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ABSTRACT

With ubiquitous connectivity on the horizon, collaborative
computing will be one of the major applications in the evo-
lution of computing and communication. In this paper we
present an architecture for Agent Mediated CSCW system
and describe its special characteristics. We point out that
a challenging research issue in Agent Mediated CSCW con-
cerns the task of event perception by devices within a user’s
working environment. We propose an eigenspace approach
to perform event perception. We also propose a method
which constructs an eigen-pyramid to perform this task when
the number of devices is huge. We present experimental re-
sults to verify these methods.

1. INTRODUCTION

The worldwide natural of today’s market has forced many
companies to de-centralize their organizational structures.
With ubiquitous connectivity on the horizon, collaborative
computing promises to become one of this new century’s
core applications. People will be more and more involved in
Computer Supported Cooperative Work (CSCW) because
of the pressure from companies to improve their product-
development and decision making process and because of
the convenience brought by the information super-highway.

There are four modes conceptualized by CSCW researchers
on how people work [20]. Synchronous mode refers to the
situation that activities occur at the same time and in the
same place; distributed synchronous mode refers to the sit-
uation that activities occur at the same time but at differ-
ent places; asynchronous mode refers to the situation that
activities occur at different times in the same place; and
distributed asynchronous mode refers to the situation that
activities occur at different times and places.

The task of event perception is very important with re-
spect to the CSCW distributed synchronous mode. Many
computer systems support simultaneous interaction by more

than one user. However most of them support multiuser in-
teraction in a way that prohibits cooperation - they give
each user the illusion that he or she is the only one using
the system. To support and encourage cooperation, coop-
erative applications must allow users to be aware of the ac-
tivities of others. The purpose of a cooperative multiuser
interface is to establish and maintain a common context,
allowing the activities or events associated with one user
to be reflected on other users’ screens. For example, Lotus
Sametime [12] is a family of real-time collaboration prod-
ucts which provides instant awareness, communication, and
document sharing capabilities, bringing the flexibility and
efficiency of real-time communication to the business world.
The cornerstone of Sametime is awareness. With awareness
of coworkers, partners, or customers online, users can com-
municate in a variety of ways. However, a direct reflection of
all the activities on other users’ screen is not approachable.
The first reason is that it wastes communication bandwidth
especially when users are far apart and the amount of data
to be transmitted, such as video data, are huge. The second
reason is that many users may not like the situation that his
or her activities are broadcasted to all the other members
of the team. The third reason is that each user is concen-
trated on his or her own work and does not have the energy
and motivation to monitor every movement of other users.
Thus, it is critical for CSCW interface to analyze activities
of a given user, detect important events occurred, and only
reflect necessary events to other users. Event perception will
be even more important to CSCW in the pervasive comput-
ing world, where the dominance of the traditional PC as the
primary computing resource is replaced by a large collection
of devices with embedded computing. These intelligent, in-
terconnected devices will be seamlessly embedded within our
offices, constantly sensing and reacting to the environment.
The information provided by these pervasive devices within
an office environment will be very important in CSCW ap-
plications.

It is our belief that autonomous agents are of great value to
a CSCW system and a certain amount of future research on
CSCW will be centered on multi-agent aspect of groupware.
Intelligent agents can undertake sophisticated processes on
behalf of the user. A multiagent approach to CSCW can
capture the dynamics of a team work and even re-shape
its form and characteristics. The automation brought by
CSCW agents will dramatically reduces certain types of fric-
tional costs during team work. Furthermore, the intelligence
of a multiagent CSCW system will be able to keep the pri-



vacy of its user and the security of each user’s local work.

In this paper, we will present the system architecture of
an agent mediated CSCW system called Agent Buddy and
study in detail its event perception issues.

2. ARCHITECTURE OF AGENT BUDDY

Software agents are studied from two complementary per-
spectives. The first views software agents as entities with
different skills and knowledge within a larger community of
agents [17]. Each agent is independent or autonomous. It
may accomplish its own task or cooperate with other agents
to perform a personal or global task. The second approach
concentrates on the necessity for agents to interact with
users at the level of the interface [13]. The critical points
here are how agents can understand the needs and goals of
the user, how agents should behave, and how agents’ behav-
iors can be perceived by the user via the interface.

The Agent Buddy approach is a combination of the above
two approaches. Figure 1 shows the architecture of our agent
mediated CSCW system - the Agent Buddy system. The
goal of the system is to perceive events associated with one
user and selectively provide the perceived information to
other users of the team. The Agent Buddy system can be
added to any CSCW system to enhance the sense of work-
ing “together” concurrently and at the same time keep the
privacy of each user. It can also be used to detect abnor-
mal visits of other agents and acted as a security keeper.
When a user wants to contact another user about a certain
issue such as making a phone call or scheduling a meeting,
he usually contact his agent. His agent then negotiate with
the agent of the other user and tell him about the negoti-
ation results. The user then judge the negotiation results
and decides what to do.

Figure 1: The architecture of Agent Buddy

An agent in Agent Buddy is a computational system that
inhabits dynamic CSCW environments. It has knowledge
about its responsible user and conventions of the working
group. This knowledge can be used to guide its interactions
with its responsible user and other agents of the group. The
goal is to make CSCW easier and more efficient for mem-
bers of the working group. Figure 2 shows modules within
an agent. The User Interface Module is responsible for ob-
taining input from the user and input from various devices.
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Figure 2: The architecture of Agent Buddy

It 1s also respomsible for performing dialogue between the
user and the agent, such as delivering the negotiation re-
sults to the user. The Event Perception Module analyzes
input from various devices within a user’s working environ-
ment and detects events. The Knowledge Base Module con-
tains the knowledge of the agent on the user and the group.
These knowledge include appointment schedules of the user,
preferences of the user, and the relative importance of dif-
ferent group members, etc.. The Plan Generation module
generates action plans for the user by combining the user’s
request, the knowledge from Knowledge Base, the events
detected by Event Perception Module, and the requests of
agents of other users delivered by the Negotiation Module.
The Negotiation module is used to perform communications
and negotiation dialogues with agents of other users. XML
[4] is used to encode messages between system components,
agents, and users.

In the following, we describe special features of our system.

e FEach Agent Buddy can perceive events with respect to
its user. This is the most important feature of our sys-
tem. We will discuss this feature in detail in following
sections.

e The User Interface Module allows multi-model user in-
put. The input can come from different sources such
as the keyboard, the video camera, the graphical user
interface, and various devices of the office environment
etc.. The input channels will be even more rich when
pervasive computing becomes a reality.

o Multiagent negotiation is used to reduce the time and
energy fraction between different users of the group.
Our system supports the activity of negotiation among
agents. The goal is to transform negotiation activities
among users into negotiation activities among agents.
This will greatly reduce the fraction of a group work
and increase efficiency. Usually, group work involves



conflicts at various degrees. Users need to negoti-
ate among each other to form a solution that is sat-
isfiable by all parties. In a high conflict situation,
rich interpersonal information is required in addition
to information concerning the task [15]. When this
kind of high conflict situation happens, agents for each
user should automatically detect the situation and au-
tomatically setup full multimedia conferencing links
among participant users. This functionality can greatly
increase the efficiency of the group work. When a low
conflict situation happens, agents can negotiate a so-
lution automatically for users. This can dramatically
reduce fractions in group work. Appointment schedul-
ing is one of the examples. When one user is trying to
schedule a meeting with another user. The user can
simply ask his agent to contact the agent of the other
user and negotiate a time. This back and forth ne-
gotiation process for agents can be complex because
a lot of background information might be considered.
Another example is phone call scheduling. For exam-
ple, a user wants to make a phone call to his man-
ager. It is not appropriate for him to simply pick up
the phone and make the call. What he can do is to
transfer his requests to his agent. His agent then con-
tact the agent of his manager. The other agent then
starts event perception process and detects the man-
ager’s state. If it concludes that it is ok to have a
phone conversation based on the results of event per-
ception and background knowledge, it will inform the
user’s agent about the decision. The user’s agent then
inform the user to make the call.

Our system can create a sense of group work and at
the same time keep the privacy and maintain the se-
curity of each user. To create a sense of group work,
each agent has an interface to display events associated
with other users. Events associated with a user can
be whether the user is logged on, how frequently the
user is typing on the keyboard, what program the user
is running, whether the user is entertaining himself
by browsing the Internet or is working on the project,
whether the user is on the phone and who he is talking
to, whether the user is happy, sad or simply normal,
whether the user has a visitor, and even whether the
user needs a break because he is not efficient at all, etc..
However, an agent is not able to display all events of
other users. There are two reasons. The first and the
most important reason is that the agent must commu-
nicate with agents of other users for the permission to
access events detected by those agents. Agents of other
users will decide whether the status of an event can be
accessed by the asking agent. Only events that does
not intrude privacy can be accessed. For different ask-
ing agents, the criteria will be difficult. Similarly, an
user can not access and modify the documents of other
users when there are potential security concerns. The
second reason is that an agent should not display all
the events of other users because it is usually not nec-
essary and impossible to display everything within a
single screen. An agent must intelligently select events
to display for the most benefit of its user.

XML is used to encode messages among agents, mes-
sages among different components of an agent, and

messages transfered from devices to the Event Percep-
tion Module of an agent. XML is a descendant of the
Standard Generalized Markup Language or SGML.
It allows developers to create their own markup lan-
guages, the semantics of which enable specific applica-
tions. Using XML for messaging facilitates the devel-
opment of common data abstractions leading to more
modularity and sharing of data. XML simplifies trans-
actions and negotiation processes in the agent medi-
ated CSCW environment. If the message sent to an
agent is structured with XML, it is much easier for
the agent to understand exactly what the data means
and how it relates to other piece of data it may already
know. The messages in our system is interpreted us-
ing Document Object Model (DOM). In Agent Buddy,
IBM DOM parser [11] is used.

The following is a simple example on encoded messages
sent from the keyboard device to the Event Perception
Module. It tells the agent that the user typed charac-
ter “a” at 1:05 PM. They keyboard belongs to machine
orasis.watson.ibm.com. The machine is a ThinkPad

770X with TCPIP address “9.2.11.71”.

(?xml version="1.0"7)
(Signal-From-Device-To-Agent)
(Signal-Source)

{Associated-Machine)
TYPE="ThinkPad 770X”
NAME="0Orasis.watson.ibm.com”

(/Associated-Machine)

{Associated-TCPIP)
9.2.11.71

{/Associated-TCPIP)

{Device) Keyboard (/Device)

{/Signal-Source)

{Content EventAction="Push-Down-Release”
EventKey="a"

{/Content)

{Event-Time DAY="05" MONTH="11"

TIME="01:05 PM”

{/Event-Time)
{/Signal-From-Device-To-Agent)

It is very important to evaluate the performance of differ-
ent agent mediated CSCW systems. Here we propose the
CSCW version of the Turing Test.

Definition: Suppose that there are two CSCW group work-
ing environments available. One is Agent Mediated CSCW
environment. The other is Human Mediated CSCW envi-
ronment with human beings working as negotiators, event
watchers, and secretary for a group of users. Each user s
assigned one person for these purposes.

If the group of users have been working under one of the
environment for a time that s sufficiently long but could not
tell whether the environment is Human Mediated CSCW or
Agent Mediated CSCW, then we say that the given Agent
Mediated CSCW have passed the CSCW wersion of Turing
Test. Otherwise, we say that it failed the test.



We call the average number of transactions involved in the
group work before the system failed the test the characteristic
transaction number. This number can be used to compare
two Agent Mediated CSCW systems. O

3. EVENT PERCEPTION
3.1 PreviousWork

A challenging issue in Agent Mediated CSCW is event per-
ception. The term “event” is widely used yet has no specific
definition. It provides a useful categorization for describ-
ing everyday happenings, allowing the continuity of every-
day experience to be cut up into discrete bounded temporal
units. Schank and Abelson [24] compose events into scripts
to describe typical behavior of a customer at a restaurant
such as entering, going to a table, order, eating and paying.
Nagel [19] provides an ontology for describing the behavior
of agents. Badler [1] and Tsotsos [26] extract natural lan-
guage description that captures the activity of the moving
objects present in a sequence of images. Reynolds [23] re-
counts issues found when combining categorization schemes
developed by different observers to describe the behavior
of Rhesus Monkeys. He concludes that the flexibility of
language may not be needed to describe perceptual events
which are really pre-linguistic. The purpose of event repre-
sentation is for event perception. Experimental psychology
has been used to address the problem of how causal rela-
tionships are perceived by human. For example, Michotte
[16] investigates the effect of varying the temporal interval
between action and reaction. His experiments employ the
movements of simulated blocks, which bring to light prop-
erties of perceptual control that are not that illustrative in
terms of everyday events. There are also engineering ap-
proaches to study event perception. Mann, Jepson, and
Siskind [14] present an implemented computational theory
that derives qualitative scene dynamic descriptions directly
from camera input. Their approach is based on an analy-
sis of the Newtonian mechanics of a simplified scene model.
Interpretations are expressed in terms of assertions about
the kinematic and dynamic properties of the scene. A pref-
erence hierarchy is used to select plausible interpretations
from multiple feasible solutions. solutions are compared us-
ing a preference hierarchy

3.2 Event Perception in Agent Buddy

Event perception in Agent Buddy is unique in the sense that
events are perceived by a society of devices within a users
working environment. Each device only sense the environ-
ment from a very specific angle. Attempting to perceive
events using only one device is sometimes awkward and
computationally intensive. However, the collective power
of event perception is strong because of the varieties of as-
pects of dynamic environment that can be sensed by inter-
connected complementary devices. This observation can be
easily illustrated by the famous parable “The Blind Men
and the Elephant”. Although each blind man can only feel
a part of the elephant. Their collective observations can give
true shape of an elephant if they communicate.

Suppose within the environment there are M devices. Sup-
pose r1(t), ..., ram(t) are readings sensed by these devices
at time instant ¢, where ¢t € [0,7]. Suppose Ei, ..., En are
different events in consideration. Then the task of event per-

ception is to analyze the sensing data S(t) = (r1(¢),...,ra())

and to detect whether events E; (1 <1 < N) have been oc-
curred.

3.3 Single Device Event Perception

When the relationship between the event to be perceived
and the readings from a specific device is close, event per-
ception can be done by only using this device. We illustrate
this by using an intelligent screen saver [31]. The idea of
the intelligent screen saver is to use a camera to provide a
non-intrusive way to automatically control the status of the
screen saver of a computer. The event to be perceived is
whether there is a human before a computer. The purpose
is to use this event to trigger the status of the screen saver.
Traditional screen saver uses a fixed time constant to turn
on/off the screen. If there is no touches on the keyboard or
no movement of the mouse within a certain amount of time,
then the screen saver status will be on (screen is turned
off). This is not convenient because the user has to touch
the keyboard or mouse in order to bring the screen back
even though he/she is still looking at the screen. Similarly
when the user leaves his computer the screen saver mode is
still off, it will turns on only after a certain amount of time.
This is a waste of power because the screen is not been used.
The intelligent screen saver that we have implemented can
detect whether a user is before the computer. If the user
is before the computer, the screen saver mode will be off,
otherwise the screen saver mode will be on. The event that
a user is before the computer is detected by analyzing the
image sequences from the camera. The idea is to keep cal-
culating the pixel difference between every consecutive im-
ages. If significant differences occurs between almost every
consecutive images within a certain amount of time, then
we believe that a user is before the computer. Otherwise,
we believe that there is no user before the computer. We
patented this technology [31] and demonstrated it at various
industry conferences.

It is easy to use a camera to detect whether a user is before a
computer. However, it may not be so easy to use a camera to
detect other events, such as the identity of the user or what
the user is doing. In general, a single device is not able a
cover all the events. A good event perception requires a
society of complementary devices.

4. EIGENSPACE EVENT PERCEPTION

We propose to use eigenspace method to perform the task
of multi-device event perception in Agent Buddy. When we
begin to consider this task, we must incorporate the under-
line probability distribution of events and the readings from
the measuring devices. Eigenspace methods such as princi-
pal component analysis (PCA) are particularly well-suited
to such a task since they provide a compact and parametric
description of the readings of the devices and also automati-
cally identify the essential components of the underlying sta-
tistical variability. An observed event can be modeled using
device readings S(t) at discrete time instants. A reduced di-
mensionality model of events can be constructed using PCA
of example device readings. Recognition of events is then
posed as matching between the principal component repre-
sentation of the observed activity to these learned models.

4.1 Event Modeling



To model events, we collect Nezampiar exemplars for each
event. Each exemplar collects readings from devices within
a time interval [0,7]. These readings are discretized into

Nreadings + 1 readings at time instant 0, N%T, cen
N

readings

#’E:IT, T. For device h (0 < h < M), we denote
its kth (0 < k < Nyeadings) readings for the jth (1 < j <
Nezampiar) exemplar from the ith (1 < i < N) event as
7 (k). Let [r* (k)] = (ri9 (), . (k))T be a column
vector of kth readings of all the dev1ces for the jth exemplar
from the ith event. Let [r*] represent the column vector
obtained by simply concatenatmg the [#%9 (k)] for all the k

readings, [r*7] = (1'1’](0) 2 (0), 1'1’] (1),...,m37 (1),
ri’j(Nreadmgs), . rM(Nreadings)T). Here, [ri’j] gives the
readings for the jth exemplar of the ¢th event. This is the
readings of all the devices with respect to an exemplar in
the model training phase. The length of vector [r"/]is M x
(Nreadings+1). Then the sampling readings matrix A for all
the events and their associated exemplars can be created by
the set of all § and i of [r*7]. A = ([r*?], ..., [} TNemempiar],
, [P, ..., [#NNewamsier]). The dlmensmn of matrix
A is (N X Nezamplar) columns and (M X (N,,eaazmgS +1))
rows. The N X Nezamplar columns of A give readings for
all the exemplars of all the events. This is the total number
of training set of data. The M X (Nyeadings + 1) elements
of each column gives the readings from all the devices at
all the discrete time instant for an exemplar. Thus, each
column of A refers to a given training set, the elements
of the column refers to the readings for this set. Usually

M x (Nrea,dings + 1) > N x Newa.‘m.pla.r~

Matrix A can be decomposed using singular value decom-

position (SVD) [28] [22] as
A=UWVT

Where U = (Uy,..., UNXNe::a.'m.pla.r) is an orthogonal ma-
trix of the same size as A representing the principal com-
ponent directions U; (1 <1 < N X Nezampiar) in the train-
ing set. These are best directions that can clearly distin-
guish the training data. W is a diagonal matrix with sin-
gular values Aq, ... )‘NXNemmpzar: sorted in decreasing or-
der along the diagonal. The virtual of these values is that
they rank the dimensions of the space in terms of varia-
tions along the principal component directions, and that
this ranking is very often related to their importance. VT
is a (N X Nezamptar) X (N X Negamplar) matrix that encodes
the coefficients to be used in expanding each column of A

in terms of principal component directions.

The readings from the jth exemplar of the ith event [r7]
can be approximated according to the largest ¢ (¢ < N x

Nezampiar singular values A, ..., Aq as:
[r9] ~ Z iy,
=1
where cl’J are scalar values that can be calculated by taking

the dot product of [r*?] and U, c;-’j = [+*/)TU,. This is
the process of projecting the reading vector [r*’] onto the
subspace spanned by the g basis vectors Uy, ..., Ug. It can

also be viewed as a parameterization of[ ]in terms of U,

, Uq with parameters ¢}, ..., cq’J. Thus, for a given 1
and 7, we can obtain a vector C*7 = (cll"j, .,cé’j)T that
gives the coefficients of the corresponding readings. For all

the possible 7 and 7, we can get a coefficient matrix C =
1
1,1 1,N, N1 N L
(C oy C ) e:na,'m.pla.'r’ ce C o+ . C ,ezamp a,r).

Now we transform C into a matrix that represents the aver-
age coeflicient for each event. For any event ¢, matrix C con-
tains the coefficient vectors of all its exemplars: (C”’l, A

C*MNewamstar ) The average coefficient vector for these ex-

. Nezamplar i,j
ek Ej:l
emplar vectors can be calculated by: C° = ~

ezamplar

The average coefficient matrix becomes: C = (51, ., C).
Each column 7 of Matrix C corresponds to the average co-

efficient vector C° = (E’{, .. ,Efl of event 1. C is the model
of events learned from the training phrase and will be used
in event perception.

4.2 Event Perception

The perception of events involves matching readings from all
the devices in a real situation against learned models of all
the events. For the same event, readings in real application
may differ from those of its exemplars because of various
reasons such as noise etc.. However, they may share some
commonalities or signatures. The use of eigen space ap-
proach for event perception assumes that this commonalities
or signatures of a given event is captured by the coefficients
of the readings along principal component directions.

Suppose R(t) = (Ri(%),..., Rm(t))T is the readings from
the M devices within time period [0,T]. We dlscrete [R(t)]
into Nreadings + 1 readings at time instant 0
N, -1

readings
readings —
N.

” Let R(k)] denote the kth readings of all the
readings

devices at time instant k. By concatenating readings from
all the time instant, we obtain the column vector R which
gives readings of all the devices at all the time instant. By
projecting this vector on the principal component directions
we recover a vector of coefficients, &= (c1, ..., cq), that ap-
proximate the event to be perceived as a linear combination
of eigen event basis. Upon the recovery of the real situation
coefficient vector, th¢ normalized distance A; between ¢ and

1 N. ’ B

model coefficients C is used to perceive the observed event.

Here

q
Ai=) (ex -7
k=1

The event ¢ with the smallest distance A; is considered the
best match of the observed event.

4.3 Eigen Pyramid

We can imaging that in the inter-connected pervasive world,
huge amount of devices will be involved. Events like what a
person is doing can be perceived by considering only devices
within an office. However, events like whether people within
a building are having a meeting should be considered with
all the devices within the building. In general, the bigger
the scale of the events to be perceived, the more devices
need to be considered. When the number of devices exceeds



a certain threshold, the strategy described above will not
work because too much computational time is needed.

(a)

Figure 3: Illustration of the eigen pyramid event percep-
tion. (a) The first level input data come directly from the
raw readings of all the devices. (b) The eigen pyramid con-
structed to perform event perception when huge amount of
devices are involved.

Figure 4: Detailed graphical illustration of the eigen pyra-
mid construction process.

In order to perform event perception when the number of
devices is huge, we propose a new strategy called ” pyramid
eigen space”. Suppose Tacceptasie 18 the number of devices
that can be handled by the above eigen space approach.
Suppose Niota: 1s the total number of devices to be con-
sidered. Our strategy is to first divide uniformally these
Niotar devices into different groups such that each group
can be handled by the above eigen space method. Suppose
Ntotal = k(nacceptable_ 1)+‘U-, where 0 S u < Nacceptable — 1.
If w = 0, then we can divide the devices into nacceptabie — 1
groups. Otherwise, we can divide the first k(naccepmb;e — 1)
devices into k groups with each group has nacceptabie — 1
members. Then we distribute the rest r devices into the
first r groups obtained. Thus, we have divided devices
into k groups, with each group has either ngcceptapie — 1
OI Mgcceptable Mmembers. For each group, we run the training

data and detect their principal directions. Now, we collect
the coefficient vector with respect to the principal directions
for each training exemplar. The length of the coefficient vec-
tor is Nezamplar X Nevents. Since the coeflicients captures
the differences in the training data, we will take coefficients
of each exemplar as the input to the second level of the
pyramid.

At the first stage, the length for each training vector (exem-
plar) 1s Niotar. During the process above, they are divided
into k groups. Each group generates Nezamplar X Nevents
coeflicients. Thus, the total length for the second level of in-
put will be & X Nezampiar X Nevents, which is much less than
Ntotal = k(nacceptable - 1) + 7. If k% Nemampla'r X Ne'uents >
Tgcceptable, then we take this new data as input, and repeat
the above data abstraction process to further reduce the
amount of the data. Otherwise, we have reached a stage that
a decision can be made. If k X Nezampiar X Nevents 1s much
less than ngcceptasie and a further eigen coeflicient extraction
is meaningless, then we take this & X Nezampiar X Nevents
numbers as the final coefficients of the training exemplar.
If £ X Nezampiar X Nevents 1s big enough such that another
round of eigen coeflicient extraction is meaningful, then we
run the PCA process to extract the new coefficients. These
new coeflicients will be taken as the final coefficients of the
exemplar of the training events. After extracting the final
coeflicients of all the exemplars of all the events, the average
of the final coefficients of all the exemplars with respect to
a given event are taken as the model of the corresponding
event.

During the event perception phase, after the readings from
all devices are available, we first extract coefficients with
respect to the principal directions of the first layer of the
pyramid formed during the training phase. Then take these
coefficients as the input to the second layer of the eigen
pyramid and extract corresponding coefficients. This pro-
cess is continued until the top level of the eigen pyramid has
been considered. The resulting final coeflicients are the eigen
pyramid signatures extracted from the raw device readings
through the eigen pyramid. At last, we compare this final
coeflicient vector with those of the training models of all the
events and select the closest one as the event perceived.

5. EXPERIMENTS

Simulation experiments have been performed to test the
effectiveness of the eigenspace event perception approach.
The environment is assumed to be an office with size 100 x
100 as shown in Figure 5. Three person a, b, and ¢ share
the office. They use tables A, B, and C respectively. There
is a meeting table in the middle of the office where they can
have a discussion there. There are 7 events to be perceived
in our experiments: (1) a, b, ¢ are working at their desks
respectively; (2) a and b are discussion, either at A or at
B, while ¢ is working at Table C; (3) a and b are having a
meeting at the meeting table, while ¢ is working at C; (4) a
and c are discussion, either at Table A or at Table C, while
b is working at table B; (5) a and c are having a meeting at
the meeting table, while b is at B; (6) b and c are discussion
either at Table C or Table B, while a is working at table A;
(7) b and c are having a meeting at the meeting table, while
A is working at A.
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Figure 5: The environment for simulation test. The size
of the environment is assumed to be 100 X 100. The centers
of Table A, B, and C are at (10, 70), (50,90), (90, 90), re-
spectively. The centers of the round table is at (50,50). The
weight of a, b, and ¢ are 75, 100 and 150 respectively. (a)
The situation for the first event. (b) The situation for the
4th event. (c) The situation for the 5th event.

To perceive events, we assume that there are two kinds of
sensors in use. One is a camera that takes images of the
environment and returns the average image difference val-
ues within a given time period. The image difference value
between two consecutive images is calculated by counting
the total number of pixels whose (7, g, b) values have a big
disparity between the two images. The other is weighting
device that gives the weight sensed. The image difference
values generated by the camera are assumed to be the fol-
lowing: if a person is working at his own table, a difference
value 75 is generated; if he is involved in a discussion, a value
of 115 is returned; if he is at a meeting at the center table,
a value of 175 is generated. We divide the environment into
100 x 100 grids. Each grid is equipped with a weighting de-
vice. The weight sensed by a weighting device is the sum of
weights caused by all the persons within the environment.
The weight caused by a person with weight W and distance
T to the device is given by:

2
w exp(;—a)

where o gives the sensitivity of the weighting device with
respect to its distance to the person.

In the training process, for each event, we collect 5 exem-
plars. For each exemplar, we collect weighting data at 7
time instant. Each time instant has 100 x 100 weight read-
ings corresponding to grids in the environment. The first
element of the exemplar vector r*7 is the image difference
readings. It is followed by weight readings at the 1st, 2nd,
3rd, 4th, bth, 6th, and Tth time instant. The length of the
column vector is 1 + 7 x 100 x 100. FEach corresponds to
readings in one training exemplars. There are totally 7 x 5
training column vectors. They form the training matrix.

To form the training data, we give the base positions for
Table A as (50,90), Table B as (10, 70), Table C as (90, 90),
and round table as (50, 50). The position of a person at kth
time instant of the jth exemplars of :th event is given by the
base position of the Table the person is close with respect to
the i1th event plus a random variable position (ef’j’k, ef’j’k).
For example, in our test, (1,9), (0,5), (6,6), (9,1), (4,4),
(5,5), (7,7) are the variances for the 1lst exemplar of the
first event.

Here is the Base position for persons at the 7 events:

1 2 3 4
a | (10,70) | (50,90) or (10,70) | (50,50) | (10,70) or (90, 90)
b | (50,90) | (50,90) or (10,70) | (50,50) | (50,90)
< | (90,90) | (90,90) (90,90) | (10, 70) or (90, 90)
5 6 7
a | (50,50) | (10, 70) (10, 70)
b | (50,90) | (50,90) or (90,90) | (50, 50)
< | (50,50) | (50,90) or (90,90) | (50, 50)
Table 1

After training, the eigen values are shown in Figure 6. From
the figure, we can see that the first 9 eigen values are big
compared to the rest of eigen values. Among them, the first
5 eigen values are the most meaningful eigen values.
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Figure 6: eigen values

Figure 7 shows the ratio of captured information, z:qi,
=1

as a function of the number of principal components used in
the event detection. We can see that the first 9 eigen direc-
tions captured almost all the information. The rest almost
contributed nothing in terms of capturing information.
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Figure 7: Captured information

Figure 8 shows one of the simulation results for a tester of
event 1. Figure 8(a) shows the normalized distances between
the tester and the models of events 1, ..., 7 obtained during
the training phase. In other words, it shows A;, A,, Asg,
A4, Ag, Ag, and A7, as a function of eigen indexes. We
can see that distances between the tester and events 4 and
6 are much bigger than distances between the tester and
events 1, 2, 3 5, and 7. We can also notice that distances
between the tester and all the event models becomes almost
unchanged for eigen indexes after 9. This is because that
little information is captured by those principal directions
associated with eigen values whose indexes are bigger than
9. We can also notice that the first 5 principal directions
capture a great potion of information. Figure 8(b) shows in
detail the distances of the tester and event models 1, 2, 3, 5,
and 7. We can notice that the distance between the tester
and event model 1 is smaller than the distances between the
tester and event models 2, 3, 5, and 7 even at a very early
stage. This fact illustrates the power of the eigen space
event perception approach in the pervasive world. Figure
8(c) gives a detailed view of the difference of distances of
the tester and event models 2, 5, and 7. It shows Ay — Ay

and Ay — A7 as a function of eigen indexes.
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Figure 8: The testing result when a tester of event
1 is used. (a) The distance between the tester and
event models obtained during the training phrase.
(b) The distances between the tester and event mod-
els 1,2,3,5,7. (c) The difference A; — A7 and A; — As.

Figure 9 shows another simulation result when a tester of
event 6 is used. The normalized distances between the tester
and the models of events 1, ..., 7, are shown. We can see
that distances between the tester and events 4 and 6 are
much smaller than distances between the tester and events
1,2,35,and 7. We can also notice that event 4 is more closer
to the tester at beginning. However, this situation changes
as the eigen index becomes bigger. This illustrates that
in order to perceive events that are closely related, enough
principal directions that can capture a great portion of in-



formations should be considered.
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Figure 9: The testing result when a tester of event
6 is used.

6. CONCLUSION

In this paper, we described an Agent Mediated CSCW sys-
tem - the Agent Buddy System. Agent Buddy is a CSCW
system that can create a sense of group work and at the
same time keep the privacy and maintain the security of
each user. Multiagent negotiation process is used in the sys-
tem to reduce fractions among group members during the
geographically distributed team work. XML is used in the
system to encode communication messages. To evaluate the
performance of different Agent Mediated CSCW systems,
we define the Agent Mediated CSCW version of Turing Test

and suggest to use this test to compare different systems.

We point out that event perception is a very important task
in Agent Mediated CSCW. We propose a method that uses
an eigen space to perform the event perception task. For
the case where the number of devices is huge, we propose
a way of constructing an eigen pyramid which can be used
to discriminate different events. We conduct experiments to
test our method.
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