An Actor Dependency Model of Organizational Work
— With Application to Business Process Reengineering

Eric S. K. Yu and John Mylopoulos

Department of Computer Science, University of Toronto
Toronto, Ontario, Canada M5S 1A4

ABSTRACT

In developing information systems for use in an organi-
zation, one often needs to understand the reasons that
underlie established work patterns and practices. Be-
cause organizational actors depend on each other for
goals to be achieved, tasks to be performed, and re-
sources to be furnished, reasons for work patterns can
be revealed by examining the dependencies among ac-
tors. We present a model which characterizes a work
organization in terms of the network of dependencies
among organizational actors. Actor dependencies are
taken to be intentional — they expand or restrict an
actor’s ability to pursue goals. The network of actor
dependencies constitutes the intentional structure of the
organization. We use examples from business process
reengineering to motivate and illustrate the model.

KEYWORDS
Organization model, organization analysis and design,
business process reengineering, workflow, requirements
engineering.

INTRODUCTION

To build effective organizational computing systems, one
needs to have a good understanding of the organiza-
tional environment in which the systems are intended
to operate. Research in software engineering and in-
formation system development have increasingly recog-
nized the need to model the environment (e.g., [3, 17,
2]). Models employing knowledge representation tech-
niques have been developed to structure and manage
the knowledge about environments (e.g., [14, 10, 25]).
These models, however, have focused primarily on cap-
turing the “whats” — what operations or activities are
performed; what work products are produced — but not

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for commercial
advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission
of the Association for Computing Machinery. To copy otherwise, or to

republish, requires a fee and/or specific permission.

Proceedings, Conf. on Organizational Computing Systems (COOCS 93)

November 1-4, 1993, Milpitas, California, USA, pp. 258-268.

the “whys” — the intentions, motivations, and rationales
that underlie the “whats”.

When organizational participants explore and discuss
with analysts and designers different ways in which com-
puting systems can help improve their work processes,
each design alternative embodies an implicit set of as-
sumptions about work relationships. For instance, if an
invoice is missing in accounts payable, who would be
concerned, and why? Who is expected to track down a
missing invoice? And why is there a need for invoices
in the first place? These kinds of knowledge about
a work environment is typically not found in models
that are currently used to help develop organizational
information systems. Yet these are important aspects of
an organizational environment. A model which makes
such intentional relationships among actors in an or-
ganization explicit can help clarify what a particular
design entails, and is more likely to lead to a successful
development effort and an effective organization.

Recent interest in business process improvement and
innovation in the business and management communi-
ties (e.g., [12, 16, 11]) underscores the need to under-
stand organizations at an intentional level. As business
environments are changing rapidly, organizations must
adopt new ways of working, and take advantage of the
capabilities of new technologies [29, 20]. Too often,
computers are simply used to automate existing ways
of doing business. Hammer’s concept of reengineering,
in particular, emphasizes the need to keep asking Why?
and What-if? questions. If one were to achieve the
full potential of organizational computing technologies,
one must challenge the reasons behind established work
patterns and practices, and “obliterate” those that are
there for reasons that are no longer valid [15].

In this paper, we propose a model of organizational
work based on a notion of actor dependency. We view
organizational participants as inherently autonomous
actors who deploy resources (such as physical objects,
information, and knowhow) to carry out actions in pur-
suit of goals. When actors participate in an organi-
zation, their otherwise autonomous behaviour become
constrained by their interdependencies: organizational

purchase
requigition

client

purchpase
order

Abbreviations:

pur = purchasing

rec = receiving

ap= accounts payable
po = purchase order

vendor

Figure 1: Workflow model of a goods acquisition process

actors depend on each other for goals to be achieved, ac-
tivities to be performed, and resources to be furnished.
A dependency extends an actor’s capabilities, but it also
makes the actor vulnerable. The network of dependen-
cies among actors provides an intentional account of
the relationships among actors, and the reasons that
underlie the workflow structure. We call the network of
intentional dependencies the intentional structure of the
organization. The model is presented informally, using
examples from business process reengineering.

Section 2 of this paper motivates the notion of inten-
tional structure by comparing it with existing goal-based
notions of organizational work. Section 3 presents the
features of the Actor Dependency model using exam-
ples. In section 4 we use business process reengineering
to illustrate how the Actor Dependency model could be
applied. In section 5, we discuss the contribution of the
model and the larger framework of which it is a part.
We conclude in section 6 by summarizing this work and
discussing future work.

THE INTENTIONAL STRUCTURE OF ORGANIZATIONAL
WORK

A familiar and intuitive way to model a work organiza-
tion is in terms of the flow of work products from one
work unit (e.g., a department or a person) to another.
For example, a typical workflow for acquiring goods in a

business organization might be as represented in Figure
1. A more detailed model would show activities per-
formed within each unit, with intermediate products as
inputs and outputs of activities. Workflow models show
the entities and activities involved in a work process,
but not the reasons for their existence or relatedness.

A natural way to explain why certain entities or activ-
ities are needed in an organization is by seeing them
as means to ends. For instance, entities and activities
in the goods acquisition process can be traced to the
goal that the client wants to have an item purchased.
In terms of classical AI concepts, these objects can be
linked to goals in a goal graph [28] (Figure 2). Each
entity or activity could then be traced to the goals that
it is a means for. Conversely, from a goal reduction
viewpoint, goals are reduced to subgoals, and eventually
to actions that can be performed. When fully reduced,
they form a plan. The workflow model of Figure 1 could
be interpreted as a plan to achieve the overall goal of
purchasing an item.

Although this kind of goal graph does reveal, to some
degree, the intentionality behind the work, it does not
accurately reflect the way work actually gets done. Em-
pirical research (e.g., [31, 13]) has indicated that a large
part of organizational work has to do with addressing
problems. Because of the open-endedness of organiza-
tional work situations, the exact kinds of problems that

has(item)

ordered(item)

e

receiv

ed(item) paid(item)

delivered(item)

Figure 2: A Goal Graph for Goods Acquisition

will arise cannot be fully anticipated. The traditional
notion of plans can only reflect a standard procedures
view of the organization. In reality, actors interact with
each other in order to accomplish work, and use their
knowhow to deal with problems. The recognition of
the problematic nature of organizational work has led
researchers to develop technical systems that support
the problem solving activities of organizational actors

(e.g., [1,34,7,9]).

A model aimed at helping organizational participants
and stakeholders understand the implications of an or-
ganization design (e.g., a particular way of introduc-
ing computing technology) need not capture the actual
problem solving knowledge (such as those required for
building technical systems to support problem solving).
Instead, what one would like to be able to tell, from the
model of a particular design is: where in the work struc-
ture can problems be expected to arise; who is expected
to deal with these problems when they arise; and whose
interests would be hurt if the problems are not dealt
with. It is therefore through the interaction of the actors
involved, including the way problems are handled, that
actors contribute towards the overall workings of the
organization. The network of intentional relationships
among actors constitutes the intentional structure of the
organization.

AN ACTOR DEPENDENCY MODEL OF ORGANIZATIONAL

WORK

An Actor Dependency model is a graph, where each
node represents an “actor”, and each link between two
actors indicates that one actor depends on the other for
some “object” in order that the former may attain some
goal. We call the depending actor the depender, and
the actor who is depended upon the dependee. The
object around which the dependency relationship cen-
tres is called the dependum. Figure 3 shows an Actor

Dependency model for a goods acquisition process.

By depending on another actor for a dependum, an
actor is able to achieve goals that it was not able to do
without the dependency, or not as easily or as well. At
the same time, the depender becomes vulnerable [24]. If
the dependee fails to deliver the dependum, the depen-
der would be adversely affected in its ability to achieve
its goals.

Each link has four attributes: the direction of the depen-
dency (i.e., which actor is the depender and which the
dependee), the type of the dependency, the dependum
object itself, and an indication of the “strength” of the
dependency.

We distinguish among four types of dependencies, based
on the type of the dependum. In world modelling, it
has been found useful to distinguish among three basic
ontological categories: entities, activities, and assertions
[14]. Entities are used to model objects in the world.
These can be physical or informational. Activities pro-
duce changes in the world. An assertion expresses a
state or condition about the world. From these ba-
sic categories, we get three types of intentional depen-
dencies: Resource-dependency, Task-dependency, and
Goal-dependency. A fourth type, called a “Soft-goal-
dependency”, is a hybrid of goal- and task-dependency.
The four types of dependencies also characterize how
decisions fall on either side of the dependency, and which
side will handle problems if and when they arise.

In a Goal-dependency, the depender depends on the
dependee to bring about a certain state in the world.
The dependee is free to, and is expected to, make what-
ever decisions are necessary to achieve the goal (the
dependum). The depender does not care how the de-
pendee goes about achieving the goal.

——&—— purlnfo
(item)

e purlnfo| Q"

(item)

item

Abbreviations:

pur = purchasing

rec = receiving

ap= accounts payable

ap

FED
—a—

recStatys
(item)

invoice
(item

paid(item) LEGEND

Depender Dependee
—b-[|-~ Resource Dependency

43@_& Task Dependency
-5¢__»b- Goal Dependency

43@4} Soft-Goal Dependenc

O Open (uncommitted) X critical

Figure 3: Actor Dependency model of a goods acquisition process

In the goods acquisition example, the client just wants
to have the item, but does not care how the purchasing
specialist obtains price quotes, or which supplier he or-
ders from. Purchasing, in turn, just wants the vendor to
have the item delivered, but does not care what mode
of transportation is used, etc. A goal-dependency rela-
tionship allows a depender to have a goal achieved even
when it does not have the knowhow and/or resources to
achieve the goal. With a goal-dependency, the depender
gains the ability to assume that the condition or state
of the world will hold, but becomes vulnerable since the
dependee may fail to bring about that condition.

In Task-dependency, the depender depends on the
dependee to carry out an activity. A task-dependency
specifies how the task is to be performed, but not why.
The depender makes the decisions. The depender’s goals
are not given to the dependee.

In our example setting, Purchasing’s dependency on Re-
ceiving is a task dependency because Purchasing relies
on Receiving to follow procedures such as: accept only
if the item was ordered. Similarly, the client wants Ac-
counts Payable to pay only if the item was ordered and
has been received. A task dependency is typically used
when a desired product is not readily available (e.g., eas-
ily perishable), or when no tangible product is involved

(e.g., go to some place). The depender has control over
how the task is performed (e.g., how the product is
made). By using a task-dependency, the depender is
able to have a task performed without engaging in it
personally, but is vulnerable since the dependee may
fail to perform the task.

In Resource-Dependency, the depender depends on
the dependee for the availability of an entity (physical or
informational). Under resource-dependency, the issue of
decisions does not come up. A resource is usually the
finished product of some deliberation-action process. It
is assumed that there are no open issues or decisions to
be addressed. The production process is not viewed as
problematic by the depender in a resource dependency.
There is no decision to be made.

Accounting’s dependencies for information from Pur-
chasing, Receiving, and the vendor before it can issue
payment are examples of resource dependencies. A re-
source can be physical or informational. By establishing
a resource-dependency, the depender gains the ability
to use this entity as a resource. At the same time, the
depender becomes vulnerable if the entity turns out to
be unavailable.

In a Soft-Goal-Dependency, a depender depends on

Depender

Dependum

Dependee

part

(a) Resourc

e Dependency

make(part)

promptly

(b) Task Dependency

has(part) B

(c) Goal Dependency

[has(part)]

(d) Soft-Goal Dependency

Figure 4: Four types of intentional dependencies

the dependee to perform some task that meets a soft-
goal. A soft-goal is one whose meaning is specified in
terms of the methods that are chosen in the course of
pursuing the goal. As in a goal-dependency, a depender
gains the ability of having the goal condition brought
about, but becomes vulnerable in case the dependee
fails to bring about that condition. The difference here
is that the conditions to be attained are elaborated as
the task is performed. Under soft-goal-dependency, the
depender makes the final decision, but does with so with
the benefit of the dependee’s knowhow. For example, if
the vendor wants to be paid promptly, the meaning of
promptly needs to be further specified, perhaps in terms
of specific steps that the payer would have to take. This
interpretation of a soft-goal is based on a framework
for dealing with non-functional requirements in software
engineering [27, 5.

It is often possible to choose which type of dependency
to establish for a given dependum object, by modifying
the type of the object. The example in Figure 4 is an
illustration. The scenario is one in which an electronics
design engineer is in need of some parts for building a
laboratory prototype. If the parts are obtainable from
a stockroom, then the engineer’s dependency on the
stockroom for parts would be a resource dependency.
The only kind of contingency is that the stockroom may
run out of stock. If the electronics engineer asks an
assistant to make a part for her by telling the assistant
how to do it, this would be modelled as a task depen-
dency. If the engineer wants a part from a supplier, but

does not care how (e.g., how it is delivered), it would
be a goal-dependency. If the engineer wants a part
from a supplier requesting “prompt delivery”, it would
need further elaboration or qualification, e.g., deliver by
courier. This would be a soft-goal dependency.

Given a non-intentional description of a “flow” of an
electronic part from some actor to the engineer, one
could not say, without further knowledge about the re-
lationship, which dependency type would be appropri-
ate for modelling the relationship. One would have to
know, given certain types of uncertainties (problems
that require decisions), which side would come up with
the options, and which side would make the decision.
As an organization evolves, it is quite possible for a
relationship to shift from one type of dependency to
another.

The model provides for three degrees of strength of
dependencies: Open (uncommitted), Committed, and
Critical. These apply independently on each side of
a dependency. Graphically, we use an “O” for open,
unmarked for committed, and “X” for critical.

On the depender side, an open dependency means that
if the dependency fails, the depender would be affected
to some extent, but not significantly. A committed
dependency (unmarked) means that the depender would
be hurt significantly if the dependency fails. For ex-
ample, the depender might have invested considerable
resources (e.g., time and effort) in a course of action,

which could not be reversed without loss. A critical
dependency would indicate that some goal of the de-
pender could not be achieved if the dependency fails.

On the dependee side, an open dependency means that
the dependee is able to achieve the goal, perform the
task, or furnish the resource, but there is no commit-
ment. A committed dependee will try its best to
achieve the goal, perform the task, or furnish the re-
source. The analogous form of a critical dependency on
the dependee side would suggest a need to guarantee
success, which is usually hard to achieve.

AN APPLICATION TO BUSINESS PROCESS REENGI-
NEERING

An Actor Dependency model captures the intentional
relationships among actors in an organization. By fol-
lowing the chains of dependencies, one could explore the
expanded possibilities that are open to an actor. From
a vulnerability viewpoint, one could also use the model
to determine how an actor could be affected adversely
by its dependencies. We have argued that this type
of intentional model is important for understanding an
organization design. We now illustrate this with some
examples from business process reengineering.

The concept of reengineering is advocated as one way
to achieve dramatic improvements in organizational per-
formance by fundamentally redesigning the work orga-
nization as new information technology is introduced
[15, 11]. Tt is argued that information technology often
is not able to deliver significant benefits because it is
simply used to automate existing (and often outdated)
business practices. Instead, one should question the
appropriateness of the work process itself, with respect
to today’s business environment. This is summarized in
the slogan: Don’t automate, obliterate [15]. To do this,
one needs to keep asking Why? and What-if? questions
about existing work practices.

Workflow models cannot provide answers to Why? and
What-if?7 questions because the intentional content is
missing. Suppose one asks: Why do we need Purchas-
ing in the goods acquisition process? The workflow
model of Figure 1 could only indicate that purchasing
is there to “process” purchase requisition forms. The
model is equally unhelpful for answering what would
happen if Purchasing were bypassed (“obliterated”). It
offers little help in identifying alternatives to having a
purchasing department.

In contrast, from an Actor Dependency model, one could
tell who depends on whom, and for what. In Figure 3,
the client depends on purchasing for meeting the goal
of having an item. Purchasing in turn depends on the
vendor to meet the goal of having the item delivered,

and on the Receiving department to perform the proce-
durally defined task of receiving the item. At each point
in a chain of dependencies, one can infer from the model
how the actor’s goal-seeking behaviour may be enhanced
or restricted, based on the type and strength of the
dependencies that it has. It is this deeper knowledge
that is necessary to help judge potential targets for
obliteration.

To answer the question: “What if the Purchasing de-
partment is removed from the goods acquisition pro-
cess?”, we observe from the model that the client de-
pends on Purchasing to achieve the goal of having an
item, and is therefore vulnerable with respect to this
same goal. The client’s ability is enhanced through this
dependency because the goal can be achieved even if the
client does not have the knowhow or the resources to
pursue it on his own. To bypass Purchasing, the client
would have to acquire the knowhow and have the needed
resources (e.g., time and effort) to doing purchasing on
his own.

As reported in [15], one company reengineered its goods
acquisition process by following this line of reasoning.
The traditional purchasing process was full of paper-
work, errors, and delays. For small purchases, it was not
uncommon for the purchasing process to cost more than
the item. The company recognized that expert systems
technology could be used to provide the knowhow and
resource support for simple purchases. Now, except
for large or strategic orders, company employees would
order most items directly from pre-approved vendors
through the system without the help of human purchas-
ing specialists.

The Ford Motor Company took a different approach.
It reengineered its goods acquisition process by elim-
inating invoices. Instead of paying when an invoice is
received, Ford now pays when it gets the goods. A large
part of accounts payable work consists in reconciling
disagreements among purchase orders, receiving docu-
ments, and invoices. Information technology could have
been deployed to help investigate invoicing errors, and
to automate document flow, but that would not have
provided the radical improvement Ford had aimed for.
By redesigning the business process, invoices, and hence
invoicing errors, were eliminated altogether (in the spirit
of the zero-defect approach to process quality [8]). The
remaining reconciliation (between purchase orders and
receiving reports), which is much simpler, could now be
handled mostly by computer, which also generates the
payment cheque.

In this case, the intentional dependency between ven-
dor and Accounts Payable — that the vendor wants to
have the item paid for — is unchanged before and after
reengineering. But realizing that the invoice is only a

credit
supervisol

. @&‘

@ @
give write
quote policy
) Q

icati i lcredit under-
applicatig uotin quoted d
> qclerkg applicat(on —-approvey writing
b application \ clerk

policy

(a) before

under—
writing
upervisgr

insured

(b) after

Figure 5: “Organize around outcomes, not tasks”

means to this end, Ford was able to find an alternate,
and much more effective, means to the same end, and
took the radical step of obliterating the age-old practice
of invoice processing. The Actor Dependency model of
Figure 3 would have made this reasoning more perspicu-
ous. With conventional methods that focus on workflow
analysis (Figure 1) and no explicit support for answering
Why? and What-if? questions, one is more likely to end
up with the less effective, “automation” approach.

A number of rule-of-thumb principles have been pro-
posed to guide reengineering efforts (e.g. see [15, 32]).
We use two of these principles to further illustrate how
the Actor Dependency model can help bring out the
distinctive features of different organizational configu-
rations by making their intentional structures explicit.

“Organize around outcomes, not tasks”.

One common way to organize work is to group sim-
ilar tasks into units with a specialized function, such
as order entry, credit checking, assembly, or shipping.
The problem with this structure is that while work-
flow passes from unit to unit, no one is responsible
for the overall process from end to end. While each
person is accountable to a supervisor in his/her own
functional unit, problems that arise in between units
tend to fall through the cracks (e.g., files misplaced,
delayed, or lost in transit). One insurance company
(Mutual Benefit Life) reengineered its policy application
process into a configuration in which a single person acts
as a case manager and handles a customer’s application
from beginning to end. Using computer support, the
case manager performs all the tasks associated with the
application. For difficult cases, she would seek help
from specialist consultants, but only for advice. The
decisions remain with the case manager.

The Actor Dependency model of Figure bHa reflects the

traditional functional organization. Each processing unit
(the clerks) is a dependee in a task dependency, but are
only related to each other by non-intentional workflow.
In the reengineered configuration (Figure 5b), there is
a single goal dependency from the customer to the case
manager. The case manager depends on the consul-
tants’ advice as a resource, since the case manager is
the one who makes the decisions and takes action.

“Put the decision point where the work is performed, and
build control into the process”.

In hierarchically structured organizations, decisions are
made in the higher levels, while the ensuing tasks are
executed by the lower levels. This type of structure is
often plagued with problems of delay, error, and mis-
communication. Reengineering recommends to allow
the person performing the work to make the decision.
Computer networks and shared databases can be used
to enable one to access information and knowhow so
that one person can encompass a much broader scope
of work. The case manager in the insurance company
exemplifies this principle. She can best decide how
to meet customer needs because she is closer to the
customer.

Using an Actor Dependency model, the traditional hier-
archical delegation chain may be modelled as a string of
task dependencies (Figure 6a). Under the reengineered
configuration, the relationship between the case man-
ager and her superior is modelled as a goal dependency
(Figure 6b). She has the freedom to make decisions
regarding how to meet the goal. Control is built-in
because it is the outcome that matters to the depender,
not the detailed activities of the dependee.

These examples from business process reengineering help
illustrate the need to understand a work organization
at an intentional level. Without the deeper knowledge

(a) before

er)

case
manage

(b) after

Figure 6: “Put the decision point where the work is performed, and build control into the process.”

about intentional structure, one could not easily break
away from current practice to a new conceptualization
of the work process.

DISCUSSION
We have presented the basic features of the Actor De-
pendency model. We now discuss its use in the broader
context of organization redesign and information system
development.

The Actor Dependency model is one of two main compo-
nents in a framework aimed at supporting requirements
engineering for organizational information systems [37].
The purpose of the Actor Dependency model is to pro-
vide an appropriate representation of an organizational
configuration (of human and computer elements). The
other main component, called the Issue Argumentation
model, provides a representation of the issues and con-
cerns that stakeholders may have about current and var-
ious proposed organizational configurations (“designs”).
In considering design alternatives, many issues can arise.
The business process improvement and reengineering
literature focuses on issues such as turnaround time,
manpower savings, and quality of service to customers.
For successful information system and organizational
change, other issues such as power, cultural values, and
conflict will also need to be considered (e.g., [19, 21]).
The Issue Argumentation model uses an argumentation
structure to manage and support stakeholders’ reason-
ing about various designs, following work in design ra-
tionale [22] and in non-functional requirements in soft-
ware engineering [5, 27].

The Actor Dependency model serves as the subject mat-
ter for the arguments in the Issue Argumentation model.
For example, a stakeholder might be concerned that a
redesign putting him in a goal-dependency relationship
with another member (say, instead of a task-dependency
in the current work arrangement) would reduce his power
and control in the work group. The other member
may welcome the increased responsibility, but have the
concern that she may not be able to meet the com-
mitment without additional resources. An organization
model which does not capture the intentional relation-
ships between actors — such as conventional workflow
models — would not be able to differentiate alternate
designs to a degree that is required for stakeholders
to express their concerns. An illustration of how the
Actor Dependency model is used in conjunction with
the Issue Argumentation model has been presented in
[36]. A third component of the framework differentiates
actors into agents, roles, and positions to deal with more
complex organizational relationships.

The organization modelling framework of [37], of which
the Actor Dependency model is part, follows a concep-
tual modelling approach to software engineering and
information system development, which emphasizes the
need to represent and utilize pertinent knowledge to
support each phase of development and on-going evolu-
tion [26]. The organization modelling framework aims
to add to this line of research ([14, 25, 18]) by elab-
orating on the link between organization redesign and
technical system development.

In accordance with the conceptual modelling approach,

we have endeavoured to seek a formal grounding for
the concepts of the model. Intentional models of agents
have been developed in Al (e.g., [6, 33, 23]) using modal
operators for belief, goal, ability, and commitment. We
have adapted some of these concepts for characterizing
actor dependencies. A preliminary set of axioms for the
model were proposed in [35].

A formal characterization of the model will serve to
clarify the semantics of the model features, and will
help human users of the model resolve ambiguities in
interpretation. For computational support, general in-
ference procedures for the formalism are likely to be
intractable. For practical applications, we intend to
identify specialized tractable algorithms for computing
selected properties that are of particular interest. For
instance, various types of conflict resulting from a con-
fluence of dependencies on an actor would be of interest.
There may be conflicting goals, opposing tasks, and
contention over resources. Also of interest are special
patterns of dependency networks, such as reciprocal de-
pendencies or loops [4]. A reciprocal dependency can be
viewed positively, as in an exchange relationship. It can
also be viewed as a method of control to enforce com-
mitment, through countervailing power, since reciprocal
dependency implies reciprocal vulnerability. In a differ-
ent context, a dependency loop could be indicative of a
conflict-of-interest situation: for example, if a person in
charge of a budget has a dependency on a beneficiary
of the budget, then the risk of collusion for kickbacks
exists. These kinds of properties, once recognized in
the Actor Dependency model, can be used as support
for arguments in the Issue Argumentation model for or
against particular redesign proposals.

Actor Dependency modelling is intended to complement,
not to replace, existing types of organization modelling.

Entity Relationship-based organization models (e.g. [30])
or more elaborate semantic data models which focus on

passive and static relationships will continue to be useful

for characterizing the structure of information and data.

SADT or other techniques that focus on activity and

process will still be needed for representing the “surface

structure” of the routine dynamics of an organization.

It is when one is facing organizational change, as one

digs below the surface into the whys and wherefores,

that the Actor Dependency model becomes helpful for

representing and reasoning with this deeper knowledge.

As argued in this paper, these are the situations faced in

IS requirement engineering and business process reengi-

neering.

Researchers in the office/organizational information sys-
tems (OIS) area have long adopted this more dynamic,
open-ended, problem-solving view of organizational work,
and have developed more sophisticated and flexible in-
formation systems by embedding knowledge represen-

tation and reasoning into the system (e.g. [1, 34, 7]).
The Actor Dependency model, on the other hand, while
based on similar assumptions about the nature of or-
ganizational work, is aimed at helping organizational
actors identify the types of information technology com-
ponents that might be most appropriate for supporting
their work, and, in general, would not be embedded
in the application system. The concept of actor de-
pendency modelling, however, need not be limited to
the domain of information system requirements. The
need to identify and assess opportunities and vulnera-
bilities among interdependent actors arises in many con-
texts, such as negotiation and strategic decision making.
When the Actor Dependency model, with its associated
framework is implemented as a generic decision support
tool (as opposed to a requirements engineering tool), it
is itself a candidate technology component for incorpo-
ration into the organizational fabric for consideration
during the redesign of work.

CONCLUSION

We have argued that, in order to adequately charac-
terize a work organization when considering potential
work support technologies, it is important to identify
the intentional relationships among actors. The Actor
Dependency model presented in this paper is an attempt
to provide a way to model these relationships. We have
illustrated how the model could be used in the context
of organization redesign, using example settings from
the literature on business process reengineering. The
adequacy of the particular set of features proposed in
the model will need to be tested in practice.

To incorporate the model into a knowledge-based, soft-
ware engineering environment, a number of steps will
need to be taken. The semantics of the model will need
to be characterized formally. Algorithms for assisting
with reasoning about the model will need to be identi-
fied. Knowledge structuring mechanisms such as classi-
fication, generalization, aggregation, and time (such as
those offered in Telos [25]) will also be necessary.

A model is but one ingredient in the overall process of
understanding and redesigning an organization and its
technological support. The methodological implications
of the proposed model remain open issues. For example,
will the model make elicitation more difficult — because
it probes deeper to get at rationales; or easier — be-
cause asking “why” helps structure the inquiry? Will
stakeholders be reluctant to divulge their dependency
relationships, or will they participate actively in order
to secure their interests? How can a model of intentional
structures be maintained and kept up to date? These
and many other issues will need to be investigated before
the model can be pragmatically applied.

Business environments are undergoing rapid change. Re-
cent advances in organizational computing technology
offer many opportunities for greater organizational ef-
fectiveness. It is hoped that the proposed model will
contribute towards a conceptual framework, and eventu-
ally tools and methodologies, with which organizations
can systematically examine and assess the different ways
in which modern organizational computing technologies
can help improve organizational effectiveness.

ACKNOWLEDGMENTS

The authors would like to acknowledge helpful com-
ments from Lawrence Chung, Brian Nixon, Carson Woo,
and anonymous referees. The first author would also
like to thank Prof. Fred Lochovsky for helping him
gain a deeper understanding of organizational comput-
ing through many discussions.

References

[1] G. R. Barber, Office Semantics, Ph.D. Disserta-
tion, Dept. of Elec. Eng. and Comp. Sci., M.I.T.,
1982.

[2] A. Borgida, S. Greenspan, J. Mylopoulos, Knowl-
edge Representation as the Basis for Requirements
Specifications, IEEE Computer, April 1985, pp.
82-91.

[3] J. A. Bubenko, Information Modeling in the
Context of System Development, Proc. IFIP, pp.
395-411, 1980.

[4] C. Castelfranchi, M. Miceli, and A. Cesta, Depen-
dence Relations Among Autonomous Agents, De-
centralized A.I. - 8 (Proc. 3rd European Workshop
on Modeling Autonomous Agents in a Multi-Agent
World), Elsevier, 1992.

[5] K. L. Chung, Representing and Using Non-
Functional Requirements for Information System
Development: A Process-Oriented Approach, Ph.D.
Thesis, Dept. of Comp. Sci., Univ. of Toronto,
submitted for approval.

[6] P.R. Cohen and H. J. Levesque, Intention is Choice
with Commitment, Artif. Intell., 42 (3), 1990.

[7] W. B. Croft and L. S. Lefkowitz, A Goal-Based
Representation of Office Work, Office Knowledge:
Representation, Management, and Utilization, W.
Lamersdorf (ed.), Elsevier, 1988, pp. 99-124.

[8] P. R. Crosby, Quality is Free, MacGraw-Hill, 1979.

[9]

[10]

[11]

P. de Jong, Ubik: A Framework for the
Development of Distributed Organizations, Ph.D.
Dissertation, Dept. of Elec. Eng. and Comp. Sci.,
M.I.T., 1989.

E. Dubois, J. Hagelstein, E. Lahou, F. Ponsaert
and A. Rifaut, A Knowledge Representation

Language for Requirements Engineering, Proc.
IEEE, 74 (10), pp. 1431 -1444, Oct. 1986.
T. H. Davenport, Process Innovation: Reengi-

neering Work Through Information Technology,
Harvard Business School Press, Boston, Mass.,

1993.

The Search for the Organization of Tomorrow,
Fortune Magazine, May 18, 1992, pp. 93-98.

L. Gasser, The Integration of Computing and
Routine Work, Trans. Office Info. Sys., vol. 4, no.
3, July 1986, pp. 205-225.

S. J. Greenspan, Requirements Modelling: A
Knowledge Representation Approach to Software
Requirements Definition, Ph. D. Thesis, Dept. of
Comp. Sci., Univ. of Toronto, 1984.

M. Hammer, Reengineering Work: Don’t Au-
tomate, Obliterate, Harvard Business Review,

July-August 1990, pp. 104-112.

H. J. Harrington, Business Process Improvement:
the breakthrough strategy for total quality, produc-
tivity, and competitiveness, MacGraw-Hill, 1991.

M. Jackson, System Development, Prentice-Hall,
1983.

M. Jarke, J. Mylopoulos, J. W. Schmidt, Y.
Vassiliou, DAIDA: An Environment for Evolving
Information Systems, ACM Trans. Information
Systems, vol. 10, no. 1, Jan 1992, pp. 1-50.

P. Keen, Information Systems and Organizational
Change, Comm. of ACM, vol. 24, no. 1, January
1981, pp. 24-33.

P. Keen, Shaping the Future: Business Design
Through Information Technology, Harvard Busi-
ness School Press; Boston, Mass., 1991.

R. Kling, Defining the Boundaries of Computing
Across Complex Organizations, Critical Issues in
Information Systems Research, R. J. Boland Jr.,
and R. A. Hirschheim, eds., Wiley, 1987.

J. Lee and K.-Y. Lai, What’s In Design Rationale?
Human-Computer Interaction vol. 6, no. 3, 1991,

pp- 251-280.

23]

[28]

[29]

Y. Lesperance, A Formal Theory of Indexical
Knowledge and Action, Ph.D. Thesis, Univ. of
Toronto, also, Tech. Rept. CSRI-248, Comp. Sys.
Res. Inst., Univ. of Toronto, Feb. 1991.

T. W. Malone, Modeling Coordination in Organi-
zations and Markets, Management Science, vol. 33,

1987, pp. 1317-1332.

J. Mpylopoulos, A. Borgida, M. Jarke, M.
Koubarakis, Telos: Representing Knowledge about
Information Systems, ACM Trans. Info. Sys., 8 (4),
1991.

J. Mylopoulos, Representing Knowledge About
Information Systems, Intl. Workshop on Develop-
ment of Intelligent Information Systems, Niagara-
on-the-Lake, Ontario, Canada, April 21-23, 1991,
pp- 94-96.

J. Mylopoulos, L. Chung, B. Nixon, Representing
and Using Non-Functional Requirements: A
Process-Oriented Approach, IEEE Trans. Soft.
Eng., 18 (6), June 1992.

N. Nilsson, Principles of Artificial Intelligence,
Tioga Press, 1980.

J. F. Rockart and J. E. Short, The Networked
Organization and the Management of Interdepen-
dence, The Corporation of the 1990’s — Information

Technology and Organizational Transformation, M.
Scott Morton, ed., 1991.

A.-W. Scheer, FEnterprise-Wide Data Modelling:
Information Systems in Industry, Springer-Verlag,
1989.

L. Suchman, Office Procedures as Practical Action:
Models of Work and System Design, ACM Trans.
Office Information Systems, vol. 1, no. 4, October
1983, pp. 320-328.

D. Tapscott, A. Caston, Paradigm Shift — The New
Promise of Information Technology, McGraw Hill,
1993.

B. Thomas, Y. Shoham, A. Schwartz, and S. Kraus,
Preliminary Thoughts on an Agent Description
Language, Intl. J. Intell. Sys., Vol. 6, 1991, pp.
498-508.

C. Woo, An Object-Oriented Model for Supporting
Office Work, Ph.D. Thesis, Dept. of Comp. Sci.,
Univ. of Toronto, 1988.

E. Yu, Modelling Organizations for Information
Systems Requirements Engineering, Proceedings of
First IEEE Symposium on Requirements Engineer-
ing, San Diego, Calif., 1993, pp. 34-41.

[36]

E. Yu, An Organization Modelling Framework for
Multi-Perspective Information System Design, in
Requirements Engineering 1993: Selected Papers,
J. Mylopoulos et al.; eds., Univ. of Toronto Dept. of
Comp. Sci. Tech. Rpt. DKBS-TR-93-2, July 1993.

E. Yu, An Organization Modelling Framework for
Information Systems Requirements FEngineering,
Ph.D. Thesis, Dept. of Computer Science, Univ.
of Toronto, forthcoming.

