The Computational Complexity of

Taxonomic Inference

Radford Neal
December, 1989

McAllester, Given, and Fatima [10] have developed a procedure for infering tax-
onomic relationships between classes defined by predicates and relations. Their
decision procedure runs in O(r?®) time and O(n?) space on a sequential random-
access machine (RAM). I have investigated the computational complexity of this
inference problem with a view to seeing whether faster sequential algorithms or
good parallel algorithms might be found.

A restricted form of the taxonomic inference task of McAllester, et al, which I
will call tazonomic closure, can be seen as a generalization of congruence closure,
which has been investigated by Kozen [6], Nelson and Oppen [11], and Downey,
Sethi, and Tarjan [4]. 1 will show that the decision problems corresponding to
both taxonomic closure and congruence closure are P-complete, even if terms
are restricted to contain only monadic function applications. Thus these prob-
lems probably cannot be efficiently parallelized. 1 also show that the monadic
taxonomic closure decision problem is complete for two-way non-deterministic
pushdown automata (2NPDA) — a problem class for which the best known al-
gorithm takes O(n?) time on a sequential RAM.

The negative implications of these results for taxonomic and congruence closure
apply to the more powerful taxonomic inference system of McAllester, et al, and
to the later extension of this system to “Montague literals” by McAllester and
Givan [9]. T will discuss the significance of these results for engineering applica-
tions and for McAllester and Givan’s speculation that the decision procedure for
Montague literals might explain some aspects of natural language.

A Taxonomic Inference System

The system for taxonomic inference that I will discuss is a subset of a more
general system of inference for “taxonomic literals” described by McAllester, et

al [10]. Their system permits statements that one set is included in another, that
two sets have a non-null intersection, that a set is non-empty, and that a set
contains no more than one element, as well as the negations of such statements.
The system I will describe allows only positive assertions that one set is included
in another.

This taxonomic inference system deals with a set of predicates on one argument,
and a set of relations between two or more arguments. Rather than apply these
predicates and relations to individual items, a predicate symbol is used to repre-
sent the set of items for which the predicate is true, and the symbol for a relation
between n items is used to represent the function that takes n — 1 sets as argu-
ments and returns the set of all items that are so related to some items taken
from the argument sets. Sentences in the system assert that one set defined in
this fashion is contained in another such set.

For example, given the predicates Poor, Rock, and Hardplace, and the relation
Between, the sentence

Poor C Between(Rock, Hardplace)

asserts that all the poor are between a rock and a hardplace, or in standard
predicate calculus

(Va) Poor(xz) = (Ju,v) Rock(u) & Hardplace(v) & Between(u,v,x)

More formally, a term is either one of a set of predicate symbols, P;, or it is one of
a set of relation symbols, R;, say of arity n, applied to the terms aq,...,a,_1 as
arguments, written as R;(a1,...,a,-1). A sentence is of the form a C 3, where
«a and [are terms.

An interpretation consists of a domain, D, an assignment of a set P, C D to
each predicate symbol F;, and an assignment of a relation R; C D™ to each n-ary
relation symbol, R;. Given an interpretation, each term « is assigned a subset of
the domain by the function /(«), defined recursively as follows:

o I(P)=P,

o [(Ri(ar,...,an—1)) =1 2| (Fug,...,up_1) A
u € o) & -+ & upy € Iap1) & Ri(ur, .. upeg,) }

A sentence @ C [is true under an interpretation if and only if I(a) C I(5).
A set of sentences ¥ entails a sentence ¢, written ¥ F ¢, if and only if for all
interpretations under which the sentences of ¥ are true, the sentence ¢ is true as
well.

We can deriwve sentences from other sentences via the following inference rules:
1) oy C B, ag €y, o+ — Rlan,as,...) € R(By,Pa,...)
2) aC B, BCy - alxy
3) 5 aCa

Here, «, 3, v, aq, (1, etc. represent any terms, and R is any relation symbol
of the appropriate arity. Inference rule (1) says that if one set is included in
another, then the set of things related to the first set is included in the set of
things related to the second. For example, from the fact that all surgeons are
doctors, one can infer that all children of surgeons are children of doctors. Rules
(2) and (3) simply state that set inclusion is transitive and reflexive.

Define ¥ F € to mean that the sentence ¢ can be derived from the sentences in X
by applying the above rules of inference — i.e. there is a sequence of sentences (a
proof), (1,(a,...,(m = &, such that each (; is either in ¥ or follows from earlier
sentences via some rule of inference, (,,, (p,, ... — ¢, with p1,pa, ... <.

These inference rules are semantically sound and complete with respect to the
entailment relation:

Theorem 1 For any set of sentences X and any sentence £, ¥ F & if and only
if Y&

This theorem is proved in the appendix. McAllester, et al prove the refutation
completeness of their more general system, from which the full completeness of
this system can also be deduced.

This inference system can be given semantics unrelated to that of taxomomic re-
lations. For example, “predicates” might be real numbers, “relations” be mono-
tonically non-decreasing real functions, and “C” be “<” applied to real numbers.

A Fundamental Theorem

A decision procedure for the taxonomic inference system developed here is made
possible by a theorem limiting the class of sentences that need be considered when
searching for a proof. This theorem has an analogue in the system of McAllester,
et al, where it is proved via a semantic argument. Here, I will give a syntactic
proof of the theorem for the restricted system.

This fundamental theorem states that if a sentence can be proved from a set
of premises, then there is a proof in which only terms that are relevant to the

conclusion or premises occur. A term is relevant to a set of sentences, A, if it
occurs as a term or sub-term in a sentence in A. For example, the terms relevant

to { R(P,Q), R(R(P,P),P)} are P, Q, R(P,Q), R(P,P), and R(R(P, P), P).

Theorem 2 For any set of sentences X2 and any sentence &, if ¥ = & then there
is a proof of & in which only terms that are relevant to ¥ U {¢} occur.

Proof By duplicating or removing sentences, any proof can be converted to
a “tree-like” proof in which each sentence (other than the conclusion) is used
to justify exactly one later sentence. 1 will show how any tree-like proof of
Y F ¢ that contains terms not relevant to ¥ U {{} can be transformed into
another tree-like proof with fewer occurences of the largest irrelevant term, while
adding only smaller irrelevant terms. Repeated application of this procedure
must progressively eliminate all irrelevant terms, in order of diminishing size.

Let ag C By be the last sentence in the tree-like proof of ¥ ¢ that is derived
from premises containing the largest irrelevant term, and note that oy and g
do not themselves contain this term. This sentence cannot be derived via rule
(3), since that inference rule has no premises. Neither can it be derived via rule
(1), since the conclusion of that rule contains terms that are larger, and just as
irrelevant, as those in its premises. Therefore, ag C [y must be derived from
ap € 6 and 6 C [y via rule (2), with 6 being the largest irrelevant term in the
proof.

Following the chains of inference backward, ag C 6 and 6 C [y will have been
derived by chains of zero or more applications of rule (2), of the form

aogalg"'ganQ(S; 5§Bm§"'gﬂlgﬁo

The sentences a,, C 6 and 6 C 3,, cannot be in X, since ¢ is an irrelevant term. If
either of these sentences is derived via rule (3), it is redundant and can be removed
from the chain. Since applications of rule (2) have already been accounted for,
this leaves both a,, C 6 and 6 C f3,,, as consequences of rule (1), which means that
an, 6, and B3, must have the forms R(ay, ag,...), B(61,8,...), and R(B1,Ba,...)
respectively, and the sentences a; C 61, 61 C b1, @y C 63, 6, C B, ete. must
appear earlier in the proof.

A tree-like proof of ¥ - ¢ without the occurences of 6 can now be obtained. The
sentence @; C B; can be introduced, justified by rule (2) applied to a; C &
and 6; C fBy. Similarly, introduce @ C f,, etc. These allow the sentence
R(ay,ay,...) C R(B1, Ba,...), which is the same thing as a, C B, to be in-
troduced via rule (1). The sentence ag C g can now be derived by the chain

aogalg"'gangﬂmg”'gﬁlgﬂo

Finally, we delete the sentences a,, C 6 and 6 C 3,, — they are no longer needed
here, and neither are they required elsewhere, since the previous proof was tree-
like. This deletion makes the new proof tree-like as well.

The new proof has two less occurences of 6, which was the largest irrelevant term
in the old proof. New occurences of the &; and f; have been introduced, but if
these are irrelevant, they must be smaller than 6. Repeated application of this
procedure will therefore eliminate first all the largest irrelevent terms, then all
the next largest, etc. until all terms not relevant to X U{¢} have been eliminated.

This theorem is applied in the next section.

The Taxonomic Closure Problem

McAllester, et al give a decision procedure for their “taxonomic literals” that
runs in O(N?) time on a sequential RAM. The less expressive system described
here likewise has a cubic time decision procedure, and like that of McAllester, et
al it involves finding the closure of a set of axioms under the inference rules.

The closure problem can be formulated as follows. Given a set, ¥, of axiomatic
sentences, and a set, (), of query terms, the tazonomic closure of ¥ with () is the
set of all sentences that can be derived from ¥ via the taxonomic inference rules
using only terms that occur as terms or sub-terms in ¥ or (). By theorem (2),
this is also the set of all sentences built from such terms that can be derived from

X

Theorem 3 The tazonomic closure problem can be solved in O(n®) time and
O(n?) space on a sequential RAM, where n is the length of the input (an encoding
of the azioms and query terms)'.

Proof The following algorithm finds the taxonomic closure of ¥ with Q:

1) Create a table, T', that for each sentence built from terms that occur in
¥ or () records whether that sentence has been derived from . Initialize

!The length of the input can be taken to be proportional to the number of predicate and
relation symbols, in which case the O(n?) time bound applies when elementary operations are
assumed to take constant time. Alternatively, the encoding of a symbol can be assumed to
require logn space, in which case the theorem holds when elementary operations take time
logarithmic in the operand size.

all entries in 7" to false.

2) Set the entry in 7" to true for each sentence in ¥ and for each sentence
that can be derived via rule (3). Whenever an entry for a sentence (is set
to true when it was previously false, find all sentences that can then be
derived via inference rules for which (is a premise, and set their entries
in T' to true as well, recursively applying this condition.

3) When step (2) terminates, the table T' represents the taxonomic closure

of ¥ with Q).

O(n) terms are relevent to ¥ or occur in). These terms form O(n?) sentences,
and hence this algorithm changes at most O(n?) entries in 7' from false to true.
For each such change, a search for inferences that become possible must be made.
O(n) time suffices to find all new inferences via rule (2), contributing at most
O(n?) to the total time for the algorithm. Inferences via rule (1) can be detected
by maintaining a count of premises remaining to be derived for each possible
conclusion, decrementing these counts as premises are found to be true, and
noticing when the count reaches zero. The sum of the initial count values can
be at most O(n?), which limits the time spent in this operation. The total time
required is thus O(r?), while the space required is just the O(n?) needed for T,
the up to O(n?) for the counts, and O(n?) for various list structures needed to
implement the above operations in the requisite time. H

The tazonomic closure decision problem asks whether a sentence a C 3 is in the
taxonomic closure of ¥ with {a, 8} — i.e. whether @ C 3 can be derived from the
sentences of Y. This problem can be solved by first computing the full taxonomic
closure and then checking whether it contains o C 3. I know of no method that
is substantially better than this in the worst case.

The Congruence Closure Problem

The congruence closure problem, studied by Kozen [6], Nelson and Oppen [11],
and Downey, Sethi, and Tarjan [4], is the analogue of the taxonomic closure
problem with an equality relation (=) rather than a partial order (C). The
syntax of terms is identical, but the symbols are typically seen as representing
arbitrary constants and functions rather than predicates and relations.

The inference rules used for congruence closure are the following:
1) ay = /317 Qg = 527 B R(aha?a e) = R(ﬂhﬂ?v e)
2) a=f, =7 = a=1

3) > a=a«
a=p— =«

These are entirely analogous to the taxonomic inference rules except for the
addition of rule (4).

The following theorem states that congruence closure can be reduced to taxo-
nomic closure:

Theorem 4 If a congruence sentence (&~ can be derived via the congruence clo-
sure inference rules from a set of congruence sentences Y—, then the taronomic
sentences {c and &5 can be derived via the taronomic closure inference rules from
the taxonomic sentences Yic U X5. Here (c represents (= with = replaced by C
and (5 represents (= with = replaced by C and the operands exchanged.

Proof 1If (_ can be derived from 91,92, ... via congrence closure rules (1),
(2), or (3), then both (c and (5 can be derived from J¢,9%,... and 94,93, ...
via the analogous taxonomic closure inference rules. Furthermore, any inference
via congruence closure rule (4) becomes a null inference when the congruence
sentences are each mapped into a pair of taxonomic sentences. The theorem then
follows by induction on the length of the derivation. l

Note that this reduction can be carried out in linear time with a fixed amount of
work space. Congruence closure can thus be solved in O(r?) time by applying the
taxonomic closure algorithm. Downey, Sethi, and Tarjan [4] give a much better
algorithm, however, which runs in O(nlogn) time. Of more significance is that
negative results for congruence closure apply to taxonomic closure as well.

P-Completeness of Monadic Congruence Closure

The congruence closure decision problem was shown to be log-space complete for
P by Kozen? [6]. I will here extend this result to the monadic congruence closure
decision problem, in which only function applications with a single argument are
permitted. It follows that congruence closure, taxonomic closure, the taxonomic
inference system of McAllester, et al [10], and the problem of inference with
“Montague literals” of McAllester and Givan [9] are all P-complete, even if only
monadic function application is permitted (as is always the case with Montague
literals).

21t was seen by him as “the word problem for a finitely-presented algebra”

Theorem 5 The monadic congruence closure decision problem is complete for
P under log-space reductions.

Proof [will show how to reduce the circuit value problem to monadic congru-
ence closure. The circuit value problem was shown to be log-space complete for

P by Ladner [7].
Input for the circuit value problem consists of the following:
o A list of input signals, numbered 1,2, ..., each with a Boolean value.

o A list of gates, numbered ¢ + 1,2 4+ 2,..., 0, giving the type of each gate
(AND, OR, or NOT) and the numbers of the gate’s input signals (which
must precede it). The gate’s output signal is represented by the gate
number.

The problem is to determine whether the output of the last gate, o, is true or
false.

An instance of the circuit value problem can be reduced to an instance of the
monadic congruence closure decision problem using constants 7" and F' to rep-
resent “true” and “false”, a set of constants V; to represent the values of the
signals, a set of monadic functions AND; whose values will be the AND of their
argument with V;, a set of monadic functions OR; whose values will be the OR
of their argument with V;, and a monadic function NOT,

The reduction is performed as follows:

1) For each input signal, j, output either the sentence V; = 7' or the sentence
V; = F', expressing whether input j is true or false.

2) For each NOT gate, k, with input [/, output the sentence V, = NOT'(V}).

3) For each AND gate, k, with inputs [and r, output the sentence Vj =

AND(V;).
4) For each OR gate, k, with inputs [and r, output the sentence V; =
OR(V}).
5) For each input signal or gate of any type, with number k, output the
sentences
ANDy(F)=F
ANDy(T) =V,
ORp(F) =1V,

ORW(T) =T
Also output the sentences NOT(1') = F and NOT(F)=T.

6) As the query for the monadic congruence closure problem, ask whether
V, =T can be derived from the above sentences.

One can easily verify that the sentences output are consistent with the intended
meanings of V;, AND;, etc. and that the value of V, can always be derived from
these premises. The query therefore will be satisfied if and only if the output, o,
of the circuit is true. One can also easily see that the reduction requires at most
logarithmic work space.

As is discussed later, a consequence of this result is that probably none of the
inference systems discussed in this paper can be efficiently parallelized.

Completeness of Monadic Taxonomic Closure for 2NPDA

In this section I will show a relationship between monadic taxonomic closure and
the problem of simulating pushdown automata, thereby shedding some light on
the computational difficulty of taxonomic inference.

A two-way nondeterministic pushdown automaton (2NPDA) consists of a read-
only input tape with a head that can move forward and backward, a pushdown
stack holding symbols from some finite alphabet, and a control unit with a finite
number of states. The operation of the 2NPDA is defined by a set of permitted
transitions. Each transition applies when the control unit is in a particular state,
the tape head is scanning a particular input symbol, and a particular symbol is
on top of the stack. The transition specifies the new state of the control unit and
whether to leave the tape head unmoved, move it one cell to the left, or move it
one cell to the right. A push transition also specifies a symbol to be pushed onto
the stack, while a pop transition specifies that the symbol on top of the stack is
to be removed.

The 2NPDA is applied to an input string by placing the string on the input tape,
with delimiter symbols at both ends, positioning the input tape head at the
beginning, setting the stack to contain only the special symbol Z, and starting
the control unit in state gg. The 2NPDA accepts the input if there is some
sequence of permitted transitions from this initial configuration that lead to the
symbol Z being popped off the stack. Without loss of generality, I will assume
that this can occur only when the input head is at the start of the tape and the
control unit is in state ¢;.

Theorem 6 The problem of whether a particular 2NPDA accepts a given input of
length n can be reduced to an instance of the monadic taxonomic closure decision
problem of length O(nlogn) using only O(nlogn) time on a sequential RAM.

Proof Operation of the 2NPDA on a given input will be simulated by a monadic

taxonomic closure problem involving predicate symbols Q% and relation symbols

J
Sk. The intended interpretations of these symbols are as follows:

Q; The singleton set consisting of the pair (¢, 7) with ¢ representing an input
head position and j representing a state of the control unit.

N

Sk The relation consisting of all tuples < (z,7), (¢/,j') > such that if the
2NPDA were started with the input head at location 2 and the control
unit in state j, with & on the top of the stack, it might, by following
permitted transitions, pop the symbol & off the stack while leaving the
input head at position ' and entering state 3.

The term Sk(Q;) will consequently be interpreted as the set of all pairs, (¢, '),
such that if the 2NPDA were started on the given input with the head at position
t, the control unit in state 7, and the stack containing k, it might eventually pop
k off the stack with the head at position " and the control unit in state j'.

The reduction is performed as follows. For every possible position, 7, of the input
head (0 <7 < n+1) and for every control unit state, j, and top-of-stack symbol,
k, determine which transitions are permitted for the given input string. For every
permitted push transition, output the sentence

Sk(Sw Q%)) € k(@)

where ¢’ is the new input head position (either ¢ — 1, 7, or 2 + 1), j' is the new
state of the control unit, and &’ is the symbol pushed onto the stack. For every
permitted pop transition, output the sentence

Qy C Sk(@5)
where 7’ and j’ are as above. Finally, as the query, ask whether the sentence

Sf C SZ(QSO) can be derived from these premises.

For each input head position, this procedure outputs a bounded number of sen-
tences. Each sentence contains occurrences of the symbols Q;, whose number is
proportional to n. These symbols can be encoded in log n space and time, lead-
ing to O(nlogn) bounds for the total size of the output and for the total time
required.

10

It is left as an excercise for the reader to verify that the sentences are valid for the
intended interpretation and that they are sufficient to allow all execution paths

of the 2NPDA to be inferred. B

The above theorem shows, for example, that if the monadic taxonomic closure
decision problem, or any of the more general taxonomic inference problems, could
be solved in O(n?) time on a RAM, then any language recognizable by a 2NPDA
could be recognized in O(n?log®n) time on a RAM.

A converse theorem also holds:

Theorem 7 The monadic taronomic closure decision problem can be solved by

a 2NPDA.

Proof Any proof of a sentence @ C [from premises ¥ using the taxonomic
inference rules (1), (2), and (3) can be converted to a chain of the form

a=k CkryC...Cky1 Ck, =0

where each k; is obtained from k;_; by substituting the term 6 for some occurrence
of the sub-term v, with the sentence v C 6 being in . These substitutions can
be justified by repeated application of inference rule (1). In the case of monadic
taxonomic sentences, substitutions will be of the form

Ry...RiRiy,...R,P - Ry...RiR,,,...R, P

where the sentence Ry ... R, P C R, ... R P'isin ¥. Here, the R; and R;
are relation symbols, while P and P’ are predicate symbols. I have omitted

parentheses from the monadic applications, as I assume will also be the case with

the input for the 2NPDA.

Using these observations, the following procedure can determine whether the
query a C 3 follows from premises X:

1) Locate « in the input and push its symbols onto the stack in order. This
leaves the predicate at the end of the term on top of the stack.

2) Scan all the premises looking for any of the form v C ¢ with v matching
the top portion of the stack. If there is more than one such premise,
nondeterministically choose one. If there is no such premise, then do not
continue the computation.

3) Replace the portion of the stack matching v with ¢.

4) Locate 3 in the input and determine whether it is the same as the contents

11

of the stack. If so, accept the input. Otherwise, go back to step (2).

It is clear that one of the computations nondeterministically specified by the
above procedure will accept the input if and only if the query follows from the
premises. Furthermore, the procedure can be implemented on a 2NPDA. The
only tricky parts are the checks for whether the stack contents match a sub-
string of the input. These can be implemented by popping off stack elements as
the sub-string is scanned, and restoring them from the sub-string itself when a
mis-match is found or the end of the sub-string is reached. W

Since the best known algorithm for simulating a 2NPDA requires O(r?) time [1],
the above result does not, unfortunately, provide any improvement on theorem

(3).
The above two theorems can be strengthened, though the result is perhaps mostly
of interest from the viewpoint of automata theory. The stronger result is that a

particular encoding of the monadic taxonomic closure decision problem is com-
plete for the class of languages recognizable by a 2NPDA.

The appropriate reductions for this class are homomorphic mappings, in which
each symbol of the input is mapped to a sequence of output symbols indepen-
dently of the context in which the symbol occurs. To permit such a context-
independent mapping, it will be necessary to use a relative encoding of the taxo-
nomic closure predicate symbols. The obvious method of encoding a potentially
unbounded number of symbols (assumed above) is via some absolute number-
ing scheme. Input for an instance of the taxonomic closure problem might look
like the following, for instance, with all but the predicate symbols replaced with
ellipses:

CPY. Q5. Pt QY. Q... P?...

Here, P and @) are two symbol bases from which symbols are built by appending
indexes.

With relative encoding, an symbol’s index is specified by giving its offset from
the index of the preceding symbol, expressed via a series of “+”7 or “—” symbols.
The index zero is taken as the starting point at the beginning of the input. The
above example would be relatively encoded as follows:

CPY L QYT P Q.. 0. P

Theorem 8 The monadic tazonomic closure decision problem with relative en-
coding of predicate symbols is complete under homomorphic reductions for the

12

class of languages recognizable by a 2NPDA.

Proof The reduction used for theorem (6) will be adapted, with the symbols Q;
being relatively encoded with respect to 7, the (); being taken as symbol bases.

The premises associated with head position ¢ will be output as a group, in order
of increasing . The preceding output will have been such that the last predicate
symbol preceding the group will have had index 2, allowing the premises to be in-
dependent of preceding context. Following each group of premises, some number
of innocuous reflexive sentences of the form Q;" C @; will be output to ensure
that the predicate symbol index is set to ¢ + 1 for the next group. The query will
be output at the beginning, as part of the group for head position 0.

With this scheme, the set of sentences output for group ¢ does not, in fact, depend
on 7 itself, but only on the input symbol located at position : — i.e. the mapping
is homomorphic.

It is also necessary to show that the problem can be solved by a 2NPDA when
relative encoding is used. The algorithm of theorem (7) can still be applied,
with the modification that the term held on the stack must be represented in the
form in which it would appear at the point in the input where the read head is
currently located. Whenever the 2NPDA scans forward over a “4+” or backward
over a “—” (other than temporarily as part of a comparison operation), a “+7 is

“—" is pushed on if no “+”

“w_»

removed from the top of stack if one is present, or a
is present. The reverse is done when scanning forward over a
over a “+7. I

or backward

Since homomorphic mappings can be embedded in the finite control of an auto-
maton®, this theorem allows one to conclude, for example, that if the monadic
taxonomic closure decision problem with relative encoding could be solved by a
two-way deterministic pushdown automaton (2DPDA), then all languages recog-

nized by a 2NPDA could be recognized by a 2DPDA as well.
Finally, the following result can be obtained:

Theorem 9 The problem of whether a particular 2DPDA accepts a given input
of length n can be reduced to an instance of the monadic congruence closure
decision problem of length O(nlogn) using only O(nlogn) time on a sequential
RAM.

Proof A reduction entirely analogous to that for theorem (6) is performed,
except that the sentences output assert set equality rather than set containment.

3See [5] p. 61, where this is done for finite automata.

13

This is valid, since a deterministic pushdown automaton can have at most one
permitted transition for a given combination of state, head position, and stack

symbol. W

A linear-time algorithm for simulating a 2DPDA was found by Cook [3], so the
above theorem does not improve on known results. It would be interesting to
know whether an analogue of theorem (7) holds — i.e. whether monadic congru-
ence closure can be solved by a 2DPDA.

Discussion

The class NC of problems solvable in polylogarithmic (O(log*n)) time using a
polynomial number of processors is often taken as defining the set of efficiently
parallelizable computations [12]. It is known that problems that are log-space
complete for P are not in NC unless all problems in P are in NC [2], which is
thought to be unlikely. The P-completeness of monadic congruence closure thus
makes it unlikely that any of the inference systems discussed in this paper have
efficient parallel decision algorithms.

From an engineering viewpoint, this result poses problems for any attempt to use
taxonomic inference in a system of “common sense” reasoning, where the size of
the knowledge base would be enormous. Even in the more restricted domain of
mathematical theorem proving [8], the “lemma library” could become very large.

There may, of course, be many applications in which the current O(n?) sequential
algorithm is adequate, and more that would be feasible if an improved sequential
algorithm were found. Theorem (6) shows that significant progress here would
also produce a better algorithm for simulating a 2NPDA. The reader is free to take
this either as an additional motive to work on the problem, or as evidence that
there may be no solution, since the O(rn*) 2NPDA simulation of Aho, Hopcroft,
and Ullmann [1] has apparently not been improved on since 1968. In this con-
nection, one should note that all context free languages can be recognized by a
2NPDA. Context-free language recognition has been intensively studied, with the
best general algorithm found being that of Valiant [13], which requires the same
time as matrix multiplication.

It could be argued that the worst-case approach to the analysis of these inference
systems is overly pessimistic for many applications. One might also consider the
real problem to be maintenance of an incrementally-built knowledge base in a
form permitting fast response to queries. A straightforward adaptation of the
algorithm of theorem (3), for example, allows queries of size ¢ to be answered in

14

O(p*q+ pq* + ¢°) time, where p is the size of the premises, after a pre-processing
stage requiring O(p®) time.

McAllester and Givan [9] show how the O(r®) taxonomic inference procedure
of [10] can be extended to encompass sentences built from “Montague literals”
that correspond to certain English sentences typified by “every man loves some
woman”. They argue that the existence of this inference procedure may provide
a functional explanation for this syntactic feature of English.

Sentences built from Montague literals are more expressive than monadic congru-
ence closure, however, and hence the inference procedure for them is P-complete.
The fact that neurons interact at time scales of a few milliseconds and apparently
compute relatively simple functions internally leads one to expect a cognitively
plausible inference system to be parallelizable. In [8], McAllester notes that con-
gruence closure is indeed capable of “superhuman” inferences, and proposes a
weaker scheme for inference about equality that is both more parallelizable and
more of a match for human performance. An inference procedure for Montague
literals that shared these characteristics would be of interest.

Acknowledgement

I thank Charles Elkan for introducing me to the work of McAllester, et al and
for many helpful discussions.

References

[1] Aho, A. V., Hopcroft, J. E, and Ullmann, J. D. (1968) Time and tape
complexity of pushdown automaton languages, Information and Control,

vol. 13 no. 3, pp. 186-206.

[2] Borodin, A. (1977) On relating time and space to size and depth, SIAM
Journal of Computing, vol. 6 no. 4 (December 1977), pp. 733-744.

[3] Cook, S. A. (1971) Linear time simulation of deterministic two-way push-
down automata, Proceedings of the 1971 IFIP Congress, pp. 75-80.

[4] Downey, P. J., Sethi, R. and Tarjan, R. E. (1980) Variations on the common
sub-expression problem, Journal of the ACM, vol. 27 no. 4 (October 1980),
pp- 758-771.

[5] Hopcroft, J. E. and Ullman, J. D. (1979) Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley.

15

[6] Kozen, D. (1977) Complexity of finitely presented algebras, Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, Boulder, Col-
orado (May 1977), pp. 164-177.

[7] Ladner, R. E. (1975) The circuit value problem is log space complete for P,
SIGACT News, vol. 7 no. 1 (January 1975), pp. 18-20.

[8] McAllester, D. (1989) ONTIC: A Knowledge Representation System for
Mathematics.

[9] McAllester, D. and Givan, B. (1989) Natural language syntax and first order
inference, Massachusetts Institute of Technology Al memo no. 1176.

[10] McAllester, D., Givan, B. and Fatima, T. (1989) Taxonomic syntax for first
order inference, Proceeding of the First International Conference on Princi-
ples of Knowledge Representation and Reasoning, pp. 289-300.

[11] Nelson, G. and Oppen, D. C. (1980) Fast decision procedures based on con-
gruence closure. Journal of the ACM, vol. 27 no. 2 (April 1980), pp. 356-364.

[12] Pippenger, N. ?

[13] Valiant, L. (1975) General context-free recognition in less than cubic time,
Journal of Computer and System Science, vol. 10 no. 2 (April 1975), pp.
308-315.

Appendix — Proof of Soundness and Completeness

The following theorem, asserting that the taxonomic inference system is seman-
tically sound and complete, was stated earlier:

Theorem 1 For any set of sentences X and any sentence £, ¥ F & if and only
if Y&

Proof For each of the inference rules, one can verify that if the premises of the
rule are true under some interpretation, then the conclusion is also true. This is
easily seen for rules (2) and (3). Looking at rule (1), for any @ € I[(R(o, az,...))
there must exist uy, usy, ... for which fx’(ul, U, ..., x) and uy € [(aq), uy € I(ag),
etc. If the premises of rule (1) are true, it will also be that uy € I(f), uz € 1(532),
etc. and hence @ € I(R(f1, 2, .. .), showing that the conclusion of the rule is true
as well.

It ¥ = £, it follows by induction on the length of the proof that if the sentences of
Y are true under an interpretation, then ¢ is also true under that interpretation

16

— i.e. that ¥ F £. Thus the inference rules are sound.

To prove completeness, an interpretation, My, will be constructed under which
all sentences in ¥ are true. By the definition of entailment, if ¥ F £, then £ must
also true under My, and the construction of My will be such that this in turn

implies ¥ F €.
The interpretation My, is defined as follows:

o Let the domain of My, D, be the set of terms built from the predicate
symbols, F;, and relation symbols, R;.

e For each predicate symbol, F;, let
P={XeD|SFACP}

e For each relation symbol, R;, of arity n, let
Ri={<ki....hipi,A\>€D" | SFXCRi(ky,...,6n1)}

Under this interpretation, /(o) = { A\ | X F XA C a }, for any term a. This can
be seen by induction. The statement obviously holds for terms that are simply
predicate symbols. Furthermore, if the statement holds for terms aq,..., a,_1
then for any A:

A S](R(O[l,ag,...)) = (3/617/327"') 131 €](al) & /32 S](0[2) &
& R(B1, Ba,..., N
= (EIﬂhﬁg,...) El—ﬁlgal&ﬂl—ﬁggag&
& S FAXCR(B,Ba,..)
= Yk R(ﬂhﬂg,...) g R(ozl,al,...)
& X FACR(B,Ba,...)
= El_)\gR(Oél,OZQ,...)

where the last two implications apply inference rules (1) and (2), respectively. In
the other direction:

YEFACRo,00,...)=YXFa Ca & EFaaCan & -
&YFANCR(ag,a,...)
= o €l(ar) Lagel(ay) & ---
&]%(0517012,...7)\)
= X e I(R(ar,az,...))

where here use has been made of inference rule (3). Hence, for all o, I(a) =

{(AZFACal.

17

Any sentence o C 3 that is in X is now seen to be true under My, since A € I(«)
implies that ¥ - A C «, which due to inference rule (2) implies that ¥ - A C 3,
and finally A € I(3). Furthermore any sentence o C /3 that is true under My can
be derived from ¥, since by rule (3) ¥ F o C «, hence a € I(a), then a € (/)
by the definition of truth, and finally ¥ - o C £.

These two statements imply the desired result: If ¥ F ¢, then ¢ is true under all
interpretations for which the sentences of ¥ are true, hence ¢ is true under My,

and therefore ¥ - ¢.

18

