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Outline

e Using neural networks to build flexible
models.

— Multilayer perceptron (‘backprop’)
neural networks.

— Bayesian neural network learning.

e Survival analysis using a Bayesian neural
network.

— Network architectures that define
proportional and non-proportional
hazard models.

— Graphical methods for making sense of
the results.

e Example: Data on primary biliary cirrhosis
(PBC) analysed by Fleming & Harrington.



A Multilayer Perceptron Network
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The network takes inputs z1,...,z; and from
them computes an output, f(z), using a layer
of H hidden units:

H
f(z) = b+ 'Zlvjhj(x)
J:
hj(z) = tanh(a; + XIJ Ui %;)
i=1

Typically, the function f(x) is used to define
the conditional distribution for a response, v,
for covariates ¢ — eg, Gaussian with mean f(x).



Conventional Neural Network Learning

Conventional neural network learning can be

viewed as maximum likelihood estimation for
the network parameters — i.e. we find values
for the weights and biases, w, to maximize
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where (z(¢),y(€)) are the covariates and
response for training case c.

We then make predictions for a test case with
covariates z(®1+1) using the conditional
distribution P(y(nt1)|z(nt1) ).

Maximum likelihood is prone to “overfitting”
when the number of network parameters is
large in relation to the number of training
cases.



Bayesian Neural Network Learning

Bayesian predictions are found by integration

rather than maximization. For a test case with
covariates z("t1) we predict y(**+1) using
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The posterior distribution used above is
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We must have a prior distribution for the
weights, P(w). For example, this might be
Gaussian, with the weights being independent,

but with weights of different types having
different variances.



Complexity in Bayesian Models

The model and prior in Bayesian learning
represent beliefs about the problem based on
prior knowledge. If we believe the problem is
complex, we should use a complex model.

Overfitting should not be a problem with
Bayesian learning. It is usually best to use a
network with a large number of hidden units
(limited by computational cost).

For a complex problem, the appropriate prior
IS often most conveniently expressed using
hyperparameters, which control the priors for
lower-level parameters.

In such a hierarchical model, the prior for the
low-level parameters (weights & biases), w, is
expressed using hyperparameters o as follows:

P(w) = [[da] P(w|a) P(a)



Roles for Hyperparameters

In a simple hierarchical model for a network
with one hidden layer, three hyperparameters
might be used, controlling the variance of
Gaussian priors for three groups of parameters:

e input-to-hidden weights,
e hidden unit biases,

e hidden-to-output weights.

Some more interesting things to do with
hyperparameters:

e Use separate hyperparameters for each
input. Some inputs (covariates) may then
come to have more influence than others.

e Use several hidden layers that ook at
different subsets of the inputs. Let
hyperparameters control how much each
layer (additive component) contributes to
the function.



Survival Analysis and Hazard Functions

I will use models for survival data based on the
hazard function, h(t,z), defined by

h(t,z)dt = Pr(person with covariates = dies in the
interval (t,t +dt) | they live to time t)

Survival probabilities can then be written as

Pr(person with covariates z lives to time t)

= exp (—/Oth(s,:c) ds)

The likelihood factor for person z with
covariates z;, known to have died at time ¢;, is

exp (—/Oti h(s,x;) ds) h(t;, ;)

The likelihood factor when person ¢ is known
only to have survived to time t; is

exp (—/Oti h(s,x;) ds)

This assumes that censoring can be regarded
as uninformative (eg, occurring at random).



Modeling the Hazard with a Neural Net

I will use a neural network to model the log of
the hazard function, with time and covariates
as inputs. For example:
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- log h(s,x)
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Unfortunately, to use this model directly we
would need to compute fg h(s,x)ds, in order to
evaluate the likelihood. This would require
costly numerical integration.



Defining a Piecewise Constant Hazard
Using the Neural Network Model

To avoid difficult integrations, I use the neural

net to define a model with piecewise-constant

hazard. For fixed covariates, x, the log hazard
IS modelled as follows:

_---- Function computed by network

_ -~ Piecewise-constant log hazard
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Times s1,...,s; are chosen to be dense

enough that the breaks don’'t affect the result

much. Using many pieces causes no statistical
problems, it just slows the computations.



Networks for Proportional Hazards

A “proportional hazard’” model, in which
log h(s,z) = log hg(s) + log h1(x) can built
using a network like the following:

The upper “layer” of two hidden units
computes log hg(s); the lower layer of three
hidden units computes log hq(x).



A Network for Discovering Whether
Proportional Hazards are Appropriate

A hierarchical model can “discover” whether a
proportional hazards model is appropriate, by
using separate hyperparameters to control the
magnitudes of additive components:

Hyperparameter controlling
magnitude of log h, (s)

- Hyperparameter controlling
magnitude of log h, (s,x)

log h(s,x)

Hyperparameter controlling
magnitude of log hy (X)
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log h(s,z) = log hg(s) + log hy(x) + log ha(s,x),
but log ho(s,z) can disappear if the data say so.



Graphical Display of Covariate Effects

One way to make sense of these complex
models is to see how predictions for median
survival time change when a covariate changes:

One network from the posterior Many networ ks from the posterior
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Each dot is a training case. The vertical
coordinate is the prediction with a high value
for the covariate, with other covariates at
their actual values. The horizontal coordinate
is the prediction for a low value.

I use 0/1 or actual£SD/2 for low and high
covariate values.



The PBC Data

Fleming and Harrington use this data as an
example in their book. It is from a clinical trial
with 312 subjects, testing a drug for treating
primary biliary cirrhosis. I looked only at the
covariates that F&H mostly looked at:

Covariate Coding Transformation

1. drug O=placebo 1=drug

2. age in years (age-50)/10

3. sex O=male 1=female

4. ascites O=no 1=yes

5. hepatom O=no 1=yes

6. spiders O=no 1=yes

7. edema O=no 0.5=sort of 1=yes

8. bili bilirubin in mg/dl log(bili)

9. albumin albumin in gm/dl log(albumin)-1
10. alkphos alkaline phosphatase in U/liter log(alkphos)-7
11. platelet platelets per cubic ml/1000 log(platelet)-5
12. protime prothrombin time in seconds log(protime)-2

The transformations were chosen so that,
a priori, a difference of one is expected to
perhaps be associated with a fairly large
difference in survival.



Testing Models with Split Data

I randomly split the data into 212 training
cases and 100 test cases, to see how complex
models compare with simple models.

model Components present Ave. log |klihd

/prior | loghg(s) loghi(z) logha(s,z) | train test

nlx/1 5 h.u. linear — -1.073 -1.259
nlx/2 5 h.u linear — -1.063 -1.250
nnx 5 h.u 8 h.u. — -1.038 -1.248
xxn/1 — — 10 h.u. -1.052 -1.247
xxn/?2 — — 10 h.u. -1.034 -1.238
nln 5 h.u linear 10 h.u. -1.058 -1.241
nnn 5 h.u 8 h.u. 10 h.u. -1.040 -1.229

nlx/2 has separate hyperparameters for each input.
xxn/2 has its prior for weight variances shifted up by a factor of two.

The more complex models seem to do better
on test cases, but none of the differences are
statistically significant using a paired t test.

The nln model gives about equal posterior
probability to almost-proportional and
non-proportional hazards. The posterior for
the nnn model favours non-proportionality.



Proportional vs. Non-Proportional
Hazards Using All the Data

One network from posterior 25 networks from posterior
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Posterior Distribution of an Effect

Using 6 networks from the posterior

median survival with ascites median survival with ascites

median survival with ascites

of model nnn.
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Posterior Distributions of Effects

Using 25 networks from the posterior of model nnn.
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Posterior Distributions of Effects

Using 25 networks from the posterior of model nnn.
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Conclusions

Neural network survival analysis can go
beyond simple proportional hazards
models. Overfitting can be avoided by
using Bayesian methods.

The posterior distribution can be
interpreted even for complex models.

However: Inference for these models is
computationally demanding. The MCMC
runs take several hours to a day.

How does the approach I take of explicitly
modelling the baseline hazard compare
with using a partial likelihood, or with
other neural network approaches?

(Eg, Faraggi and Simon 1995; Ripley and
Ripley 1998, Bakker, Kappen, and Heskes
2000)



Software

Neural network survival analysis models are
part of my “software for flexible Bayesian
modeling” (for Unix/Linux, not Windows).

This software is freely-available for research
purposes from my web site:

http://www.cs.utoronto.ca/~radford

The results shown in this talk were obtained
using some new features not yet publicly
released. A new version with these features
will be put on the web site soon.



