
A Goal Oriented Approach for Modeling and
Analyzing Security Trade-Offs

Golnaz Elahi1, Eric Yu2
1Department of Computer Science, University of Toronto, Canada, M5S 1A4

gelahi@cs.toronto.edu
2 Faculty of Information Studies, University of Toronto, Canada, M5S 3G6

yu@fis.utoronto.edu

Abstract. In designing software systems, security is typically only one design
objective among many. It may compete with other objectives such as
functionality, usability, and performance. Too often, security mechanisms such
as firewalls, access control, or encryption are adopted without explicit
recognition of competing design objectives and their origins in stakeholder
interests. Recently, there is increasing acknowledgement that security is
ultimately about trade-offs. One can only aim for “good enough” security,
given the competing demands from many parties. In this paper, we examine
how conceptual modeling can provide explicit and systematic support for
analyzing security trade-offs. After considering the desirable criteria for
conceptual modeling methods, we examine several existing approaches for
dealing with security trade-offs. From analyzing the limitations of existing
methods, we propose an extension to the i* framework for security trade-off
analysis, taking advantage of its multi-agent and goal orientation. The method
was applied to several case studies used to exemplify existing approaches.

Keywords: Security Trade-offs, Trade-off Analysis, Goal Modeling, Goal
Model Evaluation.

1 Introduction

“Security is about trade-offs, not absolutes.”
 Ravi Sandhu
 In designing software systems, security is typically only one design objective

among many. Security safeguards may conflict with usability, performance, and even
functionality. For example, if usability concerns are not addressed in the design of a
secure system, users respond by circumventing security mechanisms [29, 30].
Achieving a balance between the intrusiveness of security mechanisms [25] and
usability goals is an important consideration in designing successful secure software
systems. Security goals can have their own contradictions because confidentiality,
integrity, privacy, accountability, availability, and recovery from security attacks
often conflict fundamentally. For example, accountability requires a strong audit trail
and end-user authentication, which conflicts with privacy needs for user anonymity
[25].

Ultimately, security is about balancing the trade-offs among the competing goals of
multiple actors. In current practice, security designers often adopt security
mechanisms such as firewalls, access control, or encryption without explicit
recognition of, and systematic treatment of competing design objectives originating
from various stakeholders. This motivates the question: what conceptual modeling
techniques can be used to help designers analyze security trade-offs to achieve “good
enough” security?
 The remaining parts of the paper are structured as follows. In section 2, we
consider the criteria for a suitable conceptual modeling technique for dealing with
security trade-offs. In section 3, a number of existing approaches to security trade-off
analysis are reviewed and compared to the introduced criteria. From analyzing the
limitations of existing methods, we propose a conceptual modeling technique for
modeling and analyzing security trade-offs in a multi-actor setting. In section 4, the
meta-model of security concepts is introduced, and proposed extensions and
refinements to the i* notation are presented. In section 5, we describe the goal model
evaluation and trade-off analysis technique. Section 6 summarizes the results of some
case studies. Finally, section 7 discusses results and limitations of the approach.

2 Conceptual Modeling Criteria for Security Trade-offs Analysis

Trade-off analysis in software design refers to achieving the right balance among
many competing goals. When some goals are not sufficiently satisfied, designers need
to explore further alternatives that can better achieve those goals without
detrimentally hurting others. Each potential solution can have positive effects on
some goals while being negative on others. A careful and systematic process for
security trade-off analysis can be very challenging, because a wide range of security
mechanisms, solutions and frameworks need to be considered.

To support security trade-off analysis a conceptual modeling technique should
model three kinds of concepts: i) Goals, ii) Actors and iii) Security specific concepts.

i) Goals: Security trade-offs are conflicts among design objectives that originate
from stakeholder goals. While selecting a solution among security alternatives is
difficult, the more fundamental problem is that designers need to decide about
alternatives security mechanisms subject to multiple factors such as cost, time-to-
market, non-functional requirements (NFRs), security policies, standards, and
individual goals of various stakeholders. Therefore, the “goal” concept is a basic
modeling construct required in the conceptual modeling technique for dealing with
trade-offs. The technique should provide means for structuring the contributions to
goals and modeling the extents and measures of goals satisfaction, contribution and
competition. The measures could be quantitative or qualitative. Quantitative
approaches can greatly simplify decision making, but can be difficult to apply due to
lack of agreed metrics or unavailability of accurate measures. The modeling technique
should be able to support analysis despite inaccurate or incomplete knowledge about
goals.

ii) Actors: Design objectives typically come from multiple sources and
stakeholders such as system’s users, administrators, top managers, project managers,

and customers. The conceptual modeling technique should be able to model multiple
actors that impose competing goals on the designer, and should provide means to
trace back goals to the actors. The modeling technique should be able to model trade-
offs that occur within a single actor or across multiple actors.

iii) Security Specific Concepts: The conceptual modeling technique that enables
security trade-off analysis should model security specific concepts such as threats,
vulnerabilities, and safeguards. Threats can be viewed as malicious actors’ goals.
Conflicts among stakeholders’ goals are usually unavoidable, and the designer needs
to balance the trade-offs among conflicting goals. In contrast, threats and attacks must
be mitigated. In addition, decision makers need a measurable expression of the
security level of solutions [21]; therefore, the modeling technique should provide
means to model to what extent attacks are successful, how attacks influence on goals,
whether countermeasures control the threats, and whether the goals are at risk.

The modeling concepts need to be accompanied with a procedure for evaluating

security alternatives. The proper trade-off analysis method should evaluate the impact
of each alternative on goals and potential threats. It should answer to what extent the
goals are satisfied or denied, threats are contained, and vulnerabilities are patched.
The procedure should be able to analyze the trade-offs in the face of incomplete or
inaccurate knowledge about goals’ contributions and security measures.

3 Existing Approaches to Security Trade-off Analysis

Many approaches have been proposed to model security aspects of the software
systems. The notion of “abuse case” [14] and UMLsec modeling language [15] are
examples of security specific conceptual modeling approaches for modeling security
requirements and aspects of the system.

In recent years, agent and goal oriented frameworks in Requirements Engineering
have emerged as new approaches to the analysis and design of complex software
systems. Examples of such frameworks are KAOS [1], the NFR framework [10], the
i* framework [7], and Tropos [2]. Several approaches such as [3, 5, 6, 16, 17, 18]
propose frameworks for modeling and analyzing security concepts by taking
advantage of agent and goal oriented techniques. The majority of these approaches
employ qualitative trade-off analysis, while [16] suggests a quantitative approach for
analyzing security requirements. In [22], probabilistic inference on security influence
diagrams is used to support trade-off analysis using Bayesian Belief Nets (BBN). The
approach in [23] proposes a framework of core security requirements artefacts to
describe the security requirements. The meta-model of the core artefacts includes
concepts such as assets, threats, security goals, functional requirements, and security
requirements. In [20], using the core security artefacts, the authors propose a
framework for security requirements elicitation and analysis.

In this section, we review three selected methods for modeling and analyzing
security trade-offs as representative of existing approaches. We study Architecture
Tradeoff Analysis Method (ATAM) [11] as a general purpose and widely used
architectural trade-off analysis method which considers security. We study agent and

goals oriented approaches for dealing with security trade-offs. Security Verification
and security solution Design Trade-off analysis (SVDT) [21] and Aspect-Oriented
Risk-Driven Development (AORDD) [27] are studied as representatives of
quantitative analysis methods. We study how well these approaches are matched with
the criteria discussed in the previous section.

3.1 ATAM

Bass et al. [11] introduces a framework to model quality attributes and
architectural options using the notion of scenarios and tactics respectively. A quality
attribute scenario is a quality-attribute-specific requirement, and consists of six parts:
Source of stimulus, Stimulus, Environment, Artifact, Response, and Response
measure. Achievement of quality scenarios relies on tactics. ATAM is an evaluation
method to analyze whether an architecture decision satisfies particular quality goals.
ATAM helps designers to prioritize scenarios and evaluate alternative tactics using a
“Quality Attribute Utility Tree”. Scenarios that have at least one high priority of
importance or difficulty are chosen for a detail analysis to examine if the selected
tactics satisfy the scenario.

The result of the analysis is an “Architectural Approach Analysis” table for each
quality scenario. In this table, evaluators identify and record sensitivity, tradeoff, risks
and non-risks points for alternative tactics. Sensitivity and tradeoff points are
architectural decisions that have effect on one or more quality attributes, the former
positively and the latter negatively. In ATAM, a risk is defined as an architectural
decision that may lead to undesirable consequences, and non risk points are defined in
the opposite way. The conceptual elements related to trade-offs in ATAM may be
captured in a meta-model as in Fig. 1.

Fig. 1. Meta-model of trade-off elements in ATAM.

3.2 SVDT/AORDD Approach

Houmb et al. [21] propose the SVDT approach using UMLsec for modeling
security solutions. UMLsec is used to specify security requirements, and UMLsec
tools verify if the design solutions satisfy the security requirements. Design solutions
that pass the verification are then evaluated using security solution design trade-off
analysis. A complementary framework on AORDD provides a risk assessment

process and cost-benefic trade-off analysis. AORDD and SVDT use BBN to compute
Return on Security Investment (RoSI).

Fig. 2 illustrates the relationship between the main concepts involved in AORDD
risk assessment, which specifies the structure of the inputs to the AORDD cost-
benefit trade-off analysis. The result of risk assessment is a list of misuses which need
security treatments. This list, alternative security treatments, and fixed trade-off
parameters such as budget, time-to-market, and policies are fed into the BBN to
compute the RoSI.

Fig. 2. ARODD risk assessment main concepts and relation [27]

3.3 Secure Tropos/i*

The proposed approaches in [3, 5, 6, 17, 18] take advantage of the i* and Tropos
frameworks. In these approaches, systems are modeled as intentional agents
collaborating or competing with each other to achieve their goals. Security issues
arise when some actors, while striving to achieve their own goals, intentionally or
unintentionally threaten other actors’ goals; therefore, agent and goal oriented
approaches provide a suitable basis for dealing with competing goals of multiple
actors.

The approach in [3] suggests using relationships among strategic actors for
analyzing security requirements. In [3], potential attackers of the systems are
distinguished from other actors of the system. [5] proposes a methodological
framework for dealing with security requirements based on the i* notation. In [6], a
framework known as Secure Tropos for modeling and analyzing security
requirements based on the notions of trust, ownership, and permission delegation is
developed. In [17, 18], the “threat” and “security constraint” modeling elements are

added to the i* meta-model. “Threat” elements are employed in the “security
diagram” to express potential violation against the security goals, and “security
constraints” are used to impose security requirements on actors’ dependencies. The
meta-model of related concepts to the Tropos goal model, which is the core of all
these approaches, is depicted in Fig. 3.

Fig. 3. Part of Tropos meta-model for goals and related concepts [31]

3.4 Limitations of Existing Approaches

In ATAM, trade-offs among quality scenarios and tactics in the “Architectural
Approach Analysis” table are indirect and implicit, since trade-off and risk points,
instead of referring to quality scenarios, refer to affected quality properties. ATAM
lacks considering the impact of each tactic on stimuli of security scenarios (attacks).
The impact of tactics on quality attributes are not captured qualitatively or a
quantitatively. Finally, the framework of scenarios, tactics and ATAM method does
not provide means to model and analyze security concepts specifically.

SVDT and AORDD rely on quantitative computation and probabilistic inference
for trade-off analysis. This requires the software designers obtain the quantitative
measures of the impact of misuses and solutions. The major limitation is the
inaccuracy or unavailability of qualitative data on the impact of misuses and solutions
especially in the early stages of the development lifecycle.

Generally, the suggested BBN topologies in SVDT and AORDD do not consider a
more general source of trade-off inputs such as NFRs and functionalities, and the
trade-off inputs to the designed BBN are limited to factors such as budget, laws and
regulation. Besides, the AORDD meta-model of risk assessment concepts (Fig. 2)
does not consider the relation between “security risk treatment” and other entities
such as “security requirement”, “threat”, and “vulnerability”. The AORDD meta-
model could be strengthen by considering more general concepts such as goals, other
quality requirements, and actors.

In SVDT and AORDD, the trade-off inputs and information are given to a BBN,
and the final RoSI is computed automatically, which makes the analysis efficient.
Since, the relationships between various states of the variables are specified in terms

of the node probability matrix in BBN, this automatic trade-off analysis process can
be traced by the designer. However, it may be difficult for the designer to follow what
aspects of the design caused the difference in the final results.

Although agent and goal oriented approaches provide a proper conceptual basis for
modeling and analyzing security trade-offs, a mechanism for such analysis has not
been elaborated in these frameworks. The method in [5] lacks a direct and explicit
way to model the competition among malicious and non-malicious actors’ goals, and
trade-off modeling among goals is limited to the non-malicious actors. The proposed
framework in [6] does not support modeling security concepts such as malicious
behavior. In [17, 18], threats are modeled explicitly as a distinct construct in the
“security diagram”, but they are not traced to the threats’ source actors, and the
relation between countermeasures and threats are not elaborated.

Table 1 summarizes a comparison of the studied approaches based on the
evaluation criteria from section 2.

Table 1. A comparison of existing approaches based on the criteria of the conceptual modeling
technique for security trade-off analysis

Method
Requirement ATAM SVDT/AORDD i*/Tropos

Goals Expressed in terms
of scenarios

Limited to security
requirements and fixed

BBN parameters
Explicit goals

Relations of goals Not model explicitly Limited to UMLsec
models

Modeled using
contribution links

Extents of goal
satisfaction Not expressed Quantitatively Qualitatively

Goals contribution
structure

Utility tree doesn’t
capture the

contributions of
scenarios

Not modeled
Modeled in terms of

sub goals and
contribution links

Multiple actors
Expressed implicitly
by multiple stimuli

sources
Not modeled

Modeled in terms of
agents/actors/ roles/

positions
Trade-off within a

single actor or
across actors

Single actor Single actor Single and multiple
actors

Security Specific
Trade-off Concepts Not modeled Some concepts are

modeled
Some concepts are

modeled
Trade-off analysis

method Qualitative analysis Quantitative analysis Qualitative and
quantitative analysis

4 The Security Trade-offs Modeling Notation

We propose a meta-model of security concepts for systematically addressing
security trade-offs (Fig. 4), considering the limitations of existing approaches and
reviewing well known security knowledge sources such as NIST’s guidelines and

standards like [19], CERT [26], and widely used textbooks such as [4, 13]. The core
of the meta-model is the concepts of goals and actors guided by the criteria of the
conceptual modeling technique that enables security trade-offs analysis.

Fig. 4. Meta-model of security concepts used in proposed modeling notation

The proposed notation builds upon the i* framework which provides a notation to
model actors, their goals and intentional dependencies and competitions among the
actors. Actors achieve goals on their own or depend on each other for goals to be
achieved, tasks to be performed, and resources to be furnished. Quality goals, which
do not have clear-cut criteria for satisfaction degree, are modeled as softgoals. Means-
ends relation between goals and tasks is used to model alternative ways to achieve a
goal [8]. However, the i* notation lacks explicit modeling constructs for concepts
such as threats and vulnerabilities. In this section, we propose some extensions to the
i* notation, which provide conceptual structures for modeling and analyzing security
trade-offs.

4.1 Malicious Actor, Goals and Tasks

Actors depend on, or compete with each other to achieve their goals. Meanwhile,
malicious actors try to achieve their own goals. Representing a malicious actor with a
different modeling construct in i* was first employed in [3] by highlighting them with
a black shadow rectangle. This notation was used to model malicious goals in [5]. We
make use of this notation in which malicious goals, softgoals, tasks, and actors are
highlighted by a black shadow rectangle. By distinguishing malicious modeling
elements from non-malicious ones, we emphasize studying the attackers’ goals and
tasks. Although attacker’s behavior might be partially unknown and generic, an
important aspect of trade-off analysis depends on studying attackers’ options and the
risks they pose to other actors’ goals.

A security threat is any malicious behavior that interferes with the achievement of
other actors’ goals. For example, in Fig. 5, Malicious Employee is the malicious actor
whose goal is to Commit a fraud under someone else’s name, either through the local
network or over the Internet. Threats might be unintentional or caused by natural
disasters. In this paper, we mainly focus on the security threats caused by actors with
malicious intent.

Fig. 5. Example of a multi-actor system modeled using the proposed notation

4.2 Assets, Services and Vulnerabilities Points

An asset is any thing that has a value for the organization [13]. Physical resources,
information, and people can be counted as assets. In this way, the asset concept is
well matched with the “resource” modeling element in i*. Assets can be the services
an organization offer or receive, and in this case, can be represented by tasks or goals
that actors offer to the “depender” actors.

In security analysis, a vulnerability point is any weakness in, or back door to the
system [13]. For example, it is said that buffer overflow and password cracking are
the most common vulnerability points of many computer systems [4]. Generally, a
vulnerability point corresponds to an asset or service, and attackers usually try to
achieve malicious goals through a vulnerability to reach an asset. In the i* notation,
tasks are usually decomposed to goals, softgoals, other tasks, and resources. In this
way, harm of an attack can be indicated by the cost of the failed task that relies on the

compromised assets. In a similar approach in [20, 23], threats are described in terms
of assets, the action that exploits the assets, and the subsequent harm.

Although vulnerability that arises from dependencies among actors is a
fundamental concept in i* in [5], there is no explicit modeling construct in i* to
represent vulnerability points. We add the vulnerability point modeling element to i*,
accompanied with a graphical notation to connect a vulnerability point to the
corresponding attacks, and to attach it to a resource. For example, in Fig. 5, to protect
confidentially employees are authenticated by the host. Hence, Password is one of the
employees’ assets they need to protect. On the other hand, Password losing is one of
the most important vulnerability points in computer systems. Sniffing for password is an
attack against the goal of Protect password. Through this attack and Password losing
vulnerability point, the goal of Fraud under someone else’s name can be satisfied, and
the attacker gains a valuable asset: the Password.

4.3 Relation between Attacks and Security Mechanisms

In the i* notation, relation between softgoals and other elements is modeled by
contribution links [7]. If an element hurts a softgoal, yet not enough to prevent it, the
contribution link type is “-“. If the element is sufficient to prevent a softgoal, the
contribution link type is “--". This qualitative approach is used to model the impact of
attacks on softgoals and the impact of security mechanisms on malicious tasks and
goals. In security engineering, various mechanisms have different effects on attacks.
Contribution of mechanisms to attacks are categorized as 1) Prevent 2) Detect 3)
Recover [13]. These categories are added as attributes on the contribution links.
“Detect” and “Recover” contribution links may partially mitigate the effect of attacks.
Mechanisms which are related to the attacks with “Detect” contribution links can not
control any attack. Similarly, “Recover” contribution links indicate that the
mechanisms can not control the attack either, but the mechanism would be used to
recover the system after the attack. This link would be useful to express availability
and integrity goals that rely on recovering the system after the failure. To sufficiently
counteract an attack, security mechanisms must be related to the attack with a
“Prevent” contribution link.

4.4 Expressing Trade-offs by the Proposed Conceptual Structure

The proposed approach provides the means to model goals, and trace them back to
the source actors. In this approach, trade-offs among goals are modeled by
contribution links. Through contribution link types of -, --, + and ++ [10], the
qualitative effect of alternative solutions are propagated to the other goals. The i*
notation offers the conceptual structure to model trade-offs between refined sub-goals
of high level goals as well. For example, in Fig. 5, the employee can Use root password
on local machines to completely prevent the attack of Sniffing for password [4]. However,
this security solution contributes negatively to the Access to host remotely goal, and it
has negative influence on the Usability softgoal consequently. In this way, the trade-off

among usability and security is modeled through relationships among their refined
sub-goals.

5 Trade-off Analysis and Decision Making

In the previous section, we proposed a conceptual modeling technique for
modeling security trade-offs. In this part, we propose a trade-off analysis method for
use with the trade-off model. Designers need to balance the trade-offs to mitigate the
security risks and yet satisfy the goals of multiple actors. A goal is at risk when it may
be denied (partially or fully) by the successful behavior of malicious actors. Partially
or fully denial of goals are expressed through contribution links of type “-“ and “--“.
Hence, for trade-off analysis designers need to examine available alternative security
solutions, and verify the impacts of each one on attacks and goals to finally select the
one which fits with goals of multiple actors. Goal model evaluation is the procedure
to ensure that actors’ top level goals are satisfied by the choices they have made [12].
The security goal model evaluation, consisting of interactive qualitative reasoning, is
based on the method proposed in [10] and refined in [12]. Fig. 6 depicts the proposed
security trade-off analysis procedure.

Fig. 6. Security trade-off analysis procedure

In the first step, evaluator assumes that attackers are successful in performing tasks
and satisfying their goals, since attackers are usually external actors that designer has
no sure knowledge of their abilities and skills. Therefore, the leaf nodes in attackers’
goal model are labeled fully satisfied. This assumption does not imply that the risk of
attacks is definite, as it is possible that evaluation of attackers’ goal model yields to
denial of higher goals of attacker. The leaf labels are propagated to upper goals. Once

the impact of malicious actors’ behavior is propagated to the entire goal model, the
evaluator assigns labels to the tasks and goals that operationalize security mechanism
(step 7). This label indicates the evaluator’s judgment about the success of the actor in
performing a security task or achieving a security goal. This judgment could be based
on knowledge of previous experiences, empirical studies, or subjective knowledge
[21].

In step 9, the goal model indicates which goals are fully or partially satisfied or
denied for the examined security solution. The procedure iterates until a security
design solution is found that, based of the evaluator’s perception, satisfies an
acceptable configuration of goals. However, the evaluator may prefer to examine
further alternatives to select the security design solution that satisfies more goals.
After evaluating an alternative, the status of some goals may be unknown, prompting
the designer to elaborate on the models (step 10). In case of conflict of goals, other
alternatives should be examined to resolve the conflicts (step 11). An example of
security goal model evaluation is shown in Fig. 7.

Propagation of the labels is based on the contribution types and rules summarized
in Table 2. [12] provides details about aggregation rules for multiple contributions.
The rules provided in Table 2 are merely valid for the “Prevent” contribution type, as
we discussed earlier that recovering from, or detecting an attack do not lead to
controlling the attack.

Table 2. Evaluation labels and propagation rules from [10, 12]

Child Node Contribution Type (Prevent)
Label Name Symbol ++ + - - - ?

Satisfied
Weakly Satisfied

Conflict
Unknown

Weakly Denied
Denied

6 Case Studies

In developing the proposed notation, we modeled a number of NIST guidelines
[19] and security engineering knowledge in [4], using the extended i* notation. In
addition to example cases, we applied the notation to three example cases originally
used to illustrate other approaches to security trade-offs [28]. In the first example
case, we modeled and analyzed the eSAP system, an agent-based health and social
care system, which was used as the case study system in [16, 17, 18]. In the second
example case system, we modeled and analyzed a simple Course Registration system,
using the proposed extensions to the i* and the framework proposed in [11]. Due to
space limitations, we present only a third case study in the following. Details of the
case studies can be found in [28].

The Guardian Angel (GA) [9] is a patient and physician supporting system using
software agents, which is studied in [5]. In vulnerability analysis in [5], each
dependency is examined as a potential threat against the system. In this approach,
each actor is studied in two roles: its regular role, and its potential malicious role. One
of the actors in the dependency relation is substituted by its corresponding attacker.
For each malicious actor, a number of attacks and threats are identified, the impact of
threats and corresponding security safeguards are added to the goal model. However,
resulting models do not capture goals and intentions of the attacker. The goal model
evaluation is limited to evaluating impact of security safeguards on threats, while the
safeguards may affect other goals such as performance and usability. Generally, the
approach in [5] does not consider modeling security mechanisms in terms of the
trade-offs they impose to the other goals.

Fig. 7 gives a part of the trade-off models and analysis of GA system using the
proposed approach in this paper. The model captures the potential intentions behind
an attack, since deciding among different countermeasures depends on the attacker’s
goals. For example, the designer needs to differentiate between goals of a professional
hacker and intentions of a curious kid to select proper security mechanisms. The
resulting goal model captures the effects of each alternative attack on malicious and
non-malicious actors’ goals and softgoals. As a result, the designer can evaluate the
risk of threats, and select a more appropriate countermeasure for attackers’ behavior
based on the consequence of malicious actors’ behavior. In the goal model of Fig. 7,
the designer decides to employ Authentication and Authorization with Password based
Authentication (Steps 6 and 7). The goal model evaluation yields a fully satisfied
Privacy goal with Confidentiality partially satisfied, while Performance is partially
denied.

Fig. 7. Part of the attacker and countermeasures model for the Guardian Angel case study
annotated with the evaluation steps introduced in Fig. 6

7 Conclusions and Future Work

In this paper, we began by considering the criteria for a conceptual modeling
technique that enables designers to model and analyze security trade-offs among
competing goals of multiple actors to achieve a good-enough security level. We
studied existing approaches to trade-off analysis, and identified limitations of these
approaches. Based on the evaluation criteria and limitation of previous works, we
proposed extensions to the i* notation for modeling and analyzing security trade-offs
of a multi-actor system. The proposed modeling notation is accompanied with a
qualitative trade-off analysis procedure based on goal model evaluation methods. The
procedure provides the designers with assessment of security mechanisms’ impact on
actors’ goals and threats. Table 3 gives the comparison of the proposed approach with
the evaluation criteria.

Although the i* notation provides the proper basis for modeling and analyzing
trade-offs, the models become complex and inefficient when the goal models scale.
Another limitation of the proposed approach is that a comprehensive source of
knowledge of security mechanisms and corresponding contributions does not exist.
In future work, we aim to conduct empirical studies of how security designers make
trade-offs in practice, and to adapt the proposed systematic trade-off analysis
framework for integration into everyday design practice. We will also build a security
requirements and design knowledge base to gather and catalogue reusable knowledge
about security trade-offs. Tool support for managing and applying security knowledge
will also be studied.

Table 3. Comparison of proposed approach with the conceptual modeling technique’s
criteria

Method Requirements Suggested approach
Goals Modeled using goals and softgoals elements of i*

Relations of goals
Modeled using i* goal dependency modeling. Competition
and trade-offs are modeled by contribution links and
relation between attacks and goals.

Extents and measures of
goals

Modeled qualitatively by contribution links of type -, - -, +,
++

Inaccurate or incomplete
knowledge

Modeled by unknown contribution links, and goal model
evaluation propagates them to related elements

Goals contribution structure Structured by sub-goals, task decomposition, contribution
links

Multiple actors Multiple malicious and non malicious actors can be
modeled

Trade-off within a single
actor or across actors

Trade-off within a single actor or across actors can be
modeled

Security specific trade-off
concepts

Modeled by security extensions to i* notation derived from
the meta-model

Trade-off analysis method Security goal model evaluation technique supports
qualitative trade-off analysis

Acknowledgments. Financial support from Natural Science and Engineering
Research Council of Canada and Bell University Labs is gratefully acknowledged.

8 References

1. Dardenne, A., van Lamsweerde, A., Fickas, S., Goal-Directed Requirements Acquisition, in
The Science of Computer Programming 20 (1993) 3-50

2. Castro, J., Kolp, M., Mylopoulos, J., A requirements-driven development methodology, In
Proc. of the 13th Int. Conf. on Advanced Information Systems Engineering, CAiSE'01
(2001) 108-123

3. Liu, L., Yu, E., Mylopoulos, J., Analyzing Security Requirements as Relationships among
Strategic Actors, In 2nd Symp. on Requirements Engineering for Information Security
(SREIS) (2002)

4. Anderson, R., Security Engineering: a guide to Building dependable Distributed systems,
John Wiley and Sons (2001)

5. Liu, L., Yu, E., Mylopoulos, J., Security and Privacy Requirements Analysis within a Social
Setting. In IEEE Joint Int. Conf. on Requirements Engineering (2003) 151-161

6. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N., Modeling Security Requirements
through Ownership, Permission and Delegation. In: 13th IEEE Int. Requirements
Engineering Conf. (2005) 167-176

7. Yu, E., Modeling Strategic Relationships for Process Reengineering, PhD thesis, Department
of Computer Science, University of Toronto, Canada (1995)

8. Yu, E., Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering, Proc. of the 3rd IEEE Int. Symp. on Requirements Engineering (1997) 226-235

9. Szolovits, P., Doyle, J., Long, W. J., Guardian Angel: Patient-Centered Health Information
Systems: MIT/LCS/TR-604, Available at: http://www.ga.org/ga.

10. Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J., Non-Functional Requirements in Software
Engineering, Kluwer Academic Publishing (2000)

11. Bass, L., Clements, P., Kazman, R., Software Architecture in Practice, Second Edition,
Addison Wesley (2003)

12. Horkoff J., Using i* Models for Evaluation, Masters Thesis, University of Toronto,
Department of Computer Science (2006)

13. Pfleeger, C. P., Pfleeger,S. L., Security in Computing, Prentice Hall, 3dr edition (2002)
14. McDermott, J., Fox, C., Using Abuse Case Models for Security Requirements Analysis, In

Proc.15th. IEEE Annual Computer Security Applications Conf. (1999) 55-64
15. Jürjens, J., Secure Systems Development with UML, Springer Academic Publishers,

Germany (2004)
16. Bresciani, P., Giorgini, P., Mouratidis, H., On Security Requirements Analysis for Multi-

Agent Systems, Proc. of 2nd Int. Workshop on Software Engineering for Large-Scale Multi-
Agent Systems (SELMAS) (2003) 35-48

17. Mouratidis, H., Giorgini, P., Manso, G., Philp, I, A Natural Extension of Tropos
Methodology for Modelling Security, In Proc. of the Workshop on Agent-oriented
methodologies, at OOPSLA (2002) 91-103

18. Mouratidis, H., Giorgini, P., Manso, Modelling Secure Multiagent Systems, In the 2nd Int.
Conf. on Autonomous Agents and Multiagent Systems (2003) 859 - 866

19. Grance, T., Stevens, M., Myers, M., Guide to Selecting Information Technology Security
Products, Recommendations of the National Institute of Standards and Technology, NIST
Special Publication 800-36 (2003)

20. Haley, C. B., Moffett, J. D., Laney, R., Nuseibeh, B., A framework for security
requirements engineering. In Software Engineering for Secure Systems Workshop
(SESS'06) (2006) 35-42

 21. Houmb, S. H., Georg, G., Jürjens, J., France, R., An Integrated Security Verification and
Security Solution Design Trade-off Analysis, In Integrating Security and Software
Engineering: Advances and Future Visions, IDEA Group Publishing (2007) 190-219

22. Johnson, P., Lagerstrom, R., Norman, P., Simonsson, M., Extended Influence Diagrams
for Enterprise Architecture Analysis, In: Enterprise Distributed Object Computing
Conference, EDOC '06. 10th IEEE Int. (2006) 3-12

23. Moffett, J. D., Haley, C. B., Nuseibeh, B., Core Security Requirements Artefacts,
Department of Computing, The Open University, Milton Keynes UK, Technical Report
2004/23 (2004)

24. Mayer, N., Rifaut, A., Dubois, E., Towards a Risk-Based Security Requirements
Engineering Framework, 11th Int. Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ'05) (2005)

25. Sandhu, R., Good-Enough Security: Toward a Pragmatic Business-Driven Discipline,"
IEEE Internet Computing, Vol. 07, No. 1 (2003) 66-68

26. US-CERT Vulnerability Notes Database, United States Computer Emergency Readiness
Team, http://www.kb.cert.org/vuls

27. Houmb, S. H., G. Georg, G., The Aspect-Oriented Risk-Driven Development (AORDD)
Framework, In Proc. of the Int. Conf. on Software Development (SWDC.REX) (2005) 81-
91

28. Elahi, G., Yu, E., A Goal Oriented Approach for Modeling and Analyzing Security Trade-
Offs, Technical Report, University of Toronto, Department of Computer Science, Available
at http://istar.rwth-aachen.de/tiki-index.php?page=Security+Requirements+Engineering
(2007)

29. Sasse, M. A., Computer Security: Anatomy of a Usability Disaster, and a Plan for
Recovery, Workshop on Human-Computer Interaction and Security Systems, CHI 2003,
Fort Lauderdale (2003)

30. DeWitt, A. J., Kuljis, J., Aligning Usability And Security-A Usability Study Of Polaris, In
Proc. of the Symp. On Usable Privacy and Security (2006)

31. Susi, A., Perini, A., Mylopoulos, J., The Tropos Metamodel and its Use, Informatica No. 29
(2005) 401-408

