
A Self-Adaptive Scheduling Algorithm
of On-Demand Broadcasts

Weiwei Sun, Weibin Shi, Bole Shi, Wenyun Ji and Yijun Yu
Department of Compute Science, Fudan University

Shanghai 200433, P.R. China

86-21-65646451

{wwsun, lyOO8136}@online.sh.cn, {blshi, wyji }@fudan.edu.cn, yijun@elis.rug.ac.be

ABSTRACT
In mobile wireless systems data on air can be accessed by a large
number of mobile users. Many of these applications such as
wireless internets and traffic information systems are pull-based,
that is, they respond to on-demand user requests. In this paper, we
study the scheduling problems of on-demand broadcast
environments. Traditionally, the response time of the requests has
been used as a performance measure. In this paper we consider
the performance as the average cost of request composed of three
kinds of costs--access time cost, tuning time cost, and cost of
handling failure request. Our main contribution is a self-adaptive
scheduling algorithm named LDFC , which computes the delay
cost of data item as the priority for broadcast. It performs well
compared with some previous algorithms in this context.

Categories and Subject Descriptors
C.2.1 [Wireless Communication]: Computer Systems
Organization - Computer - Communication Networks - Network
Architecture and Design.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
Mobile Computing, Data Broadcast.

1. I N T R O D U C T I O N
In a client/server architecture with fixed networks, clients would
send a request when it wants to retrieve data from the server.
Then the server will respond to the request and send data to
clients. Compared with fixed networks, wireless networks have
low bandwidth and low communication quality [10]. To support
numerous mobile users to access data in server concurrently, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
MSWiM 2001 7/01 Rome, Italy
© 2001 ACM ISBN 1-58113-378-2/01/07. . .$5.00

new method of data-transmission is put forward, that is, the server
broadcasts data on air and clients could acquire data that way, so-
called data broadcasting.

Data broadcast technology has many applications in the fields of
public information dissemination, such as stock market quote or
traffic and landmark information. One important issue in
broadcast technology is to determine an optimal broadcast
sequence according to the access probability distribution of
mobile users, i.e. the data broadcast scheduling. To evaluate the
effectiveness of one broadcast scheduling strategy, we need to
consider two basic aspects:

(1) Access Time (shortened as AT): It indicates the time elapsed
between the query submission and receipt of the response. AT
determines the response time of query made by mobile users. We
need to concentrate on the arrangement of frequency and location
of data items in one broadcast period, so as to make the average
AT least, according to various access probabilities of data items.
The study on this issue includes [1, 2, 3, 5,7, 9, 13, 15], etc.

(2) Tuning Time (shortened as TT): It indicates the total time that
mobile users spend actively listening on the channel in a complete
access period. TT determines the power consumption of mobile
users because they could slip into doze (stand by) mode when
they are not actively listening on the channel. As most of mobile
users depend on limited battery supply, the reduction of TT would
also be an important issue in data broadcast technology. A
widespread method is to insert index segments into broadcast
period in order to reduce TT. The study on this issue includes [11,
12, 14], etc.

In on-demand broadcasts, we cannot obtain the access profiles of
mobile users, that is to say, their access pattern would have some
unpredictable changes. Thus we need a kind of new scheduling
algorithm, to determine the contents and organization of data
broadcast on the basis of circumstance of recent access and
scheduling.

The study of on-demand broadcast scheduling problem includes
[4, 8], etc. In this broadcast environment, mobile users
communicate with server via wireless channels. These channels
include an uplink channel and a downlink channel. Mobile users
use this uplink channel to send data access request, and the
contents of broadcast will arrive at mobile users through downlink
channel. First, mobile users make the access request; second, the
server considers all pending request to decide the contents of next
broadcast. One core issue is to determine the priorities of data

139

items to broadcast, that is, which data items should be
broadcasted in next period. [5] put forward a FCFS (First-Come-
First-Served) scheduling algorithm, which sequences data items
according to their requested time. Because of its time sequencing
principle, any access request would get responded after waiting a
finite period. There doesn't exist any case of endless waiting. But
it has the deficiency of low average performance, because it
considers only the requested time, and doesn't take into account
the difference of access frequency of various data items. MRF
(Most-Request-First) scheduling algorithm will broadcast those
data items with most requests priorly. As there are most-
frequently data items in every broadcast, every broadcast will
have the highest response ratio (number of requests
responded~number of total requests), and we could get much
lower AT. But it has its own shortcoming: If some data items
have few requests, they will always line up behind several most-
frequently-requested items, so that the request on these data items
could always be unsatisfied and get into endless waiting. [6]
suggested LWF (Long- Wait-First) algorithm, which chooses the
data item that has the largest wait time (the sum of the total time
that all pending requests for that item have been waiting) to
broadcast. It considers both the number of requests and the wait
time, so as to reduce the occurrence of endless waiting. [4] put
forward LTSF (Longest-Total-Stretch-First) algorithm, which
considers the factor of variable-size data items. [8] proposed a set
of self-adaptive broadcast protocols---CBS/VBS protocols
(including server broadcast protocol and client receipt protocol),
and raised the idea of dynamic adjusting in priority computing
formula.

But all these papers mentioned above didn't take into account the
handling of a request waited for quite a long time. They only
referred to some measures to reduce the probability of occurrence.
Being unable to deal with those requests that didn't get responded
for quite a long time, i.e., the permission of endless waiting, will
lead to serious problems. For example, server would not receive
the access request because of transmission errors, in this case
mobile user (the request sender) will wait for an impossible
response; responding to an access request sent a long time ago
would also lead to ineffectiveness of the response, because the
mobile user who sent this request could probably have left the
broadcast covered area, or it would not listen to the channel for
the reason of saving power.

Therefore, we should set up a Response Time Limit (RTL) for
every access request. Mobile user sends one request and starts to
listen to the contents of broadcast. If it doesn't get responded
within the RTL, this request would be identified as a failure and
mobile user would not continue to listen to. Similarly, after the
broadcast server received the request sent by mobile user, if it
couldn't add corresponding data item to broadcast contents within
the RTL, it would delete the request from the request sequence.

Besides, in the determination of which item should be added to
broadcast, the priority computing formula seems unable to explain
strongly why those data items with low priority should be delayed.
And the significance of those cost computing models is vague.

In this paper, we put forward a self-adaptive scheduling algorithm
of on-demand broadcast--LDCF (Largest-Delay- Cost-First). It
computes the delay cost for every data item and uses it as the
priority to schedule the data items, taking into account three kinds
of costs--AT, TT and request failure. The parameters of delay

cost computing formula will be adjusted automatically according
to recent scheduling circumstances.

The rest of the paper is organized as follows. Section 2 shows the
on-demand broadcast model and defines the problem of broadcast
scheduling. We also make some basic assumptions here. Section 3
shows the delay cost computing formula of data items, which
indicates the increased cost if every data item wouldn't be
broadcasted in next period, including access time cost, tuning
time cost and request failure cost. On basis of this formula, we put
forward LDCF scheduling algorithm. We describe the simulation
experiments and discuss their results in Section 4. We make some
conclusions in Section 5.

2. PROBLEM DEFINITION AND
PRELIMINARIES
A typical on-demand broadcast system could be shown as figure
1141.

~'E"R ~,'ER

"" a e i - n

l~lt.t. REQ~=,~TS

Figure 1. A typical on-demand broadcast system.

The relationship between radio transmitter (base station) and
mobile users could be seen as server and clients. Mobile users are
clients, and radio transmitter is the server. To the convenience of
our study, we make some restrictions on the broadcast
environment. Our basic assumptions are as follows.

Mobile users communicate with server via wireless information
channels. These channels include an uplink channel and a
downlink channel. Mobile users use this uplink channel to send
data access request, and the contents of broadcast will arrive at
mobile users through downlink channel. After the broadcast
server receives an access request, it will respond to this request
within a pre-determined response time limit, and add the
requested data item in broadcasting contents; otherwise this
request would be regarded as a failure. (The disposal of failed
request could be in two ways: either the server would do nothing,
waiting mobile user to send request again if mobile user still want
to access the data item; or it could create a separate wireless link
to send date item to mobile user.)

Broadcast server doesn't know the probability distribution of the
access of various data items by mobile users. Therefore, the
server could determine suitable broadcast scheduling only after it
received those requests. (That we say the server doesn't know the
access pattern of mobile users, isn't to mean that the access by

140

mobile user hasn ' t any regular patterns; actually, the access by
various mobile user do have some patterns.)

The least unit of broadcast is data item, and all data items are of
identical size.

Data broadcast uses a kind of constant-period method, that is to
say, no matter what changes taken place in the content of
broadcast, the size of every broadcast is fixed.

Mobile users access one data item in each request, and any two
accesses are independent.

The following are some definitions and notions that we may use
in our further discussion.

Unit Time: suppose the broadcast time of one data item is 1.

Data: The number of data items in one broadcast period.

Index: The index length in one broadcast period.

BP: Broadcast Period. BP=Data+Index.

The structure of data broadcast: see figure 2. The former is index
segment Index, and the latter is data segment Data. The size of
Index and Data is fixed.

[Index I Data [

Figure 2. The s t ruc ture of data broadcast .

Di: data item, i=l..M. M indicates the total number of all data
items.

Q<D, Tre q >: indicates one access request, D is the data item that

Q requests to be broadcasted; Tre q is the time when that request

is sent.

RTL: Response Time Limit. It indicates the longest time elapsed
between the time when mobile user sends an access request of
data item and the time when the server responds to that request. I f
the server could not add the requested data item to broadcast
contents within this time limit, we should say that this request is
failed. The server could create a separate wireless link and send
data item to mobile user. If one mobile user sends a request at To,
and at T~ (Tl< = To+RTL) it finds in broadcast index that the
requested data item would appear at 7"2 (Tz> To+RTL). In this case,
we consider that the request gets valid response.

CostAT : Access time cost for mobile user to obtain data item

(on the basis of unit time). If one mobile user waits for 100 unit
time to obtain his requested data item, then total access time cost

would be 100 COStAr.

COStTT : Tuning time cost for mobile user to search the location

of one data item in the index segment. If one mobile user wait for
10 broadcast period to obtain one data item, and he searches the
index for 10 times, then total tuning time cost would be

lO Cost rr .

In a pure push-based data dissemination scheduling, we have two
main performance metrics: access time and tuning time. While in
on-demand broadcast scheduling, we should consider not only AT
and TT, but the cost of handling failed requests as well, because
we have introduced the notion of request failure.

Costfailur e : Cost of handling a failed request. If the server could

not i:espond to the access request within a determined response

time RTL, we should use Costfailur e as the cost of creating a

separate wireless link between server and mobile user to obtain
data item.

3. LDCF SELF-ADAPTIVE BROADCAST
SCHEDULING ALGORITHM
3.1 Delay Cost Computing Model
The key of LDCF (Largest-Delay-Cost- First) scheduling
algorithm is its Delay-Cost computing model. We can compute
the cost of every request delayed one broadcast period, according
to such parameters as the length of broadcast period, tuning time
cost for mobile user to search for needed data item in the index
section of broadcast, failure probability of access request, and the
cost of handling failed request, etc. This cost is composed of three
aspects: access time, tuning time, and request failure.

Some description of several notions would be given as below.
Then we could illustrate the formulas of Delay Cost in our
discussion.

PF r : The popularity factor of data item D at time T, which

indicates there are PE r number of mobile users requesting to

access data item D. The initial value of P F r is zero; every time

when a new request for data item D arrives, PF r will increase

by 1; when one request isn ' t satisfied within one RTL, pFro will

decrease by 1; i f the data item D appears in the broadcast line,

P F r will be set as zero again.

S F ~ : safety factor, expressed by remaining The broadcast

which indicates there are S F ~ number of periods, opportunities

(excluding the next one) to satisfy request Q by broadcast at time

T. The formula of SF~ is

Sf~=[Treq +RTL-TJ,Bp

Zre q stands for the sending time of request Q. One thing that we

need mention is, when we discuss the safety factor, T stands for
the time next broadcast begins. I f the safety factor is zero, it
means that if server doesn' t broadcast the data item Q needs in the
next period, then request Q would fail. We name it as safety
factor, because we want to use it to express the "distance" of
request Q to the failure. Obviously, in order to minimize failed

141

requests, server should respond to those requests with lower

sr .
Re quest_ NoSr: it indicates the total number of pending

requests whose safety factor equals to S F .

R e m a i n e d R e ques t _ N o SF _ : it indicates the total

number of requests that could not be satisfied in next broadcast
period, whose safety factor equals to SF.

B r o a d c a s t e d R e ques t _ N o se _ : it indicates the total

number of requests that could be satisfied in next broadcast period,
whose safety factor equals to SF. Obviously,

Re quest _ No sr = Re mained _ Re quest _ No sr

+ B r o a d c a s t e d _ Re q u e s t _ N o sr .

R e main R a t e sF : it indicates the ratio of requests that

could not be satisfied in next broadcast period, whose safety
factor equals to SF.

Re main _ Rate se = Re mained _ Re quest _ No sr / Re quest _ No st.

Fai l Ra teS~: it indicates the failure probability of the

requests whose safety factor equals to SF, if they could not be
satisfied in next broadcast period.

Apparently, if one request Q<T,D> with SF=O could not be
satisfied in next period, then Q will fail, i.e.,

Fai l R a t e ° = 1.

When SF>0, for request Q<T,D>, if D could not be satisfied in
next broadcast period, the SF of Q will decrease by 1; the
probability of those requests (safety factor=SF-1) that could not

be satisfied immediately is Fai l R a t e sF , the probability of

those requests that could not be satisfied immediately and finally

get failed is Fai l R a t e se-~ , thus

Fai l RateSF = Re main RateSr-I . Fai l Rate sr-~ .

D e l a y _ Cost o : The increased cost if request Q be delayed

and could not be satisfied in the next broadcast period.

L e m m a 1: The cost of request Q if it would be delayed

Delay _ Cost o "~ B P . Cost~ r + C°strr + F a i l _ Rate . Cost/oit,, ~ •

D e l a y _ Cost a is composed of three parts: the first part

indicates the access time cost increased because of delay, the
second part indicates the tuning time cost increased because of
delay, and the third part indicates the estimated cost of request
failure because of delay.

PD (D e l a y _ Cost D): The increased cost if data item D be

delayed and not appear in the next broadcast period, i.e. the
priority of data item D. Data numbers of data items with highest
priority would be broadcasted in the next period.

T h e o r e m 1: The cost of data item D if it would be delayed

PD = ~ Delay_ CostQ =
Q<D,T~q >

P F r . (B P . C o s t Ar) + P F r " C ° s t r r

SFQ<D,Trcq>
+ ~ F a i l _ R a t e C o s t failure "

I

Q<O,T~q>

Both PD (D e l a y _ C o s t D) and D e l a y _ Cos t o include

three parts: Access Time Cost, Tuning Time Cost, and Request
Failure Cost.

BP, C O S t A T , C O S t T T , Cos t fa i tur e are pre-determined

SF~< D,Treq>
constants, while P F r , F a i l _ R a t e will change

along with recent circumstances of access and broadcast. When
the failure rate rises, those requests with low SF will be satisfied
first; when the failure rate goes down, those data items with high
P F will be broadcasted priorly.

If CoStfai lur e =0, LDCF will degenerate to MRF, and the priority

of data item D, P D , is in direct proportion to the number of

pending requests for data item D, e F o .

3.2 LDCF Scheduling Algorithm
We describe LDCF scheduling algorithm as follows:

Algorithm 1: LDCF
Input: request sequence;
Output: a broadcast scheduling;
Proceeding:
main()
{

failed_rate[]:=[1,0,0 0]
time=O;
while true do
{

for i:= 1 to B P
{time=time+ l ;

receive the new requests {req<Di, time>}, and add them to
RequestSequence;

}
LDCF(time);

}
}

procedure LDCF(time)
{

for each data item Di
Data l tem[Di].priority:=O;

for each pending request req<Di, r e q t i m e >
in RequestSequence

{

SF:= | r e q _ t i m e + RTL - time ;

L BP J
Dataltem[Di].priority:=

142

Dataltem[Di].priority+BP* C o s t A r +

COStTT +fail_rate[SF]* C o s t failur e ;

}
select Data number of data items with largest priority from

Dataltem[];
add these data items into broadcast period sorted by the value

of PF (in descending order), and make the index;
computefail_rate[] once again;
delete those requests that have been responded or failed in

RequestSequence;

In above description of process, we mainly focus on the
illustration of LDCF algorithm, therefore some implementation
details have been omitted. For example, when one request req<Di,
req_time> would not get responded and fail because of time out,
we didn't make a concrete analysis on creating direct wireless
link between server and mobile user to send requested data items.
Also, we will not fully explain how to select data items with
largest priority, how to add broadcast contents and make index,
etc.

4. EXPERIMENTS AND COMPARISONS
We intend to use simulation method to compare LDCF scheduling
algorithm with MRF, FCFS and LWF algorithms, so as to
evaluate the performance of LDCF scheduling algorithm.

At each time, the server will receive access requests from mobile
users, compute the priority of every data item on the basis of all
pending requests, then select Data number of data items with
largest priority and add them to broadcast contents.

4.1 Experimental Data
The numerical distribution of new arrived requests during one
time period: suppose the probability that every mobile user will
send request during one time period is p, the number of mobile
user is MU_no, then the probability that number of new requests
equals to new_request_no is:

pnew_ request _ no . (~neW~ Mu ___ nprequest_ no

• (1 - - p) M U _no-new_request _no . c M U _ n equest _no
MU _np

The numerical distribution of data items required by new requests
during one time period: we use function Zipf(k) to describe the
skewed distribution of data access. In generating the distribution
of data access with Zipf(k), we suppose the skewness k at any
time could change randomly in one interval. Besides, we would
randomly select 10% data items, multiply their distribution results
by a random number between 0 to 10.

We use the randomizer provided by http://www.randomizer.org to
generate bench- mark random numbers for our experiments.

4.2 Experiment Results and Analysis
(1) Parameter settings

The following are some common parameters:

Parameter

M

Data

Index

Request number
per unit time

Meaning
The number of data items that Server
could be used to broadcast. Suppose it
is 1000 in the following experiments.
The number of data items in one
broadcast period
The length of index section in one
broadcast period. Suppose it is 6 in the
following experiments.
The number of requests that server
would receive at each time
Parameter of function Zipf, indicating

k
the skewness of data access distribution

RTL Response time limit

C o s t Ar

C o s t r r

C o s t failure

Cost of AT per unit time. Suppose it is 1
in the following experiments.
Cost of TT per seeking index. Suppose
it is 20 in the following experiments.
Cost of handling a failed request.
Suppose it is 2000 in the following
experiments.

(2) Experiment 1: Performance when fail rate of request is low

First, we will discuss the performance comparison of LDCF
algorithm with other three algorithms in the situation of low
workloads. The setting of parameters is shown as follows. We
will consider the effect of various RTL on Average Cost of
request. The result is shown in figure 3.

Parameter Value
Data 100
Request number per 10.10
unit time
k 0
RTL 1500-3500

As RTL increases, Average Cost of request will decrease. When
RTL>=2500, there aren't any failed requests and all requests are
satisfied in MRF scheduling, that is, all data items whose SF=0
are belonged to those data items with largest PF. In LDCF
scheduling, all data items with SF=0 are belonged to those data

items with largest D e l a y _ C o s t o , too. Therefore, at this time

LDCF and MRF are identical, both of them are optimal
scheduling algorithm, which have least average AT and TT. The
performance of LWF is a little worse than LDCF and MRF, while
FCFS is the worst.

In short, LDCF and MRF occupy the first place, LWF comes
second, and FCFS is the worst.

143

1400

1200

1000

800

600

400

200

0 H H U
LDCF LWF FCFS

F 7

]IRTL=1500 1

jmRTL--20001
i r-I RTL=2500

iD T =3ooo I
Lm_RTL-3500_J

Figure 3. Performance for various algorithms when fail rate
of request is low

(3) Experiment 2: Performance when fail rate of request is high

In this experiment, we will discuss the performance comparison
between LDCF and other three algorithms when fail rate of
request is high. The setting of parameters is shown as follows.
The result is shown in figure 4.

Parameter Value
Data 120
Request number per 247.15
unit time
k -1.5-1.5
RTL 1500

If the skewness k of data access randomly changes between [-1.5,
1.5], lots of requests will be failed when there are many requests
at each unit time.

The fail rate of LDCF scheduling is the lowest, and its average
cost lowest too. The performance of LWF scheduling is a little
worse than that of LDCF.

FCFS scheduling has much higher fail rate and larger average cost.
It shows that the average performance of FCFS scheduling is
unsatisfactory, because it only considers time factor, not the
number of requests.

The performance of MRF scheduling still lags behind of LDCF
and LWF. It also shows that it is insufficient to consider only the
number of requests, not the time factor.

We won' t compare FCFS and MRF with our algorithm in further
discussion.

In short, LDCF could efficiently reduce the number of failed
requests, and it has least average cost. Consideration of only one
factor (request number or time, as in the case of MRF and FCFS)
will lead to lots of request failure.

90% F 79.34%

60%

30%

0%

5.36% 7.00%
14.05%

LDCF LWF FCFS MRF

3500.00

3000.00

2500.00

2000.00

E 1500.00

1000.00

500.00

0.00

;85.06 600.24

2898.32

LDCF LWF FCFS MRF

Figure 4. Performance for various algorithms when fail rate
of request is high

(4) Experiment 3: Effect of Data

In this experiment, we will discuss the effect of length of data
segment in one broadcast period. The setting of parameters is
shown as follows. The result is shown in figure 5.

Parameter Value
Data 60-200
Request number per 98.86
unit time
k 0
RTL 1500

In this experiment, our conclusion is: the number of data items
contained in one broadcast period should be moderate. Too small
a value will drastically increase the average cost, but once its
value increase above one certain point, average cost will rise
instead. Still, the performance of LDCF is better than that of LWF.

144

' P a r a m e t e r Va lue
i 690 Data 100
i 670 Request number per 98.86

unit time
. ~ 650 k 0-1.5
'. o ~- RTL 1000
i ~ 630 r I " LDCF

i ~ 610 I - - I I - - LWF I i

590 900 r

i 570 I 800

I ¢o 500 [' ~ + L D C F

I >~ 300 ~-

Fi u~ 5 E f f e c t ~ : t a " . o g e D i / 1 0 0 " ' ' ' ' '

l 0 0.3 0.6 0.9 1.2 1.5
(5) Experiment 4: Effect o f RTL k

In this experiment, we will discuss the effect of Response Time
Limit. The setting of parameters is shown as follows. The result is
shown in figure 6.

P a r a m e t e r Va lue
Data 1 O0
Request number per 98.86
unit time
k -1.5-1.5
RTL 800-2000

7°I 1 700
r~ ¢ LDCF

650 / ~ L w F

< 600

550

RTL

F i g u r e 6. Ef fec t of RTL

In this experiment, we conclude that RTL the larger, average cost
the lower. When RTL>I200, the performance gap between two
algorithms is very little. Again, LDCF shows some advantages
over LWF.

(6) Experiment 5: Effect of skewness of data access distribution

In this experiment, we will discuss the effect of skewness k of
data access distribution.

First, we will consider the cases when skewness k is a certain
value. The setting of parameters is shown as follows. The result is
shown in figure 7.

F i g u r e 7. Ef fec t o f s k e w n e s s k w i th a cer ta in va lue

Second, we consider the cases when skewness k is a random
number in a certain interval centered on zero. (The skewness k
might be different at any time)

The setting of parameters is shown as follows. The result is shown
in figure 8.

P a r a m e t e r Va lue
Data I00
Request number per
unit time
k

RTL

98.86

[0, 0], [-0,3, 0,3] ...
[-15, 15]
1000

8°°I 1 780
760
740 # LDCF
720 L--tt--LWF

>~ 700
< 680

660 r

¢b ¢o % % %
% % o~ % %

F i g u r e 8. Ef fec t o f s k e w n e s s k w i t h a certa in interval

In this experiment, our conclusion is: when skewness k holds one
certain value, the average cost of LDCF will decrease as k
increases. Its overall performance is superior to that of LWF.

145

When skewness k is a random number in a certain interval
centered on zero, the average cost of LDCF shows little influence
of interval size.

5. C O N C L U S I O N
In this paper, we have studied the problem of scheduling on-
demand broadcasts. Compared with pure push-based data
dissemination scheduling, we need uplink channel to send data
access request in an on-demand broadcast-based environment.
The server would not know the access profiles of mobile users,
and it should take into account the situation when request fails
because of time out.

Previous works in this context mainly discuss how to reduce the
average AT of mobile users. In practical applications, the
handling of a request waited for quite a long time must be
considered and so we introduce the notion request failure. When
discussing the performance of a scheduling algorithm of on-
demand broadcasts, we take into account not only AT, but also
TT and request failure. We put forward a self-adaptive scheduling
algorithm --LDCF, It computes the delay cost for every data item
and uses it as the priority to schedule the data items, the
parameters of delay cost computing formula will be adjusted
automatically according to recent scheduling circumstances.

Our work raises the open algorithmic problem of determining a
schedule that minimizes the average cost of request considering
all kinds of cost--AT, TT and failure. We compare LDCF with
LWF, FCFS and MRF via several experiments, which indicate the
average cost of LDCF scheduling was the least.

6. R E F E R E N C E S
[1] Acharya, S., Alonso, R., Franklin, M. and Zdonik, S.

Broadcast Disks: Data management for asymmetric
commu- nications environments. In Michael J. Carey
and Donovan A. Schneider, editors, Proceedings of the
1995 ACM SIGMOD International Conference on
Management of Data, San Jose, California, 1995.

[2] Acharya, S., Franklin, M. and Zdonik, S.
Disseminating updates on broadcast disks. In: Proc
22 "d VLDB Conf, 1996.

[3] Acharya, S., Franklin, M. and Zdonik, S.
Dissemination-based data delivery using Broadcast
Disks. IEEE Personal Communications, 1995,2(6): 50-
60.

[4] Acharya, S. and Muthukrishnan, S. Scheduling on-
demand broadcasts: new metrics and algorithms.
Proceeding of ACM/IEEE MobiCom, Dallas, TX,
1998.

[5] Aksoy, D. and Franklin, M. Scheduling for large scale
on-demand data broadcast. In Proc.. of IEEE
INFOCOM, San Francisco, CA, 1998.

[6] Bender, M., Chakrabarti, S. and Muthukrishnan, S.
Flow and stretch metrics for scheduling continuous job
streams. In Proceedings of the Ninth Annual ACM -
SIAM Symposium on Discrete Algorithms, San
Francisco, California, 1998.

[7] Chiueh, T. Scheduling for broadcast-based file systems.
In: Proc MOBIDATA Workshop, 1994.

[8] Datta, A., Vandermeer, D. E., Celik, A. and Kumar,
B.V. Broadcast protocols to support efficient retrieval
from database by mobile users. ACM TODS, 1999,
24(1) 1-79.

[9] Gondhalekar, V. A. Scheduling periodic wireless data
broadcast. MS Thesis, the University of Texas at
Austin, 1995.

[10]Imielinski, T. and Badrinath, B. R. Mobile wireless
computing: solutions and challenges in data
management. Communications of the ACM, 1994,
37(10).

[l l] Imielinski, T., Viswanathan, S. and Badrinath, B. R.
Energy efficient indexing on air. In: Proc ACM
SIGMOD 1994.

[12] Shivakumar, N. and Venka, S. Efficient indexing for
broadcast-based wireless systems. ACM Mobile
Networks and Nomadic Applications, 1996, 1(4): 433-
446.

[13]Su, C. and Tassiulas, L. Broadcast scheduling for
information distribution. In Proceedings of IEEE
INFOCOM, Los Alamitos, CA USA, April 1997.

[14] Viswanathan, S. and Imielinski, T. Pyramid
broadcasting for Video on Demand service. Technical
Report DCS TR-311, Rutgers University, 1994.

[15]Wong, J. W. Broadcast delivery. Proceedings of the
IEEE, 1988, 76(t2): 1566-1577.

146

