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Abstract

Two features distinguish the Bayesian approach to learning models from data. First, beliefs
derived from background knowledge are used to select a prior probability distribution for
the model parameters. Second, predictions of future observations are made by integrating
the model’s predictions with respect to the posterior parameter distribution obtained by
updating this prior to take account of the data. For neural network models, both these
aspects present difficulties — the prior over network parameters has no obvious relation to

our prior knowledge, and integration over the posterior is computationally very demanding.

I address the first problem by defining classes of prior distributions for network param-
eters that reach sensible limits as the size of the network goes to infinity. In this limit, the
properties of these priors can be elucidated. Some priors converge to Gaussian processes,
in which functions computed by the network may be smooth, Brownian, or fractionally
Brownian. Other priors converge to non-Gaussian stable processes. Interesting effects are

obtained by combining priors of both sorts in networks with more than one hidden layer.

The problem of integrating over the posterior can be solved using Markov chain Monte
Carlo methods. I demonstrate that the hybrid Monte Carlo algorithm, which is based on

dynamical simulation, is superior to methods based on simple random walks.

I use a hybrid Monte Carlo implementation to test the performance of Bayesian neural
network models on several synthetic and real data sets. Good results are obtained on small
data sets when large networks are used in conjunction with priors designed to reach limits
as network size increases, confirming that with Bayesian learning one need not restrict the
complexity of the network based on the size of the data set. A Bayesian approach is also

found to be effective in automatically determining the relevance of inputs.



