However, there already existed an agent PC

159/231 9/1/2004

master-thesis-v4.4.doc

Manufacturer/Service Provider TCG Member that has exactly the same actor
associations in the model. Thus, either agent PCMSPTCGMTCG is aduplicate or
it introduces some inconsistency; it does not seem like a duplicate in that the
author used three models to emphasize it. Based on the above assumptions, we
modified PCMSPTCGMTCG into a role that is a specialized form of role
PCSMSP and is played by agent PCMSPTCGM. It still can replace role PCSM SP

in any SD view. The modified version is shown in Figure 8.2-22.

(?? The corresponding models in TCGCS are very big, do | show them here??)

Ess 1S
Sofware
ANUTACTUr e
enru:e

! LLE

T
anutacturars
Service
Provider
G herm

Figure 8.2-22 Modified version showing PCMSPTCGMTCG asarole

The AC view appears to be the weakest part in TCGCS, but this is a result of
the lack of definitions, rules and guidelines in previous i* literature. With the
clarification in our reformulated i* framework—and especially with the
introduction of the external relationship inheritance rule along association
links—redundancies, logical gaps and even inconsistencies that existed in the
original model were revealed. Thus, our approach not only scales down complex

AC views, but also helps verify the validity of large scale i* models.

8.3 Strategic Dependency Views

Pair-wise-Actors and Single-Actor-Focus SD views were extensively used in

TCGCS. This intuitive approach matches exactly what we have proposed in

160/231 9/1/2004

master-thesis-v4.4.doc

Chapter 6. We can stay with the Specified Actor Based SD view throughout our
rework because the two baseline models documented in TCGCS only contain
specified actors. Thus, the only problem is the lack of a reference structure for

the SD diagrams in the original document.

In this section we present related SD views in a centralized manner and
provide their relationships in a view map. Our purpose is to verify our proposed
view extensions, so we choose just enough diagrams from TCGCS to test each
type of view. There are other diagrams in TCGCS correspond to SD views, since
they would follow the same pattern as the ones we discuss in this section, we do

not show them here.

We choose the Basic SD view (TCG.Pro.SD) from TCG proponents’ view
point as the original view. Figure 8.3-1 shows the relationships between
TCG.Pro.SD and the sub-views derived from it. TCG.Pro.SD (abbreviated as SD)
is first decomposed into a set of Single-Actor-Focus SD views, and we select
five of them in this section, as follows. role Government as PC User (SD.SA-
GovernmentPCU), role Individual Consumer as PC User and Content User
(SD.SA-IndividualPCUCU), role Malicious User, agent TCG (SD.SA-TCGQG),
and agent instance George Hudson (SD.SA-GeorgeHudson). SD.SA-
GovernmentPCU and SD.SA-TCG are further scaled down to Pair-wise-Actors
views SD.PW-GovernmentPCU-PCSMSP and SD.PW-TCG-HackerMU,

respectively.

161/231 9/1/2004

master-thesis-v4.4.doc

S0.SA-GovernmentPCU :
A Single-Actor-Focus View |.......
(Figure 8.3-3)

SD.SA-IndividualPCUGLL.: -
A Single-Actor-Focus View
(Figure B.3-4)

[TCG.Pro]SD:
The Basic 5D View e SD.8A-MaliciousUser :
(Figure 8.3-2) — A Single-Actor-Focus View
(Figure 8.3-5)
SD.BA-TCG :
— A Single-Actor-Focus View |-~
(Figure 8.3-6)

SD.SA-GeorgeHudsaon :
A Single-Actar-Focus View
(Figure 8.3-7)

SD.PW-GovernmentPCU-PCSMSP :
e A Pair-wise-Actors View, -
) {Figure 8.3-8)

(Figure 8.3-9)

SD.PW-TCG-HackerMU :
....... = A Pair-wise-Actors View, ~

LEGEND

> View Vigw
projaction decomposition

ViewNams :

ViewType[, ViewTypel~,] | A view

Figure 8.3-1 View map for partial SD views from the Pro TCG view point

8.3.1 The Basic SD view

Figure 8.3-2 shows the Basic SD view from the TCG proponents’ viewpoint;

we name it as TCG.Pro.SD. This view shows an extremely complex relationship
among actor PC User, TCG (TCPA), PC Software Manufacturer/Service Provider,

and Hacker/Malicious User. It appears quite difficult to read.

162/231

9/1/2004

master-thesis-v4.4.doc

PLAYS
Hacker
Maliciaus
Liser

P
T
| Iy =
P——frhreatening
echnolog

—

o I urt
winer |
Copyright REW 5

Holder 'y [Dwned!
& — T Copyrighted

& Break AR
% b
- -~ - -~
Data
Firate
- -
PLA —

PC farmats]
ME=n

0
o
Pirating
g mavidual
T NS

EC P ==
‘ . I I
Brices I George n [Ownedr h—10 m!
A Hudszon 1 opyrighteg L/ 1
i Content |

b

Figure 8.3-2 Basic SD view from the TCG proponents’ viewpoint

8.3.2 Single-Actor-Focus SD views

We apply the single actor rule (singleActorFocusSDRule) to TCG.Pro.SD and
obtain a set of Single-Actor-Focus SD views. Those for the following five actors
are presented: role Government as PC User, role Individual Consumer as PC
User and Content User, role Malicious Group/Individual as Government
Attacker and Hacker/Malicious User, agent TCG, and agent instance George

Hudson.

Figure 8.3-3 shows the Single-Actor-Focus SD view of role Government as
PC User. We name it TCG.Pro.SD.SA-GovernmentPCU. There are two
correspondence diagrams (models 2.20.1 and 2.18.1) to this view in TCGCS.

163/231 9/1/2004

master-thesis-v4.4.doc

Trusted
[FC User]

S otware
Serérlces

Hacket!
Malicious
Lzer

[Spam] ¥,
)

o,
i ¥ e
domn 2
¢——3

ACEEES
IThreatening
#; echnolog
(1 .
& .

L9
je}
=
=
=
il

Pl
Software
Senices

Figure 8.3-3 External relationships for role Gover nment as PC User

Figure 8.3-4 shows the Single-Actor-Focus SD view of role Individual
Consumer as PC User and Content User (ICPCUCU). We name it
TCG.Pro.SD.SA-IndividualPCUCU. It summarizes the information contained
in TCGCS (model 2.3.1 for PC Manufacturer, model 2.4.1 for Hacker, model
2.5.1 for TCG, and model 2.6.1 for Content Owner). Using actor associations
(shown in Figure 8.2-12) and the external relationship inheritance rule, we know
that role ICPCUCU shall inherit all external relationships for role PC User and
role Content User. That is the method we used to calculate the external
relationships for ICPCUCU.

164/231 9/1/2004

master-thesis-v4.4.doc

Hacket!
Malicions
User

Trusted
[PC User]

ransactiongie

- o

Crhwred!
Copyrighte
cantent]

PCi
Software
Services

Figure 8.3-4 External relationships for role Individual Consumer as PC User and

Content User

Figure 8.3-5 shows the Single-Actor-Focus SD view for role Malicious
Group/Individual as Government Attacker and Hacker/Malicious User
(MGIGAHM). We name it TCG.Pro.SD.SA-MaliciousUser. There is a
correspondence in TCGCS (model 2.4.1) to this view. We replaced role
Hacker/Malicious User (HMU) with role MGIGAHM in our version — because
the former is a specified form (ISA) of role Government Attacker and
Hacker/Malicious User (GAHMU), while GAHMU is the whole of HMU.
According to the external relationship inheritance rule, MGIGAHM inherits all

external relationships from HMU. Therefore, the replacement in this SD view is

legal.

165/231 9/1/2004

master-thesis-v4.4.doc

malicious
Group!

Individual as
Govarnrment
Aftacker and

Figure 8.3-5 External relationships for Malicious Group/I ndividual as Gover nment

Attacker and Hacker/M alicious User

Figure 8.3-6 shows the external tasks and goals of agent TCG and illustrates
how they affect the effects exerted by role Hacker and role Data Pirate. We name
it TCG.Pro.SD.SA-TCG. Information shown in this view corresponds to three
diagrams (models 2.5.1, 2.10.1, and 2.14.1) in TCGCS. Note that in the diagram
shown below, we use the full name of each dependum to indicate its depender
and dependee in the form “(depender, dependee)”. For example, Reduce [spam]
(PCUser, PCMSPTCG) denotes that PC User depends on PC Software
Manufacturer/ Service Provider as TCG Member (PCMSPTCG) to reduce

spam.

166/231 9/1/2004

master-thesis-v4.4.doc

Linknown

rusted

£ T OB T
(PCUser,
PCSofware
r\n1anufac:tl.||rerrfa

CrovnediCopyrighte dy
content sold anling]
(ContentOwner!
CopyrightHolder,

Wirnses) 3y
Malicious

Secure I
ransactions] '

Crwvnership Laws B
Followed
(ContentOwner!
CopyrightHolder,
ontentllser

\
=~ Break
=~ Data
Firate
—

nRorirroUg
[Data
wehange,
=tk L

)

iy

Unknown

Figure 8.3-6 External relationships for agent TCG (TCPA)

Figure 8.3-7 was derived from the Single-Actor-Focus SD view for role Data
Pirate and the Direct-Replaceable view of agent instance George Hudson
(Figure 8.2-15). Since the agent instance “plays’ role Data Pirate, it inherits all
external relationships of that role. In addition, we know from TCG.Pro.SD
(Figure 8.3-2) that this agent instance has extra dependencies to another agent
instance Helen Duff. Therefore, we combined the above information and
produced the Single-Actor-Focus SD view for George Hudson below. Part of our
information is obtained two diagrams (models 2.6.8 and 2.6.6) in TCGCS. We
name this view TCG.Pro.SD.SA-GeorgeHudson.

167/231 9/1/2004

master-thesis-v4.4.doc

Holder as
ietende

Copyrighted
cortent =0ld ;
Linknow , =
Coritert
! rESk o hi Commiht
wererzhip oyt
&gpﬁéf& Lawrz Be Holder

real_g__ "
o Recewe

[Ownedf
Copyrighted

el
Geroge
Hudzan) TrrE
' [2 oprerighted
iy content]
| e —= |
| |
Cyvred § s |
Copyrighted D Helen Duft
Cortent

Figure 8.3-7 Exter nal relationships for agent instance George Hudson

8.3.3 Pair-wise-Actors SD views

Figure 8.3-8 shows the Pair-wise-Actors view for PC Software Manufacturer/

Service Provider and Government as PC User. We obtained it by applying the

pair-wise rule (pairwiseActorsRule) over TCG.Pro.SD or TCG.Pro.SD.SA-
GovernmentPCU. We name this view TCG.Pro.SD.PW-GovernmentPCU-

PCSM SP. This view appears exactly the same a diagram (model 2.18.1) in

TCGCS—except for the omission of the dangling dependum Access [Threatening

Technology].

168/231 9/1/2004

master-thesis-v4.4.doc

rusted [PC
Lzer]

Software
ervices B
Rl e A el

PC
Software
anufacture
SErvIC

0N e et
&z PC Uszer

Exchange]

NNOYELIoN
[PC
Jechnology

(et sk
e

—=giip

Affardable
Technology

PCi
Softweare
Services

Figure 8.3-8 Pair-wise view for PC Software M anufacturer/Service Provider and

Government as PC User

Figure 8.3-9 shows the Pair-wise-Actors view for TCG and Hacker/Malicious
User. We obtained it by applying the pair-wise rule (pairwiseActorsRule) over
TCG.Pro.SD or TCG.Pro.SD.SA-TCG. We name this view TCG.Pro.SD.PW-
TCG-HACKERMU. This view conveys the same information as does its
correspondence diagram (model 2.5.1) in TCGCS. Yet it appears much simpler
and more comprehensible, with the omission of the depender (PC User) and
dependee (PCMSPTCG) of the six dependums (e.g., Reduce [Spam]) and the 12
corresponding dependency links.

169/231 9/1/2004

master-thesis-v4.4.doc

Hacker!
Malicious

Manufacturers
ServiceProvider as
TCGMernbet)

[Viruses/
Malicious
CUCIE
Cortraol [PC]
Secure
[Ttanzactiond]

Erete
[Stored
[rata)

u

ATl
[Drata
Exchange

Figure 8.3-9 pair-wise view for TCG (TCPA) against Hacker/Malicious User

8.3.4 Discussion

In this section, we validate our approach in reducing a Basic SD (TCG.Pro.SD)
into various forms of partial SD views so as to increase its comprehensibility.
The reduction was performed manually according to the selection rules defined
for each SD sub-view. Resulting partial views were presented in a top-down
flavor—that is, from the complex and complete basic view to the simplified

partial views. Relationships among these views are presented in a View Map.

In TCGCS, intuitive pair-wise views are used extensively. Consequently, the
presentation makes it difficult to perform node analysis centering on a given
actor. To study the vulnerability and opportunity of a given actor, model users
need to study several diagrams, usually shown in separate chapters. During our
rework of TCGCS, Single-Actor-Focus views were summarized according to all
pair-wise SD views related across the original document to the following
selected actors: role Government as PC User, role Individual Consumer as PC

User and Content User, role Malicious Group/Individual as Government

170/231 9/1/2004

master-thesis-v4.4.doc

Attacker and Hacker/Malicious User, agent TCG, and agent instance George
Hudson.

A difference also exists in the way we should express external contribution
from an actor to a dependum. For example, the external break contribution from
role Hacker/Malicious User ends at softgoal dependum Reduce [spam] (Figure
8.3-10(a))in TCGCS, but according to our reformulated i* semantics it should

end at the corresponding outgoing dependency link of the dependum (Figure

8.3-10(b)).

=ik
BreX
1] i
P =
arutacturer A
Service 3
Prowider
(PCMER)
o —

Reduce (1
[Snam]

Control [PC]
(PCU, PCMSE)

(a) Style used in this chapter (b) Style proposed in Chapter 6

Figure 8.3-10 Differences in expressing exter nal contributions to dependums

In fact, the style applied in TCGCS appeared more concise in the graphical
representation (no extra actor PCM SP, highlighted with dashed rectangle, shown
in the left-side diagram), and easier for defining selection rules (since fewer
elements need to be selected). We removed the TCGCS style from our proposal
because this difference could have different implications in terms of i* semantics;
we show our concern by way of the example shown in Figure 8.3-10. Breaking a
dependum (e.g., Reduce [Spam]) directly suggests that this dependum will not
stand, so the corresponding dependee’s (e.g., PCM SP) internal rationale might
be affected. This conforms to the label propagation algorithm employed by
TCGCS, which propagates labels from a dependum along both directions of the
dependency links, towards internal elements, to both its depender (e.g., PCU)
and dependee (e.g., PCM SP). By breaking a dependum’s outgoing dependency
link, we restricted the break effect to only the depender (e.g., PCU). This style

171/231 9/1/2004

master-thesis-v4.4.doc

of label propagation algorithm is employed in the LAS case study and other
previous literatures (Yu and Liu 2000; Liu et al. 2003). However, this issue lays
in the i* semantic itself, and its description is not an intent of this thesis.
Furthermore, once a consistent semantic and graphical representation is selected,
we can adjust the definition of the single actor focus selection rule

(singleActorFocus[SD|SA]Rule) to make our view extension compatible.

We could have converted the style to our proposed one; however, we did not
modify it, for the difference does not affect our reduction of views. For

simplicity, we assume the different graphical notions are semantically equivalent.

The difference between TCGCS and the reformulated i* framework in
presenting the external break contribution shown in Figure 8.3-10 incurs other
differences in graphical representation. One is the extra actor PC Software
Manufacturer/ Service Provider (PCMSP) shown in part (b) of the above
diagram. For emphasis, we highlighted with a dashed rectangle, but there is no
semantic meaning behind this graphical notation. Another is the naming of the
dependums. Since we do not show the dependees the dependums depend on in
part (a) of the above diagram, we use the full name of each dependum to indicate
its depender and dependee in the form “(depender, dependee)”. For example,
Reduce [spam] (PCUser, PCMSP) denotes that PC User depends on PC

Software M anufacturer/ Service Provider (PCM SP) to reduce spam.

Despite the differences existing in the SD diagrams, we consider that our
approach can present what was modeled in the SD diagrams from TCGCS. The
major contribution is that we offered overview information, rules to reduce
complex SD views, and guidelines to present related SD views in a systematic

manner.

8.4 Strategic Rationale Views

Given the complexity of the Basic SR view from TCG, we cannot
conveniently show it in one diagram. The Basic SR view can be reduced to a set

of Single-Actor-Focus views, one for each actor, following a similar single actor

172/231 9/1/2004

master-thesis-v4.4.doc

focus rule as described in the SD view. These sets of views can be further
reduced in a similar manner following the set of partial SR view selection rules.
Therefore, we can use the Single-Actor-Focus view of one actor to validate the

effectiveness of the SR part of our view extension.

SR.SA-TCG.Internal NonFunc,53-LockinPC :
SR.SA-TCG Internal.Functional : -y A Single-Softgoal View
An Internal-Functional View (Figure 8.4-7)
(Figure 8.4-5)

SR.SATCG.Inlsmal - SR SA-TCG Internal NonFunc. SS-SupportDRM :

—1 A Single-Actar-Internal View L1 A Single-Softgoal View

(Figure 8.4-3) (Figure 8.4-8)

SR.SA-TCG.Internal. NonFung :

An Internal-Non-Functional View
(Figure 8.4-6)

SR.SA-TCG.Internal. NanFunc.55-FightPiracy .
— A Single-Softgoal View
(Figure 8.4-9)

SR.SA-TCG.Internal . NonFunc. SS-TrustedPCU :
[TCG.Anti]SR.SA-TCG : — A Single-Softgoal View
A Single-Actor-Focus (Figure 8.4-10)
View
(Figure 8.4-2)

SR SA-TCG Exlernal SD-Compalible+SD-Innovation
A Single-Affected-Dependum View+
A Single-Affected-Dependum View
(Figure 8.4-11)

SR.SA-TCG.External : SR.SA-TCG.External. SD-ContralPC :
A Single-Actor-External View —— A Single-Affected-Dependum View
{Figure 8 4-4) (Figure 8.4-12)

SR.SA-TCG . External . SD-ProtectedData :
— A Single-Affected-Dependum View
(Figure 8.4-13)

LEGEND

Yiew _|: View Vigatiane o SR.SA-TCG.External. SC-toHacker :
projaction decomposition —— A Single-Affected-Actor View
(Figure 8.4-14)

ViewType[, ViewTypel~, ..]

Figure 8.4-1 View map for partial SR views from the Anti-TCG viewpoint

In this section, we choose the Single-Actor-Focus view for agent TCG (the
extreme complex case) from the opponents’ viewpoint (TCG.Anti.SR.SA-TCG)
as our original view. This original view was scaled down into a set of related
partial SR views; their relationships are shown in Figure 8.4-1.
TCG.AnNti.SR.SA-TCG (abbreviated as SR.SA-TCGQG) is first decomposed into a
Single-Actor-Internal view (SR.SA-TCG.Internal) and a Single-Actor-External
view (SR.SA-TCG.External). The Internal view is further decomposed into an
Internal-Functional view (SR.SA-TCG.Internal.Functional) and an Internal-
Non-functional view (SR.SA-TCG.Internal.NonFunc). The Non-functional
view is further decomposed into four Single-Softgoal views (e.g., SR.SA-
TCG.Internal.NonFunc.SS-LockinPC). The External view can be further
decomposed into four Single-Affected-Dependum views (e.g., SR.SA-
TCG.External.SAD-ControlPC) and one Single-Affected-Actor view (SR.SA-

173/231 9/1/2004

master-thesis-v4.4.doc

TCG.External.SAA-toHacker). Two Single-Affected-Dependum views, SR.SA-
TCG.External.SAD-Compatible and SR.SA-TCG.External.SAD-Innovation,

are shown in one diagram, and we name the combined one TCG.External .SAD-
Compatible+SAD-Innovation.

8.4.1 The Single-Actor-Focus SR View for agent TCG

Figure 8.4-2 shows the Single-Actor-Focus SR view for agent TCG, derived
by applying the single actor focus rule (singleActorFocusSRRule) over
TCG.Anti.SR. It corresponds to the SR model for agent TCG (model 3.2.5) in
TCGCS, and we name it TCG.Anti.SR.SA-TCG. This view is used as our

original view from which other partial views presented throughout this section
will be derived.

- -
"""""

"~
s -

s ‘i] S
I w A ‘.ﬂ‘ Backdnar
et implement I £ { 4o Bh
P W S A48 Frovided
ST LS
s] 1&”’4"’;
’ ‘- Fapa T 8u
) 7= /) SR
i i‘i—‘ G "g-ra".‘
4 \ 7/571" Dx%eaﬂsz“mmm
\\.\“!‘?ﬁa cemw ' ' \mplemen ' -
Loskn PG Mafmnt.esf nnnnn
<<),,. “
g s —F o

Mprove,
totected Datd
- | Profect
e A 'c Plators \\egistato
Annli onfiguratiol echanisme
Applications B Checked
v & IS

I\
D\

5

l‘.
hfalicions
Code

nnnnnnnn

[l
Specific

aaa
yrture o
Onlineg_Securify]
Servers Be
plementeg

Hacker/
Mglicious
User

=

Figure 8.4-2 Single-Actor-Focus SR view from the Anti-TCG viewpoint of TCGCS

174/231 9/1/2004

master-thesis-v4.4.doc

8.4.2 Single-Actor-Internal and External views

Figure 8.4-3 shows the Single-Actor-Internal view for agent TCG, derived by
applying the internal rule (singleActorinternalRule) over TCG.Anti.SR.SA-TCG.

It corresponds to the same diagram (model 3.2.5) in TCGCS, and we name it

TCG.ANti.SR.SA-TCG.Internal.

Husrt

w lssues]

TES ;
- —tiply_———] Fight Piracy
St@

sw
LR
A

Ramo
CRnsorshi

16 y
G
'.faﬂaol o
4\ A &l
plication

P;?J[Eat'i_:r:ln f F|
REC e [File
Frofiles Clorags

‘ Securly] firake
Irnplemean Friler
era Emcryption

Implernent Keys with
NCAS Hardware

Generale

\ Randam
3 Murmbers
\ Ipplement
; Mexus
\
) Implement Flaton S
\ LI @ Platio nirasiniciure o
< Fritz Chip Alle=taion Contral Criline Heturiby
kY dentity Kevs Reg;mm Sepiers Be
. {FCR) plemente

3

Figure 8.4-3 Single-Actor -I nternal view for agent TCG

P P \‘
b
-
\'b
Arnid h]
[Antitrust

o B Qi Speciiag
e ”] DR 1L
7™\ L
r \‘ Drefine CRTH)
Define THR

Figure 8.4-4 shows the Single-Actor-External SR view for agent TCG for

agent TCG, derived by applying the external rule (singleActorExternalRule)
over TCG.Anti.SR.SA-TCG. This view does not appear in TCGCS. We

introduced it as an intermediate model summarizing all external relationships of

TCG. We name this view TCG.Anti.SR.SA-TCG.External.

175/231

9/1/2004

master-thesis-v4.4.doc

e -

G &
Inngwation P .
[PC P ~
Technology] '/ *\

s o
Y 7, ’ .
Murt \‘
2 Implement LY
P armpatabili - T838 £y
D Edeingb——"_7 Fb _ ~~_
‘ Tethnalogy] =l

o \
SAET I i
Specific A
\‘n L= plermenatio) '\
’ e e Speciisd .
>)
< Reduce
/"‘t“
T

Lack-In [PC .
Users] i)

)
C Softw A ;
e Softward
aréufamurer 4. PPerte? "
ervice ro. Miruses!
Frovider Malicious il ;
Codel 1
Backdoor I
Access Be
Provided .
1
[Data I:
Exchange] r
Certify .’
Machines! mprove [Filel I
Rernote {pplications Storage
Gensorship Security] 3
Deletinn Be I
= Available g

[
T A Pratected Dath
y] Be Unavailahl /
_—-""-'-.—: = Ao \ o Ungroeated ¢
N 5 Applications ‘I
' “’ : |s0late s
Break ““ = Hurt " Applications, ‘,
5 , 5
Frotect ’ 6“ Hurt ¥
Stored Datal ‘ 1 3 "
1“‘\\ \‘\ "1'
» ‘s .
Hackerf

-~ -
_______ -
L R
Malicious
User

—

Figure 8.4-4 Single-Actor-Exter nal view for agent TCG

8.4.3 Internal-Functional and Non-functional views

Figure 8.4-5 shows the Internal-Functional view for agent TCG, derived by
applying the functional rule (internalFunctionalRule) over TCG.Anti.SR.SA-
TCG.Internal. There is a correspondence to this view in TCGCS (model 3.1.1),
and we name it TCG.Anti.SR.SA-TCG.Internal.Functional.

176/231 9/1/2004

master-thesis-v4.4.doc

e
-"’ -
£ ‘\
P
" \‘
’ A
& Implarment
— - -
Backdoor
Aciess BHe

/ ""‘ Fight Piracy

[Software]
Cgrr,lalps{ﬁ.lﬁg Provided
Plalforrr Be,
mad Ll ol =l
? e“ﬁ:[l
p Ermeatio
Implement’ Sup 0’1 iJE![:I
Endorsement |CF
ey
ol
Del eﬂne CRTH)
Create Aozl I:JIB Document Isolate
Profection Define TEE
N LY N i N
Sacurily]
Lock-In [PC
s Ebimal
Encrgrplmn
— KE” e
arcware
o
0_ r‘prntec?e%

Platfarim
CDﬂﬁﬂUr&ﬁD Handarn

Be Chetked . - s MNumbers
; > . Implament
| NEHUS
Friz Chip
Usa dse Flafior

Ap ligalions Ganerafs

frﬁsr :ure
ﬁrtei;gfaﬁnn H%glnslgrl's nsllné BEIun
enfity ey emiers Be :
. (FCR) Blernenleg i
"\ ,

Figure 8.4-5 Single-Actor -I nter nal-Functional view for agent TCG

Figure 8.4-6 shows the Single-Actor-Internal Non-Functional view for agent
TCG, derived by applying the non-functional rule (internalNonfunctionalRule)
over TCG.Anti.SR.SA-TCG.Internal. There is a correspondence to this view in
TCGCS (model 3.1.6), and we name it TCG.Anti.SR.SA-
TCG.Internal.NonFunc.

177/231 9/1/2004

master-thesis-v4.4.doc

Awoid
fantitrust
|s50es]

Usars]

D chrr}Sesm
CDﬂEt!DE

Create
FProtection
Frofiles

Rermote
Censorshipd
Deletion Be
Available

rofacted O

He lt?navaila%le

10_Unprotected
Applications

Implamant
Fritz Chip

Machinesf
soplications

Backdaar
Actess He
Provided

fained s
El’j w?emu Enégfmr:'on
ks with

Implerment
NCAS Hardware

1@[3'00‘?
rofec
Platform Reglg}rahu %enerate
Caonflguratio Jechanisms an%l:ﬂ'ﬂ
Be Checked Humbers
> . Implement
£ Mexus
U f5& FTaHor Sairuiure o
anes?a ion ontrol (%:ne_tgecuriw
dentity Keys Registers Saniers Be ’
(PCR) plamantep ;

Figure 8.4-6 Single-Actor -I nter nal Non-functional view for agent TCG

8.4.4 Single-Softgoal views

Figure 8.4-7 shows the Single-Actor-Internal Single-Softgoal view of softgoal
Lock-in PC Users internal to agent TCG, derived by applying the single

softgoal rule

(nonfunctional SingleSoftgoal Rule)

over TCG.ANti.SR.SA-

TCG.Internal.NonFunc. There is a correspondence to this view in TCGCS (model
3.1.2), and we name it TCG.Anti.SR.SA-TCG.Internal.SS-L ockinPCU.

178/231 9/1/2004

master-thesis-v4.4.doc

P)
' _— e %
* \.
z', .
by
s Lockn [PC *
!a Users] A]
i ey
7 TS558 o] .
,
i
¥ (e "
! Trusted
L Computing
‘f Platfarm Be
[l Creata
¥ Frotection
I Profiles
i Document
i Access
Control
Certify
Machingss
Applicationg
3
", Frotected Datd
\ Be Unavailable
to_Unprotected
L Applications Flatform
\ Caonfigurationg =) Gl
X He Checked nfrastructure o
A Online_Security
B Serers Be
A
L]
\
*
\1
- dentity Keys o
N\ 7’

Figure 8.4-7 Internal Single-Softgoal view for softgoal L ock-in PC Users

Similarly, Figure 8.4-8 to Figure 8.4-10 show the Single-Actor-Internal
Single-Softgoal view of softgoal Support [DRM], Fight Piracy [Software€], and
Trusted [PC User], and there correspondences to these views in TCGCS
(models 3.1.5, 3.1.4, and 3.1.3, respectively). We name them as
TCG.ANti.SR.SA-TCG.Internal.SS-SupportDRM, TCG.ANti.SR.SA-
TCG.Internal.SS-FightPiracy, and TCG.ANti.SR.SA-TCG.Internal.SS-
TrustedPCU, respectively.

179/231 9/1/2004

master-thesis-v4.4.doc

Rermaote
Censorship.
Deletion Be
Available

Cerify
machiness
Spplication

Implemen
CUrtained
FLU Mema

MArove,
Protect
Registration,

jechanis

Applications

FPlatforrm
Configuratio
He Checked

Use.
Aftestation
dentity Keyg

Implement
Fritz Chip

Hack End
nirastructure o
online_Security
Semvers Be
plementeg

Jse Platiorn
Control
Fegisters
(PCR)

Figure 8.4-8 I nternal Single-Softgoal view for softgoal Support [DRM]

£ Y
Lt .3
. Fight Piracy
[Softweare]
Help
Hglp Ip

Rermote
Censorship

Deletion Be |solate
Mvailable icati
Certiy Applications
Machines!
Applications
Implement
; Implemen NCAS
rriprove Curtained

Epplications Protect P Memo
i Reistition
dechanisms

Platform
Configurationy

*\He Checked
Implement s
j i 4 b b plement
\‘ Fritz Chip i * Hats End
A

nirastructure o
. se Plation
< Ateiation Bk
.\‘ dentity key: {PCR)

Online_Security
Servers Be
plementeg
4
~ r

Figure 8.4-9 I nternal Single-Softgoal view for softgoal Fight Piracy [Softwar €]

180/231 9/1/2004

master-thesis-v4.4.doc

. "R "t\
” -
i ~
+ Y
% N
, w *
! \
!

» Hurt
4 Help : Fight Piracy
St Lol urt [Software]
Trusted REPN LT
Computing Hpt W "
Flatfarm Be /

Backdoor
Access He

Frovided
Ayoid -
[&ntitrust rmprave [File
lszues] Storage
Security] Suppaort
{ Femauote. e [DEM]
Censorship i
Deletion Be
Aygilahle
% Froteg
Encryptian

Keys with

LockIn [FC Hardware,
Users]
L
A Implerment %%%%rgl;ﬁ
i Ftitz Chip Mumbars !
= ,

Y 7

Figure 8.4-10 I nternal Single-Softgoal view for softgoal Trusted [PC User]

8.4.5 Single-Affected-Dependum or Actor views

Single-Affected-Dependum views presented in this section are all derived by
applying the single affected dependum rule (singleAffectedDependumRule) over
TCG.AnNti.SR.SA-TCG.External.

Figure 8.4-11 shows the Single-Affected-Dependum views for softgoal
dependum Compatibility [with existing Technology] and Innovation [PC
Technology]. There is a correspondence to this view in TCGCS (model 3.2.2).
We name it TCG.Anti.SR.SA-TCG.External.SAD-Compatible+SAD-
Innovation. TCGCS shows these two external dependums in one diagram since
their relationship to each other is simple and it would be a waste of space to use
two diagrams. However, this is human decision; the step we recommend in
applying our view extension is for users to obtain single dependum views first

and then combine into a multiple-dependum view the ones they consider related.

181/231 9/1/2004

master-thesis-v4.4.doc

Fis Softweare!
lanufacturer
Seryice
Provider

Innoyation l —
[PC
Technology]

l -
-
.
- ; -~
Compatabili
fwith Existing Hel .’ N,
Technology] - £
5

R, - Elamorm
u Specific

I plemenatio,
B Specificd

!

x Implemen

Endarsement

" Key
|
1

.

1

A}

Create Dicument
rotection CLESS Lock-In [PC
Frafiles Control UserQE]

iy

Frotected Data
A Y He Unavailable

to_Unprotected
Applications

Figure 8.4-11 Exter nal Affected Multiple-Dependums view for dependums

Compatibility and I nnovation

We omitted the internal rationale for TCG in Figure 8.4-11—because we are
concerned only with the external effects of TCG. We consider it sufficient to
show only the elements that contribute to external objects in answering questions
such as “How would the application of the Trusted Computing Group affect the
control of PC to each PC user?’ (See Section 7.2.2 for detailed justifications).

Figure 8.4-12 and Figure 8.4-13 show the Single-Affected-Dependum views
for softgoal dependums Control [PC] (model 3.2.3) and Protect [Stored Data]
(model 3.2.4), respectively. We name the former TCG.Anti.SR.SA-
TCG.External.SAD-ControlPC and the latter TCG.ANti.SR.SA-
TCG.External.SAD-ProtectSD.

182/231 9/1/2004

master-thesis-v4.4.doc

i
- - ol
-~ "
. . .,f ar%
o~ -
* \‘
," Femote. Y
Censorships
I Dieletion Be
¥ Available
.
o ¥ Backdoor
Hurt ! Access Be
= ’ Frovided
Break
ek [} Support
Contral [PC] =TT] [DRM)
r L}
HO
T 1 Document
ALCRES
i Cantral
A
(7
5 \.. Isolate
\ Applications
= Software . Frotected Data
anufacturety \ Be Linavailable
Serice + to_Unprotected
Fravider ~ Epplications ,
*
R 5 iid
-~ -

Figure 8.4-12 Exter nal Single-Affected-Dependum view for Control [PC]

)

Senvice
Frovider

Backdoor
Access Be
Pravided

Frotect
[Stored Data

Remuote
Censorship
Deletion Be
Available

\»_ >

Figure 8.4-13 Exter nal Single-Affected-Dependum view for Protect [Stored Data]

Figure 8.4-14 shows the Single-Affected-Actor view to role
Hacker/Malicious User, derived by applying the single affected actor rule
(singleAffectedActorRule) over TCG.Anti.SR.SA-TCG. There is a
correspondence to this view in TCGCS (model 3.2.1), and we name it
TCG.ANti.SR.SA-TCG.External . SAA-toHackerM U.

183/231 9/1/2004

master-thesis-v4.4.doc

FC Software
htanufacturerf
Service
Pravider

ARDRYEOUE
[Data
Exchanige]

Frotect [Stored ;
Diata]

bk ’
™ *
’
5
‘f

Inprove [File
Starage
Security]

o —-—

Certify
Machines!
Applications

Hacker!
Malicious Liser

- ~

Figure 8.4-14 Exter nal Single-Affected-Actor view to Hacker/Malicious User

8.4.6 Discussion

In this section, we demonstrate the process and results of dividing the Single-
Actor-Focus SR view for TCG (TCG.Anti.SR.SA-TCG). A hierarchy of sub-
views of TCG.Anti.SR.SA-TCG was derived following the guidelines in our

view extension, and their relationships were presented in a View Map.

The intuitive approach taken in TCGCS to break down the complex SR views
conforms to what we propose in this thesis. Therefore, there exists a one-to-one

mapping between the set of partial views and the original “models” in TCGCS.

Our work has enhanced the current state of the art by, first, producing a view
map showing the layout and connection among the views. Another improvement
is the reduced complexity in each view, a reduction attributed to the formally
defined selection rules associated with each type of view. Unnecessary elements
are removed in the views—especially the external ones. Compared with their

corresponding original models shown in TCGCS, the new views appear concise
and more comprehensible.

184/231 9/1/2004

master-thesis-v4.4.doc

However, during real applications, some of the views could appear over-
simplified, and displaying them separately would be a waste of space. In this
sense, views can be combined as long as they remain comprehensible. For
example, the two Single-Affected-Dependum views SR.SA-TCG.External .SAD-
Compatible and SR.SA-TCG.External.SAD-Innovation are shown in one
diagram (Figure 8.2-12). This action is subject to human decision. We
recommend users apply our view extension to obtain single dependum views first,

and then combine in a single diagram the ones they consider closely related.

The perfect matching between the SR views presented in this section and the
original ones from TCGCS demonstrate the ability of our approach in conveying
the same amount of information to i* model users. Our major contribution is that

we offer overview information and clear-cut rules.

8.5 Contributions and Results

We tested the validity of our proposed view extension against TCGCS, and we
outline our result in this chapter. This process resulted in a total of 37 diagrams,
showing the baseline model, 15 AC views, 8 SD views, and 13 SR views. Among
these views, only 2 remain exactly the same as what was demonstrated in
TCGCS, 17 of which are newly added ones, the other 18 being modified. In
addition, 4 View Maps for showing the relationship for basic views, AC views,
SD views, and SR views were also supplied to make attainable the relationship

among views from the same group.

Our approach is NOT to redo the case study. Therefore, the name or type of
any modeled elements remains intact from their original forms. Even the greatly
enhanced AC views only experienced changes in some association links and the
addition of some extra (or intermediate) actor elements. No actor that existed in

the original models was removed from our views.

However, our approach is to reorganize the diagrams designed for
representing the same model in a systematic manner. Consequently, the sequence

in which we present the views in this chapter differs from that in TCGCS; thisis

185/231 9/1/2004

master-thesis-v4.4.doc

because the two approaches emphasize on different processes. TCGCS focuses
on the model generation, but our approach targets on model representation.
Accordingly, the organization of views also differs between the two approaches:
We organize views according to their types (meta-concept driven approach),
while TCGCS organizes according to the actor pairs each view presented

(application-domain knowledge driven approach).

Our approach offers a method to enhance the consistency, clarity, and
accessibility of the two models in TCGCS. These benefits are achieved by
applying the concepts streamlined in the reformulated i* framework, by the
reference structure offered by the view extension, and by the formal definition of

selection rules associated with each type of view.

The reformulated i* framework enforces the bonds among the basic views.
From the discussion of applying the AC views (Section 8.2.6), we learnt that the
enforced bond between the AC and SD views helped identify inconsistencies and
correct logical gaps out of the original model. Therefore, the reformulated i*

framework helps increase the consistency of i* models.

The reformulated i* framework also formulates an external relationship
inheritance rule over actor associations. This rule can help remove duplicated
dependency links in the SD view. For example, Figure 8.5-1 shows the original
SD level baseline model summarized from diagrams in TCGCS. In our revised
version (Figure 8.1-2), the redundant external relationships surrounding role PC
Software Manufacturer/Service Provider TCG Member as TCG
(PCSMSPTCGMTCG) is removed. Since following the “ISA” link to role PC
Software M anufacturer/Service Provider, we know that PCSM SPTCGMTCG
can inherit all external relationship from PCSM SP. Thus, we can safely remove
all 12 incoming dependency links towards the former actor without losing any
modeled information. With less intertwined links in our revised presentation,

clarity of relationships among modeled elements increases.

186/231 9/1/2004

master-thesis-v4.4.doc

avernmen
i B
\ " User g
e
i Government
7 < Altacker

Malicious -
User

H
Trusted

—

134 echnolog

Government| PLAYS S
as PC User g
AW AT
= PHThreatening

Malicious
Graup!
Indvidual

b
P i , ,

FC Eowary A @
QI’VEng‘IEggI’ET‘ Is-Partofl / E—A— ot ‘
Member A% AN
Aa I e
S
S —7—

73

' /
i t
oA SHnT=
) ‘
 Individual
= X LT] consumer ‘”
s e
ac and Ccontent ff]
}" (/ " User LSk
LT o
5 '

n

(
e TN
—=>71 &
9* &

A [Ownedr
L™ copyrighted
d Eak nnntent

P formats|

Individual
Consumer
P

content]

Pirating
N8 Y Individual N

5
L < P
George 4 B f
Hudzon) Owined i Y,
PC Userand m npynghle
antent User) o Content £

e

Figure 8.5-1 The original model from the Pro TCG viewpoint

The introduction of the reference structure helps organize views (or diagrams)
derived from the same baseline model in a systematic manner. The reference
structure is realized by 4 view maps during our revision of TCGCS. For each
view presented in a view map, users can identify its type, parent view(s), and
child view(s) (if applicable). Its corresponding caption (e.g., Figure 8.1-2) in
this documentation is also displayed. It is convenient to locate any view and
switch to any of its relatives—even inside a huge document. This action
appeared time-consuming if one had browsed through the 200-page TCGCS.
Apparently, applying the reference structure improves accessibility of views
designed to represent the same model, and we presume the efficiency of this

structure increases proportional to the size of the model.

The formally defined selection rules associated with each type of view help
remove irrelevant elements from a view. By removing unrelated information
from some complex views (or diagrams), we make them more concise and

comprehensible. A lack of tool support for automated view synchronization

187/231 9/1/2004

master-thesis-v4.4.doc

would also increases the maintainability of an i* model. We have demonstrated
that views derived following the proposed selection rules can serve the same
objectives as those in TCGCS. With reduced complexity in each view,
information that is to communicate with model users becomes obvious. If every
view from a model appears concise, then the clarity of the entire model certainly

increases.

Applying the view extension to revise TCGCS made the presentation of

models in TCG case study clear, consistent, and accessible.

188/231 9/1/2004

master-thesis-v4.4.doc

9 Conclusions

9.1 Summary of Results

The main result of this research is a view extension compatible with the
original i* framework presented by Yu (Yu 1994). The extension offers a set of
guidelines and rules on decomposing or segmenting a large-scale i* model to
multiple views. Each view has a type, and the view type decides the type of i*
elements that view should allow. Information contained in each view, when
visualized, should be readily comprehensible to humans using the model. The
extension also provides a reference structure so that the views are organized in a
systematic manner and are easy to access. The reference structure is visualized
using View Map, a built-in type of diagram supported by the view extension.
Notations used in the View Map are also formalized—qgraphically—in the view

extension.

A secondary result of this research is the reformulating of the i* framework.
The reformulated framework distinguishes and formalizes a notion of view,
categorizes meta-level i* concepts into four basic views, and enforces the
implicit bonds among the meta-concepts in the basic views. The four types of
basic views are the Actor Class (AC) view, the Strategic Dependency (SD) view,
the Strategic Rationale (SR) view, and the Evaluation Results (EVLR) view.

Representation constructs of meta-level concepts from the original and the
reformulated i* framework are embedded in Telos (Koubarakis et al. 1989).
Telos is the conceptual modeling language chosen by Y u to embed the original i*
framework (Yu 1994). However, the formal constructs shown in Yu’s original
thesis and the Organization Modelling Environment (OME) tool differ in style,
and we base our formal constructs on those that are used in the OME tool.

Concepts introduced in the view extension such as model, view (basic and

189/231 9/1/2004

master-thesis-v4.4.doc

partial), and selection rule are also embedded in Telos. These concepts are
embedded in Telos following the same style as concepts in i*. For example, the
concept model is represented by a meta-level model class, and each type of view
is represented by a meta-level view class. An i* model or a physical view is
represented as an instance of the corresponding model class or view class,

respectively.

While basic view types are defined in the reformulated i* framework, partial
view types are defined in the view extension. Partial view types further
differentiate each basic view type, resulting in four groups of Telos view classes.
In this thesis we discuss three of them in detail—AC, SD and SR, each in a
separate chapter. In these detailed discussions, each type of view is illustrated in

terms of

e Aninformal description of what type of meta-level object should be included in

the specific view type.

* A simplified example of the use of the type of view in the London Ambulance
Service (LAS) case study.

» Justifications of the applicability of the partial view type and the consequences of

using it.

» A formal definition of the selection rule that is attached to the corresponding Telos
view class of the given view type. The selection rule is presented in the form of
First Order Logic (FOL) using meta-level classes embedded in Telos.

The validity of the view extension was examined against the Trusted
Computing Group case study which was originally documented by Horkoff
(Horkoff 2004). Comparisons with the diagrams (called models by Horkoff)
presented in (Horkoff 2004) were made for each of the three types (AC, SD, SR)
of views. The view extension demonstrated a more organized approach in
presenting the set of diagrams designed for the same i* model. A diagram is the

visualized form of a view. Three View Maps for AC, SD and SR views,

190/231 9/1/2004

master-thesis-v4.4.doc

respectively were also supplied to make attainable the relationship among views

from the same group.

9.2 Contributions

This work offers a systematic approach to presenting large scale i* models.

The foundation of this approach lies in the notion of view and the meta-level

concepts of the i* framework. By defining views, this approach splits a baseline

i* model into a set of self-containing views that can address some specific

application domain-related questions.

This work advances i* into a more practical and ready-to-use stage:

It sreamlines into a unified style graphical i* notations scattered through previous

literature and appearing sometimes in different forms.

It enforces the bonds among the basic views. Each SD view is considered an
abstraction of its corresponding SR view. Each EVLR view has an SR view on
which it is based. Actor associations expressed in the AC view can be used to

facilitate the replacement of actorsin SD views.

It enhances communication by breaking down the complexity and size of the

baseline model and converting it into readable-size views.

It embeds both meta-concepts of i* and meta-concepts in the view extension into
Telos, the selected conceptual modeling language in (Yu 1994). This formalization
makes it possible to automate the selection rules defined for each view in any
commercial tool. Moreover, the formalization ensures consistency in applying our

proposed approach across different applications.

It reformulates the formal representation of meta-concepts of the i* framework
into the Organization Modeling Tool (OME) style, resulting in filling the gap

between the theoretical i* model and its actual implementation.

It transfers ideas from database systems to the knowledge-base-oriented i*

framework—treating the modeling concepts as meta-model (schema), a set of

191/231 9/1/2004

master-thesis-v4.4.doc

modeled application-domain knowledge as the baseline model (datatable), and the

projection of the modeled knowledge as a view (data view).

e It borrows from IDEFO (IDEF 1993) the technique of presenting a reference
structure of diagrams (views) designed for one model. Each diagram is treated as a
node in a node tree (a visualization of the reference structure) in IDEFO. Similarly,

we denote each view as a node in a connected graph which we call View Map.

Furthermore, this work provides an alternative way to communicate the
information from the original TCG case study (Horkoff 2004). For the AC views,
missing bonds among actors were added following the implications of actor
associations reinforced in the reformulated i* framework. For the SD views,
Single-Actor-Focus views were emphasized so as to allow an overview of the
situation of an actor within TCG. For the SR views, most of the diagrams were
simplified by eliminating half of the elements, yet they retain the ability to
address the same issue as its corresponding diagram shown in the original TCG
case study (Horkoff 2004).

Overall, this work offers a better means to represent an existing i* model.
With a formally reformulated i* framework and the view extension, large-scale
i* models can be displayed in an organized manner. Relationships among
different parts of a large model can be rendered easy to observe, helping i* users
to perform model checking. The handful of guidelines and live examples offered
in this work, along with the definition of the view types, make the i* framework
ready to put in practice. Therefore, even though the work does not address all
scalability issues, we consider it has prepared and readied i* for quite a broad

range of applications.

9.3 Future Directions

This work represents an important first step forward in addressing the
scalability issues in the i* framework. Further research at the forefront of

knowledge in this area is required to provide i* users a complete package of

192/231 9/1/2004

master-thesis-v4.4.doc

rules and guidelines to handle large-scale applications. Other meta-concepts or
domain-based patterns are available to help design new types of views. The
guidelines for constructing an i* model—not just representing it—in a systematic
manner are yet to be synthesized. This work is subject to validation in broader

applications.

9.3.1 Meta-model related future work

Other meta-concepts from the i* framework can be employed in designing
new selection rules. Associating these rules with view class can define new view

types, and thus extend the view extension as follows:..

» The concept of routine “is a sub-graph in the visualized SR view with a single link
to a ‘means node from each ‘end’ node” (Yu 1994). In other words, a routine
refers to a particular alternative to achieve some goal that is considered a decision
point. A decision point is a goa that has multiple means-ends linked to it,
originating from different tasks (see Section 3.2.3 for more details). A new view

type that presents a single routine can be designed.

* Yu (Yu 1994) provides for “three degrees of dependency strength: open
(uncommitted), committed, and critical.” New view types could be designed so

that only dependencies at a certain degree are to be presented.

e The direction of a dependency link can also be exploited to derived views

including only incoming or outgoing dependencies.

Moreover, in this document we have not discussed in detail the Evaluation
Results (EVLR) view and naming conventions; these issues require follow-up

investigation to complete this work.

9.3.2 Use generic knowledge-base driven techniques

Given the rich set of meta-concepts defined in i*, meta-concept-based

scalability controls already result in considerable scale-downs. In other words,

193/231 9/1/2004

master-thesis-v4.4.doc

by partitioning elements in the model according to their types alone, we can

reduce the size of the basic views proportionally.

However, domain knowledge may contribute to generic guidelines from

another dimension.

Applications from similar application domains may possess similar
characteristics that can be generalized and reused. For example, security-related
applications tend to categorize actors by normal actors, attackers, and defenders
(Yu and Liu 2000; Liu et al. 2003) TCGCS. In reliability-critical applications,
actors can be categorized into normal actors, abusers, and mitigators (Alexander
2003; You 2003). These patterns might be used to design new types of views

(e.g., aview presents only normal actors).

Organizations may demonstrate similar organization structures, which follow
a “headquarter—division—sub-division—sub-sub-division...” hierarchy. Actors
can be partitioned according to their division or sub-division (e.g., a view
presents only actors from the same division). An intermediate abstraction level
actor, such as “a division,” may also be introduced to the extension to allow a

view to show relationships among divisions.

This line of future direction is considered important in that the distributed
nature of the i* framework is quite appropriate for modeling open-ended
applications which are richer in domain knowledge. Actors may be categorized
into several groups. However, criteria in organizing an object in an i* model

according to this line of reasoning require further investigation.

9.3.3 Guidelines for the modeling process

Guidelines in addressing scalability issues during the modeling process are
most critical. When an application reaches a certain size, the resulting work
should be distributed among different modelers; the model should be constructed
over a period, and be refined continually as domain knowledge is accumulated

during the modeling process. Without general guidelines in breaking down the

194/231 9/1/2004

master-thesis-v4.4.doc

workload and the methods for maintaining model-wise consistency, either the
modelers must spend extra time defining application-specific rules, or the

integrity and correctness of the targeted model will be jeopardized.

However, the forward engineering (modeling) process of i* requires intensive
human interaction and decision; this is because the modeling process embeds
deeply into each specific application domain, and significant features vary
drastically from one application to another. For example, the LAS project, as a
close-end application, is required to analyze what mistakes each participant
makes during a normal operation; on the other hand, TCGCS, as an open-ended
environment, is required to analyze what impacts TCG should be dealt with from
a third-party stakeholder. It is thus more difficult to generalize the rule in the

modeling process.

As a result of the foregoing, even though this work has demonstrated the
strength of the view extension in presenting large-scale i* models, to what extent
it can help the modeling process remains unclear. Nonetheless, we believe that
the manner in which we present the view can help modelers plan their procedures
in constructing and analyzing the models. Further in-depth study is required to

provide direct and useful guidelines on this issue.

9.3.4 Broader applications

Over the past 10 years, the application area of i* has changed continually.
From 1996 to 1997, the i* research group explored intensively Business Process
Reengineering, and conducted organization impacts analyses—mostly by
studying the graphical models (which we call views) along various links. From
1997 to 1999, the strength of i* in Requirements Engineering (RE) and System
Architecture were presented from various perspectives. From 2000 until now,
focus has shifted onto internet-related non-functional requirements, including
trust (Yu and Liu 2000), privacy (Yu and Cysneiros 2002; Liu et al. 2003),
security (Liu et al. 2002; Liu et al. 2003), and protection of Intellectual Property

195/231 9/1/2004

master-thesis-v4.4.doc

(Yu et al. 2001). The utility of i* shifted from a more internal process
reengineering to an open-ended distributed agent-oriented approach.

The view extension is validated against one medium-size application, but
more applications may be used to further validate the concept. Due to the
richness of the i* concepts and the uncertainty in open-ended agent-oriented
application areas, we anticipate variations in i* utility. As a result, we believe
that the current defined views are likely insufficient to present an i* model from

other discipline.

To explore and implement the full potential of this research, a broader scope
of applications than now available is recommended to validate this work. A
clear advantage is that the design of the view extension is extensible, and new
types of views can be added to the current one following the Telos syntax as long

as a selection rule is provided.

196/231 9/1/2004

master-thesis-v4.4.doc

Appendix

A. Transformation of FOL Formula

To verify the correctness of the formula encoded in the First Order Logic
(FOL) form across this thesis, we prototyped them using ConceptBase.
ConceptBase is a “prototype deductive object base [manager] supporting the
Telos data model” (Jarke et al. 1995). O-Telos is a variant of Telos that is
implemented in ConceptBase (Jarke et al. 1995). In this section, we illustrate the

method to transform a FOL formulato an O-Telos class.

This thesis presents two means in defining concepts introduced in the view
extension. The first one is to define new meta-classes by restraining an existing
one with a deduction rule. The other method is to define queries that include
instances of only a certain type. The two methods can both defining concepts and
can appear equivalent, when instantiated, in constructing an i* baseline model.
Both means use some FOL expression as the criterion for selecting qualified

elements.

Section A.l1 discusses the transformation of the definition of meta-classes;
Section A.2 presents the transformation of the definition of queries. Section A.3

presents the transformation of the expressions.

A.1 Transform definition of meta-classes

The FOL format for defining a meta-level class takes the following pattern.
The class name is bolded. Texts in brackets <> denote variables appeared in the

formulae.

<class_name>::=<var>:<base_class_name> with “<rule_name>_rule”
<rule_name>_rule::= <expression (FOL style)>

The corresponding O-Telos format is as follows:

I ndi vi dual <cl ass_nane>
in dass, MetaCl ass

197/231 9/1/2004

master-thesis-v4.4.doc

i SA <base_cl ass_nane>

with
rul e
<rul e_nane>rul e:
$ for all <var>/<base_cl ass_nanp
<expression (O Telos style)> =>
(<var> in <cl ass_nane>) $
end

For example, the definition of external link takes the following format, where

the assignment of the variables in the formulae is shown in Table 9-1.

Table 9-1 Variable assignment for defining meta-class “ external link”

Variable Value
<class_name> ExternalLinkClass
<var> I
<base class name> IntentionalLinkClass
<rule_name> external
<expression (FOL style)> | (I infind_all_external_links())

The resulting definition of class ExternalLinkClass is represented as follows:

ExternalLinkClass::=l:IntentionalLinkClass with “external _rule’
external_rule::= (I O find_all_external_links())

The corresponding O-Telos form is as follows:

I ndi vi dual External Li nkd ass
in dass, MetaCl ass
i SA I ntentional Li nkC ass

with
rul e
externalrule: $ forall |/Intentional Li nkCl ass
(I infind_ all _external |inks())
==> (| in ExternalLi nkC ass)
$
end

198/231 9/1/2004

master-thesis-v4.4.doc

A.2 Transform queries
To make the view extension mountable to the i* framework, most of the new
concepts are defined using query classes. The symbol “8” denotes for all those in
the FOL pattern. The definition of a query in FOL takes the following format:

<query_name>([<arglist>])::=

8<return_var>:<return_var_type > - <expression (FOL style)>

Where <arglist> is defined as follows:

<arglist>::=<arg>[,<arglist>]

<arg>::=<input_var>:<input_var_type>
Queries without any input variable are mapped to QueryClass, while those with

input variables are transformed to GenericQueryClass.

I ndi vi dual <query_name> in QueryClass isA <return_var_type>
with
attribute, retrieved attribute
<attributelist>
attri bute, constraint
c: $ <expression>$
end

I ndi vi dual <query_nanme> in Queryd ass isA <return_var_type>
with
attribute, retrieved attribute
<attributelist>
attri bute, paraneter
<arglist_o>
attri bute, constraint
c: $ <expression (in O Telos style)>$
end

We use <attributelist> to denote the set of attributes that are defined in the
<return_var_type>, and <arglist_o> to denote the set of input variables in O-
Telos format. Where <arglist_ o> and <attributelist> are formally defined as

follows:

<attributelist>::= <attribute>[;<CR><LF> <attributelist>]
<attribute>::=<attr_var>:<attr_var_type>

<arglist_o>::=<arg>[;<CR><LF> <arglist_0>]

199/231 9/1/2004

master-thesis-v4.4.doc

For example, the definition of query find internal_connectors takes the
following format, where the assignment of the variables in the formulae is shown
in Table 9-2.

Table 9-2 Variable assignment for defining query “find_internal_connectors”

Variable Value

<guery_name> find_internal_connectors

<arg> aActorElementClass

<return_var> ‘e’

<return_var_type> IntentionalElementClass

<expression> Ol LinkClass...[O (I in ExternalLinkClass)

The resulting definition of query “find_internal_connectors” is represented in

FOL as follows:

find_internal_connectors(a: ActorElementClass)::=
8e:I ntentional ElementClass:
OI: LinkClass: e.parent=a [(l.from=e [J |.to=¢)
O (1 in DependencyLinkClass) [(I in ExternalLinkClass)

The corresponding O-Telos GenericQueryClass is as follows:

I ndividual find_internal connectors
in CGenericQueryd ass
i SA I ntentional El erent Cl ass
with
attribute,retrieved attribute
nane : String
attri bute, paraneter
a : ActorEl enentd ass
attri bute, constraint
c: $
(exists |/Linkd ass
(this parent ~a) and ((I fromthis) or (I to this))
and (I in DependencyLi nkd ass) or
(I in External Li nkCl ass))
$
end

200/231 9/1/2004

master-thesis-v4.4.doc

A.3 Transform expressions

Each expression serves as either the deductive rule (for a meta-class) or the
integrity constraint (for a query class) is translated from the FOL style to O-
Telos. Table 9-3 shows the mapping of operators between FOL and O-Telos. See
(Jarke et al. 2003; ConceptBase Team 2003) for detail definitions of the O-Telos
language.

Table 9-3 Mapping of expressions and logical operators from FOL to O-Telos

FOL ConceptBase Remark
<input_var> ~<input_var>
<return_var> this

<var>.<label> =<target> | (<var> <label> <target>)

O exists

O forall

- not

O and

U or

0 in | nstance of

In query find_internal _connectors, the FOL style expression is as follows,
where a is the <input_var> and e is the <return_var>.
Ol LinkClass: e.parent=a
O (l.from=e [0 .to=¢€)
(1 in DependencyLinkClass) O (I in ExternalLinkClass)

The corresponding O-Telos translation is:

exists |/LinkClass (this parent ~a)
and ((I fromthis) or (I to this))
and (I in DependencyLi nkCl ass) or (I in ExternalLi nkd ass)

201/231 9/1/2004

master-thesis-v4.4.doc

B. Queries in O-Telos Style

Each of the queries defined in First Order Logic (FOL) in this thesis is
translated in its corresponding O-Telos style, and tested using ConceptBase. To
perform this test, we first constructed O-Telos representation of the reformulated
i* framework and loaded it into ConceptBase. Then we designed sample domain-
level i* models and loaded them into ConceptBase. Last, we ran each query,
supplying the required input arguments, and checked the correctness of the

results (the set of returning objects).

Hereafter are list of all the queries defined in this thesis. Queries and
definitions are numbered according to their sequence of appearance in this thesis.
We organize them into four .sml files. “DefinitionQueries.sml” contains
definitions and queries defined in Section 4.3; “ACViews_Queries.sml” contains
gueries defined in Section 5.2; “SDViews Queries.sml” contains queries defined
in Section 6.2; and “SRViews_Queries.sml” contains queries defined in Section
7.2.

File : DefinitionQueries.snl

Purpose : Definitions of concepts and related query cl asses
created : 09/01/04 Jane You

| ast change:

Content: Defl~3, Queryl~14

e B R L

{# Definition of extra nodel related types #}

{# Defl: Dependuntl enentd ass #}
I ndi vi dual Dependuntl enentd ass in Cass, Metad ass i sA SubEl enent C ass
with
rule
dependumrule: $ forall e/ SubEl ementd ass
not (exi sts a/ActorEl ementC ass (e parent a)) ==> (e in

Dependuntl enent d ass)

$
end

{# Def2: Internal El enentd ass #}
I ndi vi dual Internal El enentC ass in Class, MetaC ass i sA
I ntentional El enentCl ass with
rul e
internal _rule: $ forall e/lntentional El enentC ass

202/231 9/1/2004

master-thesis-v4.4.doc

(exists al/ActorEl enentd ass (e parent a)) ==> (e in
I nt er nal El enent d ass)
$
end

{ this definitionis not fornmalized in the thesis }
I ndi vi dual Deci si onPoi nt El ement d ass in O ass, Metad ass isA
Goal El enentd ass with
rule

dpointrule : $ forall e/ Goal El enentC ass

(exists 11,12/ Intentional LinkClass (lI1<>12) and (11 to e) and (I2
to e))

==>(e in DecisionPointEl ementd ass) $

end

{# Queryl: find parent(e:lntentional El ementd ass) #}
I ndi vidual find parent in GenericQueryCd ass isA ActorEl ementC ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
e : Intentional El enentd ass
attribute, constraint
c: $ (~e parent this) $
end

{# Query2: find_ internal _elenents(a: ActorEl ementd ass) #}
I ndividual find_ internal _elenments in GenericQueryCd ass isA
I ntentional El ementCl ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
a : ActorEl enmentd ass
attribute, constraint
c: $ (~achildrenthis) $
end

{# Query3: find_incom ng_dependenci es_to_actor(a: ActorEl ement C ass) #}
{# Comments: find dependency links that targets at "a" #}
I ndi vi dual find_incom ng_dependencies to _actor in GenericQueryCd ass isA
DependencylLi nkC ass with
attri bute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c: $(this to ~a) or (exists e/lntentional El enentd ass (e parent
~a) and (this toe)) $
end

{# Query4: find_outgoing_dependenci es_from actor(a: Actor El enent d ass) #}
{# Comments: find dependency links that starts from"a" #}
I ndi vi dual find_outgoing dependencies fromactor in GenericQueryd ass
i sSA DependencylLi nkCl ass with
attribut e, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String

203/231 9/1/2004

master-thesis-v4.4.doc

attribute, constraint
c: $ (this from~a) or (exists e/lntentional El ementC ass (e parent
~a) and (this frome)) $
end

{# Query5: find depender_actor(de: Dependuntl enent d ass) #}
I ndi vi dual find _depender _actor in GenericQueryCd ass isA
ActorEl enentd ass with
attribut e, paraneter
de : Dependuntl enent d ass
attribute, constraint
c : $ exists |/DependencyLi nkd ass
((exists e/lntentional El enentC ass (e parent this) and (I
frome)) or (I fromthis)) and (I to ~de)$
end

{# Query6: find depender_el enent (de: Dependuntl ement Cl ass) #}
I ndi vi dual find_depender el enment in GenericQueryd ass isA
I ntentional El ementCl ass with
attri but e, paraneter
de : Dependuntl enent d ass
attribute, constraint
c : $ exists |/DependencyLinkd ass (I fromthis) and (I to ~de)$
end

{# Query7: find dependee_act or(de: Dependuntl enent d ass) #}
I ndi vi dual find _dependee_actor in GenericQueryCd ass isA
ActorEl enentd ass with
attri but e, paraneter
de : Dependuntl enent d ass
attribute, constraint
c : $ exists |/DependencyLi nkd ass
((exists e/lntentional El ementC ass (e parent this) and (I to
e)) or (I tothis)) and (I from~de)$
end

{# Query8: find dependee_el enent (de: Dependuntl ement C ass) #}
I ndi vi dual find_dependee_el ement in GenericQueryd ass isA
Intentional El ementCl ass with
attri bute, paraneter
de : Dependuntl enent d ass
attribute, constraint
c : $ exists |/DependencyLinkd ass (I to this) and (I from~de)$
end

{# Query9: find direct_external |ink #}
{# Comment: this definition is a walk around due to problens in
i mpl enenting recursion #}

{# we have two auxilary queries suffixed by -1 to help define
this query #}
I ndividual find direct _external links in GenericQueryd ass isA

Intentional LinkClass with
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists alActorEl enentd ass dl / DependencyLi nkd ass
e/ I ntentional El enent d ass

204/231 9/1/2004

master-thesis-v4.4.doc

(this frome) and (e parent a) and (this to dl) $
end

{# Queryl0: find all_external |inks(l:Linkd ass) #}
{# Comment: this definition is a walk around due to problens in
i mpl enenting recursion #}

{# we have two auxilary queries suffixed by -1 to help define
this query #}
I ndividual find direct _external linksl in GenericQueryCd ass isA

Intentional LinkClass with
attri bute, paraneter
I : Linkd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c: $(thisto~l) $
end

Individual find all_external |inksl in GenericQueryd ass isA
I ntentional LinkCl ass with
attri but e, paraneter
I : Linkd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c: $(this in find_direct_external _|linksl[~I/I]) or
(exists |2/ ntentional LinkClass (this in
find direct_external linksl[12/1])
and (12 in find all _external linksi[~I/I])) $
end

Individual find all_external |inks in GenericQueryd ass isA
I ntentional LinkCl ass with
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ (exists dl/DependencyLi nkC ass (this in
find_ all _external linksi[dl/I])) $
end

{# Queryll: find direct _descendants(ie:lntentional El enentd ass) #}
I ndi vidual find direct _descendants in GenericQueryd ass isA
Intentional El ementd ass with
attri but e, paraneter
ie : Intentional El enentd ass
attribute, constraint
c : $ exists I/IntentionalLinkC ass a/ Act or El enent d ass
(I to ~ie) and (I fromthis) and (~ie parent a) and (this
parent a) $
end

{# Queryl2: find_ all _descendants(ie:lntentional El enentd ass) #}
I ndividual find_ all_descendants in GenericQueryd ass isA
Intentional El ementCl ass with
attribute, paraneter
ie : Intentional El enentd ass
attribute, constraint

205/231 9/1/2004

master-thesis-v4.4.doc

c: $ (this in find_direct_descendants[~ie/ie]) or
(exists d/Intentional El enentd ass a/ Act or El enent d ass
(d parent a) and (this parent a) and
(d in find all_descendants[~ie/ie]) and
(this in find direct_descendants[d/ie])) $
end

{# Queryl3: find direct _ancestors(ie:Intentional El ementd ass) #}
I ndi vidual find direct_ancestors in GenericQueryd ass isA
Intentional El ementd ass with
attri bute, paraneter
ie : Intentional El enentd ass
attribute, constraint
c : $ exists I/IntentionalLinkCd ass a/ ActorEl enent d ass
(I from~ie) and (I to this) and (~ie parent a) and (this
parent a)$
end

{# Queryl4: find all _ancestors(ie:lntentional El enentd ass) #}
I ndividual find all_ancestors in CGenericQueryC ass isA
I ntentional El ementCl ass with
attri bute, paraneter
ie : Intentional El enentd ass
attribute, constraint
c: $ (this in find_direct_ancestors[~ielie]) or
(exists d/Intentional El enentd ass a/ Act or El enent d ass
(d parent a) and (this parent a) and
(din find_ all _ancestors[~ie/ie]) and
(this in find direct_ancestors[d/ie])) $
end

{# Def3: ExternalLi nkd ass #}
I ndi vi dual External LinkClass in Cass, Metad ass isA
Intentional LinkClass with
rul e
external _rule: $ forall I/IntentionalLi nkd ass
(I infind all _external links) ==> (I in ExternalLi nkd ass)

$

end

File : ACViews Queries.sn

Purpose : Define the query classes for the AC views
created : 08/04/04 Jane You

| ast change : 09/01/04 Jane You

Contents: Queryl5~26

i L

{# Queryl5: theBasi cActorC assVi ewm{ m Basel i neMbdel O ass) #}
{# Comments: load minto a ConceptBase server before running this query,
m becones the default view #}
{# foll owi ng queries follow the same convention, running over a
default view #}
I ndi vi dual the_basic AC view in QueryC ass isA (bjectClass with

attribute, retrieved attribute

nane : String
attribute, constraint

206/231 9/1/2004

master-thesis-v4.4.doc

c: $ (this in ActorElenentd ass) or (this in AssociationLi nkd ass)
$
end

{# Queryl6: find all _links(pv:Viewd ass, cv:Viewd ass) #}
{# Default view pv #}
{# Input paraneters: cv #}
Individual find all _links in GenericQueryC ass isA LinkClass with
attribut e, paraneter
cv : Queryd ass
attribute, constraint
c : $ exists el/Elenentd ass e2/ El enent C ass
(el in ~cv) and (e2 in ~cv)
and (this fromel) and (this to e2) $
end

{# Queryl7: find direct associated _actors(a: SpecifiedActorEl enent d ass)
#}
{# Default view. v fromthe singl eNetworkRul e #}
{# Input paraneters: a #}
I ndi vidual find direct _associated actors in GenericQueryd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attribute, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c : $ exists |I/AssociationLinkd ass
(I fromthis) and (I to ~a) or (I from=~a) and (I to this) $
end

{# Queryl8: find all associated actors(a: Specifi edActor El enent d ass) #}
{# Default view. v fromthe singl eNetworkRul e #}
{# Input paraneters: a #}
I ndividual find all_associated actors in GenericQueryd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attri bute, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c: $ (this in find_direct_associ ated_actors[~a/a]) or
(exi sts a2/ Specifi edAct or El enent d ass
(a2 in find all _associated actors[~a/a]) and
(this in find direct_associated _actors[a2/a])) $
end

{# Queryl9: find direct specified actors(a: Pl ai nActor El enent d ass) #}
{# Default view. v fromthe singlePlainActorRul e #}
{# Input paraneters: a #}
I ndividual find direct _specified actors in GenericQueryd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attribute, paraneter
a : PlainActorEl ement d ass
attribute, constraint

207/231 9/1/2004

master-thesis-v4.4.doc

c : $ exists |I/SpecifiesLinkd ass
(I fromthis) and (I to ~a) $
end

{# Query20: find direct replacing actors(a: SpecifiedActorEl ement C ass) #}
{# Default view. v fromthe singlePlainActorRul e #}
{# Input paraneters: a #}
I ndividual find direct _replacing actors in GenericQueryd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c : $ exists |I/AssociationLinkd ass
((I in PartsLinkCass) or (I in
Conpl et eConposi tionLi nkCl ass)) and (I from~a) and (I to this) or
((I in ISALinkd ass) or (I in INSLinkdass) or (I in
CoversLi nkCl ass) or (I in PlaysLinkd ass) or
(I in CccupiesLinkC ass)) and (I fromthis) and (I to ~a)
$
end

{# Query2l: find_ all _replacing actors(a: Specifi edActorEl ement Cl ass) #}
{# Default view. v fromthe singlePlainActorRul e #}
{# Input paraneters: a #}
Individual find all _replacing_actors in GenericQeryCd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c: $(this in find_direct_replacing actors[~al/a]) or
(exi sts a2/ Specifi edAct or El enent d ass
(a2 in find all _replacing actors[~a/a]) and
(this in find direct _replacing actors[a2/a])) $
end

{# Query22: find all_abstract_actors() #}
I ndividual find all_abstract _actors in QueryC ass isA
Abstract ActorEl enent d ass with
attribute, retrieved attribute
nane : String
attribute, constraint
c: $this in AbstractActorEl enentC ass $
end

{# Query23: find all _plain_actors() #}
I ndividual find all_plain_actors in QueryCd ass isA
Pl ai nAct or El ement Cl ass with
attribute, retrieved attribute
nane : String
attribute, constraint
c: $this in PlainActorEl ementd ass $
end

208/231 9/1/2004

master-thesis-v4.4.doc

{# Query24: find all _agents() #}
I ndividual find_ all_agents in Queryd ass isA SpecifiedActorEl enent d ass
with
attribute, retrieved attribute
nane : String
attribute, constraint
c: $ (this in AgentEl enentd ass) or (this in
Agent | nst anceEl enent C ass) $
end

{# Query25: find direct replaceabl e _actors(a: Speci fi edAct or El enent d ass)
#}
{# Default view. v fromthe directRepl aceabl eRul e #}
{# Input paraneters: a #}
I ndi vidual find direct _replaceable actors in GenericQueryC ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attribut e, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c : $ exists |I/AssociationLinkd ass
((I in PartsLinkCass) or (I in
Conpl et eConposi tionLi nkCl ass)) and (I fromthis) and (I to ~a) or
((I in ISALinkd ass) or (I in INSLinkQass) or (I in
CoversLi nkCl ass) or (I in PlaysLinkd ass) or
(I in CccupiesLinkC ass)) and (I from~a) and (I to this)
$
end

{# Query26: find all _replaceabl e_actors(a: SpecifiedActorEl enent d ass) #}
{# Default view. v fromthe directRepl aceabl eRul e #}
{# Input paraneters: a #}
I ndividual find all _replaceable actors in GenericQueryCd ass isA
Speci fi edActorEl enentd ass with
attribute, retrieved attribute
nane : String
attri bute, paraneter
a : SpecifiedActorEl enentd ass
attribute, constraint
c: $ (this in find_direct_replaceabl e_actors[~a/a]) or
(exi sts a2/ Specifi edAct or El enent d ass
(a2 in find all_replaceable _actors[~a/a]) and
(this in find direct_repl aceabl e _actors[a2/a]))

$
end
{
* File : SDViews_ Queries.sn
* Purpose : Define the query classes for the SD views
* created : 08/04/04 Jane You
* | ast change : 09/01/04 Jane You
* Contents: Query27-~43
}
{# Query27: find_inter_dependuns(A=(al,...,am: ActorEl ementC ass) #}

209/231 9/1/2004

master-thesis-v4.4.doc

{# Comments: this query find the dependuns anong the sel ected set of
actors #}
I ndi vidual find_inter_dependuns in GenericQueryd ass isA
Dependuntl enment d ass with
attribute, paraneter
A : Qeryd ass
attribute, retrieved attribute
nane : String;
links : Linkd ass
attribute, constraint
c : $ exists I1,12/DependencyLi nkd ass al, a2/ Act or El ement O ass
(al in ~A) and (11 fromthis) and (a2 in ~A) and (12 to this)

and
((11 to al) or (exists el/al.children (11 to el))) and
((12 froma2) or (exists e2/a2.children (12 frome2)))
$
end
{# Query28: find_inter_dependenci es(A=(al,...,an: ActorEl enentd ass) #}

{# Comments: this query does not allow pending dependenci es #}
I ndi vidual find_inter_dependencies in GenericQueryd ass isA
DependencylLi nkC ass with
attri bute, paraneter
A : Qeryd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists alActorEl enentd ass b/ Dependuntl enent d ass
(ain ~A) and (b in find_inter_dependuns[~A/A]) and
((this in find_ outgoing_dependencies fromactor[a/a]) and
(this to b) or
(this fromb) and (this in
find_incom ng_dependencies_to _actor[a/a]))

$
end
{# Query?29:
find direct_inter_external |inks(A=(al,...,am: ActorEl enmentC ass) #}
I ndividual find direct _inter_external |inks in GenericQueryd ass isA

I ntentional LinkCl ass with
attri bute, paraneter
A : Qeryd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists dl/DependencyLinkd ass (dl in
find_inter _dependencies[~A/A]) and
(exists al/ActorEl enentC ass e/a.children (a in ~A) and (this
frome) and (this to dl))

$
end
{# Query30:
find all _inter_external |inks(A=(al,...,am:ActorEl ementd ass) #}
{# Comments: this query generates parser error with the line
}

210/231 9/1/2004

master-thesis-v4.4.doc

{ (exists al/ ActorEl enentCl ass e/a.children (a in ~A) and (this from
e)) #}
Individual find all _inter_external |inks in GenericQueryd ass isA
I ntentional Li nkCl ass with
attribute, paraneter
A : Qeryd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c: $ (exists a/ActorEl ementC ass e/a.children (a in ~A) and (this
frome)) and
((this in find direct_inter_external |inks[~A/A]) or
(exists I2/IntentionalLinkCass (12 in
find all _inter_external links[~A/A]) and (this to12))) $
end

{# Query3l: find_incom ng dependuns_to_actor(a: ActorEl ement C ass) #}
{# Comments: find dependum el enent that depends on "a" #}
I ndi vi dual find_incom ng_dependuns_to_actor in GenericQueryd ass isA
Dependuntl enent 0 ass with
attri but e, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists |/DependencyLinkd ass (I fromthis) and (I in
find_i ncom ng_dependencies to_actor[~a/a]) $
end

{# Query32:
find_indirect _incom ng_dependencies_to_actor(a: ActorEl ement C ass) #}
{# Comments: find dependency |inks that ends at the incon ng dependuns
of actor "a" #}
I ndi vi dual find_indirect _inconm ng _dependencies to actor in
CGeneri cQueryd ass i sA DependencyLi nkCl ass with
attri bute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists de/Dependuntl enentC ass (this to de) and (de in
find_incom ng_dependuns_to_actor[~a/a]) $
end

{# Query33: find dependers_to_actor(al: ActorEl ementC ass) #}
{# Comments: find actors depends on "a" via a dependum #}
I ndi vi dual find _dependers to _actor in GenericQueryd ass isA
ActorEl enentd ass with
attribut e, paraneter
a : ActorEl ementd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists d/Dependuntl enent d ass |/ DependencyLi nkd ass
(d in find_i ncom ng _dependuns_to_actor[~a/a]) and
(I in find_outgoing dependencies fromactor[this/a]) and
(I to d)

211/231 9/1/2004

master-thesis-v4.4.doc

end

{# Query34: find_outgoing dependuns_to_actor(a: ActorEl ement C ass) #}
{# Comments: find dependum el enents that "a" depends on #}
I ndi vi dual find_outgoing dependuns_fromactor in GenericQueryd ass isA
Dependuntl enent 0 ass with
attri but e, paraneter
a : ActorEl ementd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists |/DependencyLinkC ass (I to this) and (I in
find_out goi ng_dependenci es_ fromactor[~a/a]) $
end

{# Query35:
find_indirect _outgoing dependencies fromactor(a: ActorEl ement C ass) #}
{# Comments: find dependency |inks that ends at the outgoing dependuns
of actor "a" #}
I ndi vi dual find_indirect_outgoi ng dependencies fromactor in
CGeneri cQueryd ass i sA DependencyLi nkCl ass with
attri bute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists de/Dependuntl enentC ass (this fromde) and (de in
find_out goi ng_dependuns_fromactor[~a/a]) $
end

{# Query36: find dependees from actor(a: Actor El enent d ass) #}
{# Comments: find actors who "a" depends on via a dependum #}
I ndi vi dual find _dependees fromactor in GenericQeryCd ass isA
ActorEl enentd ass with
attri bute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists d/Dependuntl enent d ass |/ DependencyLi nkd ass
(d in find_outgoing dependuns_fromactor[~a/a]) and
(I in find_incom ng _dependencies to _actor[this/a]) and
(I fromd)

end

{# Query37:
find externallinks to_incom ng dependency(a: Act or El ement Cl ass) #}
{# Input paraneters: a #}
I ndi vidual find externallinks_ to_inconi ng dependency in
Ceneri cQueryC ass i sA Intentional LinkCl ass with
attri but e, paraneter
a : ActorEl ementd ass
attribute, retrieved attribute
nane : String
attribute, constraint

212/231 9/1/2004

master-thesis-v4.4.doc

c : $ exists dl/DependencyLi nkd ass
(dl in find_incom ng_dependencies to _actor[~a/a]) and (this
tod) $
end

{# Query38:
find externallinks originator_to_i ncom ng _dependency(a: Act or El enent d ass)
#}
{# Coments: find the actor that has an external |ink ends at
i ncom ng dependency |ink #}
I ndi vidual find_ externallinks originator_to_incom ng_dependency in
Ceneri cQueryC ass i sA ActorElenentd ass with
attri but e, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists I/IntentionalLinkd ass
(I in find_ externallinks to incom ng_dependency[~a/a]) and
(exists e/this.children (I frome)) $

a s

end

{# Query39:
find externallinks to_ indirect_outgoi ng dependency(a: Act or El enent d ass)
#}
I ndi vidual find externallinks to_indirect_outgoing dependency in
Ceneri cQueryC ass i sA Intentional LinkClass with
attri but e, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists de/ Dependuntl enent C ass dl/de.links
(dl in find_indirect_outgoing dependencies fromactor[~a/a])
and (this todl) $
end

{# Query40:
find externallinks originator_to_indirect outgoi ng_dependency(a: ActorEl e
nment Cl ass) #}
I ndi vidual find externallinks originator_to indirect_ outgoing dependency
in GenericQueryd ass i sA ActorElenentC ass with
attri but e, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String
attribute, constraint
c : $ exists I/IntentionalLinkd ass
(I in
find externallinks to_ indirect_outgoing dependency[~a/a]) and
(exists e/this.children (I frome)) $
end

{# Query4l: find externallinks fromactor(a:ActorEl ementd ass) #}

{# Coments: find the external links that originated fromactor "a" #}
I ndi vidual find externallinks fromactor in GenericQueryd ass isA

I ntentional LinkCl ass with

213/231 9/1/2004

master-thesis-v4.4.doc

attribute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String;
from: El enmentd ass;
to : (Objectd ass
attribute, constraint
c: $ (exists e/lntentional ElenentC ass (this frome) and (e parent
~a)) and

(this in find_ all_external _|inks)
$
end
{# Query42:
find externallinks to externallinks fromactor(a: ActorEl ementd ass) #}
{# Coments: find the external links that affect the external |inks

originated fromactor "a" #}
I ndividual find externallinks to externallinks fromactor in
Ceneri cQueryC ass i sA Intentional LinkCl ass with
attri but e, paraneter
a : ActorEl ementd ass
attribute, retrieved attribute
nane : String;
from: El enmentd ass;
to : (Objectd ass
attribute, constraint
c: $ exists I/IntentionalLinkCass (I in
find externallinks fromactor[~a/a])
and (this tol) $
end

{# Query43: find externallinks target from actor(a: ActorEl enent d ass) #}
{# Coments: find the Iinks that the external |inks originated from
actor "a" ends at #}
I ndi vidual find externallinks target fromactor in GenericQueryC ass isA
Li nkC ass with
attribute, paraneter
a : ActorEl enmentd ass
attribute, retrieved attribute
nane : String;
from: El enmentd ass;
to : (Objectd ass
attribute, constraint
c: $ exists I/IntentionalLinkC ass (I in
find externallinks fromactor[~a/a])
and (I tothis) $

end

{

* File : SRViews Queries.sn

* Purpose : Define the query classes for the SR views
* created : 08/05/04 Jane You

* | ast change : 09/01/04 Jane You

* Contents: Query44-~51

}

{# Query44: find_internal connectors(a: ActorEl ementd ass) #}

214/231 9/1/2004

master-thesis-v4.4.doc

{# Coments: find the internal elenents that has an external |ink
connect ed #}
I ndi vidual find_ internal _connectors in GenericQueryd ass isA
Intentional El ementCl ass with
attribute, retrieved attribute
nane : String
attribute, paraneter
a : ActorEl enmentd ass
attribute, constraint
c: $ (this parent ~a) and
(exists |1/ DependencyLinkCl ass (11 fromthis) or (I1 to
this)) or
(exists I2/IntentionalLinkCass (12 in
find externallinks fromactor[~a/a]) and (12 fromthis))
$
end

{# Query45: find root_el enments(a: ActorEl enent d ass) #}
I ndividual find root _elenents in CGenericQueryC ass isA
I ntentional El ementCl ass with
attribute, retrieved attribute
nane : String
attri bute, paraneter
a : ActorEl enmentd ass
attribute, constraint
c: $ (this parent ~a) and
(not (exists I/IntentionalLinklass (I fromthis)))$
end

{# Query46: find root_softgoal s(a: ActorEl ement Cl ass) #}
I ndi vidual find root_softgoals in GenericQueryCd ass isA
Sof t goal El emrent Cl ass with
attribute, retrieved attribute
nane : String
attri bute, paraneter
a : ActorEl enmentd ass
attribute, constraint
c: $(thisin find root_elenments[~a/a]) $
end

{# Queryd7: find_ root functional s(a: ActorEl ementd ass) #}
I ndi vidual find root functionals in GenericQueryd ass isA
Intentional El ementCl ass with
attribute, retrieved attribute
nane : String
attribut e, paraneter
a : ActorEl enmentd ass
attribute, constraint
c: $(this in find_root_elements[~a/a]) and not (this in
Sof t goal El enent O ass) $
end

{# Query48: find contribution_to _dependun{a: Actor El enent C ass,
dl : DependencylLi nkd ass) #}
I ndi vidual find contribution_to dependumin GenericQueryd ass isA
I ntentional LinkCl ass with
attribute, retrieved attribute

215/231 9/1/2004

master-thesis-v4.4.doc

nane : String
attri but e, paraneter
a : ActorE ement d ass;
dl : DependencyLi nkC ass
attribute, constraint
c: $(thisto ~dl) and
(exists el/lntentional ElenentC ass (e parent ~a) and (this
frome))$
end

{# Query49: find contributor_to dependun(a: Act or El enent d ass,
dl : DependencylLi nkd ass) #}
I ndi vidual find contributor_to _dependumin GenericQueryd ass isA
Intentional El ementCl ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
a : ActorE ement d ass;
dl : DependencyLi nkC ass
attribute, constraint
c : $ exists I/IntentionalLinkd ass
(I in find_contribution_to dependuni~a/a,~dl/dl]) and (I
fromthis) $
end

{# Query50: find contribution_ to _actor(a, al:ActorEl enentd ass) #}
{# Input argurment: "al" is the affected actor #}
I ndividual find contribution_ to actor in GenericQueryd ass isA
I ntentional LinkCl ass with
attribute, retrieved attribute
nane : String
attri but e, paraneter
a0: ActorEl ement d ass;
al: ActorEl enmentd ass
attribute, constraint
c: $ (exists eO/lntentional El enentd ass (e0 parent ~a0) and (this
frome0O))and
(exists |1/ ntentional Li nkCl ass el/ | ntentional El enent d ass
(11 fromel) and (el parent ~al) and (this to 11)) $
end

{# Query51: find contributor to actor(a, al:ActorEl ementd ass) #}
{# Input argurment: "al" is the affected actor #}
I ndividual find contributor to actor in GenericQueryCd ass isA
Intentional El ementCl ass with
attribute, retrieved attribute
nane : String
attribut e, paraneter
a0: ActorEl ement d ass;
al: ActorEl enmentd ass
attribute, constraint
c : $ exists I/IntentionalLinkd ass
(I infind contribution_to_actor[~a0/a0,~al/al]) and (I from
this) $
end

216/231 9/1/2004

master-thesis-v4.4.doc

C. Facts about the London Ambulance Service Computer

Aided Despatch System

We cite in this section the source of information on which we based for our
London Ambulance Service (LAS) case study. All paragraphs appear in this
section are items stated in the “Report of the Inquiry into the London Ambulance
Service” (LAS-Report 1993). We select the part the describes the manual process,
the constructs of the Computer Aided Despatch (CAD) system, and the system

requirements for performance.
The manual system operates as follows:
Call Taking

3002 When a 999 or urgent call is received in Central Ambulance Control the
Control Assistant (CA) writes down the call details on a preOprinted form (AS1
or AS2). The incident location is identified from a map book, together with the
map reference coOordinates. On completion of the call the incident form is
placed into a conveyor belt system with other forms from fellow CA’s. The

conveyor belt then transports the forms to a central collection point within CAC.
Resource Identification

3003 Another CAC staff member collects the forms from the central collection
point and, through reviewing the details on the form, decides which resource
allocator should deal with it (based on the three London Divisions—North East,
North West, and South). At this point potential duplicated calls are also
identified. The resource allocator then examines the forms for his/her sector and,
using status and location information provided through the radio operator and
noted on forms maintained in the “activation box” for each vehicle, decides
which resource should be mobilized. This resource is then also recorded on the

form which is passed to a despatcher.

Resource Mobilisation

217/231 9/1/2004

master-thesis-v4.4.doc

3004 The despatcher will telephone the relevant ambulance station (if that is
where the resource is) or will pass mobilisation instructions to the radio operator

if the ambulance is already

3005 According to the ORCON standards this whole process should take no more

than 3 minutes.

The System Structure:

3119 The complete CAD system had a number of different elements including:
a) CAD software;
b) CAD hardware;
¢) RIFS Communication Interface;
d) radio system;
e) Datarak Sub System;
f) Gazekeer and Mapping Software;
g) Mobile Data Terminals.

System Performance Requirements:

6082 We recommend that LAS makes available to interested parties such as
Community Health Councils, purchasers of the service and London MPs its

performance levels in respect of:
a) 999 telephone answering times;
b) activation percentage within three minutes;
C) response percentage within 8 minutes;

d) response percentage within 14 minutes.

218/231 9/1/2004

master-thesis-v4.4.doc

Bibliography

Alexander |. 2003. “Misuse Cases: User Cases with Hostile Intent,” |EEE
Software, 20(1), Jan.-Feb. 2003: 58-66.

Breitman KK, Leite JC, and Finkelstein A. 1999. “The World’s a Stage: a Survey
on Requirements Engineering Using a Real-life Case Study”, Journal of the

Brazilian Computer Society, 6.1, Campinas, July 1999.

Bubenko JJ, Persson A, Stirna J. 2001 Oct. User Guide of the Knowledge
management Approach Using Enterprise Knowledge Patterns. Stockholm
(Sweden): Department of Computer and Systems Science, Royal Institute of
Technology. 52 p.

Carlson CR, Ji W, Arora AK. 1990. Elsevier Science PublishersB.V. In F.H.
Lochovsky, editor. “The Nested Entity-Relationship Model,” Entity-Relationship
Approach to Database Design and Querying, North-Holland, 1990: 221-236.

Campbell LJ, Halpin TA, Proper HA. 1996. “Conceptual Schemas with
Abstractions—Making Flat Conceptual Schemas More Comprehensible,” Data &
Knowledge Engineering, 20.1 (1996): 39-85.

Chung L, Nixon B, Yu E. 1997. “Dealing with Change: An Approach Using Non-
Functional Requirements,” Requirement Engineering, Springer-Verlag, 1.4
(1997): 238-260.

Chung L, Gross D, Yu E. 1999. Kluwer Academic Publishers. In: Patrick
Donohue, editor. “Architectural Design to Meet Stakeholder Requirements,”
Software Architecture, 1999: 545-564.

Chung L, Nixon BA, Yu E, Mylopoulos J. 2000. Kluwer Academic Publishers.
Non-Functional Requirements in Software Engineering. 472 p. ISBN 0-7923-
8666-3.

219/231 9/1/2004

master-thesis-v4.4.doc

ConceptBase Team. 2003. ConceptBase Tutorial. Aachen(Germany): Informatik
V., RWTH Aachen. 10 p.

Castano S, DE ANTONELLISV, FUGINI MG, PERNICI B. 1998. “Conceptual
Schema Analysis: Techniques and Applications,” ACM Transactions on Database
Systems, 23.3 (Sep 1998): 286-333.

Damm W, Harel D. 2001. Klumer Academic Publishers. “LSCs: Breathing Life
into Message Sequence Charts,” Formal Methods in System Design, 19 (2001):
45-80.

Douglass BP. 2003. “UML 2.0 Incrementally I mproves Scalability and
Architecture.” Available:

http://www.elecdesign.com/articles/print.cfm?articlel D=5881 (Oct. 2003).

Dubois E, Yu E, Petit M. 1998. I[EEE Computer Society. “From Early to Late
Formal Requirements: a Process Control Case Study,” Proceedings of the 9th

International Workshop on Software Specification and Design, Ise-Shima, Japan,
Apr. 1998: 34-42.

Feldman P, Miller D. 1986. “Entity Model Clustering: Structuring a Data Model
by Abstraction,” Computer Journal, 29.4 (Aug. 1986): 348-360.

Ghandi M, Robertson EL, Gucht DV. 1992. Springer-Verlag. In P. Loucopoulos,
editor. “Leveled Entity Relationship Model,” Proceedings of the Fourth

International Conference CAiISE’92 on Advanced Information Systems Engineers,

volume 593 of Lecture Notes in Computer Science, May1992; Manchester,
United Kingdom. p 456-473.

Gross D, Yu E. 2001. “Evolving System Architecture to Meet Changing Business
Goals: an Agent and Goal-Oriented Approach,” ICSE-2001 Workshop: From
Software Requirements to Architectures (STRAW 2001), Toronto, Canada, May
2001: 13-21.

220/231 9/1/2004

master-thesis-v4.4.doc

GRL. 2003. “URN — Goal-oriented Requirement Language (GRL),” Recommendation
Z.150: User Requirements Notation (URN) — L anguage requirements and framework,
Sep. 2003.Available: http://www.usecasemaps.org/urn/z_151-ver3 0.zip . Last
view Aug. 2004.

Harel D. 1988. “On Visual Formalisms,” Communications of the ACM, 31.5
(May 1988): 514-530.

Horkoff J. 2004. “A Study of Trusted Computing Using the i* Framework.”
Working Paper, Knowledge Management Lab, Bell University Labs, University
of Toronto. 135 p. Available: Last view Aug. 2004.

IDEFO. 1993. IDEF Family of Methods, Knowledge Based Systems, Inc. (KBSI).
Available: http://www.idef.com/idefO.html. Last view Aug. 2004.

Jarke M, Jeusfeld MA, Quix C. 2003. ConceptBase V6.1 User Manual.
Aachen(Germany): Informatik V., RWTH Aachen. 98 p.

Jarke M, Gallersdorfer R, Jeusfeld MA, Staudt M, Eherer S. 1995. “ConceptBase
- A Deductive Object Base for Meta Data,” Journal on Intelligent Information
Systems, 2.4 (Mar 1995): 167-192.

Koubarakis M, Mylopoulos J, Stanley M, Borgida A. Feb. 1989. Telos: Features
and Formalization. Toronto (ON): Department of Computer science, University
of Toronto. Report nr KRR-TR-89-4. 84 p.

Kramer J, Wolf A. 1996. ACM SIGSOFT. “Succeedings of the 8" International
Workshop on Software Specification and Design,” Software Engineering Notes,
21.5, Sep. 1996: 21-35.

Lamsweerde AV. 2003. “Goal-Oriented Requirements Engineering: from System
Objectives to UML Models to Precise Software Specifications,” ICSE’03
Tutorial, Portland, May 2003. 159 p.

221/231 9/1/2004

master-thesis-v4.4.doc

LAS-Report. 1993. Report of the Inquiry into the London Ambulance Service,
electronic version prepared by prof. A. Finkelstein, available at

http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html with permission from the

communications directorate, South West Thames Regional Health Authority,
original ISBN: 0 905133 70 6, 1993

Letier E. 2001. Reasoning about Agents in Goal-oriented Requirements
Engineering [dissertation]. Belgium: Department of Computing Science and

Engineering, Université catholique de Louvain. 283 p.

LiuL, Yu E. 2001. “From Requirements to Architectural Design - Using Goals
and Scenarios,” |CSE-2001 Workshop: From Software Requirements to
Architectures (STRAW 2001), Toronto, Canada, May 2001: 22-30.

LiuL, Yu E, Mylopoulos J. 2002. “Analyzing Security Requirements as
Relationships Among Strategic Actors,” 2nd Symposium on Requirements
Engineering for Information Security (SREIS' 02), Raleigh, North Carolina, Oct.
2002.

LiuL, Yu E, Mylopoulos J. 2003. “Security and Privacy Requirements Analysis
within a Social Setting,” 11"" IEEE International Conference on Requirements
Engineering (RE’03), Monterey, California, Sep. 2003: 151-161.

OME. 2003. Organization Modelling Environment (OME) [Tool]. Knowledge
Management Lab, Bell University Labs, University of Toronto. Available:
http://www.cs.toronto.edu/km/ome/. Last view Aug. 2004.

You Z. 2003. “Applying the GRL Framework to the LAS-CAD Case Study.”
Working Paper, Knowledge Management Lab, Bell University Labs, University
of Toronto. 65 p. Available:
http://www.cs.toronto.edu/~janeyou/avs/csc2150Project.doc (Aug. 2003). Last
view Aug. 2004.

222/231 9/1/2004

master-thesis-v4.4.doc

Yu E. 1994. Modelling Strategic Relationships for Processing Reengineering

[dissertation]. Toronto (ON): Department of Computer science, University of
Toronto. 124 p.

Yu E. 1997 Jan. “Towards Modeling ad Reasoning Support for Early-Phase

Requirements Engineering,” Proceedings of the 3" |EEE International
Symposium on Requirements Engineering, Washington D.C., USA, Jan. 1997:
226-235.

Yu E. 1997 Jun. Presses Universitaires de Namur. In: E. Dubois, A.L. Opdahl, K.
Pohl, editors. “Why Agent-Oriented Requirements Engineering,” Proceedings of

3rd International Workshop on Requirements Engineering: Foundations for
Software Quality, Barcelona, Catalonia, June 1997.

YuE, Liu L. 2000. “Modelling Trust in the i* Strategic Actors Framework,”
Proceedings of the 3rd Workshop on Deception, Fraud and Trust in Agent

Societies, Barcelona, Catalonia, Spain, June 2000.

YUuE, LiulL, LiY. 2001. Spring Verlag. “Modelling Strategic Actor
Relationships to Support Intellectual Property Management,” 20th International

Conference on Conceptual Modeling (ER-2001), Yokohama, Japan, Nov. 2001:
164-178. LNCS 2224

Yu E, Cysneiros LM. 2002. “Designing for Privacy and Other Competing
Requirements,” 2nd Symposium on Requirements Engineering for Information
Security (SREIS 02), Raleigh, North Carolina, Oct. 2002.

223/231 9/1/2004

