
JPT� a Java Parallelization Tool

Kristof Beyls�� Erik D�Hollander�� and Yijun Yu�

� Kristof�Beyls�rug�ac�be
� Erik�DHollander�elis�rug�ac�be

� Yijun�Yu�elis�rug�ac�be

University of Ghent�
Department of Electrical Engineering

Parallel Information Systems
Sint�Pietersnieuwstraat ��
B����� Gent� Belgium

Abstract� PVM is a succesfull programming environment for distribu�
ted computing in the languages C and Fortran� Recently several imple�
mentations of PVM for Java have been added� making PVM program�
ming accessible to the Java community�
With PVM for Java however� the user still needs to partition the prob�
lem� calculate the data partitioning and program the message passing
and synchronization� In this paper� JPT is introduced� a parallelization
tool which generates PVM code from a serial Java program� JPT au�
tomatically detects parallel loops and generates master and slave PVM
programs�

� Introduction

The importance of Java as a coherent� platform independent� object�oriented
and network�minded language is widely recognized� With these features� it is
not surprising that Java has also entered the high performance computing area
with projects such as HPJava���� JPVM���� Java	DSM�
��� Spar���� JAVAR�
��

Most of these projects study various ways to achieve a faster execution of
Java programs by e
ciently expressing the parallelism in the language� Only
a few authors�
� investigate the way to automatically detect parallel executable
regions in a Java program� and to generate parallel code from this analysis�
This can be attributed to the complexity of parallelization� and to the fact that
parallelization tools were mainly developed for other languages����

In this paper we focus on the automatic parallelization and e
cient code
generation of Java programs� Rather than reimplementing a parallelizing com�
piler� the kernel parallelization algorithms and the internal syntax tree of an
existing compiler� FPT���� are reused to automatically detect parallelism in Java
loops� As a result� the dependence analysis needed to reveal the parallelism in
a Java program is executed by the FPT�analyzer� Once the parallel loops in
the program are detected� they are transformed into an explicit parallel form by
JPT� Currently� JPT generates code for � Java parallel platforms� parallel Java
threads and jPVM�



A description of the existing parallel virtual machines for Java is given in
sect� �� The automatic parallelization of loops in the FPT parallelizer is dis�
cussed in section �� An operational overview of JPT is given in sect� �� The code
generation is explained in sect� �� Finally� experiments and their speedup are
presented sect� �� after which a conclusion is formulated in sect� ��

� Parallel Virtual Machines in Java

In the literature� there are two approaches to develop a Java based Parallel
Virtual Machine� either rewrite PVM in Java���� or write a Java�interface to the
existing PVM API��� �


� jPVM��� is layered upon the standard distribution of PVM and makes use of
Java�s capability to call functions written in other languages using the Java
Native Interface���� jPVM programs use wrappers contained in the class
jPVM to call the native PVM functions� which are written in C�

�� JPVM��� on the other hand is entirely implemented in Java and uses none
of the original PVM code� JPVM provides an interface similar to the C
interface provided by PVM� but with a syntax and semantics adapted to
Java threads and the Java programming style� Unlike jPVM� JPVM is not
inter�operable with standard PVM� JPVM provides a Java implementation
of the PVM daemon and a communications library� In addition� both tasks
and threads are supported as basic units of parallelism�

In ��� di�erent benchmarks were executed to test the communication perfor�
mance of JPVM� jPVM and PVM� This showed jPVM to be faster than JPVM
and C	PVM to be faster than jPVM� Our JPT is able to generate parallel code
for the jPVM platform�

� Loop Parallelization

��� Data Dependence Analysis

Loops are traditionally areas of implicit parallelism� The parallel execution of
loops is subject to a non�trivial analysis of the loop�carried dependencies� De�
pendency analysis has matured over time and the most important dependence
analysis algorithms have been put into the Fortran parallelizer� FPT�

�� the
backbone of JPT� FPT uses techniques derived from Banerjee� Wolfe and the
GCD tests���� loop boundary calculation and unimodular transformations�

��

By design� the inner data structures and the abstract syntax tree �AST� of
FPT are language independent� As a consequence� the same dependence analysis
can be applied to any language that can be expressed in the FPT syntax tree�
Furthermore� the FPT API o�ers tools to detect� annotate and retrieve the
parallelism�



��� Loop Scheduling

PVM code�

� for the outermost of a nest of parallel loops is obtained by gener�
ating slave programs� which each execute a group of the n iterations as one task�
If there are p slaves� then n�p iterations are assigned to each slave� Besides ini�
tializing the PVM�system and contacting the number of cooperating processors�
for each parallel loop the following code is generated�

� In the prologue� the input data for all the parallel loop is gathered and put
into a single message� which is broadcast to all slave computers� Next the
number of iterations to be executed by each slave is calculated and included
in the message�

� In the execution phase� each slave program unpacks the message and executes
his band of the loop� During this phase there is no communication� because
the inner loop iterations are independent�

� In the epilogue� each slave sends back the results� The master will restore
the received data in the proper locations�

��� Data Partitioning

After the dependence analysis� FPT determines the data to be exchanged be�
tween processors by looking for the data references to the left and the right side
of assignment statements in the loop body� However� using this technique with�
out optimization could resolve in unnecessary communication overhead� FPT
uses � techniques to reduce the overhead�


� If consecutive elements of an array have to be sent� then FPT will create
a single pk�call to pack the data� instead of creating a loop in which the
elements are packed one at a time�

�� The references to data in the loop might overlap� When array subscripts are
of the form ai � c� i being the loop index and a and c are constants� FPT
identi�es overlapping areas and sends them only once�

When a parallel loop is part of a surrounding sequen�
DO i����

DOALL j����

H�i�j�

ENDDO

ENDDO

Fig� �� A parallel
loop inside a se�
quential loop

tial loop� then the communication can be further opti�
mized by array privatization� This technique is not yet
implemented� but should work as follows� A parallel loop
nest which is nested inside a sequential loop nest can be
formally expressed as in �g� 
� Following sets must be cal�
culated to create the messages between master and slaves�

� W �i� j� is the set of all writes in H�i� j��
� R�i� j� is the set of all reads in H�i� j��
� WR�i� j� is the set of all reads that read a value created
by a write in the same iteration�

� E�i� j� � R�i� j� �WR�i� j� contains all variables and
array elements that can in�uence the results of the par�
allel j loop�



The data to be sent between iteration i and i � 
 of the sequential loop from
task p� to task p� would then be S�i� i�
� p�� p�� �Wp��i��Ep��i�
�� with
Wp��i� �

S
j�I�p��

W �i� j� and Ep��i� �
S

j�I�p��
E�i� j� where I�p� is the set of

iterations to be executed by task p�

� JPT Operational Overview

The conversion of a Java program into an FPT AST and the parallelism extrac�
tion occurs in four steps �see Fig����


� The Java source is parsed using the GNU compiler guavac into a complete
Java�based abstract syntax tree �in this paper further called a Guavac AST��
Since FPT was developed for Fortran� obviously some Java language con�
structs cannot be represented by the abstract syntax tree of FPT� However�
the computation intensive parts� most amenable to parallelization� are rep�
resented similarly in both languages� i�e� by loops and array calculations� As
a consequence� only a part of the Guavac AST is transformed into an FPT
AST�

�� JPT translates the parts in the Guavac AST that are expressible in FPT
and feeds them one by one into the parallelizer of FPT�

�� The resulting parallelized FPT AST is traversed to see which loops were
parallelized by FPT� and the corresponding loops in the Guavac AST are
marked as parallelizable� The FPT parallelizer also generates the messages
to be sent between master and slaves�

�� explicit parallel code is generated from the annotated Guavac AST� Currently
JPT generates parallel code based on
�a� Java threads�
�b� jPVM�

� Code Generation

JPT transforms the original program into an explicitly parallel PVM program
by replacing each parallel loop by a master loop which calls a number of slaves
and fetches the results�

A separate class is inserted to contain the slave code� This class extends the
JPT�JptPvmSlave class �see Fig� ��a�� which implements the job scheduling code
common to all slaves� A run method is created in the new class� The loop speci�c
slave code generated in the next steps will be inserted� in this run method� The
interaction between the master and slaves is as follows�


� The master spawns the slaves using the method spawn slaves �see Fig�
��b��� The spawn slaves method spawns a new Java Virtual Machine for
each slave� after which it sends the job information to the newly spawned
slaves�



code parallelization
data distribution

���
���
���
���
���
���
���

���
���
���
���
���
���
���

jPVM code

sequential
Java source

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Parallel FPT ASTFPT AST

FPT Parallelizer

2

3

parallel pragma’s
& data layout

translation

source code generation

4

parsing

1

Parallel Guavac AST

Guavac AST

Fig� �� JPT Parsing� Parallelization and Code Generation� The source �le is parsed
into an Abstract Syntax Tree by Guavac� The loop nests are forwarded to FPT� After
parallelization by FPT� the parallel loops are annotated in the Guavac AST� Finally�
the code can be generated for di	erent parallel Java platforms�

�� Each JVM will execute one slave� The spawned JVM knows which slave to
execute because the name of the slave class is passed as a command line argu�
ment� The spawned JVM will execute the main method of the JptPvmSlave
class �see Fig� ��a��� The main method creates an object of the slave class�
and lets the slave execute in a separate thread� When the slave thread stops�
the JVM ends executing� Creating an object of the slave class forces the con�
structor �starting at �� � �� in Fig� ��a�� to be executed� This constructor
receives the job information sent in the spawn slave method at �� 	 ���
Each task is run in a separate JVM because PVM and therefore jPVM are
not thread�safe �see section ���

�� After spawning the slaves� the master code packs the sizes of all the arrays
in the parallel loop as well as the input data for all iterations of the loop
into a single message and multicasts it to all slaves�
The slave code �which is put in the run�� method� receives this message�
creates the arrays� and executes his band of the loop�

�� The slave sends the output data for that band to the master�

� Results

The performance of the code generated by JPT was measured using a matrix
multiplication and a Gauss�Jordan linear system solver� The tests were per�
formed on � Pentium�II machines interconnected with a 
�� Mb	s Ethernet
running Linux as operating system and using JDK 
�
�� as the Java Virtual
Machine�



package JPT�
import jPVM�

public abstract class JptPvmSlave
implements Runnable

�
public int mytid����
public int parent�tid����
public int nslaves����
public int�� tids�
public int slavenum����
public int band�	�


� �
 job information is received �



 constructor initializes job
public JptPvmSlave��

�
mytid�jPVM�mytid���
parent�tid�jPVM�parent���



 PVM �� Java data receive
jPVM�recv�parent�tid�STARTUP�MESG��
int�� nslaves�band�new int����
jPVM�upkint�nslaves�band������
nslaves�nslaves�band�	��
band�nslaves�band����
tids�new int�nslaves��
jPVM�upkint�tids�nslaves����
for�int i�	� i�tids�length� i���

if �tids�i���mytid� �
slavenum�i�
break�

�
�



 slave entry point
public static void main�String�� args�
throws ClassNotFoundException�

InstantiationException�
IllegalAccessException�
InterruptedException

�
Class thisClass �

Class�forName�args�	���
JptPvmSlave thisClassInstance �

�JptPvmSlave�
thisClass�newInstance���

Thread t � new
Thread�thisClassInstance��

t�start���
t�join���

�
�


a� The base class JptPvmSlave in
Java package JPT

public static int spawn�slaves
�int�� tids� String slavename� int band�
�

final int nrequested � tids�length�
int mytid � jPVM�mytid���

String�� args�new String����
args�	��slavename�
args����slavename�


 spawn slaves
if �tids�length �

jPVM�spawn��java�� args�
jPVM�PvmDataDefault�
���tids��

�
System�err�println�
�in JPT�JptPvmSlave�spawn�slaves�
���int�� tids�
 couldn�t spawn �
��the number of tasks requested�

��
jPVM�exit���
System�exit�����

�


� �
 Job information is sent �



 Java �� PVM data send
jPVM�initsend�jPVM�PvmDataDefault��
int�� ntasks�band�new int����
ntasks�band�	��tids�length�
ntasks�band����band�
jPVM�pkint�ntasks�band������
jPVM�pkint�tids�tids�length����
jPVM�mcast�tids�STARTUP�MESG��
return mytid�

�


b� The spawn slaves method

Fig� �� The JPT package



0

1

2

3

4

100 200 300 400 500

S
pe

ed
up

Dimension

Native threads

Green threads


a� Comparison between green
and native threads

0

1

2

3

4

1 2 3 4
Processors

dimension 100
300
500

ideal


b� speedup vs� processors

Fig� �� Speedups of the matrix multiplication algorithm

First the parallelized matrix multiplication algorithm was executed using
�green� threads� i�e� threads scheduled within the Java Virtual machine� In this
implementation the operating system executes the JVM as a whole� and has
no grip on load balancing the individual threads� As a result� some long idle
periods during the inter process communication were observed� a�ecting the
overall speedup� In a second experiment� native threads where used� i�e� the Java
threads are visible as individual threads to the operating system� This resulted
in a better scheduling and good communication and speedup �gures� Figure ��a�
depicts the speedup di�erence between native and green threads� Using native
threads� the speedup has been measured for 
 to � processors� yielding a fairly
linear speedup for a dimension � ���� �see �g� ��b���

We further tested the results on the Gauss�Jordan Elimination algorithm�
We found that the data distribution as calculated by FPT creates excessive data
communication� When this algorithm is transformed using array privatization�
and the data communication is done as resulted form the proposed technique in
sect� ���� good speedups were found� as seen in �g� ��

� Conclusion

The Java parallelizer JPT facilitates the use of Java in a PVM environment� The
results show that loops can be parallelized using standard techniques embedded
in the open compiler FPT� including data distribution and message coding� Fur�
ther work is aimed at reducing the communication overhead by a sophisticated
array privatization analysis� The speedups obtained indicate that Java is a viable
language for parallel computing in a platform independent PVM�network�



0

1

2

3

4

1 2 3 4

dimension 100
dimension 300
dimension 500
dimension 800

ideal

Fig� �� Speedup of the optimized Gauss�Jordan linear system solver�

References

��
 A� J� C� Bik� J� E� Villacis� and D� B� Gannon� javar� a prototype Java restruc�
turing compiler� Concurrency� Pract� Exp� �UK�� Concurrency� Practice and Ex�
perience� �
�������������� Nov� �����

��
 B� Carpenter� G� Zhang� G� Fox� X� Li� and Y� Wen� HPJava� Data parallel
extensions to java� Concurrency� Practice and Experience� ��
���������������
�����

��
 E� D�Hollander� F� Zhang� and Q� Wang� The fortran parallel transformer and
its programming environment� Journal of Information Sciences� ���
�����������
July �����

��
 A� J� Ferrari� JPVM� Network parallel computing in java� In Proceedings of the
ACM Workshop on Java for High�Performance Network Computing� Mar� �����

��
 JavaSoft� Java native interface speci�cation� Nov� ����� Release ����
��
 K� Psarris� The Banerjee�Wolfe and GCD tests on exact data dependence in�

formation� Journal of Parallel and Distributed Computing� ��
����������� Feb�
�����

��
 D� Thurman� jPVM� http���www�isye�gatech�edu�chmsr�jPVM��
��
 K� van Reeuwijk� A� J� van Gemund� and H� J� Sips� Spar� A programming lan�

guage for semi�automatic compilation of parallel programs� Concurrency� Practice
and Experience� �
�������������� Nov� �����

��
 N� Yalamanchilli and W� Cohen� Communication performance of java based par�
allel virtual machines� Concurrency� Practice and Experience�

���
 W� M� Yu and A� L� Cox� Java�DSM� a platform for heterogeneous comput�
ing� In Proc� of Java for Computational Science and Engineering�Simulation and
Modeling Conf�� pages ���������� June �����

���
 F� Zhang� The FPT Parallel Programming Environment� PhD thesis� University
of Ghent� �����


