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Abstract. It is widely known that contextual information plays a very
important role in object recognition and detection. In this paper, sev-
eral context-based computer vision systems, which include shape con-
texts based systems along with some correponding matching and index-
ing methods, context sets based systems and many probabilistic systems
modeling context, will be reviewed and compared first. Then some chal-
lenging problems still existing in the context-based computer vision re-
search and potential extensions to the current context-based computer
vision systems will be discussed.
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1 Introduction

In the early stage of computer vision research, researchers often assume that
objects to be recognized can be represented by a small number of shape mod-
els and must have distinguishable features. However, these assumptions don’t
always hold in all kinds of object recognition and detection tasks, especially for
recognizing and detecting objects from natural scenes. Based on such kind of
observations, Strat and Fischler [1] proposed a complete and successful system
for recognizing pictures of outdoor scenes based on context. Since then, context-
based systems has appealed more and more attention in the computer vision
research community. And a lot of contex-based vision systems have been pre-
sented and have demonstrated great success for handling complicated recognition
tasks compared to the early systems.

Before the review of some representative context-based systems, some back-
ground knowledge about context-based vision will be presented first. In Barll
and Ullman’s paper [2], several psychological experiments show that: proper
spatial relations between objects that often co-occur in the same scene help the
identification of individual obejcts; the presence of objects having unique in-
terpretations helps the identification of related ambiguous objects. Oliva et al
[3] used the saliency of local features and the global scene context information



to predict the location of people in natural scene images. Psychological exper-
iments on human eye movements showed the predicted regions by the model
agreed with the regions that drew the most attention of human observers when
they were told to search people from the given images. The above experimental
findings clearly show that context information helps object identification. For e.
g., when we see some vehicle-like stuff on the water, it is more likely that we
believe it is a boat rather than a car based on the object-region context. In fact,
humans often use contextual information to faciliate recognizing and detecting
objects not only in the setting of natural scenes but also in the setting of general
recognition tasks. For e. g., after we see the handle of a cup, we can easily infer
the orientation of the cup; after we see two wheels and part of the contour of a
car-like object, we tend to believe it is a car and we have no difficulty in infering
its orientation. Theorectical study underlying those examples can be found in
[4]. Thus, the clue information provided by the identification of some parts of
an object also belong to context information.

Here we will discuss the types of context exploited in the computer vision
research. According to the levels of modeling scenes, context can be classified
as scene context and spatial context. Scene context represents the gist of scene
and often refers to the types of the whole scene. For e. g., we say this represents
an indoor office scene and that represents an outdoor rural scene. This kind
of context stands at the highest level and can be used to give priors about
the configurations of the scene. Spatial context refers to the relations among
different regions in a scene. According to the relations among regions in different
scales, spatial context can be further classified as local-range context, long-range
context, and global context. Spatial context can also be classifed as intra-object
context, which models relations within an object, and inter-object context, which
models relations among different objects. Of course, the classification given here
is not very strict. The scale for distinguishing local-range context from long-range
context cannot be defined quantitatively. Besides, there is no scene context for
an image only containing one object used by shape context [5], and now the
global range only corresponds to one object. Because shape context models the
context within an object, it is classified as intra-oject context. And because the
shape context at each point holds the information about all the other points,
shape context is also classified as global spatial context.

The paper will be organized as follows: In section 2, we will describe the
privious work about shape context along with some fast mactching and indexing
methods. In section 2.1, systems based on shape contexts and generalized shape
contexts will be reviewed. In section 2.2, a non-rigid point matching method
and its modified version used for matching shape contexts will be discussed. In
section 2.3, fast pruning approaches to speeding shape retrieval based on gen-
eralized shape contexts will be described. In section 2.4, many-to-many feature
matching and hierarchical indexing using graph spectra will be briefly intro-
duced. In section 3, we will review an early sucessful rule-based system which
models context using context sets. In section 4, several representative proba-
bilistic models based on context, which include parts-based systems modeling



intra-object context, systems modeling all levels of spatial context, and systems
modeling scene contexts and global spatial context, will be reviewed. In section
5, I will give comparisons and discussions about the above context-based mod-
els. I will discuss the existing challenges in the context-based computer vision
research and propose potential extensions to the current systems. In section 6,
we will conclude by summarizing the paper.

2 Shape contexts based systems and fast matching and
indexing methods

2.1 Shape context and generalized shape context

Motivated by producing a rich and robust descriptor for shapes to reduce the
ambiguity in matching, Belongie et al [5] proposed shape context to do shape
matching and object recognition. Shape Context can be generated as follows:
each object can be viewed as a point set, and we sample n points from its
internal and external contours. Then the shape of the object can be represented
by a point set P = {p1,...,pn}. At each point p;, we calculate the set of vectors
originating from this point to all the other points on the shape. The distribution
of those vectors can be compactly represented by a histogram over a log-polar
space.

hi(k) = #{q # pi : (¢ — pi) € bin(k)}. (1)

h; is defined as the shape context at point p;. Since h; measures the distribution
and the orientation of all the other points relative to the point p;, shape context
can be viewed as a global intra-object context. And due to the property of log-
polar space, the shape context at each point gives more precise descriptions
about nearby points and gives less precise descriptions about points far away.

Generalized shape context (GSC) [?] is an extension of shape context. It
gives richer discriptions than shape context does. For each point g; in a shape,
a unit tangent vector ¢; reprenting the direction of the edge at that point is
associated with the point. Instead of just counting the number of corresponding
points falling into each bin in the log-polar space, GSC sums the tangent vectors
for all points falling in the bin. Now the descriptor for a point p; becomes:

hi(k) = 3 ty,where Q = {q; # pis (4 — ps) € bin(k)}. (2)
7 €Q

The generalized shape context ﬁ, at point p; carries more information than the
original shape context h;. It is also an intra-object global context.

2.2 Non-rigid point matching based on shape context

Chui and Rangarajan [6] proposed a non-rigid point matching algorithm based on
thin-plate-spline (TPS) and softassign by minimizing an objective function which
is a combination of several energy terms. The objective function is composed of



a bending energy term associated with TPS, a penalty term penalizing null
matches, another penalty term penalizing unphysical reflection mappings, and
an entropy barrier term to ensure the positivity of softassign coefficients. A linear
annealing schedule is used to control the degree of non-rigid warping in TPS and
the degree of unphysical reflection mappings. An alternating update strategy is
used to minimize the objective function to learn the parameters.

Based on the similarity matrix, in which similarity between any two points
on two different shapes is defined as the x? distance between shape contexts,
a bipartite graph matching problem is solved to establish the initial correspon-
dences between the two point sets (shapes) by minimizing matching cost. Then
Belongie et al [5] borrowed the above point matching idea to calculate the best
transformation between the two point sets, but used hard matching instead of
softassign given the correspondences. The above two procedures of establishing
correspondences and estimating a transformation are iterated several iterations
to produce refined matchings. The distance between two shapes is computed
as the sum of the matching cost, the bending energy, and image appearance
distance. The tasks of recognition and retrieval is achieved through k Nearest
Neighbor (k-NN).

2.3 Fast pruning approaches to speeding shape retrieval

When an unknow shape is given, shape retrieval returns a set of similar shapes to
the given shape from a stored shape database. Although the retrieval approach
based on shape context discussed in section 2.2 has demonstrated success on
several image databases, it is very computationally expensitive. When the shape
database is large, the computations needed are prohibitively daunting. Therefore,
fast matching, fast indexing, or fast pruning becomes dominant for handling
these situations. Mori et al [?] used fast pruning to handle the problem with
a large shape database. After pruning, only a small set of potential candidate
shapes are chosen from a very large shape database, then expensive and accurate
matching procedures can be applied to this small set to produce the final set of
similar shapes to the query shape.

Two approaches to pruning are presented. One is based on representative
shape contexts (RSC). The motivation to RSC is that we can avoid matching
a pair of shapes if they are obviously very different. The detailed matching
process using RSC is as follows: we precompute a large number s (about 100) of
shape contexts for each known shape S;, and for each query shape Q, we only
compute a small number r (5 to 10) of shape contexts. These shape contexts
are randomly sampled over the entire shapes. We find the best matches in each
known shape S; for each of the r RSCs, where the distance is calclulated based
on the Euclidean distance between GSCs. The cost of each match is normalized
by dividing the dicriminative significance of the corresponding GSC in Q. The
average of these match costs is defined as the distance between S; and Q. By
sorting these distances, we can determine a small number of candidates for the

query shape Q.



The other approach to pruning is called shapemes using vector quantization
on the shape contexts. Clustering all the shape context (or GSC) vectors into
several clusters, and the clusters are called shapemes. Then each shape context
can be represented by the index of the shapemes it is in. Each shape will be
represented by a histogram of shapeme frequencies. Thereby, it’s very fast to
get a small set of candidate shapes for a query shape Q by sorting the distances
between Q and known shapes in the space of the histograms.

2.4 Many-to-many feature matching and fast hierarchical indexing

Except shape contexts, intra-object contexts can also have natural represen-
tations as graphs. Graph-based representations can easily show the relations
between different parts of objects. As discussed earlier in section 1, the iden-
tification of some parts can provide clue information for the identification of
some other parts. Therefore, we believe that graph can be used to model the
intra-object contextual information effectively. In this section, we will review a
many-to-many feature matching method [7] and a fast indexing method [8] for
objects represented by graphs.

Many-to-many feature matching draws researchers’ attention because some-
times segmentation errors, articulation, scale difference, and within-class defor-
mation makes one-to-one feature matching impossible but many-to-many feature
matching natural. In this matching framework, each object is represented by a
vertex-labeled graph in which nodes represent image features and edges repre-
sent relations. Matching two graphs means establishing correspondeces between
their nodes, and the quality of a match is measured by the overall distance which
depends on both node and edge similarity.

The matching method [7] works as follows: embed two graphs to be matched
into a d-dimensional vector space by respectively following the caterpillar de-
compositions of the metric trees of the graphs. d is specified by the user so that
the embedding preserves pairwise distances between the nodes with some appro-
priate degree of distortion. Then compute Earth Mover’s Distances between the
embeddings by applying the FT iteration to get the optimal tranformation T.
Then the many-to-many vertex matching is trivially obtained from the resulting
optimal flow.

The above algorithm gives an effective approach to calculating many-to-many
feature mappings between objects represented by vertex-labeled graphs. How-
ever, it requires the edge weights in the original graph be accurately measured,
and it also requires the attributes of each node in a metric tree reflect mean-
ingful many-to-many correspondences between the nodes in the original graph.
Besides, it is not invariant to large occlusion.

Shokoufandeh et al [8] proposed a fast indexing method using graph spec-
tra to index the hierarchical structures of directed acylic graphs (DAG). In the
method, a topological signature vector (TSV) reflecting diverging and subtree
structures is associated with each nonterminal node. A small number of can-
didate models similar to the given query are chosen by k-NN searching and
calculating votes. Robust evidence accumulation based on Mutiple One-to-One



Vote Correspondence (MOOQVC) algorithm is used to sum the votes, so that one-
to-one vote matching is assured between the query and each candidate model.
Detailed descriptions about the method can be found in [8].

The above method is very efficient in indexing hierarchical structures, and
has great potential applications in computational biology due to its robustness to
accomodate structure noise (node split/merge). It’s also robust in accomodating
large-scale occlusion, and it scales well with increasing database size making
handling large dataset possible.

The limitations of the two methods discussed above are also obvious: they
both require graph-based object representations. However, deriving accurate
graph representations for objects is still a challenging problem.

3 Context Sets Based Systems

The context sets based systems introduced by Strat and Fischler [1] is one of the
earliest systems that abandoned the geometric shape models and turned to using
contextual information to recognize objects in natural scenes. Contexts used in
the system include spatial contexts and some other contextual information for
generating the natural scene images. Each context in the system is represented by
a context set which is a set of context elements defining the conditions associated
with the context. Each context set is embedded into a rule denoted by the name
associated with the class of the context set and the context set followed by an
action. If all the conditions in the context set are satisfied, the action will be
triggered. For e. g., a rule can be: SKY: {image-is-color, camera-is-horizontal,
sky-is-clear, time-is-daytime} = BLUE-SKY.

All the rules containing the contextual knowledge that drives the recog-
nition is encoded in a core knowledge structure (CKS). Recognition involves
four processes: candidate generation (hypothesis generation), candidate com-
parison (hypothesis evaluation), clique formation (grouping mutually consistent
hypotheses), and clique selection (selection of a best ”descritption”). Three dif-
ferent types of context sets are respectively used for the first three stages of
recognition process. It is argued in the paper that, when the knowledge base is
constructed, rules designed for each recognition stage can be imperfect, and the
reliable recognition results can be achieved through the use of large numbers of
redundant operators in each recognition stage.

When generating candidates, a large number of simple procedures, in which
each individual one handles a specific context, are used to collectively predict
a hypothesis in a wide range of contexts. In the candidate comparison stage,
several evaluators are used to evaluate each candidate. Partial-order relations
are established between the candidates, but a preference is established only if
one candidate is clearly better than the other. In the clique formation stage, a set
of hyptheses that are mutually consistent and together explain larger portion of
the image are grouped together. A best-first strategy is used. The best candidates
of each class are first chosen to build cliques. In the clique selection stage, the



best set of candidates that explains the largest portion of the image is chosen as
the final interpretation of the scene.

In [9], the above context-based system is adapted to a semiautomated system.
In this system, only context sets for generating candidates are used to trigger
different labeling algorithm. In each labelling algorithm, a mathematical objec-
tive function is minimized to enforce the contextual constraints. The quality of
the potential labelings is evaluated by humans. Compared to the above pure
rule-based system, this system has the trend to approaching the framework of
probabilistic models modeling contexts.

4 Probabilistic Context-Based Systems

In this section, I will review several representative systemes based on proba-
bilistic models modeling contexts, which are parts-based models modeling intra-
object context (relations), systems modeling all levels of spatial contexts, and
systems modeling scene context and global spatial context.

4.1 Parts-based models

In section 1 and 2, I have mentioned that the intra-object relations and the
(partial) identification of some parts can act as contextual information to help
recognition. Parts-based models represent the intra-object context implicitly and
handle the intra-object parts interactions directly. These models calculate the
probability of the object category based on the configurations of different parts.
In [10], a hierarchical parts-based model is described for detecting obejcts from
cluttered natural scenes. A shared set of feature patterns are obtained by clus-
tering all the SIFT descriptors [11] from training images into several discrete
bins. A shared set of parts are assumed, and each part is represented as a multi-
nomial distribution over the feature patterns, and each object is represented as a
multinomial distribution over the sharted set of parts. In [12], a similar hierarchi-
cal parts-based system is described to model intra-object contextual information
(part relations). Unlike [10], no feature detector is used and the parts are learned
from the data directly.

4.2 Probabilistic systems modeling all levels of spatial contexts

Singhal et al [13] introduced a probabilistic spatial context system for scene
content understanding. Given an input natural scene image, the system will
segment the image into several regions having semantic labels from a predefined
list such as sky, grass, foliage, water, and snow etc, which is a standard image
labelling task. In the system, a number of individual material detectors are used
to generate raw labelings of the input image first. Then, for each segmented
region, a trained two layer bayesian network is used to integrate the output
labelings of all the material detectors for that region given the observed rough



location (top, middle or bottom) of the region. Then a probabilistic model based
on spatial contexts is used to refine the fused labeling.

Spatial contexts modeling is done as follows: a set of spatial relationships is
defined beforehand, that is, {above, far above, below, far below, beside, enclosed,
and enclosing}. Given a set of labeled training images, for each relationship, the
probability between pairwise labeled regions is calculated simply by counting and
normalizing. After the fused labelings are obtained, the regions are ranked ac-
cording to the associated confidence factor of their labels, say, they are arranged
as #1,#2, ..., #n, where n is the total number of the segmented regions. Then a
greedy approach is used to build n Bayesian networks to approximate the spatial
contexts among regions. The first network is rooted the region #1, its posterial
probability of its labeling doesn’t change. The i-th network makes the first i-1
regions as leafs, given the spatial relationships between the first i-1 regions and
the i-th region, the posteria probability of the labelings of the first i regions are
reestimated. At last, for each region, the label with the highest probability is
picked.

Instead of just approximating the spatial contexts, He et al [14] used mul-
tiscale conditional random fields (CRF) to model the local-range context, long-
range (regional) context, and global range context in order to solve the image
labeling problem. In the system, different classifiers focus on different range con-
text at different scales. The whole consistant labeling is achieved by multiplying
these classifiers together to get a product-of-experts model. A neural network
based classifer looks at the patch centered at each pixel to predict the label of
that pixel. Given the labels predicted by the classifier, many Restribed Boltz-
mann Machines (RBM) are used to model the label patterns in many long-range
regions. And a RBM is used to model the global-range label patterns in the
whole image. Based on the same idea as He et al’s, the system introduced in [15]
used boosted CRF (BRF) to model the spatial context at different scales to do
image labeling. In Kumar and Hebert [16], two-layer hierarchical CRF is used to
do image labeling. In each layer, unary potential is simply modeled as softmax
logistic regression.

4.3 Probabilistic systems modeling global scene contexts

Torralba et al [17] built a system that models scene contexts which is the ”gist”
of the scene. When the system moves through the world, it can tell where it is and
what is is looking at by analyzing the global scene context. Texture features of
an image are obtained using a wavelet image decompostion, and the global scene
context of the image is a low-dimensional representation of the texture features
reduced by PCA. An HMM is learned with the place being the state and the
global context being the output vector. The place is predicted by calcuating the
posteria probability of the state given the observed global scene context vectors.
The probability of an object appearing in the current scene given the current
place and the observed global scene context vetors so far can be easily calculated
using Bayes rule.



Oliva et al [3] combined the global scene context and the saliency of local
features to detect the locations of humans from natural scene images. The exper-
imental results showed that the top-down control provided by the global scene
contextual information is essential for efficient object recognition.

5 Comparisons and Discussions

In this paper, several systems for modeling several types of different contexts
have been reviewed. Different models make different assumptions when empha-
sizing different contextual information. Shape context is only good at capturing
intra-object context. But shape context itself ignores detailed geometry in the
shape, so it is not invariant to articulation. And because it is a global shape con-
text, it is sensitive to occlusion and local distortion. Generalized shape context
still has these problems. Besides, it’s hard to get good shape contexts for objects
with cluttered background. Despite these disadvantages, shape context provides
very good representations images of generic objects taken under restricted situ-
ations.

Context sets based system is an engieering system. It not only models con-
texts in images, but also models contexts under which the images are taken. It
is only suited for analyzing simple natural scene images. Although the system is
only a rule-based knowledge-base driven system and building a good knowledge
base is very difficult, the ideas used in the system are very significant. For e.
g., using redundant operators, establishing partial-order in a conserved way, and
hierarchical processing are all important ideas. In some sense, Singhal et al’s
system [13] can be viewed as a probabilistic translation of the context sets based
system.

Current parts-based models only models configurations of parts. The intra-
object context here is not as strong as that given by shape context, since current
parts-based models often model object category independent of part positions
or ignoring modeling positions. Future extensions can be made to the current
parts-based models by incorporating relative postions and orientations of parts
to model the object category. This will make the parameter estimation slightly
harder.

The success of Singhal et al’s system [13] is highly dependent on the per-
formance of individual material detectors. It only considers spatial contexts but
igores global scene contexts. In [14], [15] and [16], scene contexts are not consid-
ered, and they cannot handle a large training set with a big set of labels. In [3]
and [17], only global scene contexts are considered.

From the above discussions, we can find that, the systems mentioned either
cannot handle complicated scene understanding task, or are not capable of mod-
eling all types of context, or cannot handle real large dataset. Because learning
all the context information from scratch is hard, we can turn to robust individual
filters to sequentially process images as in [13]. Then we can use CRF or BRF to
learn all levels of spatial contexts and use global contexts to define priors. And



we might use graphs to represent all types of context information, then we can
do computations based on the graphs.

6 Conclusions

In the paper, I reviewed several context-based computer vision systems, which
include shape context based systems along with some fast pruning, fast matching
and fast indexing algorithms that scale well with large datasets, context-sets
based systems, and several representative probabilistic models. My motivation
for doing this is to hope that the context-based models with some fast matching
methods in computer vision can help my research in motif discovery. I believe
that the fast indexing and matching algorithm based on graphs are very useful
for structure motif retrieval. And the models reviewed here also illustrate what
all the types of contexts are and how they can be modeled.
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