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Peskun’s theorem shows that the asymptotic variance of an MCMC estimator based

on a reversible Markov chain will not increase if the matrix of transition probabilities

for the chain is modified so as to increase the off-diagonal terms. I present a new

proof of this result, which is more intuitive than Peskun’s original proof, and which

may provide hints for how to prove other results of this nature.
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Asymptotic Variance of an MCMC Estimator

Let X1, X2, . . . be an irreducible, aperiodic Markov chain on a finite state space, X ,

having π(x) as its unique invariant distribution.

Let f(x) be some function of state, whose expectation with respect to π is µ. The

first n states from the Markov chain can be used to estimate µ, as follows:

µ̂n =
1

n

n
∑

i=1

f(Xi)

The asymptotic variance of µ̂ is defined as follows:

V∞(µ̂) = lim
n→∞

n Var(µ̂n)

The asymptotic variance does not depend on the initial distribution for X1. Also,

the bias of the estimator will be of order 1/n, regardless of initial distribution, so

its asymptotic mean squared error will be equal to its asymptotic variance.

We would like to find a Markov chain for which V∞ is as small as possible.



Peskun’s Theorem (1973)

Let X1, X2, . . . and X ′
1, X

′
2, . . . be two irreducible, aperiodic Markov chains on

the finite state space X , both with π(x) as their unique invariant distribution.

Let the transition probabilities for these chains be

T (i, j) = P (Xt+1 = j |Xt = i), T ′(i, j) = P (X ′
t+1 = j |X ′

t = i)

Suppose these transition probabilities satisfy the following reversibility condition:

π(i) T (i, j) = π(j) T (j, i), for all i, j ∈ X

and similarly for T ′.

Let f(x) be some function of state, whose expectation with respect to π is µ.

Consider the following two estimators for µ based on these two chains:

µ̂n =
1

n

n
∑

i=1

f(Xi), µ̂′
n =

1

n

n
∑

i=1

f(X ′
i)

If T and T ′ satisfy the following condition,

T ′(i, j) ≥ T (i, j), for all i, j ∈ X with i 6= j

then the asymptotic variance of µ̂′ will be no greater than that of µ̂.



Why is Peskun’s Theorem Interesting?

Peskun’s Theorem tells us that changing a reversible Markov chain sampler to

increase the probability of state changes can’t be bad (asymptotically, at least).

Indeed, we generally expect such a change to improve asymptotic variance.

If we can do this without increasing the computation time per transition, we’ll have

a better MCMC method. Conversely, going the other direction (increasing the

probability of staying in the same state) can’t help (asymptotically).

Some interesting consequences:

• The usual acceptance criterion for the Metropolis algorithm is optimal, since

it maximizes the probability of acceptance within the class of valid criteria

(Peskun, 1973; Tierney, 1998).

• Random scan Gibbs sampling can be improved by trying to avoid setting the

component that is updated to the same value as it currently has (Liu, 1996).



Is Peskun’s Theorem Obvious?

Since it seems inefficient to stay in the same place, Peskun’s theorem might seem

obvious. Two facts show that things are more subtle than this.

First, only the asymptotic variance is guaranteed not to increase if off-diagonal entries

in the transition matrix are increased. The variance of an estimator based on finite

number of iterations, started from π, may increase (Tierney, 1998).

Second, Peskun’s theorem does not hold if the condition that the chains be reversible

is omitted. Here’s a counterexample using a non-reversible chain with four states:
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1/3 where f(x) = 0

1/6 where f(x) 6= 0

µ = 0

Values of f(x) are shown in the circles. Solid arrows show values of both T (i, j) and

T ′(i, j); dotted arrows are for T (i, j) only; dashed arrows are for T ′(i, j) only. The

asymptotic variance is zero when using T , but not when using T ′.



Outline of a New Proof

We can prove that the “new” chain based on T ′ has at least as small asymptotic

variance as the “old” chain based on T as follows:

1. We reduce the problem to comparing asymptotic variances when T and T ′ differ

only for transitions involving two states, A and B.

2. We see how simulations of the old and new chains differ only for certain “delta”

transitions involving states A and B.

3. These delta transitions divide the Markov chain simulation into blocks of

iterations, which start and end in either state A or state B. We can rewrite the

old and new estimators, µ̂ and µ̂′, as weighted averages of block averages.

4. The only difference between the old and new chains is that in the new chain the

sampling for “homogeneous” blocks (starting and ending in the same state) is

stratified — there are the same number of blocks starting and ending with A as

blocks starting and ending with B, whereas the split between these types is

random in the old chain.

5. Finally, we see that this stratification will lower (or at least not increase) the

asymptotic variance.



Looking at One Pair of States is Enough

Whenever T ′(i, j) ≥ T (i, j) for all i 6= j, we can get to T ′ from T by a series of steps

that each change transition probabilities for only a single pair of states.

For example:
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= T ′

So it’s enough to prove Peskun’s Theorem when T and T ′ differ for only two states,

say A and B. The “old” transition probabilities, T , and “new” transition

probabilities, T ′, are related as follows:

T ′(i, j) = T (i, j), when i /∈ {A, B} or j /∈ {A, B}

T ′(A, A) = T (A, A) − δA, T ′(A, B) = T (A, B) + δA

T ′(B, A) = T (B, A) + δB, T ′(B, B) = T (B, B) − δB

where δA and δB are positive.



Marking “Delta” Transitions

Transitions T and T ′ differ only if the current state is A or B, and then only with

respect to how a probability mass of δA or δB is assigned to new states A or B. We

can mark such “delta” transitions while simulating the Markov chain.

For each state, i, partition the interval [0, 1) into intervals [`(i, j), h(i, j)) such that

h(i, j) − `(i, j) = T (i, j), and `(A, A) = `(B, B) = 0. We can use these intervals to

simulate the old transitions T and the new transitions T ′ as follows:

Old transitions:

U ∼ Uniform(0, 1)

if Xt = A and U < δA then

Xt+1 = A, mark this transition

else if Xt = B and U < δB then

Xt+1 = B, mark this transition

else

Xt+1 = j such that U ∈ [`(Xt, j), h(Xt, j))

New transitions:

U ∼ Uniform(0, 1)

if Xt = A and U < δA then

Xt+1 = B, mark this transition

else if Xt = B and U < δB then

Xt+1 = A, mark this transition

else

Xt+1 = j such that U ∈ [`(Xt, j), h(Xt, j))

Clearly, T and T ′ differ only for the “delta” transitions marked above.



How Delta Transitions Define Blocks

We can use the markings of delta transitions to divide a simulation of one of these

Markov chains into “blocks” of consecutive states, that both start and end with either

state A or state B.

Since asymptotic variance doesn’t depend on the initial state distribution, let’s say

P (X1 = A) = P (X1 = B) = 1/2, so that the chains will begin at the start of a block.

For the old chain, with transitions T , we might see blocks like this:

A B B B B B B B A A AB A A A B B A A A A

For the new chain, with transitions T ′, the blocks might look like this:

A B A B A BA B A B AA B BA BAA BB A

The difference is that in the old chain, the state stays the same when crossing a block

boundary, whereas for the new chain, it changes from A to B or from B to A.

Notes: States A and B may also occur at places other than the start and end of a

block. Blocks of length of one are possible, consisting of an A or B that both starts

and ends the block.



Probabilities of the Four Types of Blocks

Blocks come in four types — AA, BB, AB, BA — based on start and end states.

We show here that for both old and new chains, the probabilities of these types satisfy

P (AA) = P (BB) and P (AB) = P (BA)

Proof: Since the new chain is reversible, π(A) T ′(A, B) = π(B) T ′(B, A). By

rewriting T ′, we get

π(A) (T (A, B) + δA) = π(B) (T (B, A) + δB)

The old chain is also reversible, with π(A) T (A, B) = π(B) T (B, A), so we can

conclude that
π(A) δA = π(B) δB

This lets us show that for a state, Xt, from the old chain (with t being large),

P (Xt starts block with A) = P (Xt−1 = A) P (delta transition at t−1) = π(A) δA

P (Xt starts block with B) = P (Xt−1 = B) P (delta transition at t−1) = π(B) δB

and hence P (Xt starts block with A) = P (Xt starts block with B). In the same way,

we see that P (Xt ends block with A) = P (Xt ends block with B). It follows that

P (AA) + P (AB) = P (BB) + P (BA) and P (AA) + P (BA) = P (BB) + P (AB)

so P (AA) = P (BB) and P (AB) = P (BA). We see this for the new chain similarly.



Contents of Blocks of Different Types

Although blocks of type AA and blocks of type BB are equally common, the

distributions for their contents — and hence for their length and for the average value

of f(x) over states in the block — will generally be different.

In contrast, blocks of type AB and blocks of type BA have the same distribution of

content — except that the BA blocks are the reversals of the AB blocks. This is a

consequence of the chains being reversible.

For example: The probability of block AQB occurring at time t (with t large) is

P (Xt = A & block starts) P (Xt+1 = Q |Xt = A)P (Xt+2 = B & block ends |Xt+1 = Q)

= π(A) δA T (A, Q) T (Q, B) δB = δAδB π(A) T (A, Q) T (Q, B)

= δAδB T (Q, A) π(Q) T (Q, B) = δAδB T (Q, A) T (B, Q) π(B)

= π(B) δB T (B, Q) T (Q, A) δA

which is also the probability of block BQA occurring at time t.

This result is true for both the old chain (using T ) and the new chain (using T ′).



Simulation Using Blocks

Rather than simulate the chains one state at a time, let’s imagine simulating block by

block. We’ll need the probability that a block is “homogeneous” — ends with the

same state it begins with — which is

P (ends with A | starts with A) =
P (AA)

P (AA) + P (AB)
=

P (BB)

P (BB) + P (BA)

= P (ends with B | starts with B) = h

We can simulate block transitions for the “old” and “new” chains as follows. We’ll

assume H is sampled the same for both chains, but block simulation is not coupled.

Old transitions:

H ∼ Bernoulli(h)

if H = 1 then

if previous block ended with A

simulate an AA block

else

simulate a BB block

else

if previous block ended with A

simulate an AB block

else

simulate an AB block, then reverse it

New transitions:

H ∼ Bernoulli(h)

if H = 1 then

if previous block ended with A

simulate a BB block

else

simulate an AA block

else

if previous block ended with A

simulated an AB block, then reverse it

else

simulate an AB block



The Key Fact: In the New Chain Using T
′,

Sampling for Homogeneous Blocks is Stratified

Comparing the simulations for the old and new chains, we see that they produce the

same sequence of homogeneous/non-homogeneous blocks. However, for the new

chain, the homogeneous blocks alternate between AA blocks and BB blocks.

This is true both when one homogeneous block follows another, and when any number

of non-homogeneous blocks intervene. In the old chain, the type of homogeneous

block changes only when an odd number of non-homogeneous blocks intervene.

This can be seen by example:

Old: A B B AA A A B B A AB B B BB BBB A A A A A A A

New: A B A A A A A A A A A ABB B B B B B BA B B BA A

Because AA blocks alternate with BB blocks in the new chain, the number of AA

blocks will be equal to the number of BB blocks (plus or minus one). So sampling

with the new chain is stratified in this respect. Furthermore, this is the only difference

between the old and new chains. Intuitively, stratification should not increase

asymptotic variance. We can show this formally using the following two lemmas.



Lemma 1: Asymptotic Variance for Block-by-Block

Simulation is the Same as for State-by-State Simulation

First, we need a lemma showing that simulating a given number of blocks produces

the same asymptotic variance as simulating a given number of transitions.

Lemma 1: Let X1, X2, . . . be an irreducible, aperiodic Markov chain on a finite state

space X , with invariant distribution π(x). Let S be some non-empty subset of X , and

let f(x) be some function of state, whose expectation w.r.t. π is µ. Define

N(k) = min
{

n :
n
∑

i=1

IS(Xi) = k
}

Consider the following two families of estimators:

µ̂n =
1

n

n
∑

i=1

f(Xi), µ̃k =
1

N(k)

N(k)
∑

i=1

f(Xi)

The asymptotic variances of these estimators are the same:

lim
n→∞

n Var(µ̂n) = lim
n→∞

n Var(µ̃dnπ(S)e)

Note that asymptotically the expected value of N(dnπ(S)e) is n, so the right side

above is a sensible asymptotic variance.

To apply this lemma to our problem, we can extend the state space so that it encodes

whether we are at the end of a block, and then let S be the set of end-block states.



Proof of Lemma 1

We will see that as n increases, nVar(µ̂n) and nVar(µ̃dnπ(S)e) both approach

(n + n1/2+ε)Var(µ̂n+n1/2+ε), where ε is a positive constant to be set below.

Without loss of generality, suppose µ = 0.

0 n − n1/2+ε n n + n1/2+ε

N(dnπ(S)e)

First, we note that (n + n1/2+ε) µ̂n+n1/2+ε = nµ̂n + n1/2+εZ, where Z is the average of

f(Xi) for i from n + 1 to n + n1/2+ε. Dividing by
√

n + n1/2+ε, we get

√

n + n1/2+ε µ̂n+n1/2+ε =
√

n/(n + n1/2+ε)
[√

nµ̂n + nεZ
]

As n increases, the first factor on the right will go to one. By the CLT for Markov

chains, |Z| will be less than (n1/2+ε)−1/2+ε = n−1/4+ε2 with probability approaching

one exponentially fast, so if ε is in (0, (
√

2 − 1)/2), the term nεZ will go to zero. It

follows that nVar(µ̂n+n1/2+ε) will approach nVar(µ̂n). (Since f(x) is bounded, an

exponentially small probability of a large value for |Z| cannot affect this limit.)



Proof of Lemma 1 (Continued)

The CLT also tells us that N(dnπ(S)e) will be in the interval (n−n1/2+ε, n+n1/2+ε)

with probability approaching one exponentially fast. If so, we can write

(n+n1/2+ε) µ̂n+n1/2+ε = N(dnπ(S)e) µ̃dnπ(S)e + (n+n1/2+ε−N(dnπ(S)e)) Y

where Y is the average of f(Xi) for i from N(dnπ(S)e) + 1 to n + n1/2+ε. Dividing by√
n + n1/2+ε, we get

√

n + n1/2+ε µ̂n+n1/2+ε =
N(dnπ(S)e)

n
√

1 + n−1/2+ε

[√
nµ̃dnπ(S)e + (

√
n/N(dnπ(S)e)) KY

]

where K = n+n1/2+ε−N(dnπ(S)e) will be in (0, 2n1/2+ε) if N(dnπ(S)e) is in

(n−n1/2+ε, n+n1/2+ε). By the CLT for Markov chains, |KY | will be less than

(2n1/2+ε)1/2+ε = 21/2+εn1/4+ε+ε2 with probability approaching one exponentially fast.

Since N(dnπ(S)e) will approach n, we can see that (n + n1/2+ε)Var(µ̂n+n1/2+ε) will

approach nVar(µ̃dnπ(S)e).



Lemma 2: Partially Stratifying a Ratio Estimator

Does Not Increase Asymptotic Variance

Second, we need a lemma showing that stratifying the number of AA and BB blocks

won’t increase the asymptotic variance.

Lemma 2: Let Z1, Z2, . . . be an irreducible, aperiodic Markov chain with state space

{0, 1, 2}, whose invariant distribution, ρ, satisfies ρ(0) = ρ(1). Let Qm for m = 0, 1, 2

be distributions for pairs (H, L) ∈ R × R
+ having finite second moments. Conditional

on Z1, Z2, . . ., let (Hi, Li) be drawn independently from QZi . Define

Z ′
i =

{

Zi if Zi = 2

Zk +
∑i−1

j=1 I{0,1}(Zj) (modulo 2) if Zi 6= 2

where k = min{i : Zi 6= 2}. Conditional on Z1, Z2, . . ., let (H ′
i, L

′
i) be drawn

independently from QZ′

i
. Define two families of estimators as follows:

Rn =
∑n

i=1 Hi

/
∑n

i=1 Li, R′
n =

∑n
i=1 H ′

i

/
∑n

i=1 L′
i

Then the asymptotic variance of R′ is no greater than that of R. In other words,

lim
n→∞

nVar(R′
n) ≤ lim

n→∞
nVar(Rn)

To apply this lemma to our problem, we let Q0, Q1, and Q2 be the distributions of

block lengths and sums of f(Xi) for blocks of types AA, BB, and AB/BA.



Proof of Lemma 2

Let Nn,m =
∑n

i=1 I{m}(Zi) and N ′
n,m =

∑n
i=1 I{m}(Z

′
i). Note that E(Nn,m) = E(N ′

n,m)

and |N ′
n,1−N ′

n,0| ≤ 1, so the numbers of pairs from Q0 and Q1 are stratified in R′
n.

We can write

Var(Rn) = Var(E(Rn|Nn)) + E(Var(Rn|Nn))

and similarly for R′
n.

Conditional on Nn, can write

n
∑

i=1

Hi = S0 + S1 + S2,
n
∑

i=1

Li = T0 + T1 + T2

where Sm and Tm are sums of Nn,m values of Hi and Li for which Zi = m. By the

CLT, the distributions of the pairs (Sm, Tm) will be asymptotically normal, with

means, variances, and covariances that are linear functions of the Nn,m values. The

pair of sums, (
∑

Hi,
∑

Li), will therefore also be asymptotically normal, with mean,

variances, and covariance that are linear functions of the Nn,m. We can also rewrite
∑

H ′
i and

∑

L′
i in terms of S′

0, S
′
1, S

′
2 and T ′

0, T
′
1, T

′
2, and proceed analogously.

The delta rule can be applied to show that if (X, Y ) is asymptotically normal with

mean (µx, µy), variances σ2
x and σ2

y, and covariance γxy , then X/Y is asymptotically

normal with mean µ∗ = µx/µy and variance (1/µ2
y)[σ2

x + σ2
yµ2

∗ − 2γxyµ∗].



Proof of Lemma 2 (Continued)

We can now see that asymptotically Var(Rn|Nn) and Var(R′
n|N ′

n) are the same linear

functions of Nn and N ′
n. It follows that E(Var(Rn|Nn)) = E(Var(R′

n|Nn)).

We can write Var(E(Rn|Nn)), and similarly Var(E(R′
n|N ′

n)), as

Var(E(Rn|Nn)) = Var(E(E(Rn|Nn)|Nn,2)) + E(Var(E(Rn|Nn)|Nn,2))

We see that E(Var(E(Rn|Nn)|Nn,2)) ≥ E(Var(E(R′
n|N ′

n)|N ′
n,2)) = 0, since due to

stratification, N ′
n,0 and N ′

n,1 are fixed given N ′
n,2 and n, so Var(E(R′

n|N ′
n)|N ′

n,2) = 0.

Let (µH,m, µL,m) be the mean of the distribution Qm. Asymptotically, we can write

E(Rn|Nn) =
µH,0Nn,0 + µH,1Nn,1 + µH,2Nn,2

µL,0Nn,0 + µL,1Nn,1 + µL,2Nn,2

and similarly for E(R′
n|N ′

n). By the CLT for Markov chains, (Nn,0, Nn,1, Nn,2) and

(N ′
n,0, N

′
n,1, N

′
n,2) asymptotically have (degenerate) multivariate normal distributions.

Applying the delta rule, we can find that E(E(Rn|Nn)|Nn,2) = E(E(R′
n|N ′

n)|N ′
n,2),

and hence their variances are asymptotically equal. It follows that asymptotically

Var(E(Rn|Nn)) ≥ Var(E(R′
n|N ′

n)), and finally, that Var(Rn) is asymptotically at

least as large as Var(R′
n).



Why is This New Proof Interesting?

• It gives new insight into why Peskun’s theorem applies only to reversible chains.

For a non-reversible chain, the AB blocks needn’t be distributed in the same way

as the reversals of BA blocks. Since the old chain is stratified with respect to AB

and BA blocks, but the new chain is not, the asymptotic variance of the new

chain might be be greater than that of the old chain, if AB and BA blocks differ.

• Lemmas 1 and 2 may be of wider interest. (Sufficiently so that they may have

already been proved by someone else...?)

• My main motivation... I hope that the techniques in this proof — such as

focusing on a minimal change in the transitions, and on how this divides the

chain into blocks — may be useful in proving other results. In particular, I hope

to be able to prove things about methods for modifying chains to be

non-reversible, generalizing the ideas of Diaconis, Holmes, and Neal (2000).
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