
Partitioning Loops with Variable Dependence Distances

Yijun Yu and Erik H. D’Hollander
Department of Electronics and Information Systems

University of Ghent, Belgium
�yijun, dhollander�@elis.rug.ac.be

Abstract

A new technique to parallelize loops with variable dis-
tance vectors is presented. The method extends previous
methods in two ways. First, the present method makes it
possible for array subscripts to be any linear combination
of all loop indices. The solutions to the linear dependence
equations established from such array subscripts are char-
acterized by a pseudo distance matrix(PDM). Second, it al-
lows us to exploit loop parallelism from the PDM by apply-
ing unimodular and partitioning transformations that pre-
serve the lexicographical order of the dependent iterations.
The algorithms to derive the PDM, to find a suitable loop
transformation and to generate parallel code are described,
showing that it is possible to parallelize a wider range of
loops automatically.
Keywords loop parallelization, dependence equation, dis-
tance vector, pseudo distance matrix, unimodular transfor-
mation, iteration space partitioning1

1 Introduction

The parallelism in loops is still the key objective of many
program analyzers. The general way to reveal the loop par-
allelism is first solve the dependence order between the loop
iterations that must run in sequence, then a particular loop
can run in parallel when no dependencies exist between the
iterations for the corresponding loop index.

In the past, ad hoc algorithms, pattern recognition, de-
pendence test and loop transformation were some of the di-
rections followed [4, 11, 16]. But there was an extra diffi-
culty with the different techniques because a compiler had
a hard time finding the right algorithm, or creating the right
sequence of dependence tests.

In the last decade, a more systematic approach to address
the uniform dependence distance problem has been devel-
oped by using unimodular matrix [1, 6], which presents an
one-to-one mapping between two integer lattices. With this

1This work was supported by the Belgian government under contract
GOA-12.0508.95.

approach, any unimodular loop transformation which ex-
poses or enhances the parallelism is applicable, under the
condition that the lexicographical order between dependent
iterations is preserved after transformation.

Our method here is a further development of the uni-
modular approaches by generalizing the uniform distance
vectors to the pseudo distance matrix(PDM), which is con-
structed from the linear dependence equations. The purpose
of using the PDM is to find suitable transformations that
parallelize a loop with variable dependence distances.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces basic concepts for solving linear depen-
dence equations and describes a method to obtain the PDM
from the linear dependence equations. Section 3 discusses
the algorithms to derive the loop parallelizing transforma-
tions from a non-full or a full-rank PDM. Section 4 presents
examples illustrating the application of the method. Sec-
tion 5 overviews the related work and compares this tech-
nique with other approaches. Finally, Section 6 concludes
the paper.

2 Loop dependencies
The loop iteration space and the dependence equations

are the framework to analyze and extract the parallelism be-
tween iterations. The variable distance between dependent
iterations with linear subscript expressions is described uni-
formly by the concept of apseudo distance matrix. The
pseudo distance matrix allows us to extract the parallelism
and also provides a way to enhance the parallelism by a
suitable transformation of the iteration space.

2.1 Iteration space and dependence order

Consider an�-fold perfectly nested loop
�� � do�� � ��� ��

� � �
�� � do�� � ��� ��

����� � � � � ���
enddo
� � �

enddo

(2.1)

where the loop limits��� �� are integer constants;��, �� are
integer functions of��� � � � � ���� for � � 	 � �; the loop
body����� � � � � ��� is a sequence of assign statements and
there are no statements between loops. The loop nest is
denoted by
� � ���� � � � � ���� Its iteration space � �
�� contains all the integer vectors
� � ���� � � � � ��� within
the loop limits, i.e.:

� � �
� � �� � �� � ��� 	 � �� � � � ���� (2.2)

As a loop nest is sequentially executed, its iterations
are traversed one by one in a total order. Index vectors

� � ���� � � � � ��� and
� � ���� � � � � ��� are lexicographi-
cally ordered, denoted by
� 	
�, iff �� � �� or there exists
an index
 � � �
 � � such that�� � �� � � � ���� �
����� and �� � ��� When reordering the execution of the
loop iterations, the lexicographical order among the depen-
dent iterations must be preserved. If two iterations
��
� ac-
cess the same memory location while at least one write, and

� 	
�� then iteration
� directly depends on iteration
�, de-
noted by
� Æ
� and thedistance vector
� �
�

�. Since

� 	
�, one always has
� �
�.

The dependence order of a loop is obtained by solving
the dependence equations.

2.2 Dependence equations

Assume a perfectly nested loop
� with loop indices,

� � ���� � � � � ��� and let��
��
��� and��
��
��� denote two
variables in the loop body, where� is an� dimensional ar-
ray, and
��
� � �� � �� denote index expressions. Both
index expressions refer to the same array element if the fol-
lowing dependence equations hold:

��
�� �
��
��� (2.3)

In this paper, the array subscripts
��
�� are linear func-
tions of the loop indices
� , and can be written as
��
�� �

�� �
� where� and
� are a constant matrix and con-
stant vector respectively. Therefore thelinear dependence
equations (2.3) become:

���
� �
���
� (2.4)

where���
 ���� are constant matrices and
��
�
 ��

are constant vectors. This is a system ofdiophantine equa-
tions because the solutions must be integral.

To solve the equations (2.4), they are rewritten as:

�
�	
��

�
�

�

�
�
�

� � (2.5)

With � �

�
�

�

�
and
� �
�

�, equations (2.5)

reduce to:
�
�	
��� �
� (2.6)

The diophantine equations are solved using a reduction
of the matrix� into the echelon form by a unimodular
transformation.

A unimodular matrix � is an integer matrix with
det��� � ��. Consequently,��� is also a unimodular
matrix. A unimodular transformation of row index vector

� is
� � �
��. Since
� �
� ����, there is a 1-1 mapping
between
� and
� �.

An echelon matrix is defined using the leading element
and the level of a vector. Theleading element � � of vector

� is the first nonzero element, while thelevel
 of vector
�
is the index of the leading element.

Now anechelon matrix � with rank 	 � 	������ has
the following properties:

1. only the first	 rows are nonzero;
2. the successive row vectors have increasing levels
� �

� � � � � �
� where the level
� is the index of the first
nonzero element in the�-th row.

To solve equations (2.6), the system of diophantine equa-
tions is replaced by an equivalent system:

�
� 	
�� �
�� (2.7)

��� �
� (2.8)

where� is a unimodular matrix, such that
� � �
�	
�����

exists, is unique and is integral. In other words, there is a
bijection between
� and�
�	
��.

Choosing� such that�� � � is echelon by a common
algorithm [2], the equations (2.8) become

� � �
� (2.9)

which can be easily solved for
� by backward substitution.
Next substitute
� in equation (2.7) to obtain�
�	
��, or

� �
��� (2.10)

� �
���

where�����
 ����� are the left and right submatrices
of� respectively such that� �

�
�� ��

�
.

Solution (2.10) has an associated distance vector
�,
where
� �
�

� if
� �
�, or
� �
�

� if
� 	
�. For
arbitrary dependent iterations
� and
�, this is conveniently
noted as

� � �
�

�� � (2.11)

Thedistance set includes all the direct distance vectors
obtained by solving the dependence equations (2.4):

 � �
� �
� � �
�

�� � �
� ���
���� � �
� �� � (2.12)

where� � ��
��.

2.3 The pseudo distance matrix, PDM

The linear echelon reduced system (2.9) contains� equa-
tions in�� unknowns, where� is the array dimension and
� is the loop depth. If the rank of the echelon matrix
	 � rank��� � ��, then the solution vector
� contains	
constant elements, and��
 	 elements are undetermined
or so-calledfree variables. Without loss of generality, it can
be assumed that the
� � �
��	
���, where
��
 �� is constant
and
��
 ����� is arbitrary.

Taking into account that the distance between two lexi-
cographically executed dependent iterations is positive, the
distance set is given by

 � �
� �
� �
�� �
� �
�� �

���
��
 �
�����
� �
�� (2.13)

where������ are the upper and lower submatrices of�
respectively such that� �

�
�
�

�
��

�
.

A lattice is a group of vectors that contains all the linear
combinations of the independent row vectors of a matrix
�
 ����:

���� � �
�� �
�
 ���� (2.14)

It can be used to characterize the distance set. In (2.13),

 contains alldirect distance vectors between two depen-
dent iterations when an unbounded loop nest is considered.
The indirect dependence between iterations has a distance
vector which is a linear combination of the direct distance
vectors in
. Therefore both the direct and indirect distance
vectors are contained in the lattice���� where

� �

���
��
�
��
���

�
 ������ i.e.�
�� �
����=
�����	

���

�

�
��

otherwise

(2.15)

Note that the distance set in (2.12) becomes

 � �
� �
� �
�� �
� �
�� (2.16)

with
�
 �� ��

� �
�� �
��� �=��–	 if
���� �
���

��

� � ��	
���� �=��–	+� otherwise
(2.17)

In other words, the distance vectors are linear combina-
tions of the row vectors in�
 � ���:

 � �����

Then a Hermite normal form matrix can be used to re-
duce the lattice generating matrix�.

A Hermite normal form matrix�
 � ��� is the full
row rank matrix reduced from the echelon form:� ���� �

����� � � for � � � � � where
� is the level of the�-th row
vector.

The unique Hermite normal form of arbitrary matrix� is
obtained by a unimodular row transformation matrix�: �
is the full row rank submatrix of��, denoted as HNF���.

� � HNF��� (2.18)

We will use� as thepseudo distance matrix, for the fol-
lowing reasons:

1. Since the unimodular transformation� is a 1-1 map-
ping between index vectors, the lattice���� is the
same as the lattice����, i.e.,

�
�� �
�
 ��� � �
�� �
�
 �	� (2.19)

where� � rank���� �
� 	
�� �
����	

2. If there are zero columns in�, according to Lemma 1,
the corresponding loops are parallel;

3. If there are no zero columns in�, two possibilities
arise:

(a) � is non-full rank: rank��� � �, the number of
nested loops. In this case,�
rank��� loops can
be parallelized after a suitable unimodular trans-
formation;

(b) � is full rank: rank��� � �. In that case,
the row vectors in� can be considered as “con-
stant” distance vectors and the parallelism equal
to det��� can be extracted using a loop trans-
formation similar to the partitioning method de-
scribed in [6];

4. Since� is an echelon matrix with lexicographically
positive row vectors, according to Theorem 1 in the
Section 3.1, it is easy to findlegal unimodular loop
transformations.

Lemma 1. If the pseudo distance matrix � contains one
or more zero columns, the corresponding loops can run in
parallel.

Proof. Suppose the�-th column contains only zeroes. Each
distance
� has the form
� �
�� for some suitable
�, con-
sequently,�� � �. Loop�� can run in parallel since every
two dependent iterations have the same loop index.

Now the distance set in (2.16) can be restated by�

�	��:

 � �
� �
� �
���
�
 �	�
� �
�� (2.20)

Multiple pairs of references The PDM for a single pair
of array references is extended to represent all distance vec-
tors in the loop. Each pair of dependent array references has
a distance set
�, the distance set of the loop is the union
of all pair-wise distance sets:

 �

�
�
�� For each pair

of references
, a lattice generating matrix� � is found by
equation (2.15). The lattice generating matrix of the loop,
�
, contains distinct rows of the matrices��. Equally, the
Hermite normal form matrix is then

�
 � HNF��
� � (2.21)

In the remainder of the paper, if not explicitly explained,�

denotes�
, the PDM of the loop.

3 Loop transformations using PDM

Parallelism in nested loops can be enhanced by loop
transformations. In this section the legality of loop transfor-
mations for variable distance vectors is first analyzed. Then
two methods are given to extract parallel iterations while
preserving the lexicographical dependencies by using legal
transformations only.

3.1 Legal operations

Transforming the iteration space in a loop with variable
distances, requires a framework to delineate which opera-
tions are permitted.

A legal loop transformation has the following properties:
1. it reorders the iteration space as 1-to-1 mapping, i.e.

for any iteration
� in iteration space� there is one and
only one iteration
�� in the new iteration space��;

2. it preserves the lexicographical order of the dependent
iterations, i.e. for any two dependent iterations
� and
�
in �� the new iterations
�� and
�� are also dependent in
the same order:
� Æ
� �
�� Æ
���

Unimodular transformations satisfy the first property.
The second property must be ensured by the proper trans-
formations. A unimodular transformation matrix	 trans-
forms the iteration space� into iteration space� �, such
that the index vector
�
 � corresponds to the index vector

� � �
�	
 ��, as shown in Figure 1.

��: do
� �
 ��

�: do
�
 �
� �
� �	��

��
�� � ��
��
enddo enddo

Figure 1. Unimodular loop transformation

By unimodular transformation, the requirement of legal
loop transformation is stated as follows.

Definition 1. Legal unimodular transformation: A le-
gal unimodular transformation matrix 	 preserves the lex-
icographical order of the dependent iterations:
� Æ
� �

�	 Æ
�	 i.e.
� �
��
�	 � �
�

��	 �
�. �

Corollary 1. If a unimodular matrix 	� legally transforms
loop
� to
��, and another unimodular matrix 	� legally
transforms
�� to
���, then 	 � 	�	� is a unimodular ma-
trix legally transforms
� to
���.

Proof. As the multiple of two unimodular matrices,	 is
still unimodular. Since	� is legal for
�, by Definition 1,
for any distance vector
� �
� in
�, the corresponding dis-
tance vector in
�� is
�	� �
�. Because	� is legal for

��,
�	�	� �
�. Therefore
�	 �
� for 	 � 	�	�. By
Definition 1,� is also legal for
�.

From Lemma 1, the loops corresponding to the zero
columns in the pseudo distance matrix can run in parallel.
Therefore we are going to use an algorithm to find legal uni-
modular transformations that eliminate the columns to zero.

From Corollary 1, we can use legal unimodular transfor-
mations successively to obtain the legal unimodular trans-
formation. The unimodular transformations to be used in
the algorithm are:

1. right skewing, denoted by skewing��� �� ��: add�� � to
�� where�
 � and� � �;

2. interchange, denoted by interchange��� ��: exchange
�� and�� ;

3. shift, denoted by shift��� ��: shift �� to �� .

Now we are going to explain the conditions for these trans-
formations to be legal according to the pseudo distance ma-
trix.

First, the relationship between the lexicographical posi-
tive echelon matrix and the distance vectors is stated by the
following lemma [3].

Lemma 2. Given an echelon matrix � with lexicographi-
cally positive row vectors. Then
�� �
� iff
� �
�, and

�� �
� iff
� �
�.

The next theorem shows the possibility to check the le-
gality of the unimodular transformation according to the
pseudo distance matrix.

Theorem 1. Given a pseudo distance matrix �, if a uni-
modular transformation matrix 	 is such that�� ��	 is
an echelon matrix with lexicographically positive row vec-
tors, then	 is legal.

Proof. For any distance vector
� �
� in the loop there ex-
ists an integer vector
� such that
� �
��. Since� is a
HNF, it is an echelon matrix with lexicographically positive
row vectors. Therefore, according to Lemma 2,
� �
�.
Since
� �
� and by assumption�� � �	 is an echelon

matrix with lexicographically positive row vectors, then the
transformed distance vector
�� �
��� �
�, again using
Lemma 2.

Corollary 2. The right-skewing transformation
skewing��� �� �� is always legal.

Proof. Denote
� as the level of the�-th row in the PDM
�. If
� � � then right skewing will not change the leading
element; if
� � � then���� � � for � � � and the leading
element will not change either. Since none of the leading
elements is changed,�	 is still an echelon matrix with
lexicographically positive vectors. Thus right skewing is
legal by Theorem 1.

Corollary 3. Given a PDM that the �-th column is zero,
transformation shift��� �� is legal.

Proof. The shift of a zero column may change the index of
the leading element, but not its sign. Therefore the resulting
matrix still has lexicographically positive row vectors. It is
still echelon because the levels of the row vectors still keep
the order
� � � � � �
�. Therefore the shifting is legal by
Theorem 1.

Together with Lemma 1, the parallel loops found by zero
columns can be shifted to the outermost of the loop nest
to obtain coarse-grain parallelism, or to the innermost to
obtain fine-grain parallelism.

Corollary 4. If in the PDM �, the �-th column is lin-
early dependent on the first � columns and � ��� � �,
����	��������� �� is legal.

Proof. If �� � �	 is echelon and has lexicographically
positive row vectors, then the interchange is legal according
to Theorem 1. By assumption, the�-th column of� is
linearly dependent on the first� columns, i.e., there exists
a vector
� such that���� � ������� � � �� ������� According
to the property of HNF, the components of� below the
diagonal are zero, and by assumption� ��� � �� therefore
���� � ������ � �� Consequently�� � �. For each�-th row
vector in the HNF�, after the interchange of�-th and�-th
columns:

� If
� � �� then the leading element is not changed;

� If
� � �� then���� � ������ � �, the new leading
element is still positive;

� If
� � �� then���� � ������ � �� the leading element
is not changed.

Therefore the row vectors in the echelon matrix�	 are still
lexicographically positive. Since���� � �, and only the�-
th row vector that
� � � has the leading element changed,
but not its sign and level, therefore, the resulting matrix is
still echelon.

3.2 Unimodular transformation

The next algorithm starts with a Hermite normal form
matrix,�
 ����. Given	 � rank���, the algorithm
will find a legal unimodular transformation matrix	, which
reduces� into�	, where the first�
	 columns are zero.

The algorithm loops over each column�. At the be-
ginning of each�-iteration, there are zero columns and
� nonzero columns before the�-th column, such that� �
 � � � �. Therefore the rank of the first�
 � columns is
�. In average, the algorithm takes!�� �� � ln�"�� column
operations where each column has� elements," is the
largest element in the PDM.

Algorithm 1. Transforming non-full rank PDM

/* Initialization: */ 	 �
� � � � �
do � � ���
/* Is column � independent of the previous columns? */

if � � 	 and �	���� � � then
/* Yes, increase the number of nonzero columns � */
�� �� �

else /* No, step-wise eliminate element ���� with
* the nonzero element ������ */

do � � �� ��
�
do while ���� �� �
� � �����
 ���� �
� �������#������
/* record the unimodular transformation */
col��� � col���
 � � col��� in��	
if ���� � � then

/* put the smaller element in �-th column */
exchange col� � �� and col��� in��	

endif
enddowhile

enddo
 � � � /* count the extra zero column */
shift �-th (zero) column to the first in��	

endif
enddo

3.3 Iteration space partitioning

This subsection presents a method to exploit det��� par-
allelism for the full rank PDM� by the partitioning loop
transformation [6].

Each distance vector
� is within the lattice����:

� �
�� (3.1)

where� is an upper triangular matrix. According to
Lemma 2,
� must be lexicographically positive such that

�� �
�. Therefore, one must be prudent that the fol-
lowing partitioning is still a legal transformation, i.e., the
dependent iterations must be executed in the same order as
in the original loop.

Theorem 2. Given Loop (2.1) with full rank PDM �

����, the following transformation is legal.

�$�

 �$� � �� ���
 �
� � �
doall �$� � �� ���
 �
�$�� � �$�
do ��=��+mod��$��–��� ����� ��–mod���–�$��� ����� ���
� � �

�$�� � �$� �

���

������
 �$������#���
� � �
�$ �� � �� � mod��$��
 ��� �����

� ��
 mod���
 �$��� ����� ���

����� � � � � ���
����$
� � �
����$
����$
� � �
����$

(3.2)
Proof. The following mapping between the original index

� and
% � �
�
	
�� is one-to-one according the lemma 4.7
in [3]: �

� �
�
 �
��

� � �$� � ���� for � � � � �
(3.3)

Since� as full rank HNF is triangular, thus given
� and
�
,

� can be solved by forward substitution on� � �� � � � ��
in solution (3.4):

�� � ���
 �$���#����
�$�� � �$� �

���

���������
� �$� �

���

������
 �$�������#����

(3.4)

The new loop is constructed as Loop (3.2) by considering
the loop limits in Loop (2.1), as in [6]:
Any two dependent iterations
�� and
�� in the original itera-
tion space are mapped one-to-one to
��� and
��� respectively:

�� �
�$� �
��� �
��� � �
�$��
���

�� �
�$� �
��� �
��� � �
�$��
��� (3.5)

Their distance vector is
� �
��

�� �
��. Since
�� �

���
� �
�$��
����
��� therefore
�� �
�$���
���
����
It can also be mapped to

��� � �
�$��
�� �
�� (3.6)

By the uniqueness of the one-to-one mapping,

�$� �
�$�

�� �
�� �
�� (3.7)

The new distance vector is
�� �
���

��� � �
�$�

�$��
��

��� � �
��
��. Because
� �
�� �
�, by Lemma 2,
� �

�, hence
�� �
�.

4 Examples

This section presents two complete examples to show the
application of the method to the loops with variable dis-
tances.

4.1 Non-full rank pseudo distance matrix

Consider the following loop nest:

do�� �
&�&
do�� �
&�&

����� � �� ��� � ��
 �� � � � �
� � � ���� � �� �� � �� � � �

enddo
enddo

Figure 2 shows its iteration space dependence graph(ISDG)
when& � ��. The loop has non-uniform distance analyzed
as follows. From references����� � �� ��� � ��
 �� and
���� � �� �� � ��,
� and
� are dependent if the following
equations (2.6) have integer solutions:

�
�� �� �� ��

�
�
���

� �
� �

� �
�
�

�
��� �

�
� �

�
�(4.1)

Deriving an echelon matrix from the coefficient matrix by a
unimodular matrix�:�
���

� �
� �
� � � �
�
� � �
� � � �

�
���
�
���

� �
� �

� �
�
�

�
��� �

�
���
� �
� �
� �
� �

�
��� (4.2)

the equations (4.1) can be simplified to:

�
�� �� �� ��

�
�
���
� �
� �
� �
� �

�
��� �

�
� �

�
� (4.3)

whose solutions are
� � �
��	
��� � ��� �	 ��� ���, or,
� �

� �� � ���� �
 ��� � ����
� �
� �� � �
� � ���� ����
Consequently,

� �

�
���

� �
�
�
� �
� �

�
��� �� �

�

�� �

�

�
��

�
�

�
�
�
�

� �
� �

�
� �(4.4)

From the reference����� � �� ��� � ��
 �� to itself, the
following output dependence equations are established:

�
�	
��

�
���

� �
� �

�
�
�
�

�
��� � ���
��
 ���
�� (4.5)

From equation (4.5), similarly, the� is derived as:

� �

�
�� �
� �
� �

�
� � (4.6)

Merging the two� in (4.6) and (4.4) yields

� � HNF��
� �
�
� �

�
� (4.7)

Since� is not full rank, algorithm 1 is then applied to elim-
inate its leftmost column to zero by the legal unimodular
transformation:

	 �

�
�
�
� �

��
� �
� �

�
�

�

� �
� �

�
(4.8)

The loop limits of the transformed loop are found
by using Fourier-Motzkin elimination [1, 13]:

doall%� �
�&� �&
do%� � ����
&�
&
 %�������&�&
 %��

�� � %�
�� � %� � %�
����� � �� ��� � ��
 �� � � � �
� � � ���� � �� �� � �� � � �

enddo
enddo
Now the new PDM�� � �	 �

�
� �

�
has a full

rank sub-matrix with determinant greater than 1. Fur-
ther applying the method described in Section 3.3, more
parallelism is exploited by a partitioning transformation:

doall%$� � �� �
doall%� �
�&� �&
�� � ����
&�
&
 %��
�� � ����&�&
 %��
do%� � �� � mod�%$�–��� ��� ��–mod���–%$�� ��� �

�� � %�
�� � %� � %�
����� � �� ��� � ��
 �� � � � �
� � � ���� � �� �� � �� � � �

enddo
enddo
enddo

Figure 3 shows the ISDG of the transformed loop.

4.2 Full rank pseudo distance matrix

Consider the following loop.

do�� �
&�&
do�� �
&�&
�����
 �� � �� ��� � ��
 �� � � � �
� � ����� � ��
 �� ��
 �� � �� � � �

enddo
enddo

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

i1

i2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

5

5

5

5

5

5

1

1

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

Figure 2. The ISDG of the original loop in Section 4.1
(N=10). Solid nodes are dependent while empty nodes are
independent iterations. Each arrow shows the dependence
order of two dependent iterations: solid one means a depen-
dence from reference (1) to (2) while dashes one means a
dependence from reference (2) to (1). To avoid the ambi-
guity, ��������� and��������� on the same line are numbered in
the order of��� ����.

From the ISDG in Figure 4 of this loop, one can see that it
has non-uniform distances either.
Let us solve the pseudo distance matrix first.
For the references�����
 ����� ���� ��
 �� and�����
��
 �� ��
 �� � ��, equations (2.5) are established:

���� ��� ��� ���

�
���

� �

� �

�
�

� �

�
��� �

�

� �

�
(4.9)

To simplify the diophantine equations (4.9), reduce the ma-
trix to echelon form by a unimodular matrix:�
���

� �
� �
� �
� �
� � � �
�
� � �

�
���
�
���

� �

� �

�
�

� �

�
��� �

�
���
� �
� �
� �
� �

�
���(4.10)

The solution in (2.15) is derived as
� � �
�� �	 ��� ���, and

� � �
� �� � ���	 ��� ����� where

� �

�
���

� �

�
�
�
�
� �

�
��� �� �

�
� �
�

�
�
� �

�
� � (4.11)

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

j1

j2

jo2=0

1 1
1 1

1 12 2
1 12 2
1 12 2
1 12 2
1 12 2

1 1 2 23 3
1 1 2 23 3
1 1 2 23 3
1 1 2 23 3
1 1 2 23 3
1 1 2 23 3

1 12 2 3 34 4
1 12 2 3 34 4
1 12 2 3 34 4
1 12 2 3 3
1 12 2 3 3
1 12 2 3 3
1 12 2 3 3
1 12 2 3 3
1 12 2 3 3
1 12 2
1 12 2
1 12 2
1 12 2
1 12 2
1 1
1 1

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

-9 -7 -5 -3 -1 1 3 5 7 9

j1

j2

jo2=1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

Figure 3. The ISDG of the transformed loop in Sec-
tion 4.1 after unimodular and partitioning transformations.
The original iteration space in Figure 2 has become two
separate partitions. The shortened(in proportion to the in-
creased step size of��) dependence arrows are vertical to
the loop index�� axis, which means that the iterations along
the�� direction are independent.

Similarly, the reference�����
����� ������
�� to itself
yields a zero generating matrix�� Append it to the bottom
of the� in (4.11), the�� is obtained, whose HNF is the
pseudo distance matrix:

� �

�
� �
� �

�
� (4.12)

Applying partitioning method on the full rank PDM, the
loop nest is transformed to:

doall ��� � �� �
doall ��� � �� �

do �� � �� � mod�� � ���� ��� � � mod�� � ���� ��� �
���� � ��� � ��� � ����	�
do �� � �� � mod�� � ����� ��� � � mod�� � ����� ��� �

���� � �� � 	� ��� � �� � �� � � � �

� � �
��� � �� � �� �� � �� � �� � � �
enddo

enddo
enddo

enddo

It has det��� parallel iterations in the�$� and�$� loops.
The corresponding ISDG is shown in Figure 5.

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9

10

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

i1

i2

6 65 54 43 32 21 17 78 8

Figure 4. The iteration space of the original loop when
N=10. An arrow between two dependent iterations always
jumps a stride greater than 1 along direction of�� and/or
��� which implies the existence of independent partitions.

5 Related work

The related work are compared in these directions: the
accuracy of dependence information, the applicability to the
type of programs, the parallelism extracted from the loops
and the code generation difficulty. See Table 1.

5.1 Constant distance and linear loop transforma-
tions

To enhance loop parallelism, Banerjee [1, 2, 3] intro-
duced the unimodular transformation framework, which has
integrated the three elementary loop transformations: loop
reversal, interchanging, skewing. D’Hollander [6] used par-
titioning transformation which can extract more parallelism
for the full-rank distance matrix. Both treatments of uni-
modular loop transformation consider auniform distance
matrix.

A vector
� is calleduniform or constant distance, if it is a
constant vector such that�
�
 � � �
��
��
 ��
� Æ �
��
��	
otherwise is callednon-uniform or variable distance. The
following corollary shows that only special linear depen-
dence equations will yield a uniform distance vector.

Corollary 5. The distance vector between two dependent
iterations
� and
�:
���
� �
���
� is a constant distance
vector iff � � � are nonsingular and
� � �
�

����� is
integral.

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

i1

i2

io1=1,io2=0

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

i1

i2

io1=0,io2=0

3
3

2
2

1
1

4
4

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

i1

i2

io1=1,io2=1

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

i1

i2

io1=0,io2=1

3
3

2
2

1
1

4
4

Figure 5. The new ISDG after being partitioned into four
2-D iteration spaces. The dependence arrows have shorter
length in proportion to the increased step size than that in
the original ISDG Figure 4. The skewing affects the off-
sets of the iteration indices, while the iteration space has
the same square shape as the original.

Therefore a uniform distance vector is a special case of
the pseudo distance matrix. Consequently, the statements
regarding the PDM apply to the uniform distance case as
well.

The advantage of using pseudo distance matrix instead
of the distance set is mainly due to the fact that affine vec-
tors are covered by the lattice generated by the PDM and
therefore the legal transformation can be constructed with-
out calculating each distance vectors and loop limits.

Xue [19] presented the idea of applying unimodular
transformation onnon-perfectly nested loops to generate
loop without using guarding IF statement to the loop bound-
ary. Essentially, an additional dimension can be added to
the iteration space for the body statements, allowing us to
reorder the statements in non-perfectly nested loops too.

Ramanujam [12] as well as Xue [18] proposednon-
singular linear transformation where the integer transform-
ing matrix	 has non-zero determinant, to enhance paral-
lelism. Since the distance set of the transformed loop can
be expressed as a lattice generated by the HNF��
	�, their
methods apply to the PDM. In our work, except for the ele-
mentary unimodular transformations, only the simple parti-
tioning transformations are non-unimodular. This eases the
code generation, while the HNF guarantees as much paral-
lelism as in the non-singular linear transformations.

�
�

�
�� ��

�����

code gen.
parallelism

loop type
dependence

Banerjee [1] U PL O/NA U
D’Hollander [6] U PL O/NA P

Ramanujam [12], Xue [18] U PL O/NA L
Xue [19] U NL NA/NA U

Wolf et al [14] D PL O/O� U
Shang et al [17] B PL O/O� S

Lim et al [9], Kelly et al [8] U SP O�/O� M
This work P PL O/O� U

Table 1. Related work:Column 2 compares the accuracy
of dependence information: U - uniform distance vectors,
D - dependence vectors, B - Base dependence vectors, P -
pseudo distance matrix.Column 3 shows whether optimal
parallelism is exploited for uniform distance(u) or variable
distance problem(v) by the methods: NA - no explicit par-
allelism exploiting mechanism proposed. O� - suboptimal:
optimal in degree of parallelism(proportion to loop size),
O - optimal. Column 4 shows the loop types that are ap-
plicable: PL - Perfectly nested loops, NL - Non-perfectly
nested loops, SP - Statement-level parallelism.Column 5
shows the methods in generating code: P - loop partition-
ing, U - unimodular loop transformation, L - non-singular
linear loop transformation, M - statement-level mapping, S
- linear scheduling.

5.2 Other variable distances methods

To test variable distance dependence, therange test [4]
is based on the value range of non-linear expressions and
theomega test [10] is based on exact integer programming.
When dependence exists, loops are transformed to enhance
the parallelism [8].

Wolf et al [14, 15] extended the uniform distance vectors
to dependence vectors, which includedirection vectors as a
special case. Both distance and direction vectors are treated
in the same framework of dependence vectors. However,
the dependence vectors are less accurate than the pseudo
distance vectors for the linear dependence distance.

Shang et al [17] represented the variable distance vector
as an affine(nonnegative linear) combination of the basic
dependence vectors(BDV). The Basic Ideas I and III always
generate a set of full-rank BDV which inhibit parallelizing
the outermost loops by a unimodular transformation, while
the Basic Idea II of searching for a set ofcone-optimal BDV,
i.e., the BDV are minimal in rank, is closer to us. But the
lexicographical positiveness is not carried by the BDV, so
an additionallinear scheduling [7] is needed to maintain
the lexicographical order.

5.3 Processor mapping

Kelly and Pugh [8] unified the statement-level loop trans-
formations using affineprocessor mapping. The idea can be
briefly described as : (1) Each statement'��
�� is executed
by processor(��
��	 (2) For each dependence equation, it is
required that
��
�� �
��
��� (��
�� � (��
��� Given a linear
mapping function, Omega calculator can be used to gener-
ate code. Their statement-level mapping can be specialized
to an iteration-level mapping requiring all statements in the
loop body bound to the same processor.

Lim and Lam [9] solved the affine mapping functions
such that the parallelism is maximized. To obtain the map-
ping function in Lim’s approach, however, it is required to
solve dependence equations together with the loop bound-
ary constraint. In our method, calculating the PDM and
the transformations does not require loop limits calculation.
The boundary information is only used for the code gener-
ation.

6 Conclusion

As long as the array subscripts are linear functions of the
loop indices, a pseudo distance matrix, PDM, can be ob-
tained such that any dependence distance vector in the loop
is a linear combination of the rows of the pseudo distance
matrix. A method has been presented to find a parallelizing
loop transformation using the properties of the PDM. This
work extends previous results for constant distance vectors,
so that a more general class of loops can be addressed. The
transformation requires no loop bounds calculations and is
therefore quite efficient. The method has been implemented
in the FPT [5, 20] compiler.

References

[1] U. Banerjee. Unimodular transformations of double loops.
In Advances in Languages and Compilers for Parallel Com-
puting, 1990 Workshop, Research Monographs in Parallel
and Distributed Computing, pages 192–219, Irvine, Calif.,
Aug. 1990. Cambridge, Mass.: MIT Press.

[2] U. Banerjee.Loop Transformations for Restructuring Com-
pilers: The Foundations. Norwell, Mass.: Kluwer Academic
Publishers, 1993.

[3] U. Banerjee.Loop Parallelization. Norwell, Mass.: Kluwer
Academic Publishers, 1994.

[4] W. Blume and R. Eigenmann. The range test: a depen-
dence test for symbolic, non-linear expressions. In IEEE,
editor,Proceedings, Supercomputing ’94: Washington, DC,
November 14–18, 1994, Supercomputing, pages 528–537.
IEEE Computer Society Press, 1994.

[5] E. D’Hollander, F. Zhang, and Q. Wang. The fortran parallel
transformer and its programming environment.Journal of
Information Sciences, 106:293–317, 1998.

[6] E. H. D’Hollander. Partitioning and labeling of loops by
unimodular transformations.IEEE Transactions on Parallel
and Distributed Systems, 3(4):465–476, July 1992.

[7] P. Feautrier. Some efficient solutions to the affine scheduling
problem. I. one-dimensional time.International Journal of
Parallel Programming, 21(5):313–347, Oct. 1992.

[8] W. Kelly and W. Pugh. Minimizing communication while
preserving parallelism. In ACM, editor,FCRC ’96: Con-
ference proceedings of the 1996 International Conference
on Supercomputing: Philadelphia, Pennsylvania, USA, May
25–28, 1996, pages 52–60. ACM Press, 1996.

[9] A. W. Lim and M. S. Lam. Maximizing parallelism and
minimizing synchronization with affine partitions.Parallel
Computing, 24(3-4):445–475, May 1998.

[10] P. M. Petersen and D. A. Padua. Static and dynamic evalua-
tion of data dependence analysis techniques:.IEEE Transac-
tions on Parallel and Distributed Systems, 7(11):1121–1132,
Nov. 1996.

[11] K. Psarris. The Banerjee-Wolfe and GCD tests on exact
data dependence information.Journal of Parallel and Dis-
tributed Computing, 32(2):119–138, Feb. 1996.

[12] J. Ramanujam. Beyond unimodular transformations.Jour-
nal of Supercomputing, 9(4):365–389, Oct 1995.

[13] A. Schrijver. Theory of Linear and Integer Programming.
John Wiley and Sons, New York, 1987.

[14] M. E. Wolf. Improving locality and parallelism in nested
loops. Ph.D. Dissertation CSL-TR-92-538, Stanford Uni-
versity, Dept. Computer Science, Aug. 1992.

[15] M. E. Wolf and M. S. Lam. A loop transformation theory
and an algorithm to maximize parallelism. InIEEE Trans-
actions on Parallel and Distributed Systems, Oct 1991.

[16] M. Wolfe. Engineering a data dependence test.Concur-
rency: Practice and Experience, 5(7):603–622, Oct. 1993.

[17] W.Shang, E.Hodzic, and Z.Chen. On uniformization of
affine dependence algorithms.IEEETC: IEEE Transactions
on Computers, 45(7):827–840, July 1996.

[18] J. Xue. Automating non-unimodular loop transformations
for massive parallelism.Parallel Comput., 20(5):711–728,
1994.

[19] J. Xue. Unimodular transformations of non-perfectly nested
loops.Parallel Computing, 22(12):1621–1645, Feb. 1997.

[20] F.-B. Zhang. The FPT programming environment. Ph.D.
dissertion ELIS-D096.073, University of Ghent, Dept. of
Electronics and Information Systems, Ghent, Belgium, Sept.
1996.

