Technical Report No. 9722, Department of Statistics, University of Toronto

Markov Chain Monte Carlo Methods Based on
‘Slicing’ the Density Function

Radford M. Neal

Department of Statistics and Department of Computer Science
University of Toronto, Toronto, Ontario, Canada
http://www.cs.utoronto.ca/~radford/
radford@stat.utoronto.ca

18 November 1997

Abstract. One way to sample from a distribution is to sample uniformly from the region
under the plot of its density function. A Markov chain that converges to this uniform
distribution can be constructed by alternating uniform sampling in the vertical direction
with uniform sampling from the horizontal ‘slice’ defined by the current vertical position.
Variations on such ‘slice sampling’ methods can easily be implemented for univariate dis-
tributions, and can be used to sample from a multivariate distribution by updating each
variable in turn. This approach is often easier to implement than Gibbs sampling, and
may be more efficient than easily-constructed versions of the Metropolis algorithm. Slice
sampling is therefore attractive in routine Markov chain Monte Carlo applications, and for
use by software that automatically generates a Markov chain sampler from a model specifi-
cation. One can also easily devise overrelaxed versions of slice sampling, which sometimes
greatly improve sampling efficiency by suppressing random walk behaviour. Random walks
can also be avoided in some slice sampling schemes that simultaneously update all variables.

1 Introduction

Markov chain methods such as Gibbs sampling (Gelfand and Smith 1990) and the Metropo-
lis algorithm (Metropolis, et al 1953, Hastings 1970) can be used to sample from many
of the complex, multivariate distributions encountered in statistics (see, for example, the
book edited by Gilks, Richardson, and Spiegelhalter (1996)). However, to implement Gibbs
sampling, one may need to devise methods for sampling from non-standard univariate dis-
tributions, and to use the Metropolis algorithm, one must find an appropriate ‘proposal’
distribution that will lead to efficient sampling. The need for such special tailoring limits the
routine use of these methods, and inhibits the development of software that automatically
constructs Markov chain samplers from model specifications.

In this paper, I describe a class of ‘slice sampling’ methods that can be applied to a
wide variety of distributions, without the special programming that may be required to use

Gibbs sampling, and with less parameter tuning than is needed for other common Markov
chain methods. These methods originate with the observation that one can sample from
a univariate distribution by sampling points uniformly from the region under the curve
of its density function, and then looking only at the horizontal coordinates of the sample
points. A Markov chain that converges to this uniform distribution can be constructed
by alternately sampling uniformly from the vertical interval defined by the density at the
current point, and from the union of intervals that constitutes the horizontal ‘slice’ though
the density that the point chosen from this vertical interval defines. If this last step is still
difficult, one may substitute some other update that leaves the uniform distribution over
the current slice invariant. To sample from a multivariate distribution, such single-variable
slice sampling updates can be applied to each variable in turn, as is done in Gibbs sampling
and some Metropolis methods.

Though simple and widely applicable, these single-variable slice sampling methods share
with Gibbs sampling and simple forms of the Metropolis algorithm the disadvantage that
they explore the distribution by means of an inefficient random walk. Large gains in sam-
pling efficiency can often be produced by using Hybrid Monte Carlo or other dynamical
methods (Duane, Kennedy, Pendleton, and Roweth 1987; Horowitz 1991; Neal 1994; and
for reviews from a more statistical perspective, Neal 1993, 1996). The benefits of ran-
dom walk suppression are analysed in some simple contexts by Diaconis, Holmes, and Neal
(1997). For some distributions, such benefits can also be obtained by using an overrelaxation
method (Adler 1981; Barone and Frigessi 1990; Green and Han 1992; Neal 1995). Dynami-
cal and overrelaxation methods are not always easy to apply, however. Use of Markov chain
samplers that avoid random walks would be assisted by the development of methods that
require less special programming and parameter tuning.

Two approaches to random walk suppression based on slice sampling are discussed in this
paper. First, I show how one can implement an overrelaxed version of the single-variable slice
sampling scheme. This may provide the benefits of Adler’s (1981) Gaussian overrelaxation
method for more general distributions. I also describe slice sampling analogues of dynamical
methods, which move around a multi-variable slice using a stepping procedure that proceeds
consistently in one direction while reflecting off the slice boundaries. Although these more
elaborate slice sampling methods require more tuning than the single-variable slice sampling
schemes, they may still be easier to apply than alternative methods that avoid random walks,
and hence are also candidates for routine or automated usage.

2 The idea of slice sampling

Suppose we wish to sample from a distribution over some subset of ", with density func-
tion proportional to some function f(z). We can do this by sampling uniformly from the
n+1 dimensional region that lies under the plot of f(z). This idea can be formalized by
introducing an auxiliary real variable, y, and defining a joint distribution over z and y that
is uniform over the region U = {(z,y) : 0 <y < f(z)} below the curve defined by f(z).

That is, the joint density for (z,y) is

o B 1/7Z if0<y< f(z)
pey) = { 0 otherwise (1)

where Z = [f(z)dz. The marginal density for z is then

f(z)
o) = [Wzdy = f@)) 2 2)

as desired. To sample for z, we can sample jointly for (z,y), and then ignore y.

Generating independent points drawn uniformly from U may not be easy, so we might in-
stead define a Markov chain that will converge to this uniform distribution. Gibbs sampling
is one possibility: We sample alternately from the conditional distribution for y given the
current — which is uniform over the interval (0, f(z)) — and from the conditional distri-
bution for z given the current y — which is uniform over the region S ={z : y < f(z) },
which T call the ‘slice’ defined by y. Generating an independent point drawn uniformly from
S may still be difficult, in which case we can substitute some update for z that leaves the
uniform distribution over S invariant.

Similar auxiliary variable methods been used in the past. Higdon (1996) has interpreted
the standard Metropolis algorithm in these terms. The highly successful Markov chain
algorithm for the Ising model due to Swendsen and Wang (1987) can also be seen as an
auxiliary variable method, which has been generalized by Edwards and Sokal (1988). In
their scheme, the density (or probability mass) function is proportional to a product of k
functions: p(z) x fi(z)--- fr(z). They introduce k auxiliary variables, y1,. .., yx, and define
a joint distribution for (z,y1,...,yx) which is uniform over the region where 0 < y; < fi(z)
for ¢ = 1,...,k. Gibbs sampling, or some related Markov chain procedure, can then be
used to sample for (z,¥1,...,yr), much as described above for the case of a single auxiliary
variable. Applications of such methods to image analysis have been discussed by Besag and

Green (1993) and by Higdon (1996).

Concurrently with the work reported here, Damien, Wakefield, and Walker (1997) have
viewed such methods based on multiple auxiliary variables as a general approach to con-
structing Markov chain samplers for Bayesian inference problems. They illustrate how a
decomposition of f(z) into k factors can often be found for which the intersection of the
sets {z : y; < fi(x) } is easy to compute. This leads to an easily implemented sampler, but
convergence may be slowed by the presence of many auxiliary variables.

Mira and Tierney (1997) have shown that these methods, with one or with many auxiliary
variables, are uniformly ergodic under certain conditions. Roberts and Rosenthal (1997)
have shown that these methods are geometrically ergodic under weaker conditions, and
have also found some quantitative convergence bounds. These results all assume that the
sampler generates a new value for z that is uniformly drawn from 5, independently of the
old value, which may be difficult in practice.

In this paper, I present several practical sampling methods based on slice sampling with
a single auxiliary variable, often using updates for z that do not produce a point drawn

independently from 5. To motivate these methods, T first discuss the need for Markov
chain samplers that can be used routinely, and how well current schemes fulfill this need.
Then, in section 4, I discuss a class of slice sampling methods that are intended for routine
application to general distributions, and that have some advantages over current alter-
natives. In sections 5 and 6, I describe more elaborate slice sampling schemes that can
improve sampling efficiency by avoiding the random walk movement that is characteris-
tic of simple Markov chain samplers, and which again may have advantages over previous
general-purpose schemes for random walk suppression. I conclude by discussing the merits
of these and competing schemes in various situations.

3 General-purpose Markov chain sampling methods

Applications of Markov chain sampling in statistics often involve sampling from many dis-
tributions. In Bayesian applications, we must sample from the posterior distribution for
the parameters of a model given certain data. Different datasets will produce different pos-
terior distributions, which may differ in important characteristics such as diffuseness and
multimodality. Furthermore, we will often wish to consider a variety of models. For routine
use of Markov chain methods, it is important to minimize the amount of effort that the
data analyst must spend in order to sample from all these distributions. Ideally, a Markov
chain sampler would be constructed automatically for each model and dataset.

The Markov chain method most commonly used in statistics is Gibbs sampling, popular-
ized by Gelfand and Smith (1990). Suppose again that we wish to sample from a distribution
over n state variables (eg, model parameters), written as z = (z1,...,%,), with probabil-
ity density p(z). Gibbs sampling proceeds by sampling in succession from the conditional
distributions for each z; given the current values of the other z; for j # ¢, with conditional
densities written as p(x;|{z;};#;). Repetition of this procedure defines a Markov chain
which leaves the desired distribution invariant, and which in many circumstances is ergodic
(eg, when p(z) > 0 for all z). Running the Gibbs sampler for a sufficiently long time will
then produce a sample of values for z from close to the desired distribution, from which the
expectations of quantities of interest (eg, posterior means of parameters) can be estimated.

Gibbs sampling can be done only if we know how to sample from all the required con-
ditional distributions. These sometimes have standard forms for which efficient sampling
methods have been developed, but there are many models for which sampling from these
conditional distributions requires the development of custom algorithms, or is infeasible in
practice (eg, for multilayer perceptron networks (Neal 1996)). Note, however, that once
methods for sampling from these conditional distributions have been found, no further
tuning parameters need be set in order to produce the final Markov chain sampler.

The routine use of Gibbs sampling has been assisted by the development of Adaptive Re-
jection Sampling (ARS) (Gilks and Wild 1992; Gilks 1992), which can be used to efficiently
sample from any conditional distribution whose density function is log concave, given only
the ability to compute some function, f;(z;), that is proportional to the conditional density,
p(z;|{x;};#:) (the ability to also compute the derivative, f/(z;), is helpful, but not essen-

tial). This method is used by the BUGS software (Thomas, Spiegelhalter, and Gilks 1992)
to automatically generate Markov chain samplers from model specifications. The first step
in applying ARS is to find points on each side of the mode of the conditional distribution
(one of which can be the current point). This will in general require a search, which will
in turn require the choice of some length scale for an initial step. However, the burden of
setting this scale parameter is lessened by the fact that a good value for it can be adaptively
chosen based on past iterations of the Markov chain, without invalidating the results (since
the setting of this parameter does not affect the distribution sampled from).

The Adaptive Rejection Metropolis Sampling (ARMS) method (Gilks, Best, and Tan
1995) generalizes ARS to conditional distributions whose density functions may not be
log-concave. However, when the density is not log-concave, ARMS does not produce a
new point drawn independently from the conditional distribution, but merely updates the
current point in a fashion that leaves this distribution invariant. Applying ARMS to sample
from the conditional distribution of each variable in succession will result in an equilibrium
distribution that is exactly correct, but when some conditional distributions are not log-
concave, it may take longer to approach this equilibrium than would be the case if true Gibbs
sampling were used. Also, when a conditional distribution is not log-concave, the points
used to set up the initial approximation to it must not be chosen adaptively, based on past
iterations, as this could result in the wrong distribution being sampled (Gilks, Neal, Best,
and Tan 1997). The initial approximation must be chosen based only on prior knowledge
(including any preliminary Markov chain sampling runs), and on the current values of the
other variables. Unlike ARS, neither the current value of the variable being updated, nor
any statistics collected from previous updates (eg, a typical scale) can be used. This hinders
routine use of the method.

Another general way of constructing a Markov chain sampler is to perform Metropolis
updates (Metropolis, et al 1953, Hastings 1970), either to all variables simultaneously, or
more commonly, to each variable in turn. A Metropolis update starts with the random
selection of a ‘candidate’ state, drawn from a ‘proposal’ distribution. The candidate state
is then accepted or rejected as the new state of the Markov chain, based on the ratio of the
probability densities of the candidate state and the current state. If the candidate state is
rejected, the new state is the same as the old state.

A simple ‘random-walk’ Metropolis scheme can be constructed based on a symmetric
proposal distribution (eg, Gaussian) that is centred on the current state. All variables
could be updated simultaneously in such a scheme, or alternatively, one variable could be
updated at a time. In either case, a scale parameter is required for each variable to fix the
width of the proposal distribution in that dimension. For the method to be valid, these
scale parameters must not be set on the basis of past iterations, but rather only on the basis
of prior knowledge (including preliminary runs), and the current values of variables that
are not being changed in the present update. Choosing too large a value for the scale of a
proposal distribution will result in a high rejection rate, while choosing too small a value
will result in inefficient exploration via a random walk with unnecessarily small steps.

Though these methods have been used to do much useful work, there is clearly a need for

better methods, that can be routinely applied in a wider variety of situations. My objective
in the next section is to find variations on slice sampling that can be used to sample from
any distribution given only the ability to evaluate a ‘black-box’ function that is proportional
to its density. These new methods are not necessarily expected to sample more efficiently
than true Gibbs sampling or a well-designed Metropolis scheme. Rather, the hope is that
they will be almost as efficient, while requiring less effort to implement and tune.

4 Single-variable slice sampling methods

When Gibbs sampling is difficult, because some of the required conditional distributions
are hard to sample from, an alternative is to instead update some or all of the variables by
procedures that merely leave their conditional distributions invariant, rather than producing
independently-drawn points. This section presents ways of doing this using slice sampling.

For each real-valued variable, z;, to be updated by such a single-variable slice sam-
pling procedure, we must be able to compute a function, f;(z;), that is proportional to
p(x; | {z;};#i), where {z;},; are the values of the other variables. Often, the joint distri-
bution for z1,...,z, will be defined by some function, f(z1,...,z,), that is proportional
to the joint density, in which case we can simply take fi(z;) = f(...,z;,...), where the
variables other than z; are fixed to their current values.

To simplify notation, I will here write the single real variable being updated as z, and
will write f(z) for the function proportional to its probability density. The single-variable
slice sampling methods discussed here replace the current value, zg, with a new value, 1,
found by a three-step procedure:

a) Draw a real value, y, uniformly from (0, f(2¢)), thereby defining a horizontal ‘slice’:
S={z:y< f(z)} Note that z¢ is always within 5.

b) Find an interval, I = (L, R), around z(that contains at least a big part of the slice.
c) Draw the new point, 1, from the part of the slice within this interval (ie, from SN 7).

Step (a) picks a value for the auxiliary variable that is characteristic of slice sampling.
Note that there is no need to retain this auxiliary variable from one iteration of the Markov
chain to the next, since its old value is forgotten at this point anyway. In practice, it is
often safer to compute g(z) = log(f(z)) rather than f(z) itself, in order to avoid pos-
sible problems with floating-point underflow. Omnce can then use the auxiliary variable
z = log(y) = g(zo) — e, where e is exponentially distributed with mean one, and define the

slice by S ={z : 2z <g(z) }.

Steps (b) and () can potentially be implemented in several ways, which must of course
be such that the resulting Markov chain leaves the distribution defined by f(z) invariant.
Figure 1 illustrates one generally-applicable method, in which the interval is found by
‘stepping out’, and the new point is drawn with a ‘shrinkage’ procedure. Figure 2 illustrates
an alternative ‘doubling’ procedure for finding the interval. These and some other variations
are described in detail next, followed by a proof that the resulting transitions leave the

correct distribution invariant. Finally, I describe some shortcuts that are possible when the
distribution is unimodal.

4.1 Finding an appropriate interval

After a value for the auxiliary variable has been drawn, defining the slice 5, the next task
is to find an interval I = (L, R), containing the current point, zg, from which the new
point, z1, will be drawn. We would like this interval to contain as much of the slice as is
feasible, so as to allow the new point to differ as much as possible from the old point, but
we would also like to avoid intervals that are much larger than the slice, as this will make
the subsequent sampling step less efficient.

Several schemes for finding an interval are possible:

1) Ideally, we would set L = inf(S5) and R = sup(.9). That is, we would set I to the
smallest interval that contains the whole of S. This may not be feasible, however.

2) If the range of z is bounded, we might simply let I be that range. However, this may
not be good if the slice is typically much smaller than the range.

3) Given an estimate, w, for the scale of S, we can randomly pick an initial interval of
size w, containing zg, and then expand it by a ‘stepping out’ procedure.

4) Similarly, we can randomly pick an initial interval of size w, and then expand it by a
‘doubling’ procedure.

For each scheme, we must also be able to find the set A of acceptable successor states,
defined as follows:

A = {z:z€S5nTIand P(Select I | At state z) = P(Select I | At state z9) } (3)

That is, A is the set of states from which we would be as likely to choose the interval I as we
were to choose this I from the current state (for schemes (3) and (4), these probabilities are
conditional on the random alignment of the initial interval). When we subsequently sample
from within I (see section 4.2), we will ensure that the state chosen is in A, a fact which will
be used in the proof of correctness in section 4.3. Clearly, for schemes (1) and (2), A = S.
For scheme (3), we will arrange that A = SN I. Things are not so simple for scheme (4),
for which a special test of whether a state is in A may be necessary.

Scheme (1), in which [is set to the smallest interval containing S, will be feasible when
all solutions of f(z) = y can be found analytically, or by an efficient and robust numerical
method, but one cannot expect this in general. Often, even the number of disjoint intervals
making up S will hard to determine.

Scheme (2) is certainly easy to implement when the range of z is bounded, and one can
of course always arrange this by applying a suitable transformation. However, if the slice
is usually much smaller than the full range, the subsequent sampling (see section 4.2) will
be inefficient. This scheme has been used by Frey (1997).

f(Xo)
o N A y

Figure 1: A single-variable slice sampling update using the stepping-out and shrinkage
procedures. A new point, 21, is selected to follow the current point, zg, in three steps. (a)
A vertical level, y, is drawn uniformly from (0, f(zo)), and used to define a horizontal ‘slice’,
indicated in bold. (b) An interval of width w is randomly positioned around zg, and then
expanded in steps of size w until both ends are outside the slice. (¢) A new point, z1, is
found by picking uniformly from the interval until a point inside the slice is found. Points
picked that are outside the slice are used to shrink the interval.

Figure 2: The doubling procedure. In (a), the initial interval is doubled twice, until both
ends are outside the slice. In (b), where the start state is different, no doubling is done.

The ‘stepping out’ procedure (scheme (3) above) is appropriate for any distribution,
provided that some rough estimate, w, for the typical width of the slice is available. The
manner in which an interval is found by stepping out is illustrated in Figure 1(b) and the
procedure is given in detail in Figure 3. The size of the interval found can be limited to
muw, for some specified integer m, or the interval can be allowed to grow to any size (ie,
m can be set to infinity), in which case the procedure can be simplified in an obvious way
(eliminating all references to J and K). Note that the random positioning of the initial
interval and the random apportioning of the maximum number of steps m into a limit on
going to the left and a limit on going to the right are essential for correctness, as they ensure
that the final interval could equally well have been produced from any point within 5N [.

The ‘doubling” procedure (scheme (4) above) can expand the interval faster than the
stepping out procedure, and hence may be more efficient when the estimated size of the
slice (w) turns out to be too small. This procedure is illustrated in Figure 2, and given in
detail in Figure 4. Doubling produces a sequence of intervals, each twice the size of the
previous one, until an interval is found with both ends outside the slice, or a predetermined
limit is reached. Note that when the interval is doubled the two sides are not expanded
equally. Instead just one side is expanded, chosen at random (irrespective of whether that
side is already outside the slice). This is essential to the correctness of the method, since it
produces a final interval that could have been obtained from points other than the current
one. The set A of acceptable next states is restricted to those for which the same interval
could have been produced, and is in general not all of SNI. This complicates the subsequent
sampling somewhat, as described below.

4.2 Sampling from the part of the slice within the interval

Once an interval, [= (L, R), has been found containing the current point, zo, the final step
of the single-variable slice sampling procedure is to randomly draw a new point, z1, from
within this interval. This point must lie within the set A of points acceptable as the next
state of the Markov chain, defined in equation (3).

Two methods could be used to sample from I:
i) Repeatedly sample uniformly from [until a point is drawn that lies within A.

ii) Repeatedly sample uniformly from an interval that is initially equal to I, and which
shrinks each time a point is drawn that is not in A, until a point within A is found.

Method (i) could potentially be very inefficient, if ever A turns out to be a tiny portion of
I. The shrinkage of the interval in method (7i) ensures that the expected number of points
drawn will not be too large, making this a more appropriate method for general use.

The shrinkage procedure is shown in detail in Figure 5. Note that each rejected point is
used to shrink the interval in such a way that the current point remains within it. Since the
current point is always within A, the interval used will alway contains acceptable points,
ensuring that the procedure will terminate.

Input: f = function proportional to the density

zg = the current point

y = the vertical level defining the slice

w = estimate of the typical size of a slice

m = integer limiting the size of a slice to mw

Output: (L,R) = the interval found

P
J

L
R
v
J

K

~ Uniform (0, 1)
— z9 — wkxU
— L + w

~ Uniform (0, 1)
— Floor(m V)

— (m-1) = J

repeat while J > 0 and y < f(L):

L « L —w
J «— J-1
repeat while K > 0 and y < f(R):
R « R + w
K « K-1

Figure 3: The ‘stepping out’ procedure for finding an interval around the current point.
The notation U ~ Uniform (0, 1) indicates that U is set to a number randomly drawn from
the uniform distribution on (0, 1).

Input: f = function proportional to the density
zg = the current point
y = the vertical level defining the slice
w = estimate of the typical size of a slice
p = integer limiting the size of a slice to 2Pw
Output: (L,R) = the interval found
U ~ Uniform (0,1)
L «— z9g — wxU
R « L + w
K «—p

repeat while K > 0 and { y < f(L)or y < f(R) }:

V'~ Uniform (0,1)
ifV<l1/2thenl — L — (R-1)

else R —« R + (R—-1)
K « K-1

Figure 4: The ‘doubling’ procedure for finding an interval around the current point. Note

that it is possible to save some computation in second and later iterations of the loop, since

only one of f(L) and f(R) will have changed from the previous iteration.

10

= function proportional to the density
= the current point

Input: f

Lo

y = the vertical level defining the slice
w

(L

= estimate of the typical size of a slice
,R) = the interval to sample from

Output: z; = the new point
L — L, R — R
repeat:

U ~ Uniform(0,1)
z1 — L + Ux(R-1L)

if y < f(z1) and Accept (z71) then exit loop

if 29 < 2o then I, — 2y else R — x4

Figure 5: The ‘shrinkage’ procedure for sampling from the interval. The notation
Accept (z1) represents a test for whether a point, z1, that is within S N I is an accept-
able next state. If scheme (1), (2), or (3) was used for constructing the interval, all points
within S N I are acceptable. If the doubling procedure (scheme (4)) was used, the point
must also pass the test of Figure 6, below.

Input: f = function proportional to the density
zg = the current point
z1 = the possible next point

y = the vertical level defining the slice
w = estimate of the typical size of a slice
(L,R) = the interval found by the doubling procedure

Output: whether or not z; is an acceptable next state

L - L, R — R
D «— false
repeat while R — L > 1.1 % w:
M — (L+R)/2
if{zo< M and 21 > M }or { 290 > M and z; < M } then D — true
if 1 < M then R — Melse L — M
if D and y > f(L)and y > f(R) then

The new point is not acceptable

The new point is acceptable if not rejected in the loop above

Figure 6: The test for whether a new point, z1, that is within 5 N I is an acceptable next
state, when the interval was found by the ‘doubling’ procedure. The multiplication by 1.1
in the ‘while’ condition guards against possible round-off error.

11

If the interval was found by scheme (1), (2), or (3), the set A is simply S N I. However,
if the doubling procedure (scheme (4)) was used, A may be a smaller subset of 5N 7. This
is illustrated in Figure 2. In 2(a), an interval is found by doubling an initial interval until
both ends are outside the slice. A different starting point is considered in 2(b), one which
might have been drawn from the interval found in 2(a). The doubling procedure terminates
earlier starting from here, so this point is not in A.

The Accept (z1) predicate in Figure 5 tests whether a point in SN/ isin A. If I was found
using scheme (1), (2), or (3), this is trivial — all points in SN/ arein A. But if the doubling
procedure (scheme (4)) was used, the acceptance test of Figure 6 is needed. This procedure
works backward through the intervals that the doubling procedure would pass through to
arrive at I when starting from the new point, checking that none of them have both ends
outside the slice, which would lead to earlier termination of the doubling procedure. (Note
that one needn’t check this explicitly until the intervals differ from those followed from the
current point, a condition tracked with the variable D in the procedure.) If the distribution
is known to be unimodal, this test can be omitted, as discussed in section 4.4.

4.3 Correctness of single-variable slice sampling

To show that single-variable slice sampling is a correct procedure, we must show that
each update leaves the desired distribution invariant. To guarantee convergence to this
distribution, the resulting Markov chain must also ergodic. This is not always true, but it
is in those situations (such as when f(z) > 0 for all z) for which one can easily show that
Gibbs sampling is ergodic. I will not discuss the more difficult situations here.

To show invariance, we suppose that the initial state, zg, is distributed according to f(z).
In step (a) of single-variable slice sampling, a value for y is drawn uniformly from (0, f(z)).
The joint distribution for zg and y will therefore be as in equation (1). If the subsequent
steps update xzg to x1 in a manner that leaves this joint distribution invariant, then when
we subsequently discard y, the resulting distribution for z; will be the marginal of this joint
distribution, which is the same as that defined by f(z), as desired.

We therefore need only show that the selection of z; to follow zg in steps (b) and (¢) of
the single-variable slice sampling procedure leaves the joint distribution of z and y invariant.
Since these steps do not change y, this is the same as leaving the conditional distribution for
z given y invariant, and this conditional distribution is uniform over S ={z : y < f(z) },
the slice defined by y. We can show invariance of this distribution by showing that the
updates satisfy detailed balance, which for a uniform distribution reduces to showing that
the probability density for z; to be selected as the next state, given that the current state
is zg, is the same as the probability density for z¢ to be the next state, given that x; is the
current state, for any states xg and z; within §.

In the process of picking a new state, various intermediate choices are made randomly.
When the interval is found by the stepping out procedure of Figure 3, the alignment of the
initial interval is randomly chosen, as is the division of the maximum number of intervals
into those used to extend to the left and those used to extend to the right. For the doubling

12

procedure of Figure 4, the alignment of the initial interval is random and the decisions
whether to extend to the right or to the left are also made randomly. When sampling is
done using the shrinkage procedure of Figure 5, zero or more rejected points will be chosen
before the final point. Let r denote these intermediate random choices. I will prove that
detailed balance holds for the entire procedure by showing the following stronger result:

P(next state = z1, intermediate choices = r | current state = zq)

= P(next state = zg, intermediate choices = 7(r) | current state = z1) (4)

where 7(r) is some one-to-one mapping that has Jacobian one (with regard to the real-
valued variables), which may depend on z¢ and z;. Integrating over all possible values for
r then gives the desired result.

In detail, the mapping 7 used is as follows. First, if the interval I is found by the stepping
out or doubling procedure, an intermediate value, U, will be generated by the procedure of
Figure 3 or 4, and used to define the initial interval. We define 7 so that it maps the value
Uy chosen when the state is zg to the following Uy when the state is z1:

Uy = Frac(Up+ (21 — z0)/w) (5)

where Frac(z) = z — Floor (z) is the fractional part of z. This mapping associates values
that produce the same alignment of the initial interval. Note also that it has Jacobian one.
If the stepping out procedure is used, a value for J is also generated, uniformly from the
set {0,..., m—1}. The mapping 7 associates the .Jy found when the state is z¢ with the
following .J; when the state is xq:

Jl = Jo + ($1/’w— Ul) — ($0/w— Uo) (6)

Here, (21/w — Uy) — (zo/w — Up) is an integer giving the number of steps (of size w) from
the left end of the interval containing zq to the left end of the interval containing x;. This
is the amount by which we must adjust Jy in order to ensures that if the interval found
starting from zy grows to its maximum size, the associated interval found starting from
xz1 will be identical. Similarly, if the doubling procedure of Figure 4 is used, the sequence
of random decisions as to which side of the interval to expand is mapped by 7 to the
sequence of decisions that would cause the interval expanding from z to become identical
to the interval expanding from xz¢ when the latter first includes z;, and to remain identical
through further expansions. Note in this respect that there is at most one way that an
given final interval can be obtained by successive doublings from a given initial interval,
and that the alignment of the initial intervals by the association of Uy with U; ensures that
doubling starting from z; can indeed lead to the same interval as found from zg. Finally, to
complete the definition, 7 maps the sequence of rejected points used to shrink the interval
found from z (see Figure 5) to the same sequence of points when z; is the start state.

It remains to show that with this definition of 7, equation (4) does indeed hold, for all
points xg and xq, and all possible intermediate values r. Note that the equation certainly
holds when both sides are zero, so we can eliminate from consideration any situation where

13

movement between z¢ and z; is impossible (in conjunction with the given intermediate
values).

Consider first the probability (density) for producing the intermediate values that define
the interval I. For the stepping out and doubling procedures, the values Uy and Uy (related
by 7) that are generated from zg and z; will certainly have the same probability density,
since U is drawn from a uniform distribution. Similarly, for the stepping out procedure,
the values .Jy and J; are drawn from a uniform distribution over {0, ..., m—1}, and hence
have the same probability as long as Jy and J; are both in this set, which will be true
whenever movement between zg and zq is possible. For the doubling procedure, a sequence
of decisions as to which side to extend is made, with all sequences of a given length having the
same probability. Here also, the sequences associated by 7 will have the same probability,
provided the same number of doublings are done starting from zg as from z;. This need not
be true in general, but if the sequence from z; is shorter, the test of Figure 6 will eliminate
x1 as a possible successor to zg, and if the sequence from zg is shorter, z; will not be a
possible successor because it will be outside the interval I found from zy. Both sides of
equation 4 will therefore be zero in this situation.

Note next that the intervals found by any of the schemes of section 4.1 will be the same for
xg as for 1, when the intermediate values chosen are related by 7, assuming a transition
from zg to x1 is possible. For the stepping out procedure, the maximum extent of the
intervals will be the same because of the relationships between Uy and U; and between Jy
and J;. Furthermore, the actual intervals found by stepping out (limited by the maximum)
must also be the same whenever a transition between zy and z; is possible, since if the
interval starting from zg has reached zy, expansion of both intervals will continue in the
same direction until the outside of the slice or the maximum is reached, and likewise in the
other direction. Similarly, the mapping 7 is defined to be such that if the interval found
by the doubling procedure starting from zq includes z;, the same interval would be found
from z, provided the process was not terminated earlier (by both ends being outside the
slice), in which case z1 is not a possible successor (as it would be rejected by the procedure
of Figure 6). Note also that since the set A is determined by I (for any start state), it too
will be the same for zq as for z;.

If we sample from this I by simple rejection (scheme (i) in section 4.2), the state chosen
will be uniformly distributed over A, so the probability of picking zg will be the same as
that of picking z;. If we instead use the shrinkage procedure (scheme (7i), in Figure 5), we
need to consider as intermediate values the sequence of rejected points that were used to
narrow the interval (recall that under 7 this sequence is the same for zg as for z1). The
probability density for the first of these is clearly the same for both starting points, since
I is the same. As the interval shrinks, it remains the same for both zg and z1, since the
rejection decisions (based on A) are the same, and since we need consider only the case
where the same end of the interval is moved to the rejected point (as otherwise a transition
between zg and z;7 in conjunction with these intermediate values would be impossible). The
probability densities for later rejected points, and for the final accepted state, are therefore
also the same.

14

This completes the proof. Various seemingly reasonable modifications — such as changing
the doubling procedure of Figure 4 to not expand the interval on a side that is already
outside the slice — would undermine the argument of the proof, and hence cannot be used.
However, some shortcuts are allowed when the distribution is unimodal, as discussed next.

4.4 Shortcuts for unimodal distributions

Certain shortcuts can be used when the conditional distribution for the variable being
updated is known to be unimodal, or more generally, when the slice, 5, is known to consist
of a single interval. For some values of the auxiliary variable, S may be a single interval
even when the distribution is multimodal, but the effort required to confirm this probably
exceeds the gain from using the shortcuts, so I will refer only to the unimodal case here.

Two shortcuts apply when the ‘doubling’ procedure is used to find the interval. First, for
a unimodal distribution, the acceptance test in Figure 6 can be omitted, since it will always
indicate that the new point is acceptable. To see this, note that the procedure rejects a
point when one of the intervals found by doubling from that starting point has both ends
outside the slice, but does not contain the current point. Since both the current point and
the new point are inside the slice, this is impossible if the slice consists of only one interval.

Second, the interval found by the doubling procedure can sometimes be shrunk at the
outset. The side chosen for extension when the interval doubles will sometimes be outside
the slice already. When the distribution is known to be unimodal, it is not possible for such
an extension to contain any points within the slice. Accordingly, before sampling is begun,
the endpoints of the interval can be set to the first point in each direction that was found
to lie outside the slice. This may reduce the number of points generated, while having no
effect on the distribution of the point finally chosen.

Finally, if the distribution is known to be unimodal and no limit is imposed on the size
of the interval found (ie, m and p in Figures 3 and 4 are infinite), the estimate, w, for the
typical size of a slice can be set on the basis of past iterations. One could, for example, keep
a running average of the distance between the old and new points in past iterations, and use
this (or some suitable multiple) as the estimate w. This is valid because the distribution
of the new point does not depend on w in this situation, even though w influences how
efficiently this new point is found. Indeed, when the distribution is known to be unimodal,
one can use any method at all for finding an interval that contains the current point and
has both ends outside the slice, as any such interval will lead to the new point finally chosen
being drawn uniformly from the slice.

5 Overrelaxed slice sampling

Sampling efficiency can often be improved by ‘overrelaxation’ methods, which in certain
circumstances suppress the random walk behaviour characteristic of simple schemes such
as Gibbs sampling. Like Gibbs sampling, overrelaxation methods update each variable in
turn, but rather than drawing a new value for a variable from its conditional distribution

15

.1 - +1 B
0 0
1 1 :

-1 0 +1 -1 0 +1

Gibbs Sampling Adler’s Method, o = —0.98

Figure 7: Gibbs sampling and Adler’s
overrelaxation method applied to a
bivariate Gaussian with correlation
0.998 (whose one-standard-deviation
contour is plotted). The top left
shows the progress of 40 Gibbs sam-
pling iterations (each consisting of
one update for each variable). The
top right shows 40 overrelaxed iter-
ations, with a = —0.98. The close-
up on the right shows how successive 0 —
overrelaxed updates operate to avoid

a random walk.

|

0 +1
independently of the current value, the new value is instead chosen to be on the opposite
side of the mode from the current value. In Adler’s (1981) scheme, applicable when the
conditional distributions are Gaussian, the new value for variable 7 is

vt = pi+alei—p) +oi(1-a®)n (7)

where p; and o; are the conditional mean and standard deviation of variable ¢, n is a Gaus-
sian random variate with mean zero and variance one, and « is a parameter slightly greater
than —1. This method is analysed and discussed by Barone and Frigessi (1990) and by
Green and Han (1992), though these discussions fail in some respects to properly eluci-
date the true benefits and limitations of overrelaxation (Neal 1995). The crucial ability of
overrelaxation to (sometimes) suppress random walks is illustrated for a bivariate Gaussian
distribution in Figure 7.

16

\
~ ‘ ~
. LR .
i LR i
2

Figure 8: Overrelaxation using the stepping out procedure and bisection. In (@), an interval
with both ends outside the slice is found by stepping out from the current point, as was
illustrated in Figure 1(b). In (b), the endpoints of the slice are located more accurately
using bisection. In (¢), a candidate point is found by flipping through the point half-way
between the approximations to the endpoints. In this case, the candidate point is accepted,
since it is within the slice, and within the orginal interval (prior to bisection).

Various attempts have been made to produce overrelaxation schemes that can be used
when the conditional distributions are not Gaussian (Neal (1995) gives one scheme, and
reviews others). The concept of overrelaxation seems to apply only when the conditional
distributions are unimodal, so we may assume that this is usually the case, though we would
like the method to at least remain valid (ie, leave the desired distribution invariant) even
if this assumption turns out to be false. As discussed by Neal (1995), to obtain the full
benefits of overrelaxation, it is important that almost every update be overrelaxed, with
few or no ‘rejections’ that leave the state unchanged, as such rejections re-introduce an
undesirable random walk aspect to the motion through state space.

In this section, I will show how overrelaxation can be done using slice sampling. Many
schemes for overrelaxed slice sampling are possible, but I will describe only one in detail,
based on the stepping out procedure and on bisection. This scheme is illustrated in Figure 8,
and given in detail in Figure 9.

To begin, we apply the stepping out procedure of Figure 3 to find an interval around
the current point. Normally, we would apply this procedure with the maximum size of the
interval (m) set to infinity, or to some large value, since a proper overrelaxation operation
requires that the entire slice be found, but the scheme remains valid for any m.

If the stepping out procedure found an interval around the slice that is bigger than the
initial interval, then the two outermost steps will serve to locate the endpoints of the slice to
within an interval of size w. (Here, we assume that the slice consists of a single interval, as

17

Input: = function proportional to the density

the current point

the vertical level defining the slice

= estimate of the typical size of a slice

= integer limiting endpoint accuracy to 27%w

,R) = interval found by the stepping out procedure

/Q@ S@O&\

Output: z; = the new point
L — L R < R
W — w, G — @
When the interval is only of size w, the following section will narrow it
until the mid-point is inside the slice (or the accuracy limit is reached).
if R— L < 1.1 %w then
repeat:
M «— (L+R)/2
ifa =0ory < f(M) then exit loop
ifzg> M then , — Melse R — M
a «— a-—1
w o o— w/2
FEndpoint locations are now refined by bisection, to the specified accuracy.

fZ%L,fl«'—R

repeat while @ > 0:

a «— a-—1
W — ?IJ/Q
ify > f(ﬁ—}—w)theni — L4+w
if y > f(R—w)then R — R—w

A candidate point is found by flipping from the current point to the
opposite side of (L, R). It is then tested for acceptability.

rp j/ + R — Xy
if 2y < Lorz; > Rory > f(z1) then

1 < Xg

Figure 9: The overrelaxation procedure using bisection. It is assumed that the interval
(L, R) was found by the stepping out procedure, with a stepsize of w.

18

it will if the distribution is unimodal.) We then locate the endpoints more precisely using a
bisection procedure. For each endpoint, we test whether the mid-point of the interval within
which it is located is inside or outside the slice, and shrink this interval appropriately to
narrow the location of the endpoint. This is repeated @ times, after which each endpoint
will be known to lie within an interval of size 27 w.

If the stepping out procedure found that the initial interval (of size w) already had both
ends outside the slice, then before doing any bisection, we narrow this interval, by shrinking
it in half repeatedly until its mid-point is within the slice. We then use bisection as above
to locate the endpoints to within an interval of size 27 w.

Once the locations of the endpoints have been narrowed down, we can approximate the
entire slice by the interval (]AE, R), formed from the outer bounds on the endpoint locations.
To do an overrelaxed update, we flip from the current point, zg, to a new point, z1, that is
the same distance as the current point from the middle of this interval, but on the opposite
side. That is, we let

m1:#—<xo—#):ﬁ—l—fl—mo (8)

We must sometimes reject this candidate point, in which case the new point is the same as
the current point. First of all, we must reject z; if it lies outside the interval, (L, R), that had
been found prior to bisection, since the interval found from z; would then be different, and
detailed balance would not hold. However, this situation cannot arise when the distribution
is unimodal. Secondly, we must reject z; if it lies outside the slice. This can easily happen
for a multimodal distribution, and can happen even for a unimodal distribution when the
endpoints of the slice have not been located exactly. However, the probability of rejection
for a unimodal distribution can be reduced to as low a level as desired, at moderate cost,
by locating the endpoints more precisely using more iterations of bisection.

The correctness of this procedure can be seen using arguments similar to those of sec-
tion 4.3. The interval before bisection can be found by the doubling procedure instead
of stepping out, provided the point found is rejected if it fails the acceptance test of Fig-
ure 6. However, rejection for this reason will not occur in the presumably typical case of a
unimodal distribution.

One could use many methods other than bisection to narrow down the locations of the
endpoints before overrelaxing. If the derivative of f(z) can easily be calculated, one could
use Newton iteration, whose rapid convergence would often allow the endpoints to be cal-
culated to machine precision in a few iterations. For unimodal distributions, such exact
calculations would eliminate the possibility of rejection, and would also make the final re-
sult be independent of the way the interval containing the slice was found, thereby allowing
use of adaptive methods for finding this interval.

To obtain a full sampling scheme, overrelaxed updates of this sort would be applied to
each variable in turn, in a fixed order, for a number of cycles, after which a normal slice
sampling update would be done. Alternatively, each update could be done normally with

19

some small probability. A Markov chain consisting solely of overrelaxed updates might not
be ergodic, and might in any case suppress random walks for too long. The frequency of
normal updates is a tuning parameter, analogous to the choice of a in Adler’s overrelaxation
method, and would ideally be set so that the Markov chain moves systematically, rather
than in a random walk, for long enough that it traverses a distance comparable to the
largest dimension of the multivariate distribution, but for no longer than this. To keep
from doing a random walk for around k& steps, one would do every £’th update normally,
and also arrange for the rejection rate for the overrelaxed updates to be less than 1/k.

6 Reflective slice sampling

Rather than update variables one-at-time using one of the slice sampling methods described
above, we might instead define a multivariate slice with a single draw of an auxiliary variable,
and then update all variables simultaneously by some method that leaves the uniform
distribution over this slice invariant. Many schemes of this sort are possible. In this section,
I will describe schemes based on step-by-step movements that ‘reflect’ off the boundaries
of the slice. Such movement with reflection can be seen as a specialization to uniform
distributions of the Hamiltonian dynamics that forms the basis for Hybrid Monte Carlo
(Duane, et al 1987). Like other dynamical methods, such reflective slice sampling schemes
can suppress random walks, and thereby improve sampling efficiency.

As before, suppose we wish to sample from a distribution over R”, defined by a function
f(z) that is proportional to the probability density, and which we here assume is differen-
tiable. We must be able to calculate both f(z) and its gradient (or equivalently, the value
and gradient of log f(z)). In each iteration of the Markov chain, we will draw a value for
an auxiliary variable, y, uniformly from (0, f(z)), thereby defining an n-dimensional slice
S={z:y< f(z)}. We will also introduce n additional ‘momentum’ variables, written
as a vector p, which serve to indicate the current direction and speed of motion through
state space. At the start of each iteration, we pick a value for p, independently of z, from
some rotationally symmetric distribution, typically Gaussian with mean zero and identity
covariance matrix.

Once y and p have been drawn, we repeatedly update z by stepping in the direction of
p. After some predetermined number of steps, we take the final value of z as our new state
(provided it is acceptable). In each step, we try to set 2’ = z + wp, for some scale parameter
w that determines the average step size. However, if the resulting z’ is outside the slice §
(ie, y > f(z')), we must somehow bring try to bring it back inside. The schemes considered
here all do this by some form of reflection, but differ in the exact procedure used.

Ideally, we would reflect from the exact point at which movement in the direction of p
first takes us outside the slice. This reflection operation modifies p, after which motion
continues in the new direction, until we again encounter the boundary of the slice. When
we hit the boundary at a point where the gradient of f(z) is g, reflection will change p as
follows:

pg
P o= p - QQW (9)

20

-

Figure 10: Moving around a two-dimensional slice by reflection from the exact boundaries.

(b)

Figure 11: Reflection from an inside point. The trajectories here go in steps of size w|p|,
starting from the top right, until a point outside the slice is reached, when a reflection is
attempted based on the inner contour shown. In (a), the reflection is is sucessful; in (), it
must be rejected, since the reverse trajectory would not reflect at this point.

Figure 12: Reflection from outside points. Starting from the left, two reflections based on
outside contours lead back inside the slice after the next step. The step after the third
reflection is still outside the slice, so further reflections must be done. In this case, the
trajectory eventually returns to the slice, and its endpoint would therefore be accepted.

21

This ideal reflection scheme is illustrated for a two-dimensional slice in Figure 10. Using the
fact that the reflection transformation above has Jacobian one and is its own inverse, one can
show that movement with reflection for some pre-determined duration leaves invariant the
joint distribution of z (uniform within the slice) and p (rotationally symmetric, independent
of z), so this way of sampling is valid, with no need for an acceptance test. One can also see
from the figure how such motion can proceed consistently in one direction (until the end of
the slice is reached), rather than in a random walk.

Ideal reflection is difficult to implement, however, as it requires precise calculation of
where the current path intersects the boundary of the slice. Finding this point analytically
might sometimes be possible, or we might try to solve for it numerically, but if the slice
is not known to be convex, it may be difficult even to determine with certainty that an
intersection point that has been found is in fact the first one that would be encountered.
Rather than attempt such exact calculations, we can instead employ one of two approximate
schemes, based on ‘inside’ or ‘outside’ reflection, although the trajectories these schemes
produce must sometimes be rejected.

When stepping from z to 2’ = z + wp takes us outside the slice, we can try to reflect
from the last inside point, z, instead of from the exact point where the path intersects
the boundary, using the gradient of f(z) at this inside point. The process is illustrated in
Figure 11. However, for this method to be valid, we must check that the reverse trajectory
would also reflect at this point, by verifying that a step in the direction opposite to our new
heading would take us outside the slice. If this is not so, we must either reject the entire
trajectory of which this reflection step forms a part, or alternatively, set p and z so that we
retrace the path taken to this point (starting at the inside point where the reflection failed).

Alternatively, when we step outside the slice, we can try to reflect from the outside point,
z’, based on the gradient at that point. A trajectory with several such reflections is shown
in Figure 12. After performing a pre-determined number of steps, we accept the trajectory
if the final point is inside the slice. Note that for this method to be valid, one must reflect
whenever the current point is outside the slice, even if this leads one away from the slice
rather than toward it. This will sometimes result in the trajectory never returning to the
slice, and hence being rejected, but other times, as in the figure, it does return eventually.

Many variations on these procedures are possible. Above, it was assumed that values
for y and p are are randomly drawn at the beginning of a trajectory, and then kept the
same for many steps (apart from the changes to p when reflections occur). When using
inside reflection, we might instead pick a new value for y more often, perhaps before every
step, and we might also partially update p, as is done in Horowitz’s (1991) variation on
Hybrid Monte Carlo. When using outside reflection, the acceptance rate can be increased
by terminating the trajectory when either some pre-set maximum number of steps have
been taken, or some pre-set number of steps have ended inside the slice. When termination
occurs for the latter reason, the final point will necessarily be inside, and the trajectory will
be accepted. A full exploration of these variations is beyond the scope of this paper.

22

7 Discussion

As seen in this paper, the idea of slice sampling can be used to produce many Markov
chain sampling schemes. In Figure 13, I attempt to summarize the characteristics of these
schemes, and of some competing approaches for sampling from general distributions on
continuous state spaces.

The first column indicates whether the method requires that derivatives of the (unnor-
malized) probability density be computable. Derivatives are needed by dynamical methods
and reflective slice sampling, which limits their applicability. Adaptive rejection sampling
(Gilks and Wild 1992; Gilks 1992) and overrelaxed slice sampling can take advantage of
derivatives, but can operate without such information with only a moderate loss of efficiency
— eg, when no derivatives are available, overrelaxed slice sampling can use bisection rather
than Newton iteration to find the endpoints of the slice.

The second and third columns indicate how critical it is that tuning parameters be set to
good values, and under what conditions these parameters can be set adaptively. Adaptive
rejection sampling (ARS) for log concave distributions is very good in these respects — a
parameter is needed for the size of the first step taken in search of a point on the other size
of the mode, but subsequent steps can be made larger (eg, by doubling), so the effect of a
poor initial step is not too serious; furthermore, this size parameter can be set adaptively.
Parameter tuning is more of a problem when ARMS (Gilks, Best, and Tan 1995) is used
for distributions not known to be log concave — a poor choice of parameters may have
worse effects, and adaptive tuning is not allowed (Gilks, Neal, Best, and Tan 1997). Tuning
is also a problem for simple Metropolis methods — proposing changes that are too small
leads to an inefficient random walk, while proposing changes that are too large leads to
frequent rejections. Using too small a stepsize with a dynamical method is not quite as

Sampling Derivatives How critical Adaptive tuning Can suppress
method needed? is tuning? allowed? random walks?
ARS/ARMS No (but helpful) Low/Medium If log concave No
Simple Metropolis No Medium No No
Dynamical methods Yes High No Yes
Single-variable No Low If unimodal No

slice sampling

Overrelaxed No (but helpful) Low If unimodal and Yes
slice sampling endpoints exact
Reflective Yes Medium/High No Yes

slice sampling

Figure 13: Characteristics of some general-purpose Markov chain sampling methods.

23

bad, since movement is not in a random walk, but too large a stepsize is disastrous, since
the dynamical simulation becomes unstable, and very few changes are accepted. For both
these methods, the size parameter must not be set adaptively.

Single variable slice sampling and overrelaxed slice sampling offer advantages over other
methods in these respects. Whereas ARS allows adaptive tuning only for log concave
distributions, adaptation is allowed when these slice sampling methods are applied to any
unimodal distribution (provided the interval is expanded to the whole slice, and endpoints
for overrelaxation are computed exactly). Furthermore, the tuning is probably less critical
for slice sampling than for the other methods (apart from ARS), as discussed further below.
For reflective slice sampling, however, tuning is at least moderately critical, though perhaps
less so than for dynamical methods, and adaptive tuning is not allowed.

The final column indicates whether the method can potentially suppress random walk
behaviour. This is important when sampling from a distribution with high dependencies
between variables, as in such a situation, motion must proceed in small steps, and the
difference in efficiency between diffusive and systematic exploration of the distribution can
be very large. This is typical with neural network models (Neal 1996), for example.

Another way of exploring the differences between these methods is to see how well they
work in various circumstances. The most favourable situation is when our prior knowledge
lets us choose good tuning parameters for all the methods (eg, the width of a Metropolis
proposal distribution or of the initial interval for slice sampling). The Metropolis algorithm
with a simple proposal distribution will then move about the distribution fairly efficiently
(although in a random walk), and will have low overhead, since it requires evaluation of
f(z) at only a single new point in each iteration. Single variable slice sampling will be
comparably efficient, however, provided we stick with the interval chosen initially (ie, we
set m = 1 in the stepping out procedure of Figure 3). There will then be no need to evaluate
f(z) at the boundaries of the interval, and if the first point chosen from this interval is within
the slice, only a single evaluation of f(z) will be done. If this point is outside the slice,
further evaluations will be required, but this inefficiency corresponds to the possibility of
rejection with the Metropolis algorithm. The two methods should therefore perform quite
similarly. However, slice sampling will work better if it turns out that we mistakenly chose
too large a width for the Metropolis proposal distribution and the initial slice sampling
interval. This error will lead to a high rejection rate for the Metropolis algorithm, but the
sampling procedure of Figure 5 uses the rejected points to shrink the interval, which is much
more efficient if the initial interval was too large.

We might instead know that the conditional distributions are log concave, but not know
how wide they are. Adaptive Rejection Sampling (ARS) then works very well, because its
width parameter can be set adaptively. Single variable slice sampling will also work well,
since in this situation it can also be tuned adaptively (provided no limit is set on the size of
the interval). However, ARS does true Gibbs sampling, whereas the slice sampling updates
do not produce points that are independent of the previous point. Such dependency is
probably a disadvantage (unless deliberately directed to useful ends, as in overrelaxation),
so ARS is probably better than single variable slice sampling in this context.

24

Suppose, however, that we know only that the conditional distributions are unimodal,
but not necessarily log concave. We would then need to use ARMS rather than ARS,
and would not be able to tune it adaptively, whereas we can still use single variable slice
sampling with adaptive tuning. This will likely not be as good as true Gibbs sampling,
however, which we should prefer if the conditional distribution happens to be one that
can be efficiently sampled from. In particular, if slice sampling is used to sample from a
heavy-tailed distribution, it may only infrequently move between the tails and the central
region, since this transition can occur only when we move to a point under the curve of f(z)
that is as low as the region under the tails, but whose horizontal position is in the central
region. However, there appears to be no general purpose scheme that avoids problems in
this situation.

Finally, consider a situation where we do not know that the conditional distributions are
unimodal, and have only a rough idea of an appropriate width parameter for a proposal
distribution or initial slice sampling interval. Single variable slice sampling copes fairly well
with this uncertainty. If the initial interval is too small it can be expanded as needed, either
by stepping out or by doubling (which is better will depend on whether the faster expansion
of doubling is worth the extra overhead from the acceptance test of Figure 6). If instead the
initial interval is too big, it will be shrunk efficiently by the procedure of Figure 5. We might
try to achieve similar robustness with the Metropolis algorithm by doing several updates
for each variable, using proposal distributions with a range of widths. For example, if w is
our best guess at an appropriate width, we might do updates with widths of w/4, w/2, w,
2w, and 4w. This may ensure that an appropriate proposal distribution is used some of the
time, but it is unattractive for two reasons. First, the limits of the range (eg, from w/4 to
4w) must be set a priori. Second, for this approach to be valid, we must continue through
the original sequence of widths even after it is clear that we have gone past the appropriate
one. These problems are not present with slice sampling.

In any of these situations, we might prefer to use a method that can suppress random
walks. Dynamical methods such as Hybrid Monte Carlo (Duane, et al 1987) do this well
for a wide range of distributions; reflective slice sampling may also work for a wide range
of distributions, but preliminary indications are that is less efficient than Hybrid Monte
Carlo, when both are tuned optimally. Overrelaxation is sometimes beneficial, but not
always (whether it is or not depends on the types of correlation present). For problems
where overrelaxation is helpful, overrelaxed slice sampling may often be the best approach
to suppressing random walks. If the conditional distributions are unimodal, it offers the
possibility of adaptive tuning. It does not require computation of derivatives. For some
problems, the fact that overrelaxation updates one variable at a time will permit compu-
tational saving, in comparison with the simultaneous updates for dynamical and reflective
methods.

Slice sampling methods have so far been used successfully by Frey (1997) for sampling
latent variables in a neural network, and I have found that they work well for some Gaussian
process models, in which the likelihood is a very complicated function of the parameters of
the covariance function. However, experience on isolated examples is not very informative

25

as to the merits of these methods for routine and automated use. Experience with a wide
variety of statistical problems will be needed to see how easily slice sampling and competing
methods can be applied in practice.

Acknowledgements

I thank Brendan Frey, Gareth Roberts, Jeffrey Rosenthal, and David MacKay for helpful
discussions. This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

References

Adler, S. L. (1981) “Over-relaxation method for the Monte Carlo evaluation of the partition
function for multiquadratic actions”, Physical Review D, vol. 23, pp. 2901-2904.

Barone, P. and Frigessi, A. (1990) “Improving stochastic relaxation for Gaussian random
fields”, Probability in the Engineering and Informational Sciences, vol. 4, pp. 369-389.

Besag, J. and Green, P. J. (1993) “Spatial statistics and Bayesian computation” (with
discussion), Journal of the Royal Statistical Society B, vol. 55, pp. 25-37 (discussion,
pp. 53-102).

Damien, P., Wakefield, J., and Walker, S. (1997) “Gibbs sampling for Bayesian nonconjugate
and hierarchical models using auxiliary variables”, preprint.

Diaconis, P., Holmes, S., and Neal, R. M. (1997) “Analysis of a non-reversible Markov chain
sampler”, Technical Report BU-1385-M, Biometrics Unit, Cornell University, 26 pages.

Duane, S., Kennedy, A. D., Pendleton, B. J., and Roweth, D. (1987) “Hybrid Monte Carlo”,
Physics Letters B, vol. 195, pp. 216-222.

Edwards, R. G. and Sokal, A. D. (1988) “Generalization of the Fortuin-Kasteleyn-Swendsen-
Wang representation and Monte Carlo algorithm”, Physical Review D, vol. 38, pp. 2009-
2012.

Frey, B. J. (1997) “Continuous sigmoidal belief networks trained using slice sampling”, in
M. C. Mozer, M. 1. Jordan, and T. Petsche (editors) Advances in Neural Information
Processing Systems 9, MIT Press.

Gelfand, A. E. and Smith, A. F. M. (1990) “Sampling-based approaches to calculating
marginal densities”, Journal of the American Statistical Association, vol. 85, pp. 398-
409.

Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (editors) (1996) Markov Chain Monte

Carlo in Practice, London: Chapman and Hall.

Gilks, W. R. (1992) “Derivative-free adaptive rejection sampling for Gibbs sampling”, in
J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith (editors), Bayesian
Statistics 4, pp. 641-649, Oxford University Press.

26

Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995) “Adaptive rejection Metropolis sampling
within Gibbs sampling”, Applied Statistics, vol. 44, pp. 455-472.

Gilks, W. R., Neal, R. M., Best, N. G., and Tan, K. K. C. (1997) “Corrigendum: Adaptive

rejection Metropolis sampling”, to appear in Applied Statistics.

Gilks, W. R. and Wild, P. (1992) “Adaptive rejection sampling for Gibbs sampling”, Applied
Statistics, vol. 41, pp. 337-348.

Green, P. J. and Han, X. (1992) “Metropolis methods, Gaussian proposals and antithetic
variables”, in P. Barone, et al. (editors) Stochastic Models, Statistical Methods, and
Algorithms in Image Analysis, Lecture Notes in Statistics, Berlin: Springer-Verlag.

Hastings, W. K. (1970) “Monte Carlo sampling methods using Markov chains and their
applications”, Biometrika, vol. 57, pp. 97-109.

Higdon, D. M. (1996) “Auxiliary variable methods for Markov chain Monte Carlo with
applications”, ISDS Discussion Paper 96-17, 25 pages.

Horowitz, A. M. (1991) “A generalized guided Monte Carlo algorithm”, Physics Letters B,
vol. 268, pp. 247-252.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953) “Equation of state calculations by fast computing machines”, Journal of Chemical
Physics, vol. 21, pp. 1087-1092.

Mira, A. and Tierney, L. (1997) “On the use of auxiliary variables in Markov chain Monte
Carlo sampling”, preprint.

Neal, R. M. (1993) Probabilistic Inference Using Markov Chain Monte Carlo Methods,
Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 140
pages. Obtainable from http://www.cs.utoronto.ca/~radford/.

Neal, R. M. (1994) “An improved acceptance procedure for the hybrid Monte Carlo algo-
rithm”, Journal of Computational Physics, vol. 111, pp. 194-203.

Neal, R. M. (1995) “Suppressing random walks in Markov chain Monte Carlo using ordered
overrelaxation”, Technical Report No. 9508, Dept. of Statistics, University of Toronto,
22 pages.

Neal, R. M. (1996) Bayesian Learning for Neural Networks (Lecture Notes in Statistics
No. 118), New York: Springer-Verlag.

Roberts, G. O. and Rosenthal, J. S. (1997) “Convergence of slice sampler Markov chains”,
Technical Report No. 9712, Dept. of Statistics, University of Toronto, 21 pages.

Swendsen, R. H. and Wang, J.-S. (1987) “Nonuniversal critical dynamics in Monte Carlo
simulations”, Physical Review Letters, vol. 58, pp. 86-88.

Thomas, A., Spiegelhalter, D. J., and Gilks, W. R. (1992) “BUGS: A program to perform
Bayesian inference using Gibbs sampling”, in J. M. Bernardo, J. O. Berger, A. P. Dawid,
and A. . M. Smith (editors), Bayesian Statistics 4, pp. 837-842, Oxford University Press.

27

