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Abstract

A 3D-iteration space visualizer (ISV) is presented to an-
alyze the parallelism in loops and to €hd loop transfor-
mations which enhance the parallelism. Using automatic
program instrumentation, the iteration space dependency
graph (ISDG) is constructed, which shows the exact data
dependencies of arbitrarily nested loops. Various graphi-
cal operations such as rotation, zooming, clipping, coloring
and Atering, permit a detailed examination of the depen-
dence relations. Furthermore an animated dataMow execu-
tion shows the maximal parallelism and the parallel loops
are indicated automatically by an embedded data depen-
dence analysis. In addition, the user may discover and indi-
cate additional parallelism for which a suitable unimodular
loop transformation is calculated and veri@d. The ISV has
been applied to parallelize algorithmic kernel programs, a
CFD (Computational Fluid Dynamics) simulation code, the
detection of statement level parallelism and loop variable
privatization.The applications show that the visualizer is a
versatile and easy to use tool for the high performance ap-
plication programmer.

Keywords program visualization, dependence analysis,
loop transformations, iteration space dependence graph,
programinstrumentation

1. Introduction

The extraction of parallelism from ordinary programs
has been the topic of research for about three decades.
In the majority of cases the techniques focus on two ba-
sic steps: dependence analysis and program transforma-
tions. Most useful parallelism comes from repetitive pro-
gram tasks which can be assigned to different processors,
e.g. the iterations of aloop nest. In this case, the basic task
is one iteration of a parallel loop. Depending on the required

granularity, the parallel iterations are selected from the out-
ermost parallel loop, e.g. for multiprocessors, or from the
innermost parallel loop, e.g. for vectorization and pipelined
instruction-level parallelism.

Despite the great steps forward in this area, there still
remain many loops with parallelism obvious to the pro-
grammer, but which is difGcult to detect using algorithmic
techniques. The contrary is also true: the sophisticated de-
pendence techniques and the construction of loop transfor-
mations and statement mappings are beyond what the pro-
grammer is able to see at @st glance. Consequently, both
approaches are complementary and each have their own
merits.

This paper focuses on the graphical support for an inter-
actively parallel program development. Basically it assists
the user by showing the exact dependence which prevent
parallel loops and it allows the user to perform program
transformations which enhance the parallelism. The vi-
sualization tool shows a three-dimensional iteration space,
which can be freely rotated and zoomed. Dependencies are
shown or hidden, for all or a few variables, and the paral-
lel loops can be detected. If the user sees a speci€c pro-
gression in the iteration space which enhances signi@antly
the parallelism, heAhe can mark a progression plane. The
corresponding loop transformation is calculated and the de-
pendencies within a plane and between planes can be selec-
tively highlighted. From this information the parallel code
is constructed. In order to assist the search for parallelism,
the Tteration Space Visualizer (ISV) indicates the datadow
execution which shows the minimal execution time and the
maximal obtainable parallelism. The ISV has been used to
interactively parallelize both common loops of standard al-
gorithms as well as real-world CFD-code. The visualizer is
written in Java, because it makes the tool platform indepen-
dent, allows a web-based access and good graphics support.

The remainder of the paper is organized as follows. In
the next section the de@nitions of the iteration space depen-
dence graph and its construction are explained. In the third



section the graphical features of the iteration space visual-
izer aimed at dependence analysis and parallelism detection
are shown. In the fourth section unimodular loop transfor-
mations and statement reordering are explored for enhanc-
ing parallelism. The results of the ISV for parallelizing a
number of applications are given in section Gve and the re-
lated work is discussed in section six. Finally section seven
concludes the paper.

2 Iteration Space Dependence Graph

In order to extract parallelism from the loops interac-
tively, the dependencies among the loop iterations must be
exposed to the programmer. The object to be visualized is
called the Iteration Space Dependence Graph(ISDG).

Consider a m-fold nested loop, I = 1...m with index
variables i = (i, . .., im), lower and upper bounds L; and
Ui.

DOie N
A(fG) = ..

.= Alg()
ENDDO

1)

The iteration set AV is given by:

N={i=(i1,...,im)1<I<m: L, <i <U} (2)

In sequential loops, iteration i executes before iteration j
if 1 is lexicographically less than j, denoted as i < j, i.e.
there is a k € [1,m] such thati; = j;,l = 1...k — 1 and
i < Jk-

The lexicographical order of two dependent, iterations
i < j also deGnes a lexicographically positive distance vec-
tord=j—1i.

If two iterations i < iz access the same array element
and at least one iteration performs a write, there is a loop
carried dependence between the iterations i; and ig, de-
noted as i1 0 i2.

The dependence set is deGned as:

E:{(il,i2)|i1,i2€./\//\i1 6i2} (3)
The directed dependence edge is classi€ed as:

e Aow dependence: a write in i followed by a read in
iz;

e output dependence: a write in i; followed by a write
inis;

e anti dependence: aread in i; followed by a write in is;

paraneter (n=4)
real a(0:n+l,0:n+l, 2)
do i=l,n
do j=l,n
do k=1, 2
if(k.eq.1) then
a(la.]7k):(a(1'17.]7k)+a(1+17.]7k))/2
else
a(i,j,k)ya(i,j-1,k)+a(i,j+,k))/2
endi f
enddo
enddo
enddo
end

Figure 1. The example program
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Figure 2. The ISDG of program in Figure 1,
from which one can easily recognize that the
range of the iteration space is 4 x4 x 2. The 32
iterations belong to 8 independent partitions.

K

For example, in Loop (1), there is a Aow dependence if
f(i1) = g(i2), an output-dependence if f(i;) = f(iz); and
an anti-dependence if f(iz) = g(i1).

The iteration space dependence graph is now deGned as
the directed acyclic graph < N, £ > with nodes N repre-
senting iterations and edges £ representing the dependen-
cies.

First let us use a simple example program in Figure 1
to see its iteration space dependence graph, as depicted in
Figure 2.

The ISDG is extracted from the program in three steps,

1. instrumenting the program;
2. executing the instrumented program;
3. constructing the ISDG from the trace of the execution.

The program is instrumented to generate the following
output:



e at the start of an iteration: the iteration counter, i d,
and the loop indices, i ndi ces;

e at a read or write access: the iteration counter, i d,
the type of reference, r ef =R or W the variable name:
vari abl e, and the subscript values: subscri pts.

Scalar variables are treated as one-dimensional arrays
with a single element. Non-perfectly nested loops are con-
verted to perfectly-nested loops similar to the approach
in [20].

After executing the instrumented program, the ISDG
graph is constructed. First, an empty list of read or write
references is created for each memory location. Then the
trace records are processed as follows.

1. Every read or write reference is appended to the ref-
erence list of the memory location addressed by the
subscripts.

2. Dependence edges are constructed according to the
following rules:

e a read reference creates a Aow-dependence with
the preceding write into the same location;

e a write reference creates an output-dependence
with the preceding write into the same location;

e awrite reference creates an anti-dependence with
all the reads since the preceding write into the
same location.

3 Dependence analysis

Having constructed the iteration space dependence
graph, this section @rst explains the graphical features of
the ISDG and then shows how to use them effectively to
analyze data dependencies.

3.1 Loop visualization

Consider an m-level deep nested loop.

e If m = 3, the iteration space dependence graph is dis-
played in 3D corresponding to the iteration indices of
the three loops.

e If m < 3,a2D view is available.

e If m > 3, three loop indices must be selected from
the hyper-dimensional iteration space and the ISDG is
projected onto a 3D space.

The size of the iteration spheres are proportional to the
distance from the viewer so that the programmer can recog-
nize the spatial relationship between the adjacent iterations.

Furthermore, the programmer can arbitrarily choose the
size of spheres either to clearly indicate the iterations or to
emphasize the dependence edges.

The graph can be zoomed in or out easily by resizing the
window. It can be clipped by changing the visible index
range. This helps the programmer to examine the regularity
of the dependence patterns.

Optionally, the iteration indices can be displayed next
to the iteration nodes. Grid lines are available to show the
shape and structure of the iteration space.

The graph can be rotated freely in three directions by
changing the viewpoint angle. The rotation can be done by
dragging the mouse, by selecting an animated rotation, or
by directly specifying the X-Y-Z angles. The index-axes
show the direction of the three loops. The axes can also be
dragged anywhere in the canvas.

Each directed edge represents the dependence between
the connected iterations. Three colors (red, green and blue)
classify the edges into Aow-, output- and anti-dependencies
respectively. The programmer can click on any visible edge
to Gnd out the source and target loop indices of the selected
edges.

Dependencies can be selectively hidden by the depen-
dence type and jor loop variable names. The Elter feature is
useful to focus on the individual variables, to study the al-
gorithmic data dependencies, i.e., the Aow dependencies; or
the shared-memory originated dependencies, i.e., the anti-
and output-dependencies. Memory originated dependen-
cies can be eliminated by variable privatization or scalar
expansion [10]. Similarly, Eltering variables from the ISDG
can clarify the cause of the loop dependencies.

To allow the high-resolution print of the graphics imple-
mented in the visualizer, a color Postscript interface is de-

Ghed.
3.2 Detecting and enhancing program parallelism

The runtime behavior of the loops is shown by simulat-
ing the program execution in different kinds of iteration or-
der. The traversal of the iteration space can be driven by se-
quential loop execution, dataAow execution, parallel loop
execution and plane execution. During the simulated exe-
cution, the color of the nodes distinguishes the past, present
and future iterations. The following subsection explains the
difference between these execution orders and discusses the
use of these features.

3.2.1 Sequential execution:
the lexicographical order

The trace from the program execution is ordered lexico-
graphically. In the ISDG, the iteration nodes are highlighted
one-by-one by clicking the mouse and the total number of
the iterations is reported.



3.2.2 DataMow execution:
the maximal parallelism

In a data Aow execution, each iteration is executed as soon
as its data are ready, i.e., after the dependent iterations are
all carried out. By clicking at an empty area of the can-
vas, the highlighted nodes show the parallel executable it-
erations in each time step when every iteration is assigned
to different processor. This corresponds to a minimal exe-
cution time with the maximum parallelism exploited. Al-
though the dataAdow execution normally does not follow
the iteration order expressed by parallel DOALL loops, it
reAects the maximum speedup obtainable within this loop
nest. This maximum speedup is shown to the programmer.

3.2.3 Parallel loop execution:
the automatic parallelization

When one or several loops are executed in parallel, the iter-
ations in the parallelized loops can run in one step and the
iterations in the sequential loops must run one-by-one.

According to the selected dependencies in the ISDG, the
visualizer checks all the combinations of loops to Gnhd the
coarsest grain of DOALL loop parallelism automatically.
When the DOALL loops are found, the speedup is reported
by calculating the ratio between the sequential time and the
parallel execution time.

The automatic loop parallelization feature relieves the
programmer of further analysis when enough parallelism is
obtained, e.g. compared with the dataAow execution.

The programmer may also interactively specify which
loops are to be checked for parallel execution. In that case,
blinking edges warn for critical dependencies that prevent
the attempted loop parallelization.

After being veriGed by the parallel check, the DOALL
loops will be enabled for parallel traversal of the ISDG. By
clicking at the empty area of the canvas, the programmer
can see what happens after the parallelization: how much
parallelism or speedup can be obtained by the automatic
parallelization.

When the automatic parallelization shows less paral-
lelism than the dataAow execution, some transformations of
the loop should be considered to enhance the parallelism.
Therefore the plane traversal is provided to Gnd such a suit-
able loop transformation.

3.2.4 Plane execution:
Gnding more loop parallelism

It is possible to specify any cutting plane by clicking on
three nodes that are not on one line. The cutting plane Ax +
By + Cz = D is calculated and highlighted in the ISDG as
a polygon, bounded by the iteration space.

Alternatively, an experienced user can specify the plane
by giving the four integer parameters A, B, C' and D.

When the cutting plane is deGned, a mouse click starts
the execution of the loop such that all iteration nodes in the
plane are executed in parallel. At each click, the cutting
plane progresses sequentially through the iteration space in
a number of steps corresponding to the parallel execution
time.

Plane parallelization requires that there are no depen-
dencies between the iterations in the plane. This can be
checked

¢ by hiding the dependencies between the planes, or

e by projecting the 3D iteration space onto a 2D execut-
ing plane.

In summary, the programmer may apply the following
procedure to interactively Gnd and enhance the parallelism
of a program:

1. detect the maximal parallelism possible, by watching
a dataAow execution;

2. apply automatic parallelization to parallelize as much
loops as possible;

3. hide the false dependencies and the dependencies
caused by private variables such that the pruned ISDG
allows for more loops parallelization;

4. do a plane execution if the loop parallelism is still
less than the data-Aow parallelism; if a suitable plane
traversal is found, calculate the corresponding loop
transformation.

4 Program transformations

In this section the unimodular loop transformations and
statement reordering to amplify the parallelism are dis-
cussed.

4.1 Unimodular loop transformations

A unimodular matrix T speci@es a one-to-one map-
ping between two loop iteration spaces. Consequently, a
unimodular transformation can be applied to re-orient the
ISDG in such a way that more parallelism can be extracted.

A unimodular matrix T has |det(T)| = 1 and the map-
ping between the loop indices i and i’ is described by

i =iT )

Generally, the loop boundaries are changed after a uni-
modular transformation, and need to be recalculated. Fur-
thermore, the transformation may change the lexicograph-
ical ordering of the dependent iterations. For example, if



i <jandi’ > j then the datadow dependence becomes an
anti-dependence, and therefore the loop transformation is
invalid. However, the correctness of a proposed loop trans-
formation is checked.

To 6nd the unimodular loop transformation which en-
genders a plane execution in the outermost loop, the normal
vector (A, B, C) of the plane is placed into the @rst column
of the 3D unimodular transformation matrix T. The other
two columns need to be chosen such that 1) the matrix is
unimodular and 2) the inner loops of the transformed loop
nest execute the dependent iterations in lexicographical or-
der. Different unimodular solutions are possible, and the
viewer will indicate the valid loop transformations. After
the unimodular transformation, the new independent loop
(either outermost or innermost) can be parallelized. The
loop corresponding boundaries can calculated using integer
programming tools like the Omega calculator [15].

In the case of linear array subscripts, a suitable loop
transformation can be found automatically, based on the
pseudo distance vectors as described in [22]. This method is
also implemented in the viewer and calculates the unimod-
ular transformation and associated loop boundaries.

4.2 Loop projections

The scheme discussed in the last section applies to 3-fold
nested loops. The scheme can be extended to non-perfectly
nested loops and statement reordering transformations such
as the af®ne mappings proposed by Kelly and Pugh [9],
which includes loop fusion, loop Gssion, etc.

Regarding dimensionality, there are three kinds of index
mappings: from 3D to 3D is a 1-1 mapping, used for uni-
modular and non-singular loop transformations; from >3D
to 3D is a projection useful to analyze higher-dimension
loops; from <3D to 3D is a dimension expansion, useful
for treating the parallel execution by statement reordering
transformations.

For statement reordering, the statements in the loop
body are given an additional dummy index which lexico-
graphically iterates through all the statements in the loop
body. Treating non-perfectly nested loops using dummy
loop indices makes this a seamless approach to visualize
a statement-level program dependence graph(PDG) within
the framework of the ISDG.

Extending the ISDG with statements dependencies, a
suitable afGnhe mapping like unimodular transformation on
non-perfectly nested loops can be found [20]. In the next
section it is shown that for two examples in Lim and Lam’s
recent paper [12], the extended loop iteration space allows
to use unimodular transformations to @nd statement level
parallelism.

5 Applications and results

To apply the visualizer, the instrumentation can be done
by adapting front-end compilers, such as FPT [6] for For-
tran programs and in SUIL F [18] for C programs. The ISV
instrumentation has been carried out for both compilers.
A pragma C$doi sv in Fortran or #pragnn doisv in
C before the selected innermost loop is the only required
modiGration to the source program to obtain the trace-
generating code.

The visualization itself is written in Java so that it is
portable and web-ready. All the above instrumentation and
visualization tools have been integrated into a web-based
environment that takes the source program as input and
yields an applet, visualizing the iteration space dependence
graph [21].

The applet has been applied to several application pro-
grams and kernel loops. The parallelism has been de-
tected visually and the suitable program transformations
were found interactively. Note that the applet applies to the
submitted program; it is the programmer’s responsibility to
verify the extensibility of the results found by the applet in
particular to a different size of the loop region.

5.1 Non perfectly nested loop

Figure 3 shows the well-known Gauss Jordan (GJ) elim-
ination to explain the approach to Gnd parallelism in pro-
grams. GJis an example of a 3D non-perfectly nested loop,
since there is an assignment statement out of the k£ loop
body. Pragma C$doi s v is inserted before the k loop to
indicate which iteration space should be instrumented. The
program instrumented by FPT writes trace records into an
ASCII @le serving as the input for the ISDG construction.

The ISDG (Figure 4) displays all types of dependence.
By running the viewer, the user can verify that the high-
lighted plane along the ¢ axis cuts through exactly the same
iterations as the dataAdow execution. This con@rms that both
j and k loop are maximally parallelizable.

5.2 Statement reordering

In Lim and Lam [12], an example of double-nested loop
with statement reordering is illustrated, as shown in Fig-
ure 5. We use the statement number as an additional loop
index i3, such that, with the extra dimension, a 3D iteration
space is obtained. The planes 1 — 2 + I3 = D in Figure 8
traverse the iteration space in the same way as the dataAow

110
execution. Using a unimodular matrix | —1 0 1 |,
1 00

the same plane traversal can be obtained, leading to a par-
allel 41 loop (see the transformed ISDG in Figure 9). When



do i=l,n

do j=l,n
if(i.ne.j) then
f=a(j,i)/a(i,i)

C$doisv
do k= +1, n+l
a(j,k)=a(j,k)-f*a(i, k)

enddo

endi f

enddo

enddo

Figure 3. Gauss Jordan elimination: the di
rective comment before the innermostloop
indicates the loop iteration space to be vi
sualized.

Sequential time: 30
DOALL J, K valid Dataflow: 4, Speedup: 7.5
Looo time: 4: Speedun: 7.5

Figure 4. The ISDG of the Gauss Jordan
elimination indicating the dependencies and
the plane with parallel iterations. The se
quential time shows 30 sequential iterations
while the data Aow time shows 4 data Aow
steps. Therefore the potential speedup is 7.5.
Since executing the loops J, K in parallel is
valid, the DOALL execution yields the same
speedup as the data Aow execution.

C The original program
do11=,n
do 12=l,n
S0: a(l1,12)=a(11,12)4b(11-1,12)
S1: b(l1,12)=a(11,12-1)*b(11,12)
enddo
enddo

C The program adapted for visualization
do11=,n
do 12=l,n
c$doisv
do 13=0,1
if(l13.eq.0)a(l1,12)=a(11,12)4b(11-1,12)
if(13.eq-1)b(11,12)=a(11,12-1)*b(11,12)
enddo
enddo
enddo

Figure 5. The original sequential program and
the adapted program that extends the two
statements to an additional dimension 13 of
loop nest.

the constraint of Lim’s mapping and the unimodular map-
ping are given to the Omega calculator [8], the same opti-
mized code as in [12] was obtained. Both the unimodular
transformed code and the optimized code are listed in Fig-
ure 7.

5.3 High level nested loop

Cholesky is one of the seven kernel subroutines in the
NASAT program of the SPECfp92 benchmarks. It contains
two 4-level nested non-perfectly nested loops.

After fusing the loops into one single 4-level perfectly
nested loop as shown in Figure 10, the trace is generated.
The ISDG obtained from the trace contains 4 loop indices,
which can be projected to any 3-D view of the four com-
binations (il, 7:2, ig), (il, 7:2, i4), (il, i3, Z4) and (ig, i3, Z4)
The projection (i1,142,i3) of the ISDG is shown in Fig-
ure 11.

In this projection, no parallel loops can be detected.
However, when 1,42, 74 is picked to be viewed in another
3D projection, as shown in Figure 12, the ISV shows that
the i4 loop always iterates through parallel partitions and
thus can be permuted to the outermost loop. (Permutation
is a special case of the unimodular transformation on non-
perfectly nested loops [20]). This is true also for other 3D
projections. Thus, a parallel program like the one in Lim et
al [11] is obtained.



# statenent ordering napping
synbolic n;

IS1: =[i,j]: 1 {=1i,j i=n";
[52: =i,j]: 1i=1i,j j=n";
’I‘l'_i[ >J] [1 .]717.]71] 5
12_[1 .]] [1 J+1717.]72]
codegen 0 Tl I1S1, T2: 1S2;

# uni nodul ar rmppi ng

synbolic n;

IS1: =[i,j,k]:1j4,jj=n & k=0";
[S2: =[i,j,k]:1j9,jj=n & k=";
Tl::*[i,j,k]—[)[i—j—kk,i,j]”;
D::i[iui:k]_(;[i'j—f'k:i:j]";
codegen 0 TI1:IS1,T2:1S2;

Figure 6. The afGne functions Tl1, T2 map
two statements S1,S2 to their processor id.
They are input to the Omega calculator [15],
where I S1, IS2 are the iteration space con
straint for S1,S2 respectively. The statement
reordering mappings found by Lim [12] is on a
2 dimensional iteration space (i,7), while the
unimodular mappings found by the ISV is on
a 3 dimensional iteration space (4,7, k) which
has a dimension k for the statements.

C The uninodul ar transforned code

DOil=l-n,n
DOi2=MAX(il,1), MNn,il4n)

C$doisv
DOi3=MAX(-i142,1), MN(-i14H 2H,n)
11 =12
12 =13
13 =il - 12 +1i3

f (13.eq.1)a(l1,12)=a(11,12)4b(11-1,1

f (13.eq.2)b(11,12)=a(11,12-1)*b(11,1

5%;

C the optinized code by Onega calcul ator
dop=1n, n
if (p.ge.1)b(p,1) =a(p,0) * b(p,1)
do 11 =max(pH,1), nin(p+n-1,n)
a(11,11-p) =a(l1,11-p)4b(11-1,11-p)
a(l1,11-pH)=a(11,11-p)*b(11,11-pH)
enddo
if (p.le.0)a(p+n, n)=a(p+n, n)+b(p+n-1,n)
enddo

~— A~

Figure 7. The unimodular transformed code
has parallel i1 loop. Having the branch state
ments removed, the optimized code has par
allel ploop.

13

Plane:
11-12+13=0

( °
Seq. time: 32 Dataflow: 7, Speedup: 4.57
DOALL I3 valid  Loop time: 16, Speedup: 2.00

Figure 8. The ISDG of the loop in Figure 5
is visualized in 3D space. Sequential execu
tion requires 32 steps, while data Aow execu
tion needs 7 steps. Therefore the maximum
speedup is 32/7 = 4.57. The i3 loop is auto
matically veri®ed as DOALL where its parallel
execution requires 16 steps, yielding speedup
2.0. The highlighted plane Iy — Iy +13 = 0 is
selected by clicking at three iteration points
(1,1,0),(1,2,1) and (2,2,0).

i2
A3 /
il
[ ]
[
Plane: i1 =0
Seq. time: 32 Dataflow: 7, Speedup: 4.57

DOALL il is valid Loop time: 7, Speedup: 4.57

Figure 9. From the plane coefGcients
(1,—-1,1), a unimodular matrix is found. The
ISDG after the unimodular transformation is
shown. The transformed outermost loop i
is DOALL whose parallel execution takes 7
steps. Thus the 4.57 speedup of the dataAow
execution is obtained.



DOi =0,nrhs
DOk =0, 2%n+H
if (k.le.n) then

i0 =nin(mn-k)

else
i0 =nin(m2*n-kH)
endif
DOj =0,i0
C$doi sv
DO1 =0, nmat

if (k.le.n) then
if (j.eq.0) then

8 b(i,l,k)=b(i,1,k)*a(l,0,k)
else

7 b(i, 1, k45)=b(i, 1, k4)-a(l,-j, k4)*b(i,1,k)

endif
else
if (j.eq.0) then
9 b(i,l,k)=b(i,1,k)*a(l,0,k)
else
6 b(l717k'J):b(l)l)k'J)_a'(17'J)k)*b(lalak)
endif
endif
ENDDO
ENDDO
ENDDO
ENDDO

Figure 10. The 4 level perfectly nested loop
converted from the standard Cholesky pro
gram

Figure 11. The 4D ISDG of the Cholesky loop
shows the projected 3D view of the (i1,i2,1i3)
loops. The dependencies between the left
and rightpartofthe combined iteration space
along i1,i2,73 directions prevent the paral
lelization of these three loops.

i2
il

Plane: i4=0

Figure 12. The same 4D Cholesky ISDG is pro
jected to 3D space: (i1,i2,i4) where dimen
sion iy is vertical onto the (i2,i4) plane. Here
loop 44 iterates through independent parti
tions.

5.4 A CFD application

In the CED code of mould @ling simulation code of the
WTCM company [19], the majority of the computation is
spent on an iterative solver of Navier-Stokes equations on
3-dimensional geometry. At each iterative step is a 3-level
kernel loop, which performs Successive Over Relaxation to
solve a system of linear equations. The complexity of the
iteration reference patterns (average 172 references per iter-
ation spread over 33 if-branches together with index arrays)
makes it hard if not impossible for automatic parallelizing
compilers to Gnd a parallel loop. The ISDG of the kernel
loop is shown in Figure 13. A parallel plane is obtained
by shift-clicking on three nodes in one of the datadow ex-
ecution steps. This plane cuts through the iteration space
with exactly the same iterations as the datadow execution,
yielding the maximal iteration-level parallelism (as shown
in Figure 13). The plane execution shows that there are 19
parallel planes going through the 19 datadow steps. Pro-
jecting the ISDG to 2D, a cutting plane 3iy + 2iy + i3 = 15
is shown in Figure 14. Independence between the iterations
within each of the 19 planes allows two parallel innermost
loops. However the dependencies between the iterations of
different planes requires the outermost loop to be sequen-
tial.

3 01
Therefore, a unimodular transformation | 2 1 0
100

is obtained from the plane direction vector (3,2, 1).

By the regularity of the calculations, we can draw the
conclusion that the inner two loops are parallelized while
the outermost loop has 6n — 5 steps. Therefore a O(n?/6)
speedup is found when executing the n? iterations.
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Figure 13. The ISDG of the original CFD loop
with n=4 is shown. The sequential execution
has 64 steps while the dataAow execution has
19 steps. This picture shows the 4th step
has three parallel iterations. Shift clicking at
the three dataAow paralleliterations, a cutting
plane is found as 3i; + 2is + i3 = 9.
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Figure 15. Performing the unimodular trans
formation, the new ISDG is calculated without
regenerating the trace. It shows that the is, i3
loops can run in parallel while the sequential
i1 loop goes through the planes 43 =6...24.

6 Related work

Experience of using a parallel programming environ-
ment shows that scientiGc programmers require an interac-
tive programming tool to study data dependences and pro-
gram transformations [7] .

During the past decades, many techniques in the area of
data dependence tests [2, 14, 13] and program transforma-
tions have provided the programmer with much useful ma-
terial, e.g. the Banerjee, Range [3, 4] and Omega [15, 13]
tests, the unimodular [1, 5, 20] and non-singular [16] loop
transformations and recently statement reordering transfor-
mations [9, 12, 11] for non-perfectly nested loops. Most
techniques are illustrated by dependence graphs, such as the
program dependence graph(PDG) and the iteration space
dependence graph (ISDG). The difference between the PDG
and the ISDG is that the PDG emphasizes the statement-
level dependencies and ISDG emphasizes the iteration-level
dependencies. The ISDG makes it easier to see the effects
of unimodular and non-singular loop transformations.

Most, examples in the published papers use two-
dimensional graphs in order to explain techniques which
can be extended to multiple dimensions. However, 2D
graphs can not easily reveal the details of real programs
with deeper than doubly-nested loops. Therefore 3D assist-
ing tools have entered the parallel programming scene.

For instance, in the recent paper of Sasakuraetal [17], a
3D visualization tool NaraView is presented for studying
data dependence. The visualizing approach of the authors is
to linearize the iterations into a single time dimension and to



layout data arrays on the other two dimensions. Their objec-
tives are closely related to this paper. The choice of using
2 dimensions for array and 1 dimension for the linearized
iteration index is useful for lifetime and variable privatiza-
tion analysis. However, for analyzing iteration-level paral-
lelism, the explicit visualization of the loop variables comes
at the expense of two visualization dimensions. Therefore,
the approach presented in this paper is better geared towards
the visualization of the dependence distance patterns in a
multi-dimensional iteration space, which is very important
for loop transformations.

7 Conclusion

A 3D iteration space visualizer (ISV) is presented, which
shows the exactloop dependencies and allows programmers
to discover parallelism in an interactive way. The approach
complements the analytical methods in the traditional au-
tomatic parallelizing compilers. The dependence analysis
and program transformation tools integrated in the visual-
izer assist the development of parallel programs when the
dependencies are too complex for the compiler to analyze
or the dependence patterns show more parallelism than the
compiler has exploited.
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