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Abstract. The inferential problem of associating data to mixture components is difficult when
components are nearby or overlapping. We introduce a new split-merge Markov chain Monte Carlo
technique that efficiently classifies observations by splitting and merging mixture components of
a nonconjugate Dirichlet process mixture model. Our method, which is a Metropolis-Hastings
procedure with split-merge proposals, samples clusters of observations simultaneously rather than
incrementally assigning observations to mixture components. Split-merge moves are produced by
exploiting properties of a restricted Gibbs sampling scan. A simulation study compares the new
split-merge technique to a nonconjugate version of Gibbs sampling and an incremental Metropolis-
Hastings technique. The results demonstrate the improved performance of the new sampler. We
illustrate the utility of our technique as an unsupervised clustering method using real data.
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1 Introduction

Bayesian mixture models have gained in popularity as an alternative to traditional density estima-
tion and clustering techniques (see, for example, Escobar and West 1995, Neal 2000, Richardson
and Green 1997). In particular, Bayesian mixture models in which a Dirichlet process prior defines
the mixing distribution are of interest due to their flexibility in fitting a countably infinite number
of components (Ferguson 1983). Much of the recent research related to the Dirichlet process mix-
ture model has been devoted to developing computational techniques, usually Markov chain Monte
Carlo methods, to sample from its posterior distribution (Escobar 1994, Bush and MacEachern
1996, Green and Richardson 2001, Neal 2000). Other techniques to estimate the Dirichlet process
model include sequential importance sampling (MacEachern, Clyde, and Liu 1999) and variational
methods (Blei and Jordan 2004). The practical utility of these methods is illustrated by their recent
use for complex biological and genetics problems, such as haplotype reconstruction (Xing, Sharan,
and Jordan 2004), estimation of rates of non-synonymous and synonymous nucleotide substitutions
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as evidence for natural selection in evolutionary biology problems (Huelsenbeck, Jain, Frost, and
Pond 2005), and determination of differential gene expression (Do, Miiller, and Tang 2005).

The focus of this article is on Markov chain sampling for nonconjugate Dirichlet process mixture
models, building on our previous work for conjugate models (Jain and Neal 2004). Conjugate
models are appropriate for some problems, which is convenient due to the analytical tractability
of these priors. However, in many situations, conjugate priors can be too restrictive. Forcing
conjugacy on the model can lead to undesirable or even nonsensical priors. A classic example is
a simple model for normally distributed data, where conjugacy requires an assumption that the
mean and variance are a priori dependent, which is often unrealistic in actual problems.

Computationally, Markov chain sampling procedures can operate differently depending on whether
conjugacy is assumed. In the conjugate case, we can analytically integrate away the mixing pro-
portions for the components and the parameters for each component. This leads to Markov chain
Monte Carlo procedures that update only the latent indicator variable associating mixture compo-
nents with data observations (MacEachern 1994, Neal 1992). However, in the nonconjugate case,
the parameters of the model cannot be integrated away and must be included in the Markov chain
update. Further, since we lose the advantage of analytic tractability, computational difficulties
arise, which makes it more difficult, but not impossible, to construct valid Markov chain Monte
Carlo procedures.

Nonconjugate Markov chain sampling methods based on the Gibbs sampler have been proposed
previously; see, for instance, MacEachern and Miiller (1998) and Neal (2000). When the mixture
components are nearby or overlapping, these incremental samplers (as well as those for conjugate
models) suffer from computational difficulties, such as remaining stuck in isolated modes and poor
mixing between components.

Alternative nonincremental Markov chain samplers for the Dirichlet process mixture model based
on split-merge moves have been proposed by Green and Richardson (2001) and by ourselves (Jain
and Neal 2004). In a single iteration, these methods can split a mixture component moving all
observations to an appropriate new component, or merge two distinct components together. The
Green and Richardson (2001) method is based on the reversible-jump procedure, in which numerous
ways to propose a split move are possible. Since specific moment conditions must be preserved,
the split-merge proposals are model-dependent. Jain and Neal (2004) introduce a Metropolis-
Hastings technique with split-merge proposals for conjugate Dirichlet process mixture models. The
innovation in this work is exploiting properties of a Gibbs sampling scan to construct split-merge
moves, such that their Metropolis-Hastings proposals are model-independent. In this article, we
extend the conjugate split-merge technique to a class of nonconjugate Dirichlet process mixture
models.

This article is organized as follows. Section 2 defines the nonconjugate Dirichlet process mix-
ture model under consideration. Section 3 briefly describes the Metropolis-Hastings split-merge
technique based on Gibbs sampling proposals. Our new split-merge technique for a class of non-
conjugate models is proposed in Section 4. Next, in Section 5, we illustrate the utility of our method
in high-dimensional problems by comparing it to an auxiliary Gibbs sampling method (Neal 2000,
Algorithm 8). In Section 6, we apply the new algorithm to a real data set and demonstrate its
performance as an unsupervised clustering method. Section 7 is a general discussion and concluding
remarks.



2 The model

The Dirichlet process mixture model takes the following hierarchical model form for observed data
y = (y1,-...,Yn) that is considered exchangeable:

yi | ;i ~ F(6;)
b; |G ~ G (1)
G ~ DP(G(),(I)

Here, F(6;) is a component density from a parametric distribution parameterized by 6;, whose
density will be written as F'(y;#). G is the mixing distribution. Gy defines a base distribution for
the Dirichlet process (DP) prior. Finally, « is a concentration parameter that takes values greater
than zero. The usual conditional independence assumptions for a hierarchical model apply, so that
the only dependencies are those that are explicitly shown.

Realizations of the Dirichlet process are discrete with probability one. A consequence of this
is that the mixture model in equation (1) can be viewed as a countably infinite mixture model
(Ferguson 1983). This is evident when we simplify the model in equation (1) by integrating G over
its prior distribution. The 6; follow a generalized Polya urn scheme (Blackwell and MacQueen 1973)
and the prior distribution for the #; may be represented by the following conditional distributions:
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where §(6;) is the distribution which is a point mass at ;.

We can represent the fact that (2) results in some of the ; being identical by setting 6; = ¢,
where ¢; represents the latent class associated with observation i, and all ¢. are independently
drawn from Gy. The Polya urn scheme for sampling the 6; is equivalent to the following scheme
for sampling the latent variables, ¢;, and associated ¢.:

e
P(CZ =c | cl)"' ,Ci—l) = ﬁ; fOI [AS {c]}]<l (3)
. . a
Plei# ¢j forall j<i]er,oooyeim) =

where n; . is the number of ¢; for £ < 4 that are equal to c. The labeling of the indicator ¢; is
irrelevant in the above probabilities; all that matters is which ¢; are equal to each other.

The probabilities shown in (3) define the Dirichlet process model. This notation will be employed
in subsequent sections.

3 Jain and Neal’s conjugate split-merge procedure

We have previously introduced a split-merge Metropolis-Hastings procedure for conjugate Dirichlet
process mixture models (Jain and Neal 2004; Jain 2002). In this version of the algorithm, we



assume that F' is conjugate to Gy in equation (1), so the model parameters, ¢, in addition to the
mixing distribution, G, can be integrated away. The state of the Markov chain consists only of the
mixture component indicators, c;.

This sampler proposes nonincremental moves that can produce major changes to the configu-
ration of observations to mixture components in a single iteration. The split-merge proposals are
evaluated by a Metropolis-Hastings procedure, in which split proposals are constructed by exploit-
ing properties of a restricted Gibbs sampling scan on the component indicators, ¢;. The Gibbs
sampling scan is restricted in that it is only performed on a subset of the data (the observations as-
sociated with the merged component that is proposed to be split) and will only allocate observations
between two mixture components.

To achieve more reasonable split proposals, several intermediate restricted Gibbs sampling scans
are conducted prior to the final restricted Gibbs sampling scan, which is used to calculate the
Metropolis-Hastings acceptance probability. The result of the last intermediate Gibbs sampling
scan is denoted as the random launch state, from which the restricted Gibbs sampling transition
probability is explicitly calculated. The number of intermediate restricted Gibbs sampling scans is
considered a tuning parameter of this algorithm.

Note that for a merge proposal, there is only one way to combine items in two components to one
component. However, deciding whether to accept or reject a merge proposal requires hypothetical
consideration of the reverse split, which requires computations similar to those done for an actual
split. A description of the steps involved in this algorithm, details to compute the Metropolis-
Hastings acceptance probability, and a discussion of the validity of the conjugate version of the
split-merge Metropolis-Hastings algorithm are provided in Jain and Neal (2004).

4 The nonconjugate split-merge procedure

Jain and Neal’s conjugate split-merge Markov chain procedure described in Section 3 can be gener-
alized to accommodate models with nonconjugate priors. As mentioned earlier, because conjugate
priors are not appropriate for all modeling situations, much of the recent Bayesian mixture model-
ing literature has been dedicated to nonconjugate algorithms (for instance, MacEachern and Miiller
1998, Green and Richardson 2001, and Neal 2000). A major impediment in designing nonconju-
gate procedures is the computational difficulty that arises when the model is no longer analytically
tractable.

We say the model is nonconjugate when Gy is not conjugate to F' in the mixture model (equa-
tion 1). Aside from being unable to simplify the state of the Markov chain by integrating away the
model parameters, ¢, the main obstacle occurs when trying to sample for a new mixture component.
When a ¢; is updated, it can be set either to one of the other components currently associated with
some observation or to a new mixture component. The probability of setting ¢; to a new component
involves the integral, [F(y;; ¢) dGy(¢), which is analytically intractable in most nonconjugate sit-
uations. Allowances that some previous nonconjugate methods have made when dealing with this
integral include approximating the true posterior distribution by another stationary distribution
(which can be extremely detrimental) or creating model-specific ad hoc algorithms (which fail to
generalize well).



Neal (2000) proposed two incremental Markov chain sampling procedures: Gibbs sampling with
auxiliary parameters (Algorithm 8), and an incremental Metropolis-Hastings technique (Algorithm
5). These are exact Markov chain Monte Carlo methods that sample the correct posterior distribu-
tion and are straightforward to implement. However, in situations where the mixture components
are nearby or similar in structure, these incremental methods’ performance is analogous to the
incremental methods for conjugate models (see Jain and Neal 2004). To overcome their problems,
such as remaining stuck in isolated modes and poor mixing between mixture components, we have
developed a nonincremental split-merge alternative. In the next section, we compare empirically
the performance of the new sampler to Neal’s two incremental algorithms.

In this article, we show how such a nonincremental split-merge procedure can be applied when
the model uses a particular type of nonconjugate prior, the conditionally conjugate family of pri-
ors. In conditionally conjugate models, it is still impossible to efficiently compute the integral,
JF(yi; $) dGo($). However, the pair F' and Gy are conditionally conjugate in one model parameter
if the remaining parameters are held fixed. A well-known instance of this is the following Normal
model. Suppose the observations, y1, ... ,yn, are distributed as F(y;; i, 02) = Normal(y;; u, 02), and
the prior is Go(u,02) = Normal(y;w, B~!) - Gamma(o~2;7, R). The distributions, F(y;; u,0?)
and Go(p,o~?), are conjugate in u when o2 is fixed, and conjugate in o2 if y is fixed. But, the
joint posterior distribution is not analytically tractable. For the sake of brevity, when this non-
conjugate Normal-Gamma, prior is applied to a Normal mixture model, we will refer to it as the
Normal-Gamma mixture model. Note, however, that this model using a conjugate prior, in which
the mean and variance are a priori dependent, is sometime referred to similarly.

Section 4.1 outlines the basic differences between the nonconjugate and conjugate versions of
the split-merge procedure. A detailed description of the nonconjugate algorithm is provided in
Section 4.2, while Section 4.3 gives the Metropolis-Hastings acceptance probability for the non-
conjugate case. We suggest ways to improve the efficiency and performance of the algorithm in
Section 4.5.

4.1 Restricted Gibbs sampling split-merge proposals

The conjugate split-merge algorithm of Section 3 cannot be applied directly to the conditionally
conjugate case, but the basic mechanism of creating restricted Gibbs sampling split-merge proposals
can still be applied. Since the model parameters, ¢., cannot be integrated away, the state of the
Markov chain for the split-merge sampler consists of both the component indicators and model
parameters, denoted by v = (¢, @), where ¢ = (c1,...,¢,) and @ = (dc : ¢ € {c1,...,¢n}).

Conditional conjugacy in the model is required so that restricted Gibbs sampling scans can be
performed to allocate observations reasonably between two mixture components. During these
scans, we do not need to compute the integral, [F(y;;$)dGo(¢), since we are only allocating
observations between two known components that have at least one observation already assigned
to them. For a nonconjugate model, a restricted Gibbs sampling scan also updates the parameters
for the affected mixture components, while holding the parameters of the other components fixed.
Note that use of a restricted Gibbs sampling scan (and consequently, conditional conjugacy) is
only crucial for the final Gibbs sampling scan from the launch state, since it allows the Metropolis-
Hastings proposal density can be calculated. The intermediate scans could be replaced by some
other type of Markov chain update.



Due to the inclusion of the model parameters, when two separate components are being merged
to a single component, there is no longer only one possible component to merge into. The merged
component is now defined by component parameters, which must be accounted for in the Metropolis-
Hastings acceptance probability (in Section 4.3). The algorithm addresses this problem by con-
ducting intermediate restricted Gibbs sampling for the merged component’s parameters to arrive at
a launch state (in a similar fashion as the “split” intermediate Gibbs sampling). From this launch
state, one final restricted Gibbs sampling scan is performed to obtain the model parameters of the
proposed merged component. The number of intermediate Gibbs sampling scans for the merged
component’s parameters is an additional tuning parameter in this algorithm. In this generalized
version of the split-merge algorithm, there are therefore two launch states, yLsetit and ~Lmerse
that are necessary in order to calculate Gibbs sampling transition kernels for the split and merge
proposal distributions.

4.2 Restricted Gibbs sampling split-merge procedure for the nonconjugate case
Let the state of the Markov chain consist of v = (¢, ¢) where ¢ = (¢1,...,¢p) and ¢ = (¢ : c € {c1,...,¢n}).

1. Select two distinct observations, ¢ and j, at random uniformly.
2. Let S denote the set of observations, k € {1,...,n}, for which k # ¢ and k # j, and ¢, = ¢; or ¢ = ¢;.

3. Define launch states, yZsr'¢t and yLmerse, that will be used to define Gibbs sampling distributions
required for the split and merge proposals.

e Obtain launch state yZertit = (¢Lertit glertit) ag follows:

Lopti Lopti
— If ¢; = ¢j, then let ¢;**""* be set to a new component such that ¢;**""* ¢ {c1,...,¢,} and
Ly . Lspii Lspii
let ¢;""""" = ¢;. Otherwise, when ¢; # ¢;, let ;""" = ¢; and ¢/ = ¢;. For every

split

k € S, randomly set cf , independently with equal probability, to either of the distinct

or C‘?spln

eplit Initialize model parameters, <]5 ””” and ¢ spm ;, associated

L
components, c¢;
plit

with the two distinct components by drawing new values from their prior distribution

— Modify ~%ertit by performlng t intermediate restricted Gibbs sampling scans to update
CLsplit Lsph't d ¢ .spht
b

CLspm ’ spm
i

e Obtain launch state yLmerse = (¢Lmerse lmerse) as follows:
merge _ clllmerge

J
Lmerge Lmerge L
then set ¢; """ = ¢;""" = ¢;. For every k € S, set ¢,

associated with the merged component by drawing a new value from

— If ¢; = ¢, then let ciL = ¢; (which is the same as ¢;). Similarly, if ¢; # ¢;,

merge

= ¢;. Initialize model

merge

parameter, q§

Lme'r‘ge )
its prior distribution.
- Modify ~Lmerse by performing r intermediate restricted Gibbs sampling scans to update

merge
¢ chmerae
4. If items ¢ and j are in the same mixture component, i.e. ¢; = ¢;, then:
(a) Propose a new assignment of data items to mixture components, denoted as ¢*?'%  in which

it it
component ¢; = c¢; is split into two separate components, ¢;”" and ¢;*"*, and propose new

it it
values for the corresponding components’ parameters, qﬁsfpﬁ,, and qﬁsfpﬁ,, Deﬁne each element of

the candidate state, y*Plit = (¢sPlit p*Plit) | ag follows:



o Let P = ¢/*»* (note that cf " ¢ {c1,...,cn})

e Let cj””t = cf“’”t (which is the same as ¢;)
e By conducting one final Gibbs sampling scan from the launch state, 4"s»iit, for every

observation k € S, let ;""" be set to either component ¢;”'* or c;p“t and draw values for

lit lit

the model parameters, ¢°2.1;, and ¢°Z.7;, .
C, C.
2 J

e For observations k ¢ SU{i,j}, let czpm = ¢, and for ¢ ¢ {7, cjp”t}, let qﬁsz,ffi = ¢..

(b) Compute the proposal densities, q(vy°P!#|v) and q(v|y*?'), that will be used to calculate the
Metropolis-Hastings acceptance probability.

e Calculate the split proposal density, g(v*P!¥|v), by computing the Gibbs sampling transition
kernel from the split launch state, y*s#!it, to the final proposed state, v°Pt. The Gibbs
sampling transition kernel is the product of the individual probabilities of setting each
element in the launch state to its final proposed value during the final Gibbs sampling scan.

e Calculate the corresponding proposal density, g(v|v*?!*), by computing the Gibbs sampling
transition kernel from the merge launch state, y%m<rs< to the original merged configuration,
~. The Gibbs sampling transition kernel is the product of the probability of setting each
element in the original merge state (in this case, elements of ¢.;) to its original value in a
(hypothetical) Gibbs sampling scan from the merge launch state.

(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(y*P'®, ). If the
proposal is accepted, 7°P'* becomes the next state in the Markov chain. If the proposal is
rejected, the original configuration and model parameter, v, remain as the next state.

5. Otherwise, if 4 and j are in different mixture components, i.e. ¢; # ¢;, then:

(a) Propose a new assignment of data items to mixture components, denoted as ¢™¢9¢, in which

distinct components, ¢; and c;, are combined into a single component, and propose a new value

for the corresponding merged component’s model parameter, ¢'7.c%: . Define each element of the

2
candidate state, y™¢"9¢ = (¢™¢"9¢, ¢p™"9°), as follows:
Lmerge PRI
e Let ¢;"“"9° = ¢;™*"* (which is the same as c;)

Lmerge PRI
o Let c;“"9° = ¢;"*° (which is the same as c;)

e For every observation k € S, let ¢j'“"?¢ = cf’””ge (which is the same as ¢;)
e For observations k ¢ S U {i,j}, let ¢'“"° = ¢, and for ¢ # ™79, let ¢lmerse = Pe.
e Conduct one final restricted Gibbs sampling scan from the launch state, 4y“merse in order

to draw a new value for the model parameter, ¢ me g -
J
(b) Compute the proposal densities, g(y™"™9¢|vy) and g(v|y™¢"9¢), that will be used to calculate the
Metropolis-Hastings acceptance probability.

e (Calculate the merge proposal density, g(y™¢"9¢|v), by computing the Gibbs sampling tran-
sition kernel from the merge launch state, yZm=s=, to the final proposed state, y™¢"9¢. The

Gibbs sampling transition kernel is the probability of setting qu’"”"e to its final proposed
c

Lmerge

J
value, ¢"0f%e , via one Gibbs sampling scan.

J

o Calculate the corresponding proposal density, q(y|y™¢"9¢), by computing the Gibbs sam-
pling transition kernel from the split launch state, yZs#i*, to the original split configuration,
~. The Gibbs sampling transition kernel is the product of the probabilities of setting each
element in the original split state to its original value in a (hypothetical) Gibbs sampling
scan from the split launch state.

(c) Evaluate the proposal by the Metropolis-Hastings acceptance probability a(y™¢"9¢,~). If the
proposal is accepted, 4™¢"9¢ becomes the next state. If the merge proposal is rejected, the
original configuration and model parameters, v, remain as the next state.



The component labels only serve to distinguish which items are grouped in the same component;
the actual numerical values do not matter. A component’s label should of course correspond to the
label for that component’s parameters.

4.3 The Metropolis-Hastings acceptance probability
The Metropolis-Hastings acceptance probability (Metropolis et al 1953, Hastings 1970) takes the
following form when updating v = (¢, ¢):

q(vlv*) P(v") L(v*|y) )
a(v*lv) P(v) L(vly)

a(¥*,y) = min |1,

where v* is either ~*P% or y™€T9¢ depending on the type of proposal.

The prior distribution, P(«y), will be a product of the individual prior distributions for ¢ and ¢,
since they are a priori independent. As before, the prior distribution for P(c¢) will be a product of
factors in equation (3). The ¢, for different mixture components are independent. Therefore, the
prior distribution for P(7y) is

P(y) = P(eo) [T P(¢c) (5)

ceC

D Hcec"c

o =5 ——C || f(¢e) (6)
[Tio1(atk— 1 CI;IC

where D is the number of distinct mixture components, n. is the count of items belonging to
mixture component ¢ € ¢, and f(¢.) is the prior probability density function for ¢, for mixture
component ¢ € c.

For the split proposal, the appropriate ratio of prior distributions is:

P(,Ysplit) (nifé?ft - 1)! (nzf;zlﬁt - 1)! f(¢z§;l;§ft) f(¢ifgzt:)
— i J i J 7
Py (e D1 (d) ™

where 7 is the original state in which 7 and j belong to the same mixture component, nsfﬁi and

split

N g are the number of observations associated with each split component. The ratio of the prior
C.

J
distributions simplifies because the denominator in equation (6) and factors not associated with
components that are directly involved in the Metropolis-Hastings update cancel.

For the merge proposal, the prior ratio simplifies to:

P(,.ymerge) _ l (’I’Lnrlnegr‘%i )' f( nrlnegr%i) (8)
P() «Q (nci - 1)- (an 1)! f((]ﬁcq,) f(ﬁbcj)

where ~ represents the original state in which items ¢ and j belong to separate components.

The likelihood, L(-y|y), will be a product over n observations:

n

L(vly) = ]I Flyws ¢e) (9)

k=1
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L(~|y) can be expressed as a double product over components, ¢, and items, k € {1,...,n}, asso-
ciated with each component:

D
Livly) = I II Flwks oo (10)

c=1 k:cp=c

where D is the number of distinct components. This expression to calculate the likelihood is often
easier to use in real examples.

Likelihood factors involving items associated with components not directly involved in the split
proposal cancel. The ratio of likelihoods in equation (4) reduces to the following:

I[I Fasebi) TI  Flwéeh)
L('YSplit|y) k- czplit:ciplit i k- czplit:c;plit J

L(vly) B H F(y; ¢c;)

k:cp=c;

(11)

Likewise, for the merge proposal, the ratio of likelihoods is:

I Flwenes
LYmrsly) kg ’ (12)
L(ly) I Frsde) I Fluws o)
k:cp=c; k:cp=c;

The Metropolis-Hastings proposal density, g(v*|7), is the restricted Gibbs sampling transition
kernel from launch state 4% to final state 4*. This is a product of the conditional probabilities of
each individual update of the vector ¢* from ¢’ and the conditional densities of assigning successive
components of ¢ to their final values, ¢*.

Typically, for each mixture component, ¢ is composed of more than one model parameter, i.e.
each ¢, can be a vector of parameters. For example, in the normal model, there are two parameters
per component, ¢, = (i, 02). In a Gibbs sampling scan, each element of parameter ¢, is updated
individually, while holding the other elements of ¢. fixed. A single element of ¢, is updated in a
restricted Gibbs sampling scan by drawing a new value from its full conditional distribution.

We will denote the product of conditional probabilities obtained from one full scan of restricted
Gibbs sampling as Pgg. Since v is comprised of both ¢ and ¢, for clarity, we can split the Gibbs
sampling transition kernel into its factors. The order of updating the variables does not affect the
validity of the method, but for presentation purposes, we assume that Gibbs sampling updates ¢
first (as is done in the later examples):

ay*lY) = Pas(¢*| ", c", y)- Pes(c*|c”, ¢, y) (13)

An individual update of a particular ¢ is as follows:

n*k,ck F(yk, ¢Ck)
N_k,c; F(yk§ ¢cl) + N—k,c; F(yk; ¢Cj)

P(Ck |C—k:7 ¢Ck7 yk) = (14)



where c_j, represents the ¢; for [#k in SU {i,j}, n_j . is the number of ¢; for [#k in S U {7,5}
that are equal to ¢, and F(yg; ¢.) is the likelihood. Here, ¢ is restricted to being either ¢; or
c;. Each time a ¢ or ¢, is incrementally modified during a restricted Gibbs sampling scan, it is
immediately used in the subsequent Gibbs sampling computation.

The required ratios for the split and merge proposals are shown below in equations (15) and
(16), respectively. For the merge proposal, there is still only one way to combine items in two
components into one component, so Pgg(c|cimerse, ¢, y) = 1 in equation (15). The same is
true for P(c™¢9¢|clmerse ¢p™™9€ ) in equation (16). However, since specific parameters now
define the mixture components, there are numerous possibilities for choosing a particular mixture
component. We address this, in a similar method as the split scenario, by conducting intermediate
Gibbs sampling scans to decide the value of the merged component’s parameters. One final Gibbs
sampling scan is conducted from the launch state to calculate the Gibbs sampling transition kernel.

The ratio of transition densities for the split proposal is:

atyy” ")
a(v**" )
PGS(QSCZ |¢Lmerge LmeTge ) PGS(c|ch6Tge ) ¢a y)

split splzt -S’Pth splzt ; split| Lopi; split
PGS( splzt Spl’bt Y Spl’Lt’ y) PGS( splzt splzt Y splzt, y) PGS (c P |c splzt, ¢ P ’y)

— PGS(QSCz |¢Lm”ge Lmergea y) ( 5)
B lit ; lit ; j ; j
PGS( S‘Zs)p'llzt |¢ ssﬁlzztta Sphta y) PGS( Sfp?zt |¢ ss;slzztta Sphta y) PGS (csplzt|cL8plw7 ¢splzt’ y)

To calculate g(|y°P%), the same intermediate Gibbs sampling operations that are performed when
proposing a merge must be conducted here to arrive at a suitable merge launch state, even though
no actual merge is performed. The Gibbs sampling transition probability is calculated from the
launch state (which is the last intermediate Gibbs sampling state) to the original merged state.
These operations are necessary to produce the correct proposal ratios.

For the merge proposal, the ratio of transition densities is:

Lepii ) Lypii : ;
q(7|7merge) - PGS(QZSCZ' |¢Cispht L‘Sphta y) PGS(¢cj |¢stphta cLsp”ta y) PGS (c|cLspht’ ¢a y)
q(,ymerge|,7) PGS( n:ne!'r%ee |¢L7;"Lrtj"rggee, Lme,ge, y) PGS (cmerge|CLmerge’ ¢m€7‘ge’ y)

Lo ) Lo ) )
— PGS(¢Ci |¢Cisphta CLSp“ta y) PGS(¢CJ |¢C]SP“'5 cLsp“ta y) Pas (c|cLspht’ ¢a y) (16)
Pas (gt |, mtis , cPrerse, y)

To obtain g(y|y™¢"9¢), we similarly perform the same intermediate Gibbs sampling moves when
proposing a split, even though no actual split is proposed (since it is already known). This time
the Gibbs sampling transition probability is calculated from the launch state to the original split
state. This ensures correct proposal ratios.

The number of intermediate Gibbs sampling scans used to arrive at suitable launch states for
both split and merge proposals are tuning parameters of this algorithm. There is an additional
tuning parameter for the nonconjugate split-merge procedure that is not present in the conjugate
version, which did not require a merge launch state.
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4.4 Validity of the algorithm

The nonconjugate split-merge procedure described here is justified as a valid two-stage random
Metropolis-Hastings procedure. In the first stage, we randomly select of observations ¢ and j to
decide which subset of Metropolis-Hastings proposals will be considered. In the second stage,
we randomly select a launch state from among all possible launch states (given the selection of
observations ¢ and j), by means of intermediate Gibbs sampling scans. We then perform a standard
Metropolis-Hastings update with a proposal distribution that depends on the selection of 7 and j
and on the launch state. As discussed by Tierney (1994), a random selection among transitions (in
this case, via random selection of a proposal distribution) is a valid way of constructing Markov
chain Monte Carlo algorithms, as long as all the transitions that might be selected are valid on
their own.

A subtle clarification should be pointed out regarding the construction of the Metropolis-Hastings
acceptance probability for the nonconjugate procedure. When a split is proposed from a merged
state, only one ¢, is included in the equations, since the merged component has only one set of
parameters associated with it now. We happen to initially pick ¢, to be associated with the
observations in the merged component, but this is equivalent to initially selecting ¢, since the
labels are irrelevant. To avoid changing dimensions when we compute the Metropolis-Hastings
acceptance probability, we could include the appropriate ¢., terms in the computations. Since ¢,
is an extra parameter for the merged component that is no longer associated with the data, we
choose to propose a new value for it during the restricted Gibbs sampling scan by drawing from
its prior distribution. This choice conveniently allows the prior density for this term to implicitly
cancel with the corresponding term in the proposal density of the acceptance probability, showing
that the change in dimensionality is not a problem. Consider the following set-up for the prior
and proposal ratios for a split proposal which include the ¢, terms. We intentionally omit the
likelihoods and indicator terms for simplicity and space considerations:

P(qsspli?'f ) P(qsspliw? )

split split
Ci Cj

Lymerge Limerge
(¢Cz|¢ g Lmerge) PGS(¢CJ |¢ g che'rge’ y)
P(4e) P(d,) PG5< G Tt clnie, ) Pas(#7P5L |§Ftt | clontt, )

spllt Spl’Ll bl Spl’Ll splzt bl

The proposal factor, PGS(¢01|¢L’””95 cPmerse) does not depend on the data, since the ¢¢; factor
has been selected earlier to be the merged component’s parameter. Therefore, a new draw from
¢¢;’s conditional distribution will be equivalent to drawing a new value from its prior distribution,
and this will cancel with the prior term, P(¢,,). As a result, the ratios described earlier do not
need to include these terms. The identical situation occurs in the case when a merge is proposed
from an original split state and is handled similarly.

Note that it is possible to propose any configuration of observations from any initial state via a
sequence of split and then merge proposals. However, to ensure ¢-irreducibility on a continuous
state space, it must be possible to propose any set of parameter values for each component. This
will be true if each individual restricted Gibbs sampling conditional distribution for parameters
of components that are involved in a particular split or merge update has a positive probability
density of proposing any value.
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4.5 Improving efficiency of the algorithm

Methods to improve efficiency and performance are presented in this section. Adding a final Gibbs
sampling scan to the split-merge procedure is discussed in Section 4.5.1. In Section 4.5.2, a swap
update is proposed to correct a labeling problem.

4.5.1 Cycling Metropolis-Hastings updates with Gibbs sampling

The nonconjugate method split-merge procedure is best used for making major, sweeping changes
to the configuration of items in a single iteration. These split-merge moves dramatically reduce the
length of burn-in time. However, for the minor shuffling of a single observation between components,
incorporating an incremental procedure after a split-merge operation is worthwhile.

We have tried both incremental updates based on Gibbs sampling with auxiliary variables (Neal
2000, Algorithm 8) and incremental Metropolis-Hastings updates (Neal 2000, Algorithm 5), and
found that both are effective in supplementing the split-merge updates. In the remainder of this
paper, we use only the auxiliary variable method. The number of final incremental scans in each
full iteration is a tuning parameter for the algorithm.

4.5.2 The swap proposal

There is is a potential labeling problem stemming from the split-merge procedure’s random selection
and treatment of the observations, 7 and j. This problem is for the conjugate models by Jain and
Neal (2004), is also present in this version of the algorithm. The initial random split of the other
observations in a merged component could assign labels biased towards a split that is opposite to
the fixed labels of 4 and j. Therefore, ¢ and j end up in the “wrong” mixture components.

This nuisance labeling problem can be remedied by proposing a direct swap of the labels of the
items associated with each split component (equivalent to switching the component indicators of
i and j) prior to reaching the launch state. A simple Metropolis update that evaluates a swap
proposal is recommended immediately after conducting the intermediate restricted Gibbs sampling
scans. In this case, the swap proposal includes a direct switch of the parameters of the two
components associated with items ¢ and j (as well as swapping the labels of the items associated
with each split component). This swap proposal should result in ¢ and j being in the “correct”
mixture component and should improve the overall Metropolis-Hastings acceptance rate by up to
a factor of 2. After performing the swap proposal, it is not necessary to recalculate the proposal
prior and likelihood for the split-merge Metropolis-Hastings acceptance probability, since this was
already computed during the swap proposal’s Metropolis-Hastings update.

5 Performance of the nonconjugate split-merge procedure

In this section, a simulation study is conducted to examine the performance of the nonconju-
gate split-merge procedure. Our model of choice is the Normal mixture, in which the data,
Yy = (y1,---,Yn), are independent and identically distributed, such that each observation, y;, given
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the class, ¢;, has m Normally distributed attributes, (yi1,---,%m). An observation’s attributes
are independent given the class, ¢;. The Normal mixture model is commonly used in Bayesian
mixture analysis because of its simplicity in constructing conditional distributions and flexibility
in modeling a number of heterogeneous populations simultaneously.

Section 5.1 presents a version of the Normal mixture model under consideration. Three data
sets, discussed in Section 5.2, are used to empirically compare the split-merge technique to two
incremental samplers in Section 5.3. Section 5.4 examines the performance of the nonconjugate
technique when each of the four tuning parameters is varied while holding the others fixed.

5.1 The mixture model with Normal-Gamma prior

We model data from a mixture of Normal distributions using a Dirichlet process mixture model
with Normal-Gamma prior, as follows:

Yi | iy T~ Fyis pismi) = N(yi; pi,; 1 1)
(wi»m) |G~ G
G ~ DP(Gy,w)
Go(p,7) = N(u; w,B ') - Gamma (7; r, R)

(17)

where 7, the precision parameter, is 0~2. Hyperpriors could be placed on w, B,r, and R to add

another stage to this hierarchy if desired. Here, we consider these parameters to be known.

The probability density function for the prior distribution of x given in (17) is:

1
B\z2 -B 9
fulw,B) = (5) exp (G tu - w?) (18)
where B is a precision parameter.

The probability density function for the prior for 7 is:

f(r|rR) = I ;(r) " Lexp (%) (19)

This parameterization of the Gamma density is adopted throughout this section.

These priors, equations (18) and (19), are necessary to compute the priors for the parameters in
the Metropolis-Hastings acceptance probability of equation (4).

It is straightforward to set up the conditional distributions required for the restricted Gibbs
sampling in the split-merge procedure used in the Metropolis-Hastings proposal densities. For
the model parameters, this amounts to sampling from the marginal posterior distributions for a
particular parameter of component ¢. The conditional posterior distribution for p., (when 7. is
known) for a specific attribute h is:

W B+ Yep e Ten 1 ) (20)

c,Y,Teh,w,B ~ N( ,
MCh' Yy Teh B+nc7'ch B—FTLCTch

where n. is the number of observations belonging to component ¢ and ., of attribute h for these
these observations.
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Similarly, if p.p, is fixed, the conditional posterior distribution for 7., for a particular attribute h
is:

1
_ 1
R 1+§ > Wkn — ten)?

kicp=c

n
Tch | C, Y, Hch> Ty R ~ Gamma |r+ —¢

3 (21)

The conditional posterior distribution for an indicator variable, ¢;, is obtained by combining the
probability of the data (given in equation 17) given a value for ¢; with the prior for indicators,
P(c). This yields for ¢ € {c;};z:

P(ci=c | c i, pre,Te, i) o Plei=c | ci)  P(yi | fe, Tesc—i) (22)

oL —Tch 2
x n_ic [] 73 exp ( 2 (Yin — teh) )
h=1

These conditional distributions are also employed in computations required for Gibbs sampling
with auxiliary parameters and incremental Metropolis-Hastings updates that will be used as com-
parisons to the nonconjugate split-merge technique later in this article.

The likelihood used in computing acceptance probabilities for split-merge updates is much simpler
to obtain than in the conjugate case, since the parameters are not integrated away. For the mixture
of Normals, the likelihood (given component indicators) is

L(v|y) H 11 H( ) (%(ykh—llchy) (23)

c=1 k:cx=c h=1

Interchanging the products over k and h of equation (23) yields the following:

L(v|y) H H (Tc}l)T (_;Ch > (ykh_ﬂch)Q) (24)

c=1 h=1 k:cp=c

Efficiency can be improved by incrementally updating the sufficient statistics for the model.
For this particular model, we maintained counts for the sum of the observations and the sum of
the squares of the observations for each component, and used these counts when computing the
likelihood and doing Gibbs sampling. The savings in these operations more than offsets the cost of
incrementing or decrementing these counts when the component indicators change.

5.2 The synthetic data

The purpose of this study is to classify observations into appropriate latent classes using the Normal-
Gamma Dirichlet process mixture model. We can make this problem computationally more difficult
by increasing the dimensionality of the data and by moving the components closer together. Var-
ious combinations of these factors were tested on all procedures. We found that the split-merge
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procedures outperformed the incremental procedures even in very low-dimensional problems, in
which distinct components were visible by eye, showing the difficulty that incremental samplers
have in reaching equilibrium even in simple problems when the components are similar.

We will consider three simulated data sets with a finite number of components. We expect that
the Dirichlet process mixture model will model the finite situation perfectly well without problems
such as overfitting, even though the model allows an infinite number of components. For each of the
three examples, the data are composed of five equally-probable mixture components, in which each
component is a distribution over m dimensions. To maintain uniformity amongst the examples,
we generated n = 100 observations, stratified so that 20 observations came from each of the five
mixture components.

Data for the three examples were randomly generated from the mixture distributions shown in
Tables 1-3. Scatterplots of the data are shown in Figures 1 - 3. A standard deviation of 0.2 was
selected for all Normal distributions, so that only the means would vary. The first two examples
differ in that one of the components is moved closer to two of the other components in Example
2, while holding the dimensionality at two. The third example differs from the others in that the
dimensionality is increased to three, and the components are closer together. Intentional asymmetry
is introduced so that three components are more similar than the other two. This is intended to
test whether the nonconjugate split-merge techniques can split in three ways.

The Dirichlet process parameter, «, is set to one for all demonstrations. Recall that a small value
of a places stronger belief that the number of mixture components in the data is likely to be small.
The parameters of the priors for the parameters on the component distributions have been set to
the same values over all dimensions as follows: w =5, B=1/12, r =1, and R = 5. Here, B is a
precision parameter. For consistency, these parameters are fixed at these values for all simulations.
In actual problems, these parameters could be set either by prior knowledge or given higher-level
priors.

To verify the correctness of the implementations of these procedures, a small, two-dimensional
example was constructed that allowed us to theoretically compare the actual (true) posterior quan-
tities to the simulated results. Results obtained on the three data sets using the various algorithms
were also compared.

5.3 Performance

For each of the three examples, two incremental procedures, Gibbs sampling with v = 3 auxiliary
variables, and an incremental Metropolis-Hastings method, are compared to four versions of the
nonconjugate split-merge procedure. We use four numbers to describe the various split-merge
procedures.
1. Number of intermediate Gibbs sampling scans to reach the launch state for a split proposal
2. Number of split-merge updates done in a single overall iteration

3. Number of complete incremental Gibbs sampling scans after the final split-merge update

4. Number of intermediate Gibbs sampling scans to reach the launch state for a merge proposal
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Table 1: True mixture distribution for Example 1.

Figure 1: Scatterplot of the data in Example 1
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Table 2: True mixture distribution for Example 2.

C P(Ci:C) P(yihlci: ),h=1,2

1 02 | N(2.0,0.04) N(3.0, 0.04)

2 02 | N(3.0,0.04) N(2.0,0.04)

3| 02 | N(@3.0,004) N(3.0,0.04)

4| 02 | N@8.0,004) N(9.0,0.04)

5| 02 | N©.0,004) N(8.5,0.04)
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Figure 2: Scatterplot of the data in Example 2. The two x’s represent observations 41 and 62 used
in autocorrelation calculations for an indicator variable.
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Table 3: True mixture distribution for Example 3.

c | Ple;=c) P(yinlci =c¢),h=1,2,3

1] 02 | N(20,004) N(2.0,0.04) N(3.0,0.04)
2| 02 | N(20,004) N(3.0,0.04) N(2.0,0.04)
3| 02 | N(20,004) N(25,004) N(2.5,0.04)
4| 02 | N(®0,004) N(8.0,0.04) N(8.0,0.04)
5 02 | N(80,0.04) N(9.0,0.04) N(9.0,0.04)

Figure 3: Scatterplot of the data in Example 3. The two x’s represent observations 26 and 57 used
in autocorrelation calculations for an indicator variable.

18



Table 4: Time per iteration (in seconds) for the algorithms tested.

Algorithm FExample 1 Ezxample 2 Ezample 3
Incremental M-H 0.08 0.08 0.09
Gibbs Sampling 0.45 0.42 0.60
Split-Merge (0,1,0,0) 0.05 0.06 0.10
Split-Merge (0,1,1,0) 0.27 0.27 0.35
Split-Merge (5,1,0,5) 0.16 0.20 0.24
Split-Merge (5,1,1,5) 0.40 0.42 0.53

For all split-merge procedures, the swap procedure described in Section 4.5.2 was conducted im-
mediately after the intermediate Gibbs sampling scans for the split proposal to arrive at a launch
state. The four split-merge procedures we tested are described using these numbers as Split-Merge
(0,1,0,0), Split-Merge (5,1,0,5), Split-Merge (0,1,1,0), and Split-Merge (5,1,1,5).

We compared the split-merge procedures with both the auxiliary variable and Metropolis-Hastings
incremental samplers because we did not know beforehand which incremental method would per-
form better situations where splits and merges might be necessary. Performance of the auxiliary
variable Gibbs sampling is expected to improve as we increase the number of auxiliary components,
except that it also takes longer per iteration (Neal 2000). We did vary this parameter, but will
report findings for v = 3 for all examples, since this version is comparable to the best version
of split-merge in terms of computation time per iteration. As the incremental final scan for the
split-merge procedure, Gibbs sampling with one auxiliary variable is used for all examples.

Performance measures that were considered include trace plots over time (Figures 4-6) and
computation time per iteration (Table 4). The trace plots show five values which represent the
fractions of observations associated with the most common, two most common, three most common,
four most common, and five most common mixture components. Since each of the five components
appear equally in the samples, if the true situation were captured exactly, the five traces would
occur at values of 0.2, 0.4, 0.6, 0.8, and 1.0.

For each algorithm, all observations were assigned to the same mixture component for the initial
state, and each algorithm was run for 5000 iterations. All simulations were performed on Matlab,
Version 6.1, on a Dell Precision 530 workstation (which has a 1.7 GHz Pentium 4 processor). Note
that the computation times reported include the extra time spent due to Matlab’s inefficiencies
when copying and incrementally updating arrays, which are not inherent in the algorithm.

5.3.1 Example 1

The three types of procedures, incremental Metropolis-Hastings, incremental Gibbs sampling with
auxiliary variables, and split-merge, correctly classify the data in Figure 1 into five distinct clusters.
The main difference in performance is the number of burn-in iterations that must be discarded.

The trace plots in Figure 4 show that Gibbs sampling with three auxiliary parameters has fewer
burn-in iterations than the incremental Metropolis-Hastings method (compare 1000 to 3200 burn-
in iterations). However, since the incremental Metropolis-Hastings method is approximately 5.5
times faster per iteration than the auxiliary Gibbs sampling method, it actually converges sooner
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Figure 4: Trace plots of the six algorithms in Example 1.
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Figure 5: Trace plots of the six algorithms in Example 2.
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Figure 6: Trace plots of the six algorithms in Example 3.
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with respect to computation time. Split-Merge (5,1,0,5) almost immediately splits the data into five
components, but notice that the proportions do not occur at exactly 0.2 intervals until after the first
thousand iterations. It takes this procedure longer to move a few singleton observations between
components, since there is no final incremental update to make these minor adjustments. In five
thousand iterations, it is not clear if Split-Merge (5,1,0,5) has actually reached the equilibrium
distribution. Split-Merge (0,1,0,0) does not reach the equilibrium distribution in the five thousand
iterations shown. Because the split and merge proposals have no intermediate Gibbs sampling
scans, the proposals are not expected to be realistic. Split-Merge (0,1,0,0) is essentially a simple
random split procedure, except that one restricted Gibbs sampling scan is conducted to reach the
final state, which of course will not lead to reasonable split and merge proposals.

However, either by adding intermediate Gibbs sampling scans (as in the case of Split-Merge
(5,1,0,5)) or adding a final full incremental scan (as in Split-Merge (0,1,1,0)), the correct pro-
portion of items in each cluster is established. Split-Merge (0,1,1,0) eventually reaches the five
component configuration after 500 burn-in iterations. The final procedure of Figure 4, Split-Merge
(5,1,1,5), finds the five components immediately, and it appears that there is negligible burn-in
(four iterations). The computation time per iteration is higher for Split-Merge (5,1,1,5) versus
Split-Merge (0,1,1,0) and (5,1,0,5), but the computation time to equilibrium is much lower.

5.3.2 Example 2

Example 2 holds the dimensionality at two, but from the scatterplot of the data (Figure 2), we
see that one of the clusters (cluster 3 from Table 2) has been moved closer to two other clusters
and its simulated data values change. The four other clusters’ data values have not changed from
Example 1. Given the priors, the posterior assigns significant probability to both the four and
five component configurations, but the four component configuration dominates. The trace plots
in Figure 5 indicate that both incremental samplers are not mixing well between four and five
components. The incremental Metropolis-Hastings is stuck in a three component configuration, in
which the proportion of observations in each component is 0.4, 0.4, and 0.2. The auxiliary Gibbs
sampling is slightly better in that it reaches the dominating four component configuration after 300
iterations, but it takes roughly 2500 iterations to move to five components. The mixing between
the four and five component configurations is much slower compared to some of the split-merge
methods. This simulation was repeated with different pseudo-random seed numbers, and similar
results were obtained.

Split-Merge (5,1,0,5) and Split-Merge (5,1,1,5), on the other hand, mix relatively well between
the four and five components, which is due to the intermediate Gibbs sampling proposals. Non-
incremental moves allow the transfer of a group of observations to a new component in a single
iteration, which is necessary to overcome low probability (single observation per cluster) interme-
diate states. Split-Merge (0,1,1,0) also reaches the equilibrium distribution, but has long mixing
times between the two high-probability configurations due to less appropriate split-merge proposals.
Again, Split-Merge (0,1,0,0) performs the worst compared to the other methods and is nowhere
near the equilibrium distribution by the end of the specified time interval.

We further examine performance in terms of autocorrelations and the Metropolis-Hastings accep-
tance probability for the split-merge procedures in Table 5. The autocorrelation time is computed
for two quantities: the first trace on the plots (corresponding to the fraction of observations asso-
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Table 5: Autocorrelation times and M-H acceptance rates for some algorithms in Example 2.

Autocorrelation  Autocorrelation  Acceptance rate
Algorithm time for Trace 1 time for I g2 in percent
Gibb Sampling v=3 8834 3405 NA
Split-Merge (0,1,1,0) 2405 206 0.03
Split-Merge (5,1,0,5) 413 348 0.38
Split-Merge (5,1,1,5) 324 204 0.38

ciated with the most common mixture component) and an indicator variable, I 62, which codes
if observations 41 and 62 are assigned to the same mixture component. These observations are
marked by an x on the scatterplot of the data in Figure 2. One item was clearly generated from the
distribution for mixture component 3 in Table 2, and the other observations was actually generated
from component 2. However, due to random variation, it appears that the second observation could
have easily been generated from component 3. We expect that these two items should have non-
zero posterior probability of being assigned to the same mixture component. A low autocorrelation
time for this indicator variable implies that the sampler is successful in moving a single observation
between components. As before, the autocorrelation time for trace 1 (at 0.2) indicates that the
sampler is mixing well between four and five components, so the major allocation moves in a single
iteration are successful. The autocorrelation values in Table 5 are based on 20,000 iterations.

Split-Merge (5,1,1,5) has the smallest autocorrelation times of the three methods, while Gibbs
sampling has the largest times. It is interesting to compare the autocorrelations of Split-Merge
(0,1,1,0) and Split-Merge (5,1,0,5) though. The autocorrelation time of trace 1 for Split-Merge
(0,1,1,0) is clearly larger than for Split-Merge (5,1,0,5) (compare 2405 vs. 413), whereas the be-
haviour of autocorrelation time of I4; g2 is the opposite for these two procedures. This supports the
proposition that an incremental final scan is necessary for small-scale changes, which Split-Merge
(5,1,0,5) is unable to do well. However, for major changes to the configuration, proposals based on
several intermediate Gibbs sampling scans are required.

5.3.3 Example 3

The most difficult example considered is Example 3 involving three dimensions and mixture com-
ponents that are close together. A perspective scatterplot of the data is given in Figure 3, and it
shows that the components are more difficult to distinguish. Again, given the priors selected, there
is significant posterior probability for both the four and five mixture component configurations.
Only Split-Merge (5,1,0,5) and Split-Merge (5,1,1,5) mix between these configurations, as observed
in Figure 6. The incremental samplers and the split-merge procedures with zero intermediate re-
stricted Gibbs sampling scans do not find the five components over the 5000 iterations, but are
stuck in either two or four components. If each item is initially assigned to a different mixture
component (plots not included), these samplers do split the data into five components, but take
a long time to move to four components, indicating poor mixing. Here, the problem is that the
deletion of a component is rare under both incremental updates and poor split-merge proposals.

Comparing further the two procedures that appear to converge, the autocorrelation time for
trace 1 is much lower for Split-Merge (5,1,1,5) than Split-Merge (5,1,0,5) (126 vs. 718). For the
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autocorrelation time of an indicator variable, Is 57, coding if observations 26 and 57 are in the same
component, the time is again much lower for Split-Merge (5,1,1,5) (38 vs. 417). Even though both
algorithms do mix between the two configurations and Split-Merge (5,1,0,5) is faster per iteration,
the improvement in autocorrelation time for Split-Merge (5,1,1,5) cannot be ignored. The extra
full scan of incremental sampling for minor adjustments is worth the computational effort.

5.3.4 Summary of findings

It appears that split-merge moves are necessary in nonconjugate problems of this sort. Incremental
samplers perform adequately when the components are distinct clusters in low dimensions, but as
the components become more difficult to distinguish, these samplers take much longer to reach
equilibrium. It is important to note that the incremental samplers that we considered begin to
break down even in low dimensions. The split-merge procedures are able to handle three-way splits
without any problems, although this is done by two two-way splits.

The split-merge procedure with several intermediate Gibbs sampling scans followed by an incre-
mental full scan is the best version of the split-merge procedure. The split-merge method relies
on proposing appropriate new clusters, which is accomplished by conducting several intermediate
scans to reach the split and merge launch states.

The presence of an additional tuning parameter for the number of intermediate Gibbs sampling
scans for a merge proposal does not cause any additional difficulty, in comparison to the conjugate
split-merge procedure, for which it is not needed.

The split-merge methods generally have a longer computation time per iteration. However, in
the case of the Gibbs sampling procedure with v = 3 auxiliary parameters, the best version of the
split-merge procedure, Split-Merge (5,1,1,5), is slightly faster in our implementation (see Table 4).
Therefore, there does not appear to be any advantage in using only incremental procedures for
these types of problems.

In higher dimensions, split-merge procedures continue to work well as the components are moved
closer together. Convergence to the equilibrium distribution is relatively quick. We believe that the
split-merge procedure may break down for very high dimensional problems, because appropriate
splits will be rejected, since it will become unlikely that a merge operation from the split state would
produce the same merged parameter values as the current state. However, we have not encountered
an example of this. Perhaps this issue arises only in situations where the dimensionality is in the
hundreds.

5.4 Tuning parameters

This section investigates the effect of varying the tuning parameters of the nonconjugate split-merge
procedure. As discussed at the start of Section 5.3, the split-merge method has four adjustable
tuning parameters: the number of intermediate Gibbs sampling scans to reach the split launch state,
the number of split-merge updates conducted in a single iteration, and the number of incremental
Gibbs sampling scans conducted after the split-merge updates, and the number of intermediate
Gibbs sampling scans to reach the merge launch state. The data from Example 3 is used to examine
each tuning parameter. Computation time per iteration and autocorrelation times for trace 1 and

25



Split-Merge(1,1,1,5) Split-Merge(3,1,1,5)

1 1 T
0.8 0.8 et she
0.6 0.6 fmindiind
0.4 0.4
0.2 0.2
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Split-Merge (5,1,1,5) Split-Merge (10,1,1,5)
1
0.8
0.6
0.4
0.2
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Split-Merge (20,1,1,5) Split-Merge (100,1,1,5)

B 0Ot 0
LU PADYR DR PR O

j 1] III||||HIIIHIHHIHI\III | III!IHW{IHI\{I IIHIHIII

0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000

Figure 7: Trace plots showing the effect of the number of intermediate Gibbs sampling scans (split
proposal) tuning parameter.
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Figure 8: Trace plots showing the effect of the number of intermediate Gibbs sampling scans (merge
proposal) tuning parameter.
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Figure 10: Trace plots showing the effect of the number of final complete Gibbs sampling scans.

29



indicator Iy 57 are performance measures considered for various settings of this algorithm shown
in Table 6. Trace plots are given in Figures 7-10. The plots show the first 5000 iterations, but the
simulations were run for 10,000 iterations in order to obtain better autocorrelation time estimates.

5.4.1 Number of intermediate Gibbs sampling scans for the split proposal

Increasing the number of intermediate Gibbs sampling scans will produce better split proposals
since the restricted equilibrium distribution will be better approximated. It is not necessary to
reach equilibrium to produce valid proposals. Therefore, the question is how many scans are
necessary to achieve a reasonable allocation of observations between two components while keeping
computation costs at a minimum.

From the trace plots in Figure 7, it is clear that as the number of scans is increased, the mixing
dramatically improves. The sampler’s performance for 100 intermediate scans is undeniably better
than one intermediate scan. In terms of autocorrelations and Metropolis-Hastings acceptance rate,
there are obvious improvements when scans are increased (Tables 6 and 7), but at the cost of
computation time per iteration. Notice that 100 scans requires over five times the amount of time
compared to ten scans.

This clear improvement by increasing the number of scans differs from the conjugate method,
since the improvements quickly taper off as the scans increase in the conjugate case. This may
be explained by the addition of the model parameters to the state of the Markov chain. Prior
to restricted Gibbs sampling, values are drawn from the prior distribution of the parameters of
the two split components. Depending on the choice of priors and size of the problem, this could
take the restricted scans longer to converge or even reach reasonable splits. Improvements in
performance could be made by selecting these values from the sample mean and variance, but this,
of course, would make the procedure model-dependent, which we wish to avoid. However, in real
data problems, for this type of Normal mixture model, choosing reasonable initial states would be
useful.

It is difficult to say what the optimum number of intermediate scans for the split proposal should
be, since this depends on the complexity of the problem and computational resources at one’s
disposal. For the comparisons considered in Section 5.3.2, it appears that for this data, five to
ten scans did well in splitting amongst the five components, and additional scans would have been
unnecessary.

5.4.2 Number of intermediate Gibbs sampling scans for the merge proposal

The intermediate Gibbs sampling scans to reach the launch state for the merge proposal differ
from the scans for the split proposal because Gibbs sampling is only performed on the parameters
for the single merged component. Indicators are not included, since the only way to merge two
components is to group all observations together. This reduces the amount of work performed
in one scan of restricted Gibbs sampling. These scans are also expected to converge faster than
intermediate Gibbs sampling to reach the split launch state.

From the trace plots in Figure 8, it appears that the benefit of additional scans levels off after three
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Table 6: Effects of the four tuning parameters.

Time per iteration  Autocorrelation Autocorrelation
Algorithm i seconds time for Trace 1  time for Indicator I 57

Split-Merge (1,1,1,5) 0.40 1725 593
Split-Merge (3,1,1,5) 0.47 359 182
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (10,1,1,5) 0.71 66 23
Split-Merge (20,1,1,5) 1.04 45 16
Split-Merge (100,1,1,5) 3.67 28 14
Split-Merge (5,1,1,1) 0.52 354 108
Split-Merge (5,1,1,3) 0.52 87 36
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,1,1,10) 0.54 80 29
Split-Merge (5,1,1,20) 0.56 85 31
Split-Merge (5,1,1,100) 0.75 91 40
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,2,1,5) 0.78 60 22
Split-Merge (5,3,1,5) 1.00 49 16
Split-Merge (5,4,1,5) 1.25 38 9

Split-Merge (5,5,1,5) 1.50 52 12
Split-Merge (5,10,1,5) 2.70 31 6

Split-Merge (5,1,0,5) 0.25 718 417
Split-Merge (5,1,1,5) 0.54 126 38
Split-Merge (5,1,2,5) 0.81 70 28
Split-Merge (5,1,3,5) 1.09 75 31
Split-Merge (5,1,4,5) 1.49 74 29
Split-Merge (5,1,5,5) 1.67 85 31
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Table 7: Acceptance rate for different numbers of intermediate Gibbs sampling scans for the split
proposal.

Algorithm Acceptance rate in percent
Split-Merge (1,1,1,5) 0.1
Split-Merge (3,1,1,5) 0.4
Split-Merge (5,1,1,5) 1.2
Split-Merge (10,1,1,5) 2.3
Split-Merge (20,1,1,5) 3.4
Split-Merge (100,1,1,5) 4.4

Table 8: Acceptance rate for different numbers of intermediate Gibbs sampling scans for the merge
proposal.

Algorithm Acceptance rate in percent
Split-Merge (5,1,1,1) 1.0
Split-Merge (5,1,1,3) 1.2
Split-Merge (5,1,1,5) 1.2
Split-Merge (5,1,1,10) 1.2
Split-Merge (5,1,1,20) 1.2
Split-Merge (5,1,1,100) 1.3

to five scans. Improvements in autocorrelation times (Table 6) and acceptance rate (Table 8) are
not statistically significant. The standard error for trace 1 autocorrelation times based on dividing
the ten thousand iterations into five equal samples is approximately twelve. The computation time
per iteration is not much of a factor for these scans, since one to twenty scans take approximately
the same time. These scans are much faster than the corresponding intermediate scans for the split
proposal.

5.4.3 Number of split-merge updates per iteration

The trace plots for varying the number of split-merge updates per iteration are shown in Figure 9.
Increasing the number of such updates has the effect of putting more emphasis on split-merge
updates in comparison with incremental Gibbs sampling scans. As for the conjugate version, we
see that the improvement that the improvement in autocorrelation time gradually diminishes for
more than a few split-merge updates. In this example, no more than three per iteration seems
desirable. A final incremental Gibbs sampling scan may not be necessary after every split-merge
update. This is desirable, since such Gibbs sampling scans require more computational effort than
a single split-merge update.

5.4.4 Number of final complete Gibbs sampling scans

As shown in Section 5.3, the split-merge Metropolis-Hastings updates need to be cycled with an
incremental scan of the data. This is evident in the trace plots shown in Figure 10 and autocor-
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relations dropping from 718 to 126 after one final scan was added. The final incremental scans
make the minor configuration adjustments for single observations that the split-merge procedure
alone does not handle well (compare 0 vs. 1 scan in autocorrelation time for the indicator variable).
Although improvements in autocorrelation time continue as the number of scans increase, it does
not seem critical to perform more than one scan for most problems.

These full incremental scans are computationally expensive, so we prefer to use an incremental
sampler that is computationally cheap. We recommend either the incremental Metropolis-Hastings
or Gibbs sampling with v = 1 auxiliary parameters. Additional auxiliary parameters in our imple-
mentation are quite expensive, so no more than one will be used.

5.4.5 Suggestions for selecting tuning parameters values

The number of intermediate Gibbs sampling scans to reach the split launch state controls the
performance of the procedure, since this decides the quality of the split proposal. We have shown
empirically that a number of scans is necessary, and many should be performed if possible. It may
be helpful to consider a more judicious approach to selecting an initial state than simply drawing
from the prior to avoid performing a large number of these intermediate scans.

On the other hand, the number of intermediate scans to reach the merge launch state is less of
an issue. The scans are computationally cheap, so several could be performed if desired. However,
we observed that benefits taper off after only a few scans.

The number of Metropolis-Hastings updates per iteration and final full incremental scans of the
data in the nonconjugate case behave similarly to the conjugate method. We prefer to keep these
tuning parameters as low as possible and usually set them both to one to reduce computation time.

6 Illustration

The Dirichlet process mixture model is a useful tool in model-based, unsupervised cluster analysis.
We illustrate the practical utility of our split-merge algorithm with a six-dimensional data set from
Lubischew (1962) that has been previously used by West et al (1994). The data consists of six
measurements of physical characteristics of three species of male beetles for a total of n = 74
beetles. The three species are chactocnema concina, chactocnema heikertinger, and chactocnema
heptapotamica, in which neope = 21, npeir = 31, and npepr = 22.

The measurements for the i beetle are denoted as: vi; = (yi1,...,vis) for i = (1,...,74). The
six measurements are:

1.1 = width of the first joint p1 =177.3 o1 = 865.1
1.2 = width of the second joint uo =124.0 09 =T71.9
y.3 = maximal width of the aedeagus u3 =504 o03="7.6
y.4 = front angle of the aedeagus pa =134.8 o4 =107.1
1.5 = maximal width of the head ps =13.0 o5 =4.6
1.6 = aedeagus side-width ue =954 o = 204.6

The objective of our analysis is to recover the three latent classes corresponding to the three dif-
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Figure 11: Trace plots comparing Auxiliary Gibbs Sampling to Split-Merge (5,1,1,5) for the beetle
data using vague priors (top) and realistic priors (bottom).

ferent species of beetles without using the species information in the analysis. We apply the
Normal-Gamma Dirichlet process mixture model to this data, identical to equation 17. The
Dirichlet process parameter, «, is set to one. The values for the priors of the parameters have
been set for each dimension as follows: w; = (w,...,ws) = (100,100, 50, 100, 25, 100), B;l =
(Bl_l, ... ,B6_1) = (500, 100, 25,100, 25, 150) where B is a precision parameter, 7 = 1 across all six
dimensions, and R = 5 across all six dimensions.

We applied the nonconjugate split-merge algorithm (5,1,1,5) and Neal’s Gibbs sampling technique
(2000) with v = 3 auxiliary components to this data. Computation time per iteration is similar for
both algorithms. For each algorithm, results are provided for the case in which all observations are
initially assigned to the same mixture component, and each algorithm is run for 5000 iterations.

From the two top trace plots given in Figure 11, it is evident that Gibbs sampling is unable to
separate the data and leaves all observations in the same mixture component. It is clear that Gibbs
sampling will take longer to reach equilibrium. On the other hand, split-merge splits the data
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into three major clusters (corresponding to the correction proportion of observations to species, i.e.
42%, 30% and 28%.) within the first twenty iterations.

To generate the two bottom trace plots in Figure 11, we set the prior values of w; and B~ to
be more reflective of the data. The values used are: w; = (wy,...,ws) = (100, 100, 50, 100, 10, 100)
and B;' = (By'',...,B;") = (800,100,10,100, 10,200). While Gibbs sampling does recover the
three different species groups almost immediately, it is important to note that it becomes stuck in
a low probability two-component configuration and mixes poorly. However, split-merge continues
to mix well in a three-component configuration.

As a final check, the simulations were repeated by starting the simulation from a typical state
of the competing method’s apparent equilibrium distribution. Gibbs sampling stayed in the three-
component state that it was started from, confirming that the three-component state has high
posterior probability, and that the difference seen is not the result of some bug in the split-merge
procedure. When the simulations were repeated using an initial state in which each observation
is in a different component, the Gibbs sampler is able to reach equilibrium sooner and performs
better.

The results from the beetle data illustration show that Gibbs sampling experiences a long burn-
in time compared to the nonconjugate split-merge technique and is not always suitable for high-
dimensional analysis. While it is true that the values of the priors for the parameters may not be
ideal and that more realistic values may yield better sampling, often in real data analysis, there
is no a priori information to suggest reasonable priors. A Markov chain Monte Carlo technique
that can overcome poor choices in priors is preferred, as illustrated here, since this leads to shorter
burn-in times and full exploration of the posterior distribution.

7 Discussion

The nonincremental split-merge procedure for nonconjugate models introduced in this article avoids
the problem of being trapped in local modes, allowing the posterior distribution to be fully explored.
In general, the nonconjugate split-merge procedure can become computationally expensive, but
when Gibbs sampling or some other incremental procedure fails to reach equilibrium in a sensible
amount of time, this procedure becomes necessary.

Another related issue is burn-in time. Even if an incremental procedure reaches stationarity
within a desired time limit, one must often discard a large number of early iterations, which
can lead to poor estimates. In split-merge type situations, the computational burden of using a
nonincremental procedure is offset by its quick burn-in and dramatic improvement in performance.

A possible extension of the split-merge technique is to employ Dahl’s (2003) sequentially allocated
split-merge sampler as a method to initialize the intermediate Gibbs sampling step. This method
could potentially provide a better starting state than our present method of performing a random
split of items and selecting values for the parameters from the prior.
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