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Abstract. Bayesian modeling is limited by our ability to formulate prior distributions that
adequately represent our actual prior beliefs — a task that is especially difficult for realistic
models with many interacting parameters. I show here how a prior distribution formulated
for a simpler, more easily understood model can be used to modify the prior distribution of
a more complex model. This is done by generating imaginary data from the simpler “donor”
model, which is conditioned on in the more complex “recipient” model, effectively transfer-
ring the donor model’s well-specified prior information to the recipient model. Such prior
information transfers are also useful when comparing two complex models for the same data.
Bayesian model comparison based on the Bayes factor is very sensitive to the prior distri-
butions for each model’s parameters, with the result that the wrong model may be favoured
simply because the prior for the right model was not carefully formulated. This problem can
be alleviated by modifying each model’s prior to potentially incorporate prior information
transferred from the other model. 1 discuss how these techniques can be implemented by
simple Monte Carlo and by Markov chain Monte Carlo with annealed importance sampling.
Demonstrations on models for two-way contingency tables and on graphical models for cat-
egorical data show that prior information transfer can indeed overcome deficiencies in prior
specification for complex models.

1 Introduction

One obstacle to Bayesian modeling of complex situations is that it can be difficult to for-
mulate a prior distribution over a high-dimensional parameter space that is an adequate
representation of our prior beliefs. We may sometimes find it easier to specify an appro-
priate prior distribution for the parameters of a simpler model, even though we believe
that this model does not capture all the complexities of the real situation. In this paper, I
show how the well-specified prior information incorporated into such a simple model can be
transferred to the more complex model. Prior information can also be transferred between



models of comparable complexity, evening out the quality of their prior specifications. This
technique is especially useful when these models are to be compared using Bayes factors,
since such comparisons are very sensitive to the priors on each model’s parameters, and
consequently can favour the wrong model merely because the right model’s prior was not
carefully formulated.

These transfers of prior information are accomplished by means of imaginary data that is
generated using the well-specified prior distribution of the “donor” model. The “recipient”
model has a less-well-specified pro forma prior — which might, for example, be overly-
diffuse — but its real prior distribution is obtained by conditioning on observation of this
imaginary data. In the “donor-weighted” variety of this procedure, the imaginary data is
determined solely by the donor model’s prior; in the “jointly-weighted” variety, the priors
for both models are used. These varieties differ both in their statistical properties and
in the contexts in which they are computationally feasible. I also consider limits of both
procedures as the amount of imaginary data goes to infinity.

In interesting applications, these techniques are likely to be implementable only by Monte
Carlo methods. Simple Monte Carlo based on sampling data from the donor model’s prior
is adequate, but it becomes extremely inefficient for higher-dimensional models. Prior
information transfer for complex models will therefore usually require use of Markov chain
Monte Carlo methods. When the marginal likelihood (the posterior normalizing constant)
needs to be computed in order to compare models, Markov chain sampling will usually have
to be combined with a technique such as annealed importance sampling (Neal 2001), which
uses a series of distributions that link to a distribution with a known normalizing constant.
These computational methods are discussed in Section 3 and illustrated in Section 4 on two
example problems.

The first example shows how prior information transfer can be used in a model for two-way
contingency tables. Here, the simple model assumes independence, and uses informative
priors for the marginal distributions. The more complex model is unrestricted. Directly
formulating an appropriate prior for this unrestricted model that captures our prior beliefs
might be difficult. Prior information transfer will be appropriate if these beliefs can be
adequately approximated by taking from the simple model both a preference for distribu-
tions exhibiting some degree of approximate independence and the simple model’s prior
information regarding marginal probabilities. In a simulated example where the true distri-
bution does exhibit approximate independence, I find that predictive performance is indeed
improved by using prior information transfer from the simple independence model.

As a second example, I show how prior information transfer can be used to ensure a fair
comparison of two graphical models for data on the educational aspirations of high school
students. These alternative models were previously considered by Heckerman, Meek, and
Cooper (1999), who found that the Bayes factor strongly favoured one model over the other.
I found this puzzling, since the favoured model seems much less plausible. However, when
each model is allowed to receive prior information transferred from the other, the strong
preference for the less plausible model disappears. Transfer of prior information has here
corrected a Bayes factor that does not reflect the real merits of the models, but only the
differential effects of bad prior specifications.



I conclude by outlining some areas for future research, such as how to transfer information
amongst multiple models. I also discuss how prior information transfer relates to previous
attempts at overcoming problems of prior specification and model comparison.

For general background on prior distributions and Bayes factors, see Bernardo and Smith
(1994) and Kass and Raftery (1995).

2 Techniques for prior information transfer

I will consider only models under which the data is exchangeable — that is, conditional on
values for the model parameters, the data items are independent and identically distributed.

” model, whose

We are ultimately interested in defining a prior distribution for a “recipien
parameters will be denoted by 6. We have a pro forma prior distribution for this model,
whose density will be written as P(6), but we are not confident that this distribution is an
adequate representation of our prior beliefs. It may sometimes be permissible for the pro

forma prior to be improper.

We also have a “donor” model, whose parameters will be denoted by ¢. Although we
doubt that this model is an adequate representation of reality, we believe that it may have
some approximate validity, and on this basis, we have formulated a prior distribution, Q(¢),
for this model’s parameters, expressing our beliefs about which values of ¢ are more likely
to produce a good approximation to reality. We hope to transfer the prior information
incorporated into this model to the recipient model, using imaginary data generated from
the donor model. The prior probability of data y1,...,y; under the donor model is

k
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Here, Q(y; | ¢) gives the probability of a single data item under the donor model, conditional
on model parameters ¢.

2.1 Donor-weighted transfer of prior information

The “donor-weighted” prior for the recipient model based on k imaginary data points,
denoted by Py, is defined as follows:
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Here, P(0|y1,--.,yk) is the posterior density for 6 given imaginary data yi,...,yx, based
on the recipient model’s pro forma prior. The sum above is over all possible values for these
k imaginary data points. We can also write this prior in the following equivalent way:
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The number, k, of imaginary data points affects the prior in two ways. A larger value of
k produces a larger modification of the pro forma prior, as a result of conditioning on more
data points. A larger value of k also reduces the variability in the effect of the imaginary
data, since the Law of Large Numbers makes most large data sets have almost equivalent
effect. To separate these two influences, we can generalize the prior by introducing a
parameter w that determines the effective mass of the imaginary data:
k ]w/k
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When w =k, this prior is equivalent to that of equations (2) and (4). When £ is large but
w is small, the pro forma prior is changed only to a small degree, but this change is based
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on many “fractional” data points, rather than on a few randomly selected data points. If
this is desirable, it may be best to use the prior obtained in the limit as the amount of
imaginary data goes to infinity, while w stays constant:

PY@) = lim P¥(6) (6)
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It may also sometimes be sensible to let the mass of imaginary data go to infinity along

with the number of imaginary data points, producing the following prior:
Pu() = Tim By(0) (7)
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This will not be useful when the donor model is nested within the recipient model, since
conditioning on an infinite mass of imaginary data generated from such a donor model will
have the effect of forcing the recipient model to behave in exactly the same way as the donor
model. However, when the two models are not nested, an infinite mass of imaginary data
produces the interesting effect of transforming the prior for the donor model’s parameters
to the prior for the recipient model that is obtained by mapping the donor parameters
to the values of the recipient model’s parameters that are closest, in terms of likelihood.
The recipient model’s pro forma prior has no effect on the result (except to eliminate
parameter values that are not within its support). As a trivial example, consider two
models for i.i.d. pairs of Bernoulli variables, (X,Y). In the donor model, P(X=1|¢) = ¢
and P(Y =1|¢) = 1/2. In the recipient model, P(X =1(0) = P(Y =1|6) = 6. The
posterior for # given an infinite mass of imaginary data generated with a particular ¢ will
be concentrated at the maximum likelihood value of 8 = 1/4+ ¢/2. If Q(¢) is uniform over
(0,1), and P(9) is any distribution with full support, Py (#) will be uniform on (1/4, 3/4).

Such a complete transfer of the donor model’s prior to the recipient model may sometimes
be useful, though I think that the fuzzier effect of a finite mass of imaginary data will usually
be preferable. When the donor model has fewer parameters than the recipient model, Py
will be concentrated on a lower-dimensional sub-manifold of the recipient model’s parameter
space. This may also be useful at times, although it does effectively eliminate some of the
recipient model’s flexibility.



In general, priors based on donor-weighted transfer of information can be viewed as mix-
tures of distributions obtained by conditioning the pro forma prior on the various possible
values for the imaginary data. The effect of the imaginary data can be to narrow the prior
distribution, if the data the donor model is likely to produce is a subset of that which would
be produced by the recipient model under its pro forma prior. It is also possible, however,
for the imaginary data to cause a shift or a widening in the prior. This can occur if the
donor model gives substantial probability to data whose probability under the pro forma
prior is very small (though not zero). In the mixture defining P, imaginary data that is
unlikely under P will nevertheless be included, with weight given by its probability under @,
forcing the final prior to place an appreciable probability on values of § that are compatible
with such data.

Computationally, weighting imaginary data according to the donor model’s prior requires
evaluation of normalizing constants of posterior distributions under P. For example, simple
Monte Carlo estimation of (4) or (5) based on random sampling of y1,...,yx from Q will
require evaluation of the integrals appearing in these expressions. For the models with
conjugate priors used in the examples of Section 4, these integrals can be done analytically,
but this will not be true in general.

2.2 Jointly-weighted transfer of prior information

An alternative, “jointly-weighted” form of prior information transfer is interesting both
because it has different statistical properties, and because it will sometimes be easier to
implement from a computational standpoint.

The jointly-weighted prior using k£ imaginary data points, denoted by Pk, can be written
as the following proportionality:

Be(0) o< Y POy, uk) Py, ue) Qyn,- -5 uk) (8)
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Comparing this with equation (2), we see that it differs in that the imaginary data is
weighted by the product of its probability under P and its probability under ). Also, to
produce a normalized prior for 6, the expression on the right must be divided by the sum of
these weights, > P(y1,...,yx) Q(y1,---,yk)- We can write this prior equivalently as follows:
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As for donor-weighted transfer, we can generalize this by introducing a parameter w for the
effective mass of the imaginary data:
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and we can consider the limit of this as the amount of imaginary data goes to infinity, with
its effective mass kept constant:

P“() = lim BY(0) (12)

k—o0



As before, we might also consider letting the mass of imaginary data go to infinity:

Pyo(0) = lim P,(9) (13)
k—o0

However, this prior seems to have stranger and less desirable properties than the corre-
sponding donor-weighted prior of equation (7). In the example of pairs of Bernoulli vari-
ables following (7), if Q(¢) and P(#) are both uniform on (0, 1), direct calculation shows
that the resulting P, (6) assigns probability 1/2 to each of the two extreme values of #=0
and #=1, with zero probability for other values. This is not useful, and not what one would
intuitively expect.

With jointly-weighted transfer of prior information, we might expect that it will be less
likely that the donor model will induce a prior for the recipient model that is wider than
its pro forma prior, or that is shifted with respect to it, since weights that are products of
probabilities under both models will tend to be high only for data that is of high probability
under both models. However, it could be that no data has high prior probability under
both models, in which case the resulting prior could put high probability on parameter
values that produce the best compromise. Which method for transferring prior information
produces better results will depend on the actual situation, but it does seem that the prior
resulting from jointly-weighted transfer is harder to visualize than that resulting from donor-
weighted transfer. When the pro forma prior is diffuse, however, it may be that the two
methods produce similar results, in which case one might choose between them according
to computational convenience.

When P(yi,...,yx) is easily computed, it seems easier to use donor-weighted transfer,
since this avoids the need to compute the normalizing constant for (8). However, computing
P(yi,...,yx) may sometimes be very difficult, in which case donor-weighted transfer may
be infeasible, but jointly-weighted transfer may still be possible using Markov chain Monte
Carlo methods to sample from the posterior distribution for 8. These issues are discussed
in Section 3.

2.3 Idempotence of prior information transfer

The donor-weighted prior of equation (2) has a pleasing idempotence property — if the
donor model and the recipient model are identical, the transfer of prior information has no
effect. In other words, if () and P are identical, then P, is the same as P. This is easily
seen as follows:

Pu0) = > PO|ys,---,ue) Qurs- - Yk) (14)
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This idempotence property need not hold when the effective mass of prior information
is adjusted to a value other than k, as in equation (5), including when k£ is infinite as in



equation (6). This occurs, for example, with models for Bernoulli data when both P and
Q@ use a uniform prior for the unknown probability — direct calculation shows that Pl/ 2
and P! are both non-uniform in this case. The idempotence property also need not hold
for jointly-weighted priors — for the Bernoulli example, direct calculation shows that P,
and P! are both non-uniform. This lack of idempotence should make us cautious about
drawing conclusions about these priors on the basis of intuitive ideas about information
transfer, but it does not seem to me to be reason enough to rule out use of such priors in

circumstances where they appear to be the most expedient means of expressing our prior
beliefs.

The idempotence of donor-weighted prior information transfer with w = k preserves a
modularity property that is useful when comparing graphical models, as in the example of
Section 4.2. Suppose that each data item consists of two parts, z; = (z, z'). One of the
models has two parameters, 6 and v, and a likelihood that can be written as P(z; |0,v) =
P(z}|0) P(z | z},1); the other model has parameters ¢ and v, and a likelihood that can be
written as Q(z; | ¢, v%) = Q(z} | ¢) Q(z} | z},v). Suppose that the likelihood factors involving
z" are identical for the two models — ie, P(z | z},v%) = Q(z! | z},v). Suppose further that
0 and 1 are independent in the first model’s prior, ¢ and 1 are independent in the second
model’s prior, and the priors for ¢ in the two models are the same — ie, P(¢) = Q(%).
These models can be seen as containing a common component, parameterized by ¥, which
models the conditional distribution of z” given z’. Since this component is the same in the
two models, it does not affect the Bayes factor for comparing them. The marginal likelihood
for each model will be a product of a factor pertaining to v, which is the same for both
models, and a factor particular to that model, which is the same as the marginal likelihood
that would have been found by considering only the first part of the data, z’, and only the
first parameter, 8 or ¢, ignoring z” and 1.

This ability to ignore z” and 1 when comparing the models will be preserved when each
model’s prior is modified using donor-weighted transfer from the other model with w=k.
In these modified priors, ¥ will still be independent of the other parameter, and will have
the same prior as before. This can be seen as follows for transfer from @ to P (using y as
shorthand for y1,...,yk):

Pu(w,0) = Y P,0|y,y") Qy,y") (17)
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The sum in the last expression has the form of a prior obtained by donor-weighted transfer
using models that ignore the second component of the data. We therefore see that with
this form of prior information transfer, model comparison is not affected by the presence of
extra data that is treated identically by the two models.

Unfortunately, this property is not shared by donor-weighted transfer with w # k, or by
jointly-weighted transfer. When using these methods, it seems most reasonable to reduce
the two models by eliminating any parts such as z” that they have in common, in order to
avoid any influence these arguably irrelevant aspects of the data might have on the answer.
This will reduce the computational cost as well.

2.4 Controlling the amount of information transferred

Since the degree to which prior information in the donor model is actually helpful will
generally be hard to determine a priori, we should usually not fix the amount of information
transferred. Perhaps the only exception to this is when we have some reason to think that
an infinite mass of imaginary data would be appropriate, as in (7). When we don’t know
exactly how much information should be transferred, we can specify a fairly vague prior
distribution for the number of imaginary data points, k, or for the mass parameter, w, and
then allow the data to determine a posterior distribution for how much prior information
is transferred. I expect that the best procedure will typically be to fix k to as large a value
as is feasible computationally (letting it be infinite if possible), and to then use a prior on
w to control the amount of information transferred. Conceivably, however, there could be
situations in which the variability present when k is small is beneficial, in which case we
might instead specify a prior distribution for k£ and fix w to be equal to k, or specify some
joint prior for k and w.

3 Monte Carlo implementations of prior information transfer

Prior distributions obtained by donor-weighted or jointly-weighted transfer of prior infor-
mation, such as (2) and (8), will seldom be reducible to easily computable formulas. We will
instead need to resort to Monte Carlo methods. To predict future observations, or estimate
the posterior expectation of some function of interest, we need some way of sampling from
the posterior distribution of the model parameters, 8, based on observed data x1,...,Zn.
If we are comparing two models, we also need to estimate the marginal likelihoods of these
models based on the observed data, the ratio of which gives the Bayes factor.

For some examples in this paper, I use simple Monte Carlo estimation based on sampling
from the donor model’s prior, but in other cases Markov chain Monte Carlo methods are
needed. Below, I discuss implementation by these two methods when the mass of imaginary
data is fixed, after which I discuss the problem of letting the mass parameter, w, be variable.

3.1 Implementation using simple Monte Carlo

A simple Monte Carlo approach is possible when the donor model allows easy sampling from
its prior, and the recipient model, with its pro forma prior, allows easy sampling from its
posterior and efficient computation of marginal likelihoods. In particular, the donor model



must allow easy sampling from the prior for its parameters, Q(¢), and from the distribution
for data given parameters, Q(y;|¢). The recipient model with its pro forma prior must
allow easy sampling from posterior distributions, such as P(0]yi,...,yx), and efficient
computation of marginal likelihoods, such as P(y1,...,yx) = [ P(y1,---,yx|0) P(0) d6.
This will usually be possible only when the pro forma prior, P(6), is conjugate.

The simple Monte Carlo estimates will be based on N sets of k imaginary data points,
with the j’th such set denoted by ygj ), ... ,y,(cj ). These data sets are drawn independently
from the donor model’s prior, typically by first drawing ¢() from Q(¢) and then drawing

each y(j) for i from 1 to & from Q(y; | ).

%
Using such a sample of imaginary data sets, we could estimate the prior of equation (2),
based on donor-weighted transfer, as follows:

. 1 X . .
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This is usually not of direct interest, but it forms the basis for the following estimate of the
marginal likelihood for actual observations x1,. .., Ty:
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By assumption, the marginal likelihoods in this last expression are easily computable. Al-
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ternatively, when the pro forma prior is conjugate, conditioning on imaginary data simply
alters this conjugate prior’s parameters, so each term of the sum in (26) above can be found
by calculating the marginal likelihood for the observed data under such an altered prior.

The posterior distribution for € given the observed data can be estimated as follows:

Pk(9|$1,---,$n) _ P(z1,...,2,|6) P(0) (28)
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For the tractable models assumed here, an estimate of the posterior density for some value
of 8 can computed using this expression. The posterior expectation of a function of § can



be estimated as well, assuming that the posterior expectation of this function using the
pro forma prior is easily computable. These estimators have the same form as arises with
importance sampling and with regenerative simulation, so their accuracy can be assessed by
the methods used in those contexts (Ripley 1987, Section 6.4; Geweke 1989; Neal 2001). If
a value for 6 drawn from the posterior distribution is desired, it can be obtained by choos-
ing a value for j with probabilities given by P(z1,...,z, |y§]),...,y,(cj)) /Pk(wl,...,xn),

and then picking 6 from the posterior distribution based on the pro forma prior and data

T1yenn, Ty, ygj), . ,y,(cj).

Similar methods can be applied when using the donor-weighted prior of equation (5),
in which the effective mass of the imaginary data is adjusted to be w. When the recipient
model is in the regular exponential family and the pro forma prior is conjugate, conditioning
on imaginary data takes the form of updating the conjugate prior’s parameters by adding
the appropriate sufficient statistics computed from the imaginary data (Bernardo and Smith
1994, Section 5.2). To take a trivial example, for a model for Bernoulli data that uses a
beta(a, 8) pro forma prior for 8, the unknown probability of a 1, the distribution conditional
on imaginary data is also beta, with parameters found by adding the number of imaginary
1’s to a and the number of imaginary 0’s to 8. To adjust the effective mass of the imaginary
data to w, we need only multiply these imaginary data statistics by w/k when computing
the conditional probabilities in equations (23) and (26) and the two conditional probabilities
in equation (30).

Letting k go to infinity, giving the prior of equation (6), is also feasible for such models.
Rather than generate N imaginary data sets, we generate N values for the parameters of
the donor model, ¢, ..., V) and where we would condition on imaginary data by adding
appropriate statistics to the parameters of the conjugate pro forma prior, we instead add
the expected value of these statistics for one data point (with respect to the distribution
defined by ¢(j)), multiplied by the desired effective mass, w. For the Bernoulli example
above, with ¢ and 6 both being the unknown probability of a 1, the expected number
of 1’s in an imaginary data set with one observation is ¢{), and the expected number of
0’s is 1— ¢, so the conditional distribution for 6 given a mass w of imaginary data is
beta (a+wp), f+w(1—¢))).

The prior of equation (8), based on jointly-weighted transfer, can be estimated as follows:
1 N . . . .
j=1

By(0) =~ (31)
1§ P, 9
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(Here and later, the two factors of 1/N will cancel, but they have been retained for clarity.)
From this, we get an estimate of the marginal likelihood for the observed data:
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1 N . . . .
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Comparing (34) and (35) above with with (26) and (27) earlier gives some more insight into
how donor-weighted and jointly-weighted prior information transfers differ. In particular,
one can see that the marginal likelihoods based on the two priors will be the same if
P(z1,...,2n|Y1,---,yk) and P(y1,...,yx) are independent under Q(yi,...,Yk)-

The posterior distribution for 6 using the jointly-weighted prior can be estimated using
equations (31) and (34), as follows:
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To use the prior of equation (11), which is based on jointly-weighted information transfer
using imaginary data that is adjusted to have effective mass w, the probabilities conditional
on y§ ), ..,y,(cj) (31), (34), and (38) must be adjusted appropriately. As for donor-
weighted transfer, this can easily be done for regular exponential family models when the
pro forma prior is conjugate — the statistics added to the parameters of the conjugate
prior are simply multiplied by w/k. In addition, the occurrences of P(y? ), y,(C )) in these
equations must be replaced by the analogue of marginal likelihood for the adjusted mass of
data, which is [ P( ylj), ..,y,C \O)W/kP(H) df. Use of the prior of equation (12), obtained
by letting & go to infinity, will generally also be feasible for tractable models with conjugate
priors.

Many models and priors do not permit the easy computation of marginal likelihoods and
posterior distributions needed to apply these simple Monte Carlo methods. Even when
the required quantities can be calculated, the efficiency of the Monte Carlo estimates will
sometimes be extremely poor, because estimates such as that of equation (26) may be
dominated by a very small fraction of the sample, with the result that the estimate will have

(J) (4)

a high variance. This will be the case when a few of the imaginary data sets, y;"’,...,y;"",
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lead to much higher probabilities of the actual data, x1,...,z,, than do the others, which
will often be the case when the amount of imaginary data is large. Markov chain Monte
Carlo methods will sometimes provide a way around these problems.

3.2 Implementation using Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods can be used to make posterior inferences
about the recipient model’s parameters, and to predict future observations. With somewhat
more difficulty, the marginal likelihoods needed for model comparison can also be found.
See Gilks, et al (1996) for general background on MCMC methods.

Consider first the problem of sampling from the posterior distribution given data
Z1,...,Tp, based on the donor-weighted prior of equation (5), in which the total mass
of the imaginary data is adjusted to a fixed value, w. One possible approach is to explic-
itly represent the donor model’s parameters, ¢, and the recipient model’s parameters, 6,
as well as the imaginary data, y1,...,yx. Letting x denote all the observed data, and y
all the imaginary data, the posterior distribution for ¢, y, and 6 is given by the following
proportionality:

P(y|6)~/* . P(6)
[ P(y|6)=/kP(0)do

Pe(hy, 0) o« Qo) Qyld)- P(z|9) (39)

This expression can be diagramed as below:

Qo) ,~ Pllo)* —~ Plzl0) O
y 0 x

\T/

Q(4) [fP(y\O)‘“/kP(H)dO]_l P(0)

Here, each factor is written adjacent to a line that connects to the variables involved in that

(40)

factor. Markov chain sampling for this distribution can be done by updating each of these
variables in turn (apart from z, which is fixed to the observed data), using some method that
leaves the distribution invariant, such as Gibbs sampling or a Metropolis-Hastings update.
When updating a variable, only the factors associated with the lines connecting to that
variable need be considered. Unfortunately, computing [ P(y|8)“/*P(6) d§ will usually
be infeasible when the pro forma prior is not conjugate, in which case this Markov chain
sampling scheme will be inapplicable. When we do have conjugate priors for the recipient
model or for the donor model, it may be desirable to marginalize away the corresponding
model parameters. When both model’s parameters are eliminated, the Markov chain scheme
diagramed below can be used, when w=k:

Pz
0W) @ (z|y) @ (41)

When w # k, the factor of P(z|y) is replaced by a corresponding factor in which the

conditioning on y is adjusted to an equivalent mass of w.

When the jointly-weighted prior of equation (11) is used, the troublesome integral factor
in (39) is eliminated, leaving only factors that are likely to be more easily computable:

Be(d,y,0) < Q) Qyl|¢) Ply|o)/* . P(6)- P(z|6) (42)
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We can diagram this expression as follows:
w/k P 0
Qlyl¢) @ P(y|0) @ (] 6) @
Q(¢) P(0)

Markov chain sampling will be feasible for a much wider class of models when such a

(43)

jointly-weighted prior is used, which is one motive for considering these priors.

When the recipient model is in the regular exponential family, these methods can be
adapted for use when k is infinite. For such models, the effect of y on the recipient model
is determined by its sufficient statistics, which here are assumed to be expressed as sample
averages (not totals), so that they stay finite as k goes to infinity. The Law of Large Numbers
ensures that when £ is infinite, these statistics will equal their expected values, as determined
by ¢. Markov chain updates for # can therefore be done much as for finite k, using the
expected value of the statistics computed from the current ¢. Markov chain updates for
¢ will have to account for how these expected statistics change when ¢ changes. Looked
at another way, one must update ¢ and y simultaneously, with the infinite-dimensional y
being represented by its finite-dimensional sufficient statistics, s, which are functions of ¢.
If # has been marginalized away, as in (41), the state of the Markov chain will consist of ¢
alone, and the distribution to sample from can be diagrammed as below:

P(z|ws
o) @ (] (¢))@ (44)

Since the interaction of ¢ and x will generally be complicated, using Gibbs sampling to up-

date ¢ will usually be impossible, but other techniques such as Metropolis-Hastings updates
can be used.

The sample of values for # obtained by Markov chain sampling can be used to estimate
posterior expectations, but this sample does not directly provide any feasible method for
estimating the marginal likelihood. The marginal likelihood for the recipient model with
the donor-weighted prior is the normalizing constant of (39). This can be estimated using
methods such as path sampling (Gelman and Meng 1998) or annealed importance sampling
(Neal 2001), which require that we embed the distribution of interest in a family of distri-
butions. Such a family can be obtained by replacing the factor P(z|8) with P(z|6)®. The
normalizing constant when « =1 is the desired marginal likelihood. It can be estimated
using samples from a sequence of distributions at varying values of «, starting with =0,
for which the normalizing constant is known to be one, and ending at a=1.

When the jointly-weighted prior is used, the marginal likelihood is the normalizing con-
stant of (42) divided by the normalizing constant of the expression for the prior given
by (11). This ratio of normalizing constants can be estimated using a sequence of values
for o in the same way as described above for the donor-weighted prior. However, randomly
drawing a starting state for the annealing run from the distribution with =0 and w set
to the desired mass of imaginary data may be difficult. This problem can be handled by
by varying the w parameter as well, from a starting value of zero (where drawing a starting
state easy) up to the desired mass, while holding « fixed at zero. The final value for w is
then kept fixed while « is increased to one.
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3.3 Letting the mass parameter be variable

As discussed in Section 2.4, we should usually not fix the amount of information transferred
from the donor model, but should instead specify a prior distribution for w that represents
our uncertainty regarding the appropriate amount.

If the simple Monte Carlo methods of Section 3.1 are used, the easiest way to implement
this is to apply the methods described there for values of w at equally-spaced quantiles of
its prior distribution. The overall marginal likelihood can then be estimated by the average
of the marginal likelihoods for these values of w. Predictions for future observations and
posterior expectations for 6 can be estimated by weighted averages of estimates obtained
at each w, with the weights being proportional to the marginal likelihood for that w.

This method could also be used in conjunction with a Markov chain Monte Carlo imple-
mentation, but we might instead try to include w as a hyperparameter that is updated as
part of the Markov chain simulation. This should be feasible when a donor-weighted prior is
used, since the effects of changing w are captured by the factors that are already explicitly
present in (39). However, updating w as part of the Markov chain looks difficult when a
jointly-weighted prior is used, since there seems to be no easy way to account for the fact
that changing w may change the normalizing constant for (42).

4 Examples of prior information transfer

In this section, I present two examples illustrating the effects of prior information transfer
and the computational methods needed to implement it. The first example is fairly simple,
with the recipient model being just complex enough that directly formulating an appropriate
prior might sometimes be difficult. The second example revisits a more complex modeling
problem from the literature, and shows how prior information transfer can avoid problems
with prior specifications that might otherwise go unnoticed.

The programs used for these examples were written in R, and are available from my
web page. (Note, however, that they are intended only for reproducing the examples in
this paper; they are not suitable for general use.) The examples were run on an 866 MHz
Pentium III processor. The computation times reported could be reduced by at least a
factor of ten by rewriting the programs in a compiled language such as C.

4.1 Example 1: Models for two-way contingency tables

As a first illustration of prior information transfer, I will consider models for two-way
contingency tables that summarize data concerning a pair of variables, (X7, X2), where X3
is an integer from 1 to hy and X5 is an integer from 1 to ho. I will assume that n pairs,
(%15, ®2,;), have been observed, and that these were drawn independently from some joint
distribution with unknown probabilities P(X; = a, Xo =b) = 0.

Often, we may believe that any valid joint probabilities are possible, but we may also
believe that X; and X9 are likely to be approximately, though not exactly, independent.
We may be able to formulate appropriate priors for the marginal distributions of X; and of
Xy, but find it difficult to properly formulate a higher-dimensional prior distribution for the
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True probabilities of pairs Counts of observed pairs

.0000 .0000 .0010 .0053 .0174 .0042 .0113 0 0 1 7 22 6 14
.0014 .0159 .0068 .0116 .0121 .0421 .0183 4 14 9 11 14 48 18
.0157 .0184 .0025 .0063 .0089 .0363 .0189 12 18 7 6 7 41 18
.0018 .0065 .0091 .0265 .0064 .0132 .0151 2 8 10 31 6 15 14
.0080 .0027 .0104 .0093 .0123 .0460 .0564 8 4 12 8 9 40 63
.0091 .0118 .0107 .0469 .0388 .1023 .0431 5 16 10 51 35 79 50
.0159 .0133 .0149 .0420 .0259 .0679 .0792 18 10 12 42 23 67 75

Figure 1: The true probabilities for each possible pair, (X7, X5), used in the simulation, and
the contingency table showing how many times each pair occurred in the 1000 simulated
observations. Rows correspond to different values for X1, columns to different values for X5.

joint probabilities, 8,;. We would like the prior for these joint probabilities to be compatible
with our prior beliefs about the marginal distributions, and for it to also express the idea
that the joint distribution is likely, but not certain, to exhibit some degree of approximate
independence. This is a situation in which transferring prior information from a simple
model that assumes independence may be useful.

I have tested the use of prior information transfer in a simulated context of this sort, in
which hy = hg = 7. T used a donor model that assumes independence of X; and X, and
whose parameters are the two vectors of marginal probabilities, ¢; and ¢3. The priors for
these marginal probability vectors where Dirichlet:

¢1 ~ Dirichlet(a;), ¢2 ~ Dirichlet(as)
with the parameters of these Dirichlet priors fixed as follows:
op = [1218 18 18 36 42 48], ap = [12 12 12 24 24 54 54]

The recipient model allowed for any joint distribution. Its parameters, 8,;, were given a pro
forma prior that was uniform over the simplex of valid probability distributions, which is
equivalent to a Dirichlet distribution with all parameters equal to one.

The actual joint probabilities — ie, the true values for the hihs parameters 6,, — were
simulated from the Dirichlet distribution with parameters o,y = @14a25/ ) @1,4. These
true parameters (which were rounded to four decimal places before use) are shown on the
left in Figure 1. One thousand observations of pairs were then generated independently
with these probabilities. The contingency table of counts from these observations is shown
on the right in Figure 1.

The Dirichlet distribution from which the true simulation probabilities were drawn is
such that the consequent distributions for the marginal probabilities of X; and of X5 are
the Dirichlet distributions that are used as priors in the donor model. This simulates a
situation in which we have informative priors for these marginal probabilities, which we
have been able to express mathematically. In this simulated situation, the ideal prior
for the unrestricted recipient model would of course be the Dirichlet distribution from
which the actual probabilities were drawn. In a real situation, however, we might have
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difficulty in extending our prior for the marginal probabilities to a prior for the whole joint
distribution, which involves many more parameters. (There are 48 free parameters in the
joint distribution, versus 12 for the two marginal distributions.) Note in this respect that
the technique of defining a Dirichlet distribution for the joint probabilities that was used
in this simulation — setting a,, = ai14004/ Y 1,4 — produces a prior that is consistent
with the priors for the marginal probabilities only when, as here, > a1, = ) a9, so that
our priors for the two marginal distributions are equally informative. Even when our priors
for marginal distributions are Dirichlet, there is no reason in general for them to satisfy this
constraint, so this technique is not generally applicable. Of course, a 7-by-7 contingency
table is not extraordinarily complex, so with a bit of thought, one can devise various ways
of adequately expressing the available prior information. The aim here is to see whether
the generally-applicable methods of prior information transfer will also work well.

Prior information transfer was implemented by the simple Monte Carlo methods of Sec-
tion 3.1. This is possible because the marginal likelihood using a Dirichlet prior can be
found analytically. If in m observations, pair (a,b) was observed myg, times, the marginal
likelihood for the unrestricted model using a Dirichlet prior with parameters g is

r.;) 1_‘('rnab + aab) / I‘(O‘ab)

T(m+a) / T(a)

where a = Y ag. By using this formula, one can compute both P(ygj),...,y,(cj)) and
P(xy,...,2, |y§j), e ,y,(cj)), as needed for the donor-weighted methods of equations (26)
and (30) and the jointly-weighted methods of equations (34) and (38). When comput-
ing P(yy ), e ,y,(Cj )), the parameters agp are those of the pro forma prior (all one in the
present case), and the counts are for the imaginary data (so m = k). When computing
P(z1,...,zn |y§j), e ,y,(cj)), the parameters g, are the counts for the imaginary data plus
the parameters of the pro forma prior, and the counts are for the actual data (so m=n).
The effective mass of the imaginary data can be adjusted to be w by multiplying the counts
for the imaginary data by w/k. To produce the effect of k being infinite, we generate pa-
rameter values ¢; and ¢o from the donor model’s prior, but we do not attempt to generate
the infinite-size imaginary data vector y. Instead, we proceed as above using w1024 in

place of the counts for the imaginary data.

The success of the various models can be measured by looking at the marginal likelihood
of each for increasing portions of the data, since the marginal likelihood for the first so-many
data points measures the model’s predictive success on these data points, with respect to
the loss given by the sum of minus the log of the predictive probability of each data point
in succession up to this point. Such marginal likelihood profiles also show us which model
would have been preferred if we had had to choose a model based on each amount of data,
on the basis of the Bayes factor.

The plot on the left in Figure 2 shows the log of the marginal likelihood based on increasing
portions of the data, for the donor model, the recipient model with its pro forma prior, the
recipient model with the simulation prior used to choose the actual probabilities, and finally
for the model whose parameters are fixed to these true probabilities. Since these are not
readily distinguishable on this scale, adjusted marginal likelihood profiles are shown on the
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Figure 2: Marginal likelihood profiles for basic models. On the left, the log of the marginal
likelihood is shown for increasing amounts of data. On the right, adjusted profiles are
shown, in which the log marginal likelihood for the model whose parameters are fixed at
the true probabilities has been subtracted. The plots show marginal likelihoods after every
ten data points, up to the full one thousand. The models shown (in addition to the model
with the true parameters) are the donor model (d), the unrestricted recipient model with
its pro forma prior (r), and the recipient model with the simulation prior from which the
actual probabilities were drawn (s).

right, in which the log marginal likelihood for the model with parameters fixed at their true
values has been subtracted, making the differences more easily discernible.

From these plots, we can see that the donor model, which assumes independence and
has informative priors, appears better than the unrestricted recipient model until 714 out
of the 1000 observations have been seen (ignoring situations after very small numbers of
observations, when by chance the recipient model is sometimes favoured). Until this point,
the Bayes factor would lead us to chose the model assuming independence, even though
the actual probabilities do not satisfy this assumption. Partly, this is due to the donor
model’s informative priors for the marginal probabilities, which correspond well with the
actual marginal probabilities, and partly it is due to the fact that the actual distribution
does have some degree of approximate independence. Due to this good prior, for about the
first 300 observations, the donor model’s marginal likelihood is virtually indistinguishable
from that of the model from which the true parameter values were actually drawn, which
we could not hope to do better than (except by chance).

Figure 3 shows marginal likelihood profiles for the unrestricted recipient model with
various forms of donor-weighted transfer of prior information from the donor model, which
assumes independence and has informative priors for marginal probabilities. The plot in
the upper left shows the marginal likelihood profiles using the prior of equation (2), with
the number of imaginary observations (each observation being a pair in this case) varying
from 50 to 800. All these values for k lead to substantially better results than are obtained
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Figure 3: Results using donor-weighted prior information transfer. The plot in the upper
left shows marginal likelihood profiles for recipient models receiving prior information from
varying numbers of imaginary data points, each with full mass. The plot in the upper right
shows the effect of keeping the effective mass constant, while varying the number of data
points, up to infinity. The plot in the lower left shows the effect of varying the effective
mass of an infinite amount of imaginary data. Finally, the plot in the lower right shows
the marginal likelihood profile for a model in which the mass of imaginary data is given an
exponential prior with mean 500. For comparison, dotted lines show the marginal likelihood
profiles for the basic models of Figure 2.
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using the recipient model’s pro forma uniform prior. The best results are obtained when
k=400.

The upper-right plot in Figure 3 shows that, for this problem at least, a given mass of
imaginary data is best obtained by using a larger number of imaginary data points, whose
mass is then adjusted, as in equation (5). For a mass of w=>50, we see an improvement in
the plot as we go from obtaining this mass using 50 full imaginary data points, to obtaining
it using 100 data points whose mass has been reduced by one half, and finally to obtaining
a mass of 50 using an infinite number of imaginary data points.

It therefore makes sense to fix k to be infinite, and investigate which value for w is best.
The plot in the lower right of Figure 3 shows marginal likelihood profiles for values of w
from 50 to 800. We see that when k is infinite, a mass of 200 is slightly better than 400,
the reverse of what was seen in the upper left, where & = w.

In an actual application, we would seldom know a priori what value for w was best.
The plot in the lower right shows the marginal likelihood profile when w is given a prior
distribution that is exponential with mean 500. This marginal likelihood profile is almost
as good as that for the model whose prior is the one from which the true probabilities were
actually simulated. For up to about 250 observations, the profiles for these two models are
close to the marginal likelihood profile for the donor model, indicating that this amount of
data is needed in order for the lack of complete independence to become apparent.

The results in Figure 3 were obtained using the simple Monte Carlo estimator of equa-
tion (26). The Monte Carlo sample size was N =2000 for the models with infinite k, which
required about six minutes of computation time. The standard error for the estimated log
marginal likelihood for all 1000 observations increased roughly linearly with the mass of
imaginary data, from 0.03 for w=>50 to 0.29 for w=800. When k was equal to w, obtaining
precise estimates required a larger Monte Carlo sample size, which is not surprising, since
letting k£ be infinite eliminates one source of variability in P(z1,...,zy | y%j ), e ,ygj )). Ac-
cordingly, the Monte Carlo sample size was increased to N = 10000 for the estimates with
finite k, which required about thirty minutes of computation time. The resulting standard
errors for the log marginal likelihood increased with k, from 0.13 when k& =w =150 to 0.50
when k= w = 800. The marginal likelihood with w ~ exp(500) was estimated by averag-
ing simple Monte Carlo estimates for the marginal likelihood (not its log) with w set to
quantiles 0.00, 0.02, ..., 0.98 of the exp(500) distribution, with the sample size for each of
these computations being N =200. The total computation time for this was about thirty
minutes. The standard error for the resulting estimate of the log marginal likelihood was
0.14.

Marginal likelihoods using jointly-weighted prior information transfer were also estimated
by simple Monte Carlo, using equation (34). Because the effective sample size in (34) is
reduced in comparison to that in (26) due to the variability in P(y%j ), e ,ygj )), a much
larger sample size of N = 50000 was used for these estimates, taking about three hours
of computation time. As was the case for donor-weighted transfer, accuracy was lower for
k = w than for infinite k, and it was lower in both cases when w was larger. For given
values of £ and w, the marginal likelihood for jointly-weighted transfer was slightly higher

than for donor-weighted transfer, at least for small values of w, which were the only ones
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for which results accurate enough for a clear comparison were obtained. For infinite &, the
log marginal likelihood with w = 10 was —3562.035 + 0.010 for donor-weighted transfer,
versus —3561.973 + 0.002 for jointly-weighted transfer; with w = 50, the corresponding
values were —3550.50 & 0.03 for donor-weighted transfer and —3549.01 £ 0.05 for jointly-
weighted transfer. With k= w = 10, the log marginal likelihood was —3563.51 4+ 0.04 for
donor-weighted transfer and —3563.30 & 0.04 for jointly-weighted transfer. (All estimates
are given with + the estimated standard error.)

Marginal likelihoods were also estimated using annealed importance sampling, using the
scheme diagramed in (40) for donor-weighted transfer and that of (43) for jointly-weighted
transfer. Gibbs sampling was used to update the parameters and imaginary data, which was
possible for donor-weighted transfer because the marginal likelihood using the pro forma
prior can be computed analytically. For a donor-weighted prior with k=w=>50, a standard
error of 0.08 for the log marginal likelihood was achieved using 50 annealing runs, in each
of which o« was varied from 0 to 1 in steps of 0.0005, with a single Gibbs sampling scan
updating 6, y, and ¢ at each value of . This required 72 minutes of computation time
in total, as compared with 32 minutes for the simple Monte Carlo estimate, which had a
somewhat larger standard error of 0.13. For this problem, simple Monte Carlo and annealed
importance sampling were about equally efficient.

When using a jointly-weighted prior with k¥ =w =10, a standard error of 0.13 was achieved
using 50 annealing runs in which w was first varied from 0 to 10 in steps of 0.005 and « was
then varied from 0 to 1 in steps of 0.0005, with one Gibbs sampling update at each stage.
This required 40 minutes of computation (less per stage than for donor-weighted transfer),
compared to 162 minutes for finding a simple Monte Carlo estimate whose standard error
was 0.04. Simple Monte Carlo is a bit more efficient in this case, but when k =w = 50,
no useful estimate was obtained using simple Monte Carlo with N = 50000 (taking 178
minutes), whereas annealed importance sampling produced an estimate with a standard
error of 0.11 using 215 minutes of computation time. This estimate was obtained using
50 annealing runs in which w was varied from 0 to 50 in steps of 0.005 and « was then
varied from 0 to 1 in steps on 0.0001. The estimate found for the log marginal likelihood
of —3567.41 £+ 0.11 was surprisingly low, in comparison with —3554.80 %+ 0.08 for donor-
weighted transfer with £ = w = 50, and —3563.30 & 0.04 for jointly-weighted transfer with
k = w = 10. It is not much different from the log marginal likelihood of —3568.00 for the
recipient model with its pro forma prior. Jointly-weighted transfer with k =w = 50 seems
to modify the prior in an unexpected, and in this case, undesirable, way.

Annealed importance sampling was also tried for jointly-weighted priors with %k infinite.
For these runs, 6 was updated by Gibbs sampling, as for finite k, but a Metropolis-Hastings
update was done for ¢, using Q(¢) as the proposal distribution (the infinite-sized y was
in effect updated simultaneously with ¢). With w = 50, the log marginal likelihood was
estimated with a standard error of 0.10 using 50 annealing runs in which w was varied from
0 to 50 in steps of 0.05, and then « was varied from 0 to 1 in steps of 0.0001. This took
16 minutes, compared with 158 minutes for a simple Monte Carlo estimate whose standard
error was 0.05. With w =100, annealed importance sampling took 140 minutes to obtain
an estimate with standard error of 0.18, using 50 annealing runs with w varied in steps of
0.0025 and « in steps of 0.000025. This is better than simple Monte Carlo, which required
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Figure 4: Comparison of results using donor models with informative and with uniform pri-
ors. The left plot shows marginal likelihood profiles for a model that assumes independence,
with uniform priors for the marginal probablities (lower solid line), and for an unrestricted
model with donor-weighted prior information transfer from this model (upper solid line).
The transfer used infinite &, and w~exp(500) . For comparison, the dotted lines show the
marginal likelihood profiles from Figure 2. The plot on the right shows how the log marginal
likelihood varies with w when using the donor model with uniform prior (x, some low points
omitted) and when using the donor model with the informative prior (o). The estimates
shown are those used to find the estimate with w~exp(500), with w set to quantiles of this
distribution. They are based on samples sizes of N = 200 for the informative prior and
N = 2000 for the uniform prior.

172 minutes to obtain an estimate with a standard error of 0.33. The estimated log marginal
likelihood using jointly-weighted transfer with & infinite and w =100 was —3543.82 £ 0.18,
which is slightly better than the value of —3545.04 &+ 0.06 for donor-weighted transfer. It
appears that the peculiarly bad behaviour seen above for jointly-weighted transfer with
w=k=>50 does not occur when k is infinite.

Figure 4 shows that prior information transfer is still beneficial when the donor model uses
a uniform prior for marginal probabilities, rather than the informative prior used for the
previous tests. The benefit in this case comes from transferring to the recipient model the
knowledge that the distribution is likely to show to some degree the independence assumed
by the donor model. The benefit of information transfer from this donor model (measured
in terms of log marginal likelihood) is about one-third of that from using the donor model
with the informative prior. As seen in the right of Figure 4, the optimal value of w for
this donor model (about 100) is also less than the optimal w for the donor model with the
informative prior (about 250). The sample size needed to get good estimates using simple
Monte Carlo is much larger when the donor model’s prior is not informative — even though
the sample used was ten times larger, the marginal likelihood estimates using the donor
model with uniform prior on the right in the figure are substantially noisier than those
using the donor model with the informative prior.
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In this example, when the donor model with the informative prior was used, donor-
weighted prior information transfer with k£ infinite and with w given a fairly vague prior
achieved nearly as good a result as could possibly be expected, even if the actual mechanism
used to choose the true parameters were assumed known. Jointly-weighted transfer with &
infinite also worked well, but when k was finite, the jointly-weighted prior behaved strangely.
Simple Monte Carlo computation worked adequately well for donor-weighted transfer with
this model, but was not so successful for models using jointly-weighted transfer, or when
the prior was not informative. With either method of prior information transfer, it is likely
that larger-scale problems will required use of Markov chain methods, in conjunction with
a method such as annealed importance sampling if marginal likelihoods are needed.

4.2 Example 2: Comparing graphical models for categorical data

As a second example, I look at the comparison of two directed graphical models for the
data on factors influencing college plans that was examined by Sewell and Shah (1968), and
used as an example by Heckerman, Meek, and Cooper (1999).

The data concerns 10,318 high school seniors in Wisconsin, randomly sampled from all
such students in 1957. For each student, the following variables were recorded:

SEX male or female

SES socioeconomic status: low, lower middle, upper middle, or high
1Q intelligence quotient: low, lower middle, upper middle, or high
PE  parental encouragement to attend college: low or high

CP  whether student plans to attend college: yes or no

The objective was to investigate which factors influenced whether the student planned to
attend college, and if so how. For example, it was of interest to know whether or not SES
influenced CP only through its effect on PE. Alternatives of this sort can be expressed using
directed graphical models (see, for example, Cowell, et al 1999). These have a probabilistic
interpretation as a description of the joint distribution for all variables in terms of the
conditional distributions for each variable given values for its “parent” variables, from which
arrows to it are drawn. One may also wish to give a causal interpretation to the arrows
in such models, though whether this is justified will depend on subtleties that I will not
discuss here.

For this example, I will consider only two graphical models for this data, which were the
two most probable models found by Heckerman, et al in an exhaustive search of all models
without latent variables. These models are shown in Figure 5. Model A is similar to one
used by Sewell and Shah, except that they did not specify a direction for the link between
SES and IQ, and they analysed data for males and females separately, which is equivalent
to making SEX a parent of all the other variables. This model seems plausible on the basis
of common-sense prior knowledge. Model B is the same as Model A except that the arrow
from IQ to PE has been reversed. If the model is interpreted causally, this is a change from
PE being determined by 1Q, SEX, and SES, to it being determined only by SEX and SES,
while 1Q is now influenced by PE as well as SES.

From the point of view of a causal interpretation, Model B is much less plausible than
Model A, based on common-sense prior knowledge. By the time parents are encouraging or
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Figure 5: Two graphical models for the data on college plans.

not encouraging their children to go to college, the child’s IQQ must surely have stabilized,
and be uninfluenced by whether such encouragement is received. It is somewhat more
plausible that PE could be a surrogate for general parental encouragement of academic
pursuits, including encouragement at an age early enough to influence I1Q, but this is still
not as plausible as the reverse causation of Model A, in which the child’s IQ influences
whether their parents encourage them to go to college.

From a probabilistic viewpoint, Model A is also more plausible. It implies that SEX
and IQ are marginally independent. This is quite likely, since the average 1Q) for males and
females is generally thought to be the same, and any small sex difference in the variance of IQ
is likely to be concealed when its value is reduced to the four categories above. Model B lacks
this marginal independence, but implies that SEX and IQ are conditionally independent
given PE and SES. This would exclude, for example, situations in which parents of a certain
socioeconomic status encourage all male children to go to college, but only encourage female
children if they have a high 1Q. Common sense prior knowledge says that such scenarios
are quite possible, and indeed must certainly be present to at least a small degree.

It is therefore rather surprising that Heckerman, et al find that the Bayes factor favours
Model B over Model A by a factor of 8.4x10'. This result is of course influenced by the prior
distributions for the parameters of the two models, which are the conditional probabilities
for the various possible values of each variable, given each possible combination of values for
its parent variables. Heckerman, et al use independent Dirichlet priors for these conditional
distributions, with Dirichlet parameters based on the assumption that some number, 7, of
hypothetical previous observations occurred, spread equally over the 2 x4 x4 x 2 x 2 = 128
possible combinations of values for the variables. For example, in Model B, the prior
for the probabilities of the four possible values of IQ given that PE=low and SES=high
is Dirichlet(n/32,71/32,1n/32,7/32), since 1/8 of the hypothetical observations will have
PE=low and SES=high, and each value of IQ will occur in a quarter of these. (Note that
these counts of hypothetical observations may well be fractional.)

Heckerman, et al use this prior with n=2>5, but they report that Model B is still favoured
for any value of 7 from 3 to 40. Although the preference for Model B is robust with respect
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to choice of 1, we may wonder whether use of other prior distributions might lead to a
different conclusion. For this problem, we have considerable prior knowledge that is not
captured by the symmetric Dirichlet priors used by Heckerman, et al. For instance, we know
that the relationships of PE to SES and of PE to 1Q are likely to be monotonic with respect
to the four levels of SES and IQ, and that higher I1Q and higher SES are both likely to be
associated with a greater likelihood of parental encouragement to attend college. Ideally, we
would specify prior distributions for each model that embody such prior knowledge, since it
is the Bayes factor found when using these priors that we would wish to use when deciding
which model is a better description of reality.

Even for these fairly simple models, specification of such a good prior would not be easy,
however. As a substitute, we can try using independent Dirichlet distributions as described
above as pro forma priors, and then transfer prior information from each model to the other
in an attempt to even out the bad effects of these unrealistic priors. The hope is that the
resulting Bayes factor will be a better approximation to the one we would have obtained if
we had made the effort to properly specify the prior distribution for each model.

For this test, I used donor-weighted transfer with k infinite, as in equation (6), with
various masses of imaginary data, w. The CP variable was omitted, since its treatment is
the same in Models A and B. As discussed in Section 2.3, this omission would have no effect
if donor-weighted transfer with w =~k were used. In these tests, w#k, so this omission could
have an effect, but it seems best in any case to ignore this irrelevant aspect of the models,
and doing so also saves computer time. I used pro forma Dirichlet priors defined using the
same scheme as Heckerman, et al, but with n=120. This value of n gives larger marginal
likelihoods for both models (with CP omitted) than the value of =5 used by Heckerman,
et al. With =5, the log marginal likelihood is —41257.1 for Model A and —41211.2 for
Model B; with =120, the values are —41176.0 for Model A and —41162.2 for Model B,
which are each close to the maximum for any 7. With this better prior, the difference in log
marginal likelihoods is reduced from 45.9 to 13.8, corresponding in a reduction in the Bayes
factor in favour of Model B from 8.4 x 10 to 9.4 x 10°. This illustrates how sensitive the
Bayes factor is to the prior, but even the smaller Bayes factor still strongly favours what
seems like the less plausible model.

Prior information transfer was implemented using annealed importance sampling, with
Markov chain sampling based on the scheme of diagram (44). Metropolis-Hastings updates
were used, in which proposals were made to change a part of ¢ corresponding to a single
conditional distribution (each proposal therefore changed at most three of the parameters).
The new probabilities for this conditional distribution were drawn from the prior, Q(¢),
and were then accepted or rejected based on the resulting change in the probability of the
observed data, . The annealing schedules used varied « from exp(—8) to 1, in approxi-
mately geometric steps. The number of levels for a varied from 4000 for w=>50 to 56000 for
w=06400. Ten annealing runs were done to obtain each estimate (except that only five were
done at w=6400). The computation time required for a given w, and a given direction of
transfer, varied from about three hours for w=>50 to about thirty hours for w=3200. Even
with this amount of computation, the accuracy of the estimates obtained is only barely
adequate. Due to the small number of annealing runs, the estimated standard errors should
not be trusted too much.
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Figure 6: Marginal likelihoods for Models A and B with and without donor-weighted prior
information transfer from the other model. The logarithmic horizontal axis gives the value
of w (with k infinite); the vertical axis gives the log marginal likelihood. The vertical lines
through each dot extend to plus and minus twice the standard error of the Monte Carlo
estimate of the log marginal likelihood. The dotted lines show the log marginal likelihoods
of the initial models, with no prior information transfer. The models do not include the CP
variable, since its treatment does not differ between models.

Figure 6 shows the results. The marginal likelihood of Model A is greatly improved by
prior information transfer from Model B, with the improvement increasing with the mass of
imaginary data, up to the largest mass tested of w=6400, for which the estimated marginal
likelihood is greater than that of Model B with its initial prior. In contrast, the marginal
likelihood for Model B is somewhat lower when information is transferred from Model A.

It is perhaps surprising that such a large mass of imaginary data is beneficial for trans-
ferring information from Model B to Model A. One might wonder whether an infinite mass
of imaginary data would be even better. To approximate this, I tried using a mass of 108,
and obtained an estimate for the log marginal likelihood of —41163, but the variability of
the annealing runs was so large that this estimate cannot be trusted (nor can its standard
error be reliably estimated). It does seem, however, that an infinite mass of imaginary data
would give sensible results, if enough time were available to do the computations.

What can we now conclude regarding Models A and B? We can consider at least three
priors for each model — the initial prior, the prior with transfer from the other model
using the best value of w (including the initial prior, corresponding to w=0), and the prior
obtained by giving w a prior distribution that is uniform over the values tried (including
w=0). Here are the estimated log marginal likelihoods with these three priors:

Initial prior With best w With w unknown

Model A —41176.0 —41159.0 —41161.2
Model B —41162.2 —41162.1 —41162.9

The estimates for the prior with w unknown were obtained by simply averaging the estimated
marginal likelihoods (not their logs) for each value of w. The prior with w regarded as
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unknown might seem to be the “fairest”, but it might also seem “unfair” to evaluate Model B
in terms of its marginal likelihood using transfer of prior information from Model A with
any value of w, since Model B does not benefit from such transfer. It may be wise to
compute two Bayes factors — one in which the marginal likelihood used for Model A is the
largest of the three above, while that used for Model B is for w unknown, the other in which
the reverse is done. If these two Bayes factors lead to substantially different conclusions,
one might regard the results as inconclusive, or one might decide to go to the effort of
formulating better priors, in order to resolve the issue.

For the present example, the first of these Bayes factors (giving Model A the benefit of
the doubt) is exp(41162.9 — 41159.0) =49, in favour of Model A. The second Bayes factor
(biased toward Model B) is exp(41162.1 — 41161.2) =2.5, again in Model A’s favour. This
corresponds to something between mild and quite strong evidence in favour of Model A.
From the trend in Figure 6, one might well guess that transfer using a mass of imaginary
data greater than 6400 would reveal yet stronger evidence in favour of Model A.

This is a dramatic reversal from the Bayes factor of 9.4 x 10° in favour of Model B that the
initial priors produced. One indication of the cause of this is that in Model A, the conditional
distributions for PE involve 32 parameters, and those for IQ involve 12 parameters, for a
total of 44, whereas in Model B, the conditional distributions for PE involve 8 parameters,
and those for IQ involve 24 parameters, for a total of 32. The larger number of parameters
in Model A would not be a problem if the prior for these parameters were well specified,
but bad priors might be more harmful to a model with many parameters than to a model
with fewer. Even so, however, many bad aspects of the priors used — such as the lack of
attention to the known ordering of values for I1QQ and SES — are just as bad in Model B
as in Model A, so one might wonder how transfer from B to A can help. The benefit may
come from suppression of interactions that are ruled out by the structure of Model B, but
not by that of Model A, such as the possibility that parents might encourage high 1QQ males
to attend college, but discourage high IQ females from attending. Of course, we actually
believe that at least the directionality of the IQ effect on PE is likely to be the same for
both sexes.

5 Discussion

As seen in the examples of Section 4, prior information transfer can sometimes correct
poorly-specified priors, thereby improving the predictive performance of a model, and al-
lowing for more meaningful comparison of alternative models. This may allow us to reduce
the effort we expend in specifying a prior distribution, which for a complex model might
otherwise be quite daunting. Unfortunately, we must instead spend time writing a Monte
Carlo program to implement prior information transfer for the model, and this program
may take a considerable amount of computer time to run. Eventually, however, prior infor-
mation transfer could be included in software packages that automatically perform Bayesian
computations. With further research, and further progress in computer technology, we may
hope that these computations will be fast enough for routine use.

The examples in this paper were mostly done using donor-weighted transfer, which worked
well for these examples, and which appears to be easier to understand than jointly-weighted
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transfer, which sometimes behaves strangely. However, donor-weighted transfer will be
infeasible (at least using current methods) when the recipient model and its pro forma
prior are not conjugate. Since jointly-weighted transfer will still be feasible for many such
models, a better understanding of the priors that result from using jointly-weighted transfer
would be of interest.

In this paper, I have considered only comparison of two models, each of which receives
prior information transferred from the other. Often, we would have more than two models to
compare. Prior information transfer could be extended in various ways to allow information
to be transferred from more than one model, which can be seen as different ways of cascading
the method — for instance, one could transfer information from Model A to Model B, and
then transfer information from this modified Model B to Model C, or alternatively, one
could transfer information from Model A to the result of transferring information from
Model B to Model C. The best way may depend on whether these models form a natural
hierarchy, or are better seen as being all on one level.

When comparing nested models, prior information transfer from the simpler to the more
complex model may make it difficult for the evidence to decisively favour the simpler model,
since the more complex model behaves much like the simpler model when its prior incorpo-
rates a large mass of imaginary data generated from the simpler model’s prior. However,
in such situations, we often do not believe that the simpler model can really be exactly
true anyway, even if we think it may be approximately true. We may, for instance, think
that ezact independence could not possibly hold for some two-way contingency table, even
though approximate independence is plausible. In these situations, it makes more sense to
regard the simpler model merely as a device for specifying the prior for the complex model,
as in the example of Section 4.1. The posterior distribution for the mass of imaginary data
(assuming this is not fixed) may then be of interest as a measure of how close the simpler
model is to reality.

One should keep in mind that prior information transfer is merely a way of improving
prior specifications, and that it will therefore not fix problems that are inherent in the whole
idea of comparing models using Bayes factors. In particular, use of Bayes factors is justified
on the basis that we believe that one of the models being considered is a true description of
reality — or at least close enough that any flaws are not visible given the precision of the
available data. Bernardo and Smith (1994) call this the “M-closed” scenario. When we do
not believe that any of the models is more than a rough approximation to reality — the
“M-open” scenario — selecting a model based on Bayes factors cannot be justified. Indeed,
which is the best of these incorrect models will depend on our purpose, so any well-justified
model selection procedure must take this purpose into account. (In contrast, the true model
is best for all purposes, so we needn’t consider this in an M-closed scenario.)

Imaginary data has been used before as a technique for specifying prior distributions.
Conjugate priors are often viewed as expressing prior information that is equivalent to the
observation of certain imaginary data points. Often, the conjugate priors used in practice
are based on minimal amounts of imaginary data, chosen to be minimally informative. How-
ever, Madigan, Gavrin, and Raftery (1994) describe how they carefully elicited a substantial
amount of imaginary data from an expert, and report that conditioning on this imaginary
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data improved predictions. The prior information transfer methods discussed here can be
seen as generalizing this technique, by not fixing the imaginary data, but instead giving it
a prior distribution derived from the donor model, whose prior incorporates the expert’s
knowledge. This generalization avoids the problem that the expert may consider two imag-
inary cases to each be plausible, but think that they are unlikely to both occur — ie, they
are representative of mutually exclusive possibilities. This knowledge can’t be expressed by
a single imaginary data set, but can be expressed in a donor model’s prior. On the other
hand, eliciting a single imaginary data set may sometimes be more feasible than eliciting
the structure and prior for a donor model.

Spiegelhalter and Smith (1982) use imaginary data in another way, to resolve the indeter-
minacy that results when models compared using Bayes factors are given improper priors.
They advocate fixing the arbitrary ratio of constants in the Bayes factor at a value that
makes the Bayes factor be one for an imaginary data set of the smallest size that permits
model comparison, and which is such as to give maximum support to the simpler model.
This procedure appears rather arbitrary, however.

Several procedures based not on imaginary data, but on portions of the real data, have also
been proposed for resolving this “problem” that Bayes factors cannot be used to compare
models with improper priors. The various “intrinsic Bayes factors” of Berger and Pericchi
(1996) use priors that have been made proper by conditioning on a portion of the data,
with the Bayes factor then found using the remaining portion. Since the result will vary
depending on which portion of the data is selected to condition on, they explore various
ways of averaging the results obtained from different selections. The “fractional Bayes
factors” of O’Hagan (1995) are similar, but use a portion of the whole data set (found
by raising the likelihood to a fractional power), rather than a selection of particular data
points. Both schemes suffer from a dependence on arbitrary choices, such as the amount of
data to condition on.

Even if a scheme of this sort could be found that had no arbitrary aspects, however, it
would still lack any clear justification. Ideally, we should compare models using priors that
capture our well-considered prior beliefs. If we cannot do this in practice, we should at least
try to approximate this ideal — otherwise, why would we place any credence in the resulting
answer? From this perspective, any sensible model comparison procedure must somehow
incorporate real prior information, not try to avoid doing so. The challenge is to do this
for high-dimensional models where direct specification is too difficult. Prior information
transfer from a simpler model, or from the model being compared against, is a general
technique that can help in some such situations.
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