JPT: a Java Parallelization Tool

Kristof Beyls', Erik D’Hollander?, and Yijun Yu?

! Kristof. Beyls@rug.ac.be
? Erik.DHollander@elis. rug.ac.be
® Yijun.Yu@elis. rug.ac.be
University of Ghent,
Department of Electrical Engineering
Parallel Information Systems
Sint-Pietersnieuwstraat 41
B-9000 Gent, Belgium

Abstract. PVM is a succesfull programming environment for distribu-
ted computing in the languages C and Fortran. Recently several imple-
mentations of PVM for Java have been added, making PVM program-
ming accessible to the Java community.

With PVM for Java however, the user still needs to partition the prob-
lem, calculate the data partitioning and program the message passing
and synchronization. In this paper, JPT is introduced, a parallelization
tool which generates PVM code from a serial Java program. JPT au-
tomatically detects parallel loops and generates master and slave PVM
programs.

1 Introduction

The importance of Java as a coherent, platform independent, object-oriented
and network-minded language is widely recognized. With these features, it is
not surprising that Java has also entered the high performance computing area
with projects such as HPJava[2], JPVM[4], Java/DSMJ10], Spar[8], JAVAR[1].

Most of these projects study various ways to achieve a faster execution of
Java programs by efficiently expressing the parallelism in the language. Only
a few authors[1] investigate the way to automatically detect parallel executable
regions in a Java program, and to generate parallel code from this analysis.
This can be attributed to the complexity of parallelization, and to the fact that
parallelization tools were mainly developed for other languages|3].

In this paper we focus on the automatic parallelization and efficient code
generation of Java programs. Rather than reimplementing a parallelizing com-
piler, the kernel parallelization algorithms and the internal syntax tree of an
existing compiler, FPT[3], are reused to automatically detect parallelism in Java
loops. As a result, the dependence analysis needed to reveal the parallelism in
a Java program is executed by the FPT-analyzer. Once the parallel loops in
the program are detected, they are transformed into an explicit parallel form by
JPT. Currently, JPT generates code for 2 Java parallel platforms: parallel Java
threads and jPVM.



A description of the existing parallel virtual machines for Java is given in
sect. 2. The automatic parallelization of loops in the FPT parallelizer is dis-
cussed in section 3. An operational overview of JPT is given in sect. 4. The code
generation is explained in sect. 5. Finally, experiments and their speedup are
presented sect. 6, after which a conclusion is formulated in sect. 7.

2 Parallel Virtual Machines in Java

In the literature, there are two approaches to develop a Java based Parallel
Virtual Machine: either rewrite PVM in Java[4], or write a Java-interface to the
existing PVM API[7] .

1. jPVM]7] is layered upon the standard distribution of PVM and makes use of
Java’s capability to call functions written in other languages using the Java
Native Interface[5]. JPVM programs use wrappers contained in the class
jPVM to call the native PVM functions, which are written in C.

2. JPVM[4] on the other hand is entirely implemented in Java and uses none
of the original PVM code. JPVM provides an interface similar to the C
interface provided by PVM, but with a syntax and semantics adapted to
Java threads and the Java programming style. Unlike jPVM, JPVM is not
inter-operable with standard PVM. JPVM provides a Java implementation
of the PVM daemon and a communications library. In addition, both tasks
and threads are supported as basic units of parallelism.

In [9] different benchmarks were executed to test the communication perfor-
mance of JPVM, jPVM and PVM. This showed jPVM to be faster than JPVM
and C/PVM to be faster than jPVM. Our JPT is able to generate parallel code
for the jPVM platform.

3 Loop Parallelization

3.1 Data Dependence Analysis

Loops are traditionally areas of implicit parallelism. The parallel execution of
loops is subject to a non-trivial analysis of the loop-carried dependencies. De-
pendency analysis has matured over time and the most important dependence
analysis algorithms have been put into the Fortran parallelizer, FPT[11], the
backbone of JPT. FPT uses techniques derived from Banerjee, Wolfe and the
GCD tests[6], loop boundary calculation and unimodular transformations[11].

By design, the inner data structures and the abstract syntax tree (AST) of
FPT are language independent. As a consequence, the same dependence analysis
can be applied to any language that can be expressed in the FPT syntax tree.
Furthermore, the FPT API offers tools to detect, annotate and retrieve the
parallelism.



3.2 Loop Scheduling

PVM code[11] for the outermost of a nest of parallel loops is obtained by gener-
ating slave programs, which each execute a group of the n iterations as one task.
If there are p slaves, then n/p iterations are assigned to each slave. Besides ini-
tializing the PVM-system and contacting the number of cooperating processors,
for each parallel loop the following code is generated:

— In the prologue, the input data for all the parallel loop is gathered and put
into a single message, which is broadcast to all slave computers. Next the
number of iterations to be executed by each slave is calculated and included
in the message.

— In the execution phase, each slave program unpacks the message and executes
his band of the loop. During this phase there is no communication, because
the inner loop iterations are independent.

— In the epilogue, each slave sends back the results. The master will restore
the received data in the proper locations.

3.3 Data Partitioning

After the dependence analysis, FPT determines the data to be exchanged be-
tween processors by looking for the data references to the left and the right side
of assignment statements in the loop body. However, using this technique with-
out optimization could resolve in unnecessary communication overhead. FPT
uses 2 techniques to reduce the overhead:

1. If consecutive elements of an array have to be sent, then FPT will create
a single pk-call to pack the data, instead of creating a loop in which the
elements are packed one at a time.

2. The references to data in the loop might overlap. When array subscripts are
of the form ai + ¢, ¢ being the loop index and a and ¢ are constants, FPT
identifies overlapping areas and sends them only once.

When a parallel loop is part of a surrounding sequen-

tial loop, then the communication can be further opti- DO i=...
mized by array privatization. This technique is not yet DOALL j=...
implemented, but should work as follows. A parallel loop H(i,3)
nest which is nested inside a sequential loop nest can be ENDDO

formally expressed as in fig. 1. Following sets must be cal- ENDDO
culated to create the messages between master and slaves:

— W(i,7) is the set of all writes in H (i, 7). Fig. 1: A parallel
— R(i,7) is the set of all reads in H(%,7)- loop inside a se-
— WR(i, ) is the set of all reads that read a value created dquential loop

by a write in the same iteration.
— E(i,j) = R(i,j) — WR(i,7) contains all variables and

array elements that can influence the results of the par-

allel j loop.



The data to be sent between iteration ¢ and ¢ + 1 of the sequential loop from
task py to task p, would then be S(i — i+ 1,p1,p2) = Wy, (i) N Ep, (i + 1), with
W, (1) = Ujerpy) Wi, j) and Ep, (i) = U;e(p,) E(i,J) where I(p) is the set of
iterations to be executed by task p.

4 JPT Operational Overview

The conversion of a Java program into an FPT AST and the parallelism extrac-
tion occurs in four steps (see Fig.2):

1. The Java source is parsed using the GNU compiler guavac into a complete
Java-based abstract syntax tree (in this paper further called a Guavac AST).
Since FPT was developed for Fortran, obviously some Java language con-
structs cannot be represented by the abstract syntax tree of FPT. However,
the computation intensive parts, most amenable to parallelization, are rep-
resented similarly in both languages, i.e. by loops and array calculations. As
a consequence, only a part of the Guavac AST is transformed into an FPT
AST.

2. JPT translates the parts in the Guavac AST that are expressible in FPT
and feeds them one by one into the parallelizer of FPT.

3. The resulting parallelized FPT AST is traversed to see which loops were
parallelized by FPT, and the corresponding loops in the Guavac AST are
marked as parallelizable. The FPT parallelizer also generates the messages
to be sent between master and slaves.

4. explicit parallel code is generated from the annotated Guavac AST. Currently
JPT generates parallel code based on
(a) Java threads,

(b) jPVM.

5 Code Generation

JPT transforms the original program into an explicitly parallel PVM program
by replacing each parallel loop by a master loop which calls a number of slaves
and fetches the results.

A separate class is inserted to contain the slave code. This class extends the
JPT.JptPvmSlave class (see Fig. 3(a)) which implements the job scheduling code
common to all slaves. A run method is created in the new class. The loop specific
slave code generated in the next steps will be inserted, in this run method. The
interaction between the master and slaves is as follows:

1. The master spawns the slaves using the method spawn_slaves (see Fig.
3(b)). The spawn_slaves method spawns a new Java Virtual Machine for
each slave, after which it sends the job information to the newly spawned
slaves.



FPT Parallelizer

code parall€elization %
data distribution

FPT AST Parallel FPT AST
A ‘
tranglation paralel pragma’s

2 & (datalayout

parsing 3 e
1 2
i source code generation

sequential Guavac AST 4 =

Java source jPVM code

Parallel Guavac AST

Fig.2. JPT Parsing, Parallelization and Code Generation. The source file is parsed
into an Abstract Syntax Tree by Guavac. The loop nests are forwarded to FPT. After
parallelization by FPT, the parallel loops are annotated in the Guavac AST. Finally,
the code can be generated for different parallel Java platforms.

2. Each JVM will execute one slave. The spawned JVM knows which slave to
execute because the name of the slave class is passed as a command line argu-
ment. The spawned JVM will execute the main method of the JptPvmSlave
class (see Fig. 3(a)). The main method creates an object of the slave class,
and lets the slave execute in a separate thread. When the slave thread stops,
the JVM ends executing. Creating an object of the slave class forces the con-
structor (starting at /* 2 */ in Fig. 3(a)) to be executed. This constructor
receives the job information sent in the spawn_slave method at /* 1 */.
Each task is run in a separate JVM because PVM and therefore jPVM are
not thread-safe (see section 2).

3. After spawning the slaves, the master code packs the sizes of all the arrays
in the parallel loop as well as the input data for all iterations of the loop
into a single message and multicasts it to all slaves.

The slave code (which is put in the run() method) receives this message,
creates the arrays, and executes his band of the loop.

4. The slave sends the output data for that band to the master.

6 Results

The performance of the code generated by JPT was measured using a matrix
multiplication and a Gauss-Jordan linear system solver. The tests were per-
formed on 4 Pentium-II machines interconnected with a 100 Mb/s Ethernet
running Linux as operating system and using JDK 1.1.7 as the Java Virtual
Machine.



package JPT;
import jPVM;

public abstract class JptPvmSlave
implements Runnable
{
public int mytid=-1;
public int parent_tid=-1;
public int nslaves=-1;
public int[] tids;
public int slavenum=-1;
public int band=0;

/* 2: job information is received */
// constructor initializes job
public JptPvmSlave()
{
mytid=jPVM.mytid();
parent_tid=jPVM.parent();

// PUVM -> Java data receive
jPVM.recv(parent_tid,STARTUP_MESG) ;
int[] nslaves_band=new int[2];
jPVM.upkint (nslaves_band,2,1);
nslaves=nslaves_band[0];
band=nslaves_band[1];
tids=new int[nslaves];
jPVM.upkint (tids,nslaves,1);
for(int i=0; i<tids.length; i++)
if (tids[il==mytid) {
slavenum=i;
break;
}
}

// slave entry point

public static void main(String[] args)

throws ClassNotFoundException,
InstantiationException,
IllegalAccessException,
InterruptedException

Class thisClass =
Class.forName (args[0]);
JptPvmSlave thisClassInstance =
(JptPvmSlave)
thisClass.newInstance();
Thread t = new
Thread(thisClassInstance) ;
t.start();
t.join();

(a) The base class JptPvmSlave in

Java package JPT

public static int spawn_slaves
(int[] tids, String slavename, int band)

{

final int nrequested = tids.length;
int mytid = jPVM.mytid();

String[] args=new String[2];
args[0]=slavename;
args[1]=slavename;
// spawn slaves
if (tids.length >
jPVM.spawn("java", args,
jPVM.PvmDataDefault,
"otids))
{
System.err.println(
"in JPT.JptPvmSlave.spawn_slaves"
+"(int[] tids): couldn’t spawn "
+"the number of tasks requested"
)
jPVM.exit();
System.exit (-2);
}

/* 1: Job information is sent */
// Java -> PVM data send
jPVM.initsend (jPVM.PvmDataDefault) ;
int[] ntasks_band=new int[2];
ntasks_band[0]=tids.length;
ntasks_band[1]=band;

jPVM.pkint (ntasks_band,2,1);
jPVM.pkint (tids,tids.length,1);
jPVM.mcast (tids, STARTUP_MESG) ;
return mytid;

(b) The spawn_slaves method

Fig. 3. The JPT package



4 T T T 4 T T —&l
dimension 100 —— e
30

0 —%x—- PP
500 - -% - e T
3 3F ideal ---@--- - -
5 -
a T X
2 e
o 2 2+ i-30%ad -
g -2
n ste

O 1 1 1 O 1 1
100 200 300 400 500 1 2 3 4
Dimension Processors
(a) Comparison between green (b) speedup vs. processors

and native threads

Fig. 4. Speedups of the matrix multiplication algorithm

First the parallelized matrix multiplication algorithm was executed using
"green” threads, i.e. threads scheduled within the Java Virtual machine. In this
implementation the operating system executes the JVM as a whole, and has
no grip on load balancing the individual threads. As a result, some long idle
periods during the inter process communication were observed, affecting the
overall speedup. In a second experiment, native threads where used, i.e. the Java
threads are visible as individual threads to the operating system. This resulted
in a better scheduling and good communication and speedup figures. Figure 4(a)
depicts the speedup difference between native and green threads. Using native
threads, the speedup has been measured for 1 to 4 processors, yielding a fairly
linear speedup for a dimension > 300. (see fig. 4(b)).

We further tested the results on the Gauss-Jordan Elimination algorithm.
We found that the data distribution as calculated by FPT creates excessive data
communication. When this algorithm is transformed using array privatization,
and the data communication is done as resulted form the proposed technique in
sect. 3.3, good speedups were found, as seen in fig. 5.

7 Conclusion

The Java parallelizer JPT facilitates the use of Java in a PVM environment. The
results show that loops can be parallelized using standard techniques embedded
in the open compiler FPT, including data distribution and message coding. Fur-
ther work is aimed at reducing the communication overhead by a sophisticated
array privatization analysis. The speedups obtained indicate that Java is a viable
language for parallel computing in a platform independent PVM-network.



4 T T N
’ . ~
dimension 100 —+— e
dimension 300 — x—- P
dimension 500 - - - _
3 } dimension 800 ---&--- - 4
ideal — & - -
. h
~ .
e _ -
R -7
./ ,—"
~ i o
2 F - 3 - .
./ - - —— ——)
R LT Xm—mm T T T
7 m e
R g ,-',"—;:;’*
1% —_‘;_;.;‘// -
k- T
T,.-/

Fig. 5. Speedup of the optimized Gauss-Jordan linear system solver.

References

[1]

[9]

[10]

[11]

A. J. C. Bik, J. E. Villacis, and D. B. Gannon. javar: a prototype Java restruc-
turing compiler. Concurrency, Pract. Exp. (UK), Concurrency: Practice and Ez-
perience, 9(11):1181-1191, Nov. 1997.

B. Carpenter, G. Zhang, G. Fox, X. Li, and Y. Wen. HPJava: Data parallel
extensions to java. Concurrency: Practice and Ezperience, 10(11-13):873-877,
1998.

E. D’Hollander, F. Zhang, and Q. Wang. The fortran parallel transformer and
its programming environment. Journal of Information Sciences, 106(7):293-317,
July 1998.

A. J. Ferrari. JPVM: Network parallel computing in java. In Proceedings of the
ACM Workshop on Java for High-Performance Network Computing, Mar. 1998.
JavaSoft. Java native interface specification, Nov. 1996. Release 1.1.

K. Psarris. The Banerjee-Wolfe and GCD tests on exact data dependence in-
formation. Journal of Parallel and Distributed Computing, 32(2):119-138, Feb.
1996.

D. Thurman. jPVM. http://www.isye.gatech.edu/chmsr/jPVM/.

K. van Reeuwijk, A. J. van Gemund, and H. J. Sips. Spar: A programming lan-
guage for semi-automatic compilation of parallel programs. Concurrency: Practice
and Ezperience, 9(11):1193-1205, Nov. 1997.

N. Yalamanchilli and W. Cohen. Communication performance of java based par-
allel virtual machines. Concurrency: Practice and Ezperience.

W. M. Yu and A. L. Cox. Java/DSM: a platform for heterogeneous comput-
ing. In Proc. of Java for Computational Science and Engineering—Simulation and
Modeling Conf., pages 1213-1224, June 1997.

F. Zhang. The FPT Parallel Programming Environment. PhD thesis, University
of Ghent, 1996.



