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A common method of inference for belief networks is Gibbs sampling, in which a
Markov chain converging to the desired distribution is simulated. In practice, however,
the distribution obtained with Gibbs sampling differs from the desired distribution by
an unknown error, since the simulation time is finite. Coupling from the past selects
states from exactly the desired distribution by starting chains in every state at a time
far enough back in the past that they reach the same state at time ¢ = 0. To track
every chain is an intractable procedure for large state spaces. The method proposed in
this thesis uses a summary chain to approximate the set of chains. Transitions of the
summary chain are efficient for noisy-or belief networks, provided that sibling variables
of the network are not directly connected, but often require more simulation time steps
than would be needed if chains were tracked exactly. Testing shows that the method is a
potential alternative to ordinary Gibbs sampling, especially for networks that have poor

Gibbs sampling convergence, and when the user has a low error tolerance.
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Chapter 1

Introduction

Belief networks are used in expert systems as a means of dealing with uncertainty. Tradi-
tional rule based systems cannot successfully do this. Attempts were made to incorporate
classical probability theory into expert systems (Gorry and Barnett 1968; Gorry 1973)
without success because of intractable calculations. Pearl (1986) arrived at a more feasi-
ble solution by mapping the variables of the problem into a belief network in which edges
are used to specify probability relationships. This greatly reduced the calculation load

by allowing much of it to be localized within the network.

Still, calculation of exact probabilities remains limited to problems with a small num-
ber of variables, or networks that can be represented as tree structures. Junction trees
are used as a way of converting general belief networks into tree structures that can be
evaluated by propagating update messages through the tree (Jensen 1996). If each node
of the tree contains only a small number of variables, evaluations of the tree remain
feasible even as the tree grows. However, in general, belief network inference by junction
trees is an intractable procedure, since calculations take time that grows exponentially

with the number of variables in a node.

A general solution for inference in large networks is approximation by Gibbs sampling.

It is subject to difficulties due both to error and to the uncertainty about the magnitude of
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this error. The error can be measured by the total variation distance between the desired
distribution and the distribution of the simulation samples. Gibbs sampling, started
from an arbitrary initial state, converges asymptotically from an initial distribution to
the desired distribution. The error is greatest in the first samples collected. These are
thrown away in a burn-in phase until it is felt that the error has dropped to within the
desired error tolerance. The burn-in time must usually be estimated because the rate of
convergence of the Markov chain is not known, theoretically. It is possible to overestimate
and waste computing time by throwing away good samples, or underestimate and include
samples that are too far from the desired distribution. The conservative user might
greatly overestimate the required burn-in time, just to minimize the possibility of getting

the wrong answer.

To overcome the problem of initialization bias, Propp and Wilson (1997) introduced
exact sampling, also known as perfect simulation, using the method of coupling from the
past to select initial states from the invariant distribution. Instead of starting a single
chain at some arbitrary initial state at time ¢ = 0, chains for every possible state are
started at some time ¢ < 0, where ¢ is far enough back to ensure that all the chains
coalesce to a single state by time ¢t = 0. The state at ¢ = 0 then comes from the correct
distribution, and useful sampling can begin at that time with zero bias, or systematic

€ITor.

Propp and Wilson demonstrated coupling from the past on monotonic problems.
Monotonic problems have the property that the state space can be partially ordered
with unique maximal and minimal states in a way that is preserved through transitions.
Two chains for the maximal and minimal states are all that need to be simulated, since
when they coalesce, all of the other chains have coalesced as well. They show that the
computational effort for coupling from the past on monotonic problems is comparable
or even less than a practical burn-in time, since the rate of coalescence of the chains

determines a lower bound on the time for burn-in to achieve a particular error tolerance.
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In general, belief networks do not have the monotonicity property, so some other
way of keeping track of all possible chains is needed. It is possible to represent a set of
chains by a single chain on a state space of sets of states. The set of chains may contain
both those that are of interest and spurious chains added at intermediate stages of the
simulation. When the single chain on the state set space is summarizing only one chain,
then coalescence of the true chains, as well as the spurious chains has occurred. The
chain will then exactly represent the one chain that it summarizes, since it is the result

of coalescence of the true chains.

This thesis addresses exact sampling for noisy-or belief networks, with a provision
that sibling variables are not directly connected. For these networks, the summary chain
transitions can be performed efficiently. The amount of work is related to the average
coalescence time of the chains, plus a factor for the overhead of coupling the spurious

chains.

When is it advantageous to incur the computational expense of exact sampling to
gain the benefit of a guaranteed zero initialization bias? Problems of particular interest
are those that require a lot of effort in Gibbs sampling burn-in. These problems have
poor convergence properties; they take a lot of time to reach a given error tolerance.
Furthermore, the convergence characteristics of Markov chain problems are in general
not known. Therefore, a cautious user tends to further exacerbate the cost factor by

greatly overestimating the needed burn-in time.

Considering this type of scenario, a hypothetical burn-in time may be estimated, and
compared to the computational cost of experimental exact sampling runs. The burn-in
time estimate can actually come from the average experimental coalescence times, since
it can be used to arrive at a burn-in time guaranteed to satisfy the error tolerance. Then

the burn-in time estimate is inflated to reflect the uncertainty of the user about the error.

The cost of exact sampling is sometimes more than the time needed for burn-in to

achieve a given error tolerance. However, a user can still be better off using exact sampling
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since it removes that uncertainty which causes the burn-in times to be exaggerated.
For problems that have better convergence properties, the computational effort of exact
sampling is relatively larger, but in absolute terms is less than it is for the difficult cases.
Exact sampling always has the benefit of eliminating uncertainty about the amount of

error, since the bias, or systematic error, is always zero.
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Belief Networks

2.1 Example - medical diagnosis

An expert system might be designed to assist parents in diagnosing diseases based on
observable symptoms. The goal of the user is to decide on some action, either to go to
the hospital, the family doctor, or just stay indoors. FEvidence consisting of the presence
or absence of each symptom is input into the system. The output of the system is
the probability of each disease being present. The action taken would depend on an
expected cost/benefit analysis. If the probability of pneumonia is only 1% and the
hospital is 50 miles away, one would weigh the benefits (1% times the benefit of treating
actual pneumonia) against the cost of driving. The system might give a warning about
the validity of the evidence if the combination of given variables is highly unlikely, or
decide if more definitive answers can be obtained by adding a new evidence variable by

performing a costly diagnostic test.

The variables in the expert system illustrated in figure 2.1 represent diseases and
symptoms. These are binary valued, either present or absent, and are not exclusive - e.g.
a patient may suffer from more than one disease at once. The arrows represent causal

relationships between the diseases and the symptoms. The strength of these relationships
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Diseases

Allergy Cold Influenza  Pneumonia
A B C D

® ; @
Bags under eyes Snif fles Sore throat Fever

Symptoms

Figure 2.1: Medical Diagnosis System

may be obtained either from statistical frequencies or from the opinions of human experts.
There are no arrows between symptoms, since they are independent of each other, given
the diseases. Also, there are no arrows between diseases, since they are independent of
each other until the symptoms are known.

For each configuration of disease variables, probabilities for symptoms must be spec-
ified. If there are n edges converging to a symptom, 2" probabilities for that symptom
being present are required. The fact that there are no edges between some of the diseases
and symptoms means that the existence of that disease has no bearing on the likelihood of
the symptom being present. In the example, P(H|A, B,C, D) = P(H|C, D), so variables
A and B can be disregarded.

The causation of “bags under eyes” is simple; there are only two probabilities, P(E|A),
the probability of bags under eyes given that allergy is present, and P(F|—A), the prob-
ability of bags under eyes given that allergy is not present. These also determine the
probability of not having bags under eyes, since the probabilities must sum to 1. Other
symptoms can be caused by more than one disease, so a more complex model is needed.

More examples of belief networks can be found in Jensen (1996), where the following

definitions are given.
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2.2 Definition

A Belief network, also called a causal network or a Bayesian network, consists of:

e a set of variables represented by the nodes in a graph or network and a set of
directed edges, forming a directed acyclic graph (DAG). A variable with an edge

pointing to another variable is a parent of that variable.
e a set of mutually exclusive states for each variable.

e for each variable A with parents By,---, B,, a conditional probability table
P(A|By, -+, By).

If Ay,---, A, is the set of variables of a belief network, then the joint probability

distribution P(Ay,---, A.,) is the product of all conditional probabilities
P(Ay,---, Ay) =[] P(Ai] parents of A;).

Any joint distribution may be represented as a Bayesian network, by writing the joint

distribution as a product of conditional distributions:
P(Al :ala"'7Am :am):

P(Al = Cll)P(AQ = Cl2|A1 = Cll) e P(Am = U

Ay =ay, - Ay = a(m—1)),

and then using independence assumptions, e.g. P(As|A;1, Az) = P(A3|A1), to minimize
the parent sets. There can be many different ways to represent a joint distribution as a
belief network, but we usually prefer to use one that corresponds to natural relationships

of cause and eflect.

2.3 Noisy-Or scheme

For a variable related to many parents, the number of combinations of parent states to

maintain in the table of conditional probabilities is unwieldy. Also it is not natural for
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Figure 2.2: Noisy-OR scheme

an expert to attach probabilities conditioned on multiple parents. A solution to this
problem is the Noisy-OR scheme, which provides a simplified way of specifying how

parent variables influence the outcome of a child variable.

The noisy-or relationship defines the dependencies between a child variable and each of
its parents. It specifies the degree of influence each parent has on the child, independently
of the other parents, and then determines by calculation the conditional probability of
the child variable given all of the parents. Thus the amount of information required to

generate conditional probability tables is linear in the number of parents.

All variables are binary valued 0/1. Each parent variable influences the child variable
to be turned on (value = 1) when it is turned on. The degree of influence is determined
by a weight, ¢;, on the link between the parent X; and child W (see figure 2.2). This
weight is the probability of turning on the child given that the parent X; is turned on.
If the weight is one for all links, the scheme is just an OR-gate. The probability (1 — ¢;)
of failing to turn on the child determines the amount of noise in the noisy-or network.
Variable W also possesses a prior probability Pw = P(W = 1|X; = 0,V1).

The noisy-or scheme assumes that the strength of the link between parent and child
is independent of the other parents. This is perhaps realistic for a medical diagnostic

system. For example, sniffles may be caused by the presence of either a cold or an



CHAPTER 2. BELIEF NETWORKS 9

allergy, but each disease does not affect the probabilities of the other disease failing to
cause sniffles. The probability of all parents failing to set the child to 1 is the product of
the probabilities of all such factors:

P(W =0/X,, X5, X3) = (1— Pw) x [[ (1-c)

1:X;=1

2.4 Calculating Probabilities

Given that certain symptoms are present, what diseases are most likely? In the example,
one might ask for the probability of having influenza, given that the only symptoms
present are a sore throat and a fever, and it is known that pneumonia is absent. The
desired information is not directly available from the belief network, which instead tells
us directly about symptom probabilities if the diseases are known.

The conditional probability required is a quotient of marginal probabilities, since by

definition, P(A|B) = P]g?]’;?). For example,

P(C=1D=0,E=0,F=0,G=1,H=1) =

P(C=1,D=0,E=0,F=0,G=1H=1)
P(D=0,E=0,F=0G=1,H=1)

The most direct way of evaluating these marginal distributions is to sum the joint dis-
tribution of all states, for every combination of the other variables. In this case the sum
is over the combinations of only 2 and 3 other variables. Since the number of terms in a
sum over k variables is 2F (for binary variables), this calculation is not feasible for larger
problems.

A more efficient method involves building a junction tree or tree of cliques (Jensen
1996). This provides a framework for updating the marginal distribution of variables
when evidence instantiates some of the other variables. If a network is not in a tree
structure, the variables are judiciously grouped together in such a way that the relation-

ship between groups has a tree structure. The groups, called cliques, overlap by sharing
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the parents of variables in child groups. For example, if a network is already in tree form,
its groups would consist of one group for each variable and would contain that variable
plus the parents of the variable. Conditional probabilities for bidirectional link matrices
between the cliques are calculated from the belief network conditional probabilities.

Neapolitan (1990) discusses the complexity of junction trees. A simple estimate of the
complexity of building the tree of cliques is O(nr™), where n is the number of variables,
r is the maximum number of alternatives for a variable, and m is the maximum number
of variables in a clique. As the network becomes more densely connected, m increases,
and the building time increases. The estimate is not valid when m = n, however, since
the junction tree becomes one clique consisting of the entire belief network. In this case
there is no work to do.

When evidence is received, the marginal distributions of each of the variables are
updated by passing probability “messages” through the link matrices. The computational
effort for updates is O(pr™), where p is the number of cliques. Queries are slowed by the
grouping into cliques, since the number of states of each clique increases with the number
of variables it contains. In the worst case, the entire network becomes one big clique and
the method reverts to the first method of summing over all combinations of variables.

Since junction tree building and updating is an intractable problem for large densely
connected networks, in general, exactly calculated solutions must be abandoned in favour

of approximation techniques such as Markov Chain Monte Carlo (MCMC) sampling.
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Gibbs Sampling

3.1 Markov chains

A Markov chain is specified by:

e A sequence of discrete random variables X(© XM ...

e A marginal distribution for the initial state X(©),
pO(x)a
e Transition probabilities for state X 1 to follow state X®)

Pz | 20,

This determines the joint distribution of X© X ... by making the Markov as-
sumption that X® is conditionally independent of X% for k > 1, given X1,

Stationary Markov chains have transition probabilities that do not depend on time,
which can be represented with a transition matrix M. The value in the :'th row and j'th
column of the transition matrix, M; ;, stands for the probability of a transition to state
7 given that the system is in state . The rows of the transition matrix must therefore
sum to 1. The state probabilities at time ¢ (i.e. P(X® = 5)) can be represented as a
row vector p;, and p; = poM*. A distribution 7 is invariant (or stationary) if 7 = 7 M. If

p; = m for some ¢, then the Markov chain has reached the invariant distribution by time ¢

11
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and will continue in that distribution forever. An ergodic Markov chain has an invariant
distribution that is reached asymptotically no matter what the initial distribution pq is,
le.

lim p; = .
t—00 pt

A stationary Markov chain can be generated by a randomized subroutine Markov()
that takes as input some state ¢. It outputs state j = Markova (1), with probability
Mi,j'

3.2 Gibbs Sampling Markov Chains

Suppose that the state X consists of several variables X7, Xy,---, X,,. If these variables
are binary, there will then be 2" states. A transition matrix that leaves a desired dis-
tribution 7 invariant may be built from a set of base transition matrices representing
transitions that can change only a single variable. For each variable X}, a base transition
matrix By is defined.

The transition probabilities specified by By are zero for those transitions that change
any other variable besides X}. In the Gibbs sampling scheme, the transition probabilities
to states changing X}, are the conditional probabilities under 7 of the variable X} taking
on its various values, given the current values of the other variables. The value of X} may
remain the same or it may change. Its new value is independent of its previous value.

Each By, leaves the distribution 7 invariant. This is intuitively so, since first of all the
marginal distribution of any other variable besides X} remains what it was before, and
so will be that given by 7 if it was previously. Furthermore, the conditional distribution
of X} is explicitly forced to be that given by 7. Therefore, the joint distribution which
is the product of the marginal distribution and the conditional distribution will be 7 if
the distribution for the previous state was 7. This is shown by Neal (1993, pp. 36-52).

The transition matrix M can be defined as M = BB, --- B, for a system of n
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variables. The Markov chain with transition matrix M is simulated by applying each
By, in sequence. To generate the Markov chain, a randomized subroutine Markovg, ()
takes as input some state i. It outputs state j = Markovp, (i), with probability (By); ..
Markovp (i) can then be defined as Markovg,(Markovg,_,(--- (Markovg, (i) ---).

The Markov chain is said to be ergodic if it converges to 7 regardless of the initial
distribution. A base transition matrix By does not on its own define an ergodic Markov
chain, since the probability of visiting most of the states in the state space is zero, given a
particular initial state. However, the transition matrix M = By By --- B,, will be ergodic
if none of the conditional probabilities in the B,’s are zero. In fact, it is often the case
that some of the base transition matrices do have zero conditional probabilities, but the

Markov chain is still ergodic. Each case must be analyzed by itself.

3.3 Gibbs Sampling for Belief Networks

Pearl (1987) shows how to derive Gibbs sampling transition probabilities for a belief
net. The necessary conditional probabilities of the base transition matrices are available
directly from the specification of the belief network. When all the other variables are
fixed, the conditional probability of a particular variable is dependent only upon its
parents, its children, and its children’s parents (figure 3.1). The conditional distribution

of the variable can be expressed as

P(‘/lv"'v‘/kv”'?‘/n)
P(‘/h‘/?v'“a‘/k—lv‘/k-}—h.”7Vn)‘

P(‘/k“/la‘/%'”7‘/16—17‘/194‘17”.7‘/”):

Since the denominator is constant with respect to Vj, this is proportional to

PV, - Vi, -+, V). From the definition of belief networks,
P(‘/k|‘/17‘/27"'7‘/k—17‘/k+17"'7Vn)

o« P(Vi|Vi, Vo, -+, Viy) X HP(V]'|‘/1,‘/2,“',W,“',‘/J‘—1)-

i>k
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parent variables

parents of variable to simulate

child variables

child variables

Figure 3.1: Conditional dependencies for Gibbs sampling

Here Vi, V5, -+, Vi1 are possible parents of Vi, and V; for 7 > k are possible children of
Vi, since V' is ordered with parents before children. Fach factor in the expression can be
evaluated using what Pearl refers to as the link matrix of the variable, which specifies
the conditional distribution of a variable given its parents. When V; is not actually a

child of V}, the factor for it can be omitted.

P(‘/fc:«T|‘/17‘/27"'7‘/16—17‘/k+17”.7v”):
P(Vi = 2|V4, Vi, -, Vi) X HkP(Vj|V17V27...7Vk:;z;,...vvj_l)
7>

Xu: (P(‘/k — u|‘/17‘/27"'7‘/k—1) le;[kp(‘/fﬂ/l"/?”‘/k :u7...7‘/j_1))
In case evidence has been received that Vi, = x, then V} is fixed at this value during
Gibbs sampling rather than being updated.

For noisy-or belief networks, if a child variable V; = 0, then the other parents of the

child can be ignored in the calculation. Child variables instantiated to 0 cannot transmit

information between parents. Therefore, noisy-or weights on the edges between V; and
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the other parents do not need to be included to calculate the probability of another

parent besides Vj, failing to instantiate V;. Those terms cancel out in the quotient.

3.4 Initialization Bias

Gibbs sampling is subject to an initialization bias due to the arbitrary choice of the initial
state. For example, an implementation of Gibbs sampling might set the initial state to
have all variables equal to 0. Thus the distribution of the initial state is 100% in the all
zeroes state and 0% in all other states. An initial state chosen randomly with a uniform
distribution over all possible states will also not in general be the invariant distribution
that we wish to sample from.

The bias or error in the distribution of the Markov chain at a given time can be
measured by the total variation distance between the distribution of the state at that
time and the invariant distribution. For a finite state space y, where p; is the distribution
of the Markov chain at time ¢, this is

1
g — =[] = 5% |pe(x) — m(z)].

The error decays exponentially with time (figure 3.2), asymptotically according to
error = ae”°,

where a and ¢ are constants that depend on the Markov chain specification. (Rosenthal
(1995) discusses in depth the convergence rates of Markov chains on finite state spaces.)

If the user has an error tolerance €, the burn-in time for Gibbs sampling should be
burn in time = —cln(¢/a).

However, the convergence behaviour of the Markov chain is usually not known (i.e. con-

stants a and ¢ are not known). The conservative user will try to choose as large a burn-in
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error

error = ae

tolerance

= t

Figure 3.2: Error vs. Burn-in time

time as is practical to lessen the chances of it being too small. Computational consid-
erations become more important for Markov chains that converge slowly, as it may be
felt there is not enough time to acceptably reduce the risk. The next section deals with
the coupling from the past technique, which eliminates initialization bias. Whether or
not this is a practical alternative to standard Gibbs sampling with a burn-in period is
addressed by comparing computational costs and considering the superior results due to

elimination of error.



Chapter 4

Exact Sampling

4.1 The idea of coupling from the past

Propp and Wilson (1997) proposed exact sampling using coupling from the past as a
solution to the problem of Gibbs sampling error and error uncertainty. Their method is
able to obtain samples that are exactly from the desired distribution. They efficiently
implemented an exact sampling algorithm that works for monotonic problems, where
there is a partial ordering on the state space that is preserved through the Markov
chain transitions. Coupling is a technique for allowing multiple chains to coalesce into
one chain, by introducing dependancies between the chains. Coupling of chains had
been used before in sampling schemes, by starting the coupling runs from the present
(Johnson 1996). However, those schemes are unable to remove the error completely, but
only provide some measure of the magnitude of the error.

Propp and Wilson use the fact that the invariant distribution, 7, of an ergodic Markov
chain on a finite state space can be reached if the chain is run for an infinite amount of

time, no matter what the initial distribution pq is, that is
. . t _
A poM =
where M is the transition matrix (see section 3.1). Therefore, if one were willing to

17



CHAPTER 4. EXACT SAMPLING 18

wait forever, one could be sure that the correct distribution of the Markov chain had
been reached. They show that it is not necessary to wait forever to arrive at this result,
however: that there is a way to find the exact result with a finite number of computations.
The state found in this way may be used as the starting state for a Gibbs sampling run

that will be free of bias.

Coupling from the past starts chains at some time, 7' < 0, in the past starting
from every possible state, and attempts to make the chains coalesce into one chain by
introducing dependencies between the chains. The minimal requirement for coalescence,
is that two chains arriving at the same state use the same pseudo-random number to
make the transition to the next state. This causes them to stay together. In practice,
coupling from the past uses the same pseudo-random variable at each time step for all of
the chains, as this greatly facilitates separate chains to come together. If by time ¢t = 0
they have all coalesced into one chain, then it can be said that no matter what state was

started from at time ¢ = T', the same state at time ¢t = 0 results.

Propp and Wilson (1997) show (Theorem 1, p. 228) that with probability 1 coupling
from the past returns a state, which is from the invariant distribution. The state returned
is the final coalesced state of the chains at time ¢ = 0. They consider the total simulation
time, from the time the chains are started in the past to time ¢ = 0, to be laid out
in sequential time segments. A time segment is long enough that there is a positive
probability € > 0 of chains in every possible state at the beginning of the segment to
all coalesce into one chain by the end of the segment, assuming the chain is ergodic. Of
course the time segment must be long enough to incorporate all of the base transitions
in order for the chain to have a positive probability of visiting all states. The chains
must be made dependent by using the same pseudo-random numbers, in order to have
coalescence. This is described in more detail in section 4.2. If the length of one time

segment is L, then time periods can be laid out from some starting time 7" in the past up

tot=0,as (---,(—3L,—2L),(=2L,—L),(—L,0)). The probabilities of having complete
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coalescence within each time segment are independent of each other. As T gets more
negative, ' = — L, —2L, —3L, - - -, the probability of not coalescing in any of the segments,

(1—¢) LT, gets smaller. Therefore, it can be said that coalescence occurs with probability

1 if T is allowed to be arbitrarily far in the past.

To show that the final coalesced state at time ¢ = 0 is from the correct distribution,
suppose that T is far enough back in the past that coalescence occurs. Then starting
earlier than 7' makes no difference to what the final coalesced state is, since those chains
must pass through the states at time ¢ = T'. In particular, starting at a time infinitely
far back in the past results in the same final coalesced state. So running the experiment
starting at time ¢ = T' is equivalent to running the experiment starting infinitely far back
in the past, as far as the final coalesced state is concerned. But any one of the chains
of that experiment started infinitely far back in the past has converged to the invariant
distribution 7w of the Markov chain. It ends up in a state at { = 0 that is randomly
chosen from the correct distribution, with respect to the pseudo-random variables of the
experiment. Therefore, performing the experiment by starting infinitely far back in the
past results in a final coalesced state that is from the correct distribution. Since both

experiments are equivalent, so does running the experiment started from time ¢t = T

A coalesced chain must be continued to time ¢{ = 0 before using the state for the
initial Gibbs sampling step. Usually, coalescence occurs before reaching time ¢ = 0, but
if the state at that time is used, there is a bias introduced toward conditions that favour
coalescence of chains. By always selecting the state at time ¢ = 0, there is no dependence

on the time that coalescence occurs.

If chains do not all coalesce when started at some time in the past, they are run again
by restarting them further back in the past until coalescence finally occurs. The previous
run that failed to coalesce must not be thrown away, but rather continued further back
in the past. The explanation is that the randomly selected pseudo-random numbers

completely determine the behaviour of the chain. If they are just thrown away and new
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state space

=T~ time

Figure 4.1: Chains Coupling

pseudo-random numbers generated, then there is a bias induced by preferring a selection

of pseudo-random numbers that more easily allow coalescence.

It is not far from optimal to restart the chains at a time twice as far back in the
past. Each time the chains are started they must be run all the way to time ¢t = 0, so
going back only one time step would be inefficient. It is more efficient to start runs at
times t = —1,—2,—4, -8, —16,--- until coalescence finally occurs. Propp and Wilson
(1997) show that if —7 is the minimum number of time steps in the past necessary
to achieve coalescence, then T' found by the above method overshoots by less than a
factor of 2 and the total number of simulation steps is less than —47T,. The expected

number of simulation time steps is about —2.897,. The expected value for T is about

(—2.897, + 1)/2, which approaches 1.447, as T, becomes more negative.

The coupling from the past procedure just described can be performed a number of
times, each time with new pseudo-random variables, thus obtaining multiple independent
states from the invariant distribution. Each time the procedure is run, it must search for a
starting time that allows the chains to coalesce. The procedure typically requires varying

amounts of running time to complete (i.e. having to go back varying amounts of time in
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the past to cause the chains to coalesce). In practice, if any of these independent attempts
are observed to find appropriate starting times for allowing the chains to coalesce, it is
reasonable to expect all such attempts to succeed in an observable time period. This is
because the chances of coalescing further back in the past are independent of the failure
to coalesce later on. If starting at time ¢ fails to make the chains coalesce, a new attempt
is made to get the chains to coalesce from time 2¢ to ¢t — 1, and the ending states (which
may be only one state) used as the starting states of the previous attempt. However, if
none of the procedure runs seem to coalesce, one must declare the results indeterminate,
which is superior to getting a wrong answer using Gibbs sampling with the same number

of steps.

Once Gibbs sampling is started with a state from the invariant distribution, any
number of samples may be taken from the following chain. However, it is desirable to
find a number of starting states from the invariant distribution and take samples from
each of the chains that follow them. The starting states are more valuable than the states
that follow them, since they are completely independent of each other, but they come at
the cost of coupling chains from the past. At the same time, the following states are less
valuable because of their dependence on prior states, but they can be produced at the

much lower cost of one Markov chain transition.

4.2 Speeding up coalescence

In order to speed up coalescence, Propp and Wilson introduce additional dependencies
between the chains by using the same i.i.d. pseudo-random variables for all chains. This
goes beyond the minimal requirement for the chains to coalesce, which is only that chains
in the same state use the same pseudo-random variables in order to stay together. The
dependencies do not change the validity of the Markov chains, since transitions made at

different times continue to be independent.
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Exactly what constitutes the set of pseudo-random variables depends on how the
generation of the Markov chains is implemented. For Gibbs sampling transitions, only
one state variable is allowed to change at a time (section 3.2), which requires a random
choice according to the conditional probability of the variable, given the other variables.
Which variable to change may be selected by cycling through a pre-determined sequence
of all of the state variables, or by random selection from the set of state variables, which
requires an additional random choice. For this thesis, Gibbs sampling is considered to
cycle through the sequence of state variables, so randomness is required only for setting
the value of the selected state variable. Therefore, a single pseudo-random variable is
sufficient for making the random choice at each time step, and should be the same for
all of the chains.

Using the same pseudo-random variables to make transitions for each of the chains
does speed up the coalescence of the chains. If a transition is performed to change the
only variable that differs between two states, then using the same pseudo-random variable
to determine the value of the variable will certainly cause the chains to coalesce. This
is true because having all of the other variables equal causes the conditional probability
of the transition to be the same for both chains. On the other hand, if different pseudo-
random variables are used for chains that have not coalesced, the probability of the chains
coalescing can be low when there are several alternatives for the next state.

The interdependence of chains within a time step is implemented by a sequence of
deterministic functions ¢(.,.) and i.i.d. random variables --- U_5,U_5,U_;, which are
the source of all randomness. If the transition probabilities are the same for all time steps
t, then ¢4(.,.) is the same for all ¢. Once the i.i.d. random variables U; are established,
they are paired with the deterministic function ¢; to define completely deterministic

functions
ft(l) = ¢t(i7 Ut)a

which specify the transition from a state ¢ at time ¢ to a state fi(z) at time ¢ + 1. Thus
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all of the states ¢ at any particular time step ¢ derive their transitions from the same
i.i.d. random variable U;. ¢:(i,U;) can be defined to return the smallest j such that
MZ»(E) + MZ»(;) +---+ MZ»(;) > Uy, where M(®) is the matrix of transition probabilities for the
Markov chain at step ¢, and U is uniformly distributed on the interval [0,1).

For noisy-or belief networks, the transition matrix M is composed of base transitions,
as M = B1B;--- B,. The transitions at each time step ¢ are composed of n deterministic

functions ¢y, for £ = 1,...,n, each governed by the conditional probabilities given by

Bki

ft(z) = qbt,n(qbt,n—l(' t (¢t,1(i7 Ut,l))v o ')7 Ut,n—l)v Ut,n)-

Provided the same base transition matrix is used to modify the k’th variable at each
time step, ¢ is the same for all £. If ¢ and ¢ are two states with variable £k flipped,
and Vi = 0 for state ¢, ¢ (2, U ) and ¢y x(i’, Us ) can be defined to return state ¢ if
(Bk)“ > Uy, else return state ¢'. The distribution of U, in this case is uniform on
the interval [0,1). The conditional distribution of ¢, is that given by =, since for any
state j, P(¢x(2,Urr) = j) = (Bg); ;- Therefore, as discussed in section 3.2, ¢, ; and fi(2)
preserve the invariant distribution. The simulation of the chain from the starting time

t =T in the past to time ¢ = 0 is the composition

Fp = foa(f=2 (. (fr(0))..))-

Propp and Wilson prove in (Theorem 3, p. 230), that if FP(i) is the same for all states
i, and if the transitions produced by f; preserve the invariant distribution, then F3Y has
the invariant distribution.

F?(i) returns the state of a Markov chain started in state i at step ¢ and ending at
step 0. If started far enough back in time, F returns a constant ending state j for all
starting states, indicating that all of the Markov chains have coalesced sometime between
time step ¢ and time step 0. The distribution of this j with respect to all of the i.i.d.

random variables Uy, Uyyq,- -+, U_q i1s m, which is what we want to begin Gibbs sampling
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T+ —1
Repeat
V0
For 1 = every possible starting state
V « VUFX»:)
T 2T
until V' contains only one state

Begin Gibbs sampling with the initial state contained in V.

Figure 4.2: Algorithm for Exact sampling

without initialization bias. There is a maximum (least negative) ¢ that will result in a
constant F?. The algorithm employs the near optimal search strategy to find some T
such that (i) 2¢ +2 < T <, and (ii) F} is constant and evaluates to the same state as
F? (figure 4.2). The worst case of T' = 2t + 2 results from missing ¢ by one, at ¢ + 1, and
having to double the time again. When a coupling run must be restarted farther back in
the past because of failure to coalesce, the i.i.d. random variables already generated are

reused until coalescence finally occurs.

Keeping track of every chain for every possible starting state of a coupling run is an
intractable procedure, as the state space size increases. Therefore, strategies are required
to reduce the complexity. Propp and Wilson use the property of monotonicity of state
spaces to find an efficient algorithm. This thesis uses an approximation of the set of states

to be tracked, to obtain the same resulting output state from the invariant distribution.
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| | i'th
component

Figure 4.3: Ising spin system

4.3 Comparison to Gibbs sampling

4.3.1 Monotonic problems

A monotonic chain has a state space with a partial ordering that is preserved through
Markov chain transitions. Propp and Wilson (1997) show that for monotonic chains,
there is a way to couple the chains that is often very efficient. Furthermore, they show
that Gibbs sampling can not converge much faster than coupling can cause chains to
coalesce. This makes a strong case for using exact sampling with monotonic problems.

The Ising spin system is an example of a monotonic problem. It consists of a spatial
arrangement of “spins”, either + or —, each of which tends to have a value matching
its nearest neighbours. The more positive neighbours a spin has, the more strongly it is
influenced to be positive itself.

The state space of the Ising system can be partially ordered. Each variable is ordered

as “+7 > “=7. For states A, B with variables A;, B;,
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This ordering is preserved between Markov chain transitions. When making the transition
for the i'th variable, if A > B, then for the neighbours of the i'th variable, A; > B;, 7 # 1.
Each neighbour A; exerts as least as much influence for A; to be “+” as the neighbour
Bj does for B;. Therefore, in total, A; is at least as strongly influenced to be “+” as B;
is.
A>B= P(Ai=“+"|A_;)) > P(B; = “+"|B_)).

where A_;, B_; are the other variables besides A;, B;. Since the same pseudo-random
variable is used to generate the transitions for both chains, it cannot be that B; will

“_»

become a “4”7 while A; becomes a Thus, the partial ordering is preserved; the
chain is monotonic.

In order to make a strong case for using exact sampling, it is important to show that
Gibbs sampling cannot work well when coalescence is slow. For monotonic chains, Propp
and Wilson (1997) make the assertion that “if the Markov chain is rapidly mixing then
it is rapidly coupling”.

The threshold mixing time of the chain is described in terms of the total variation

distance, as:

o d(k) = max||ur — vg|| is the maximum total variation distance between the distri-
v
butions with k transitions after starting from any two random states governed by

distributions p and v.

o Thvrix = mkin cd(k) < % is the mixing rate of the chain which is the minimum
running time to reduce the maximum total variation distance to at most %, where

e=2T18--.
A lower bound on Thrx is given in terms of

o [[T™], the expected coupling time of the chain

e [, the length of the longest chain in the partially ordered state-space (the number

of spins, for the Ising system)
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as
E[T%
T >
MIX =901 + Inl)
For the Ising spin system, coupling can be done very efficiently by simulating only two
chains. There are unique maximal (all “+”) and minimal (all “~") states in the state

space, that are greater and less than all other states. By simulating chains for only the
maximal and minimal starting states, a bound on the range of all the other chains with
respect to the ordering is maintained. When the maximal and minimal chains coalesce,

it is known that all of the other chains have coalesced as well.

4.3.2 Non-monotonic problems

Belief network states usually cannot be ordered in a way that makes the Markov chain
monotonic. This presents some challenges because there is no known way to ensure the
coalescence rate is not much greater than the Gibbs sampling convergence rate, and an
alternative to tracking every chain in the state space is needed.

For non-monotonic problems, there is no known way to specify a lower bound on the
number of steps to achieve an error tolerance in terms of the coalescence rate. That
presents the possibility of there being cases where Gibbs sampling converges rapidly
when coupling from the past takes a long time. There are no known examples of this,
however. Although the tight relationship between coupling and convergence can not be
made, one would expect conceptually a close relationship. An example can be made with
a phenomenon that influences both coupling and convergence, namely the presence of
modes. Many small movements will be made around some locality of the state space
before a transition is made to another area of the state space. If the chain is started from
some distribution that is biased towards one of the modes, then ordinary Gibbs sampling
will take a long time to visit all of the other areas of the state space with the desired
frequencies. Hence the convergence is poor for Gibbs sampling, and a longer burn-in

period is required to minimize the chance of exceeding the error tolerance. Similarly,
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exact sampling will take a long time for coalescence of the chains. The probability of
a transition of two chains to the same state can be quite low if they start in different
modes, and it could take a long time to make a transition into or out of the mode. Since
the relationship between coalescence and convergence rates is not proven or disproved,
a recommendation to use exact sampling with non-monotonic problems must be weaker
than for monotonic problems.

To address the efficiency issue, a scheme is needed to simplify the tracking of all the
chains. For noisy-or belief networks, this thesis attempts to summarize the chains with
one chain on a state set space, where states represent sets of states of the chains to be
coupled. The amount of work for each transition of the summary chain is the same as
for the two chains of the monotonic problem, provided that none of the sibling variables
of the network are directly connected. However, the method suffers somewhat from the
inability to track precisely the set of chains, which tends to result in slower coalescence.

That is the topic of the next chapter.



Chapter 5

Exact Sampling for Noisy-Or Belief

Networks

Coalescence of a large number of Markov chains for a noisy-or belief network can be
determined by looking at one chain on a state set space. Each state of the chain on the

state set space is an approximation to a set of states of the chains being coupled.

5.1 Approximating a set of states

The state space S of noisy-or belief networks has variables taking on values 0 or 1. A set
of states in S is approximated by a single state in a state set space S(*) with variables

taking on values 0, 1, or 7. The mapping from the state set space to the set of states,

B:80 5 8 s
BV = {V e 5| V¥ e (v, 7}, vi}.
[ selects all the states in S where every variable matches the corresponding variable of

the single state in S("). If a variable in S(*) is 0 or 1, then only states in S that have the

same value for that variable can be selected. If a variable in S{") is ?, then states in S

29
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can be selected that have a value of 0 or 1 for that variable. For example,

N

100010

100011
B(120017?) =
110010

110011

7/

B does not map some element of S(*) to every set of states in S. For instance,

100010
100011
110010

cannot be exactly represented in S(*). If none of the states are to be lost, then the

approximation by a state in S(*) must sometimes include spurious states.

5.2 Approximating a set of chains

A single chain on the state set space S() can approximate a set of chains in S, such
that none of the true chains are lost. Some spurious chains are introduced by spurious
states appearing at various time steps during the simulation. The spurious chains mask
coalescence of the true chains, until all of the spurious chains also coalesce with the
coalesced true chain.

The chain is simulated by performing base transitions for each variable that allow
only one variable at a time to change. For each state in S, a particular variable has some
conditional probability of changing to a 1, given the other variables in that state. Over
the set of states that V(*) maps to, this conditional probability will have some maximum
and minimum values. These maximum and minimum conditional probabilities can be
used to determine the transition probabilities of the variable in S(*), using the fact that
each chain makes the transition governed by the same pseudo-random variable U. For

a given U, it is known if the variable will change to 0 or 1 in all of the states or if the
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1
0
max  P(Vp = 1|V_)
Vep(v®)
U
?
min  P(V, = 1|V_;)
vep(v)
1
0

Figure 5.1: Determining a transition in state set space

variable will be 0 in some of the states and 1 in other states. The procedure for making

the transition using a pseudo-random variable U is:

o If U is less than the minimum probability, then all of the states will make a tran-

sition to set the variable to 1. Set the variable in S(*) to 1.

o If U is greater then or equal to the maximum probability, then all of the states will

make a transition to set the variable to 0. Set the variable in S() to 0.

o If U is between the minimum and maximum probabilities, then there may be states

that make transitions to either 0 or to 1. Set the variable in S(*) to 7.

The conditional distribution of variable Vk(?) is illustrated in figure 5.1. V_j is the set of
other variables besides Vj. The transition probabilities are given in table 5.1. Transitions
done this way do not lose track of any chains in the set of chains, by ensuring their new
states are represented by the new state of the summary chain.

Spurious chains are introduced because the approximation of a set of states cannot
exactly represent all combinations of states. This happens when a variable in S(*) changes

from 0 or 1 to 7, and may happen when the variable remains as 7. For example, if a
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Vi Prob(vI V1Y)
1 min  P(V, = 1|V_y)

Vep(vi)
? max P(Vy,=1|V_)— min P(Vp =1|V_)
vep(v(d) Vep(v)

0 1— max P(Vi=1|V_)
veps(v®)

Table 5.1: Transition probabilities of chain in state set space

transition in S*) is done by changing the last variable of

100010
3(170010) =
110010

but transitions in S are to different values in each chain, e.g.

100010
110011

the transition in S(*) is to B(17001?) and adds two spurious chains. If in changing the
last variable of 3(170017), there is coalescence in S so that two or three chains remain,
and they have different values for that variable, the state in S(*) does not change and
continues to map to four chains in S, adding one or two spurious chains. The effect of

changing a variable in S(*) is shown in table 5.2.

5.3 Transition Probabilities for the Summary Chain

The minimum and maximum conditional probability, P(Vy = 1|V_;), over all of the
states can be determined without searching by selecting certain states from the mapping
B:S" = 5. Let pa(Vi) be the parent set of V;, and ¢(V;) be the child set of V;. The
conditional probability for updating variable V} is

PV = 2[Vy) o< P(Vi = alpa(Vi)) x T P(Vlpa(V}), Vi = ).

Vi€e(Vi)
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previous mnew effect on number of chains spurious chains added

0/1 0/1 mno change none
0/1 7 double 27
? 0/1 halve none
7 7 no change 0to (2571 — 1)

(z is the previous number of 7’s)

Table 5.2: Effect of changing a variable in state set space

Minimum probability that V, = 1:
V; = 0if V' =2 and Vj is a child or parent of Vj
Vepvy: V,=11if Vp(?) =7 and V, is a parent of a child, V}, of V},
and Vj(?) =1
Maximum probability that V, = 1:
Vi=1if Vj(?) =7 and V] is a child or parent of Vj
Vep(vy: V,=0if Vp(?) =7 and V, is a parent of a child, Vj}, of V;,
and Vj(?) e {71}

Table 5.3: States with minimum and maximum conditional probabilities for Vj =1

The desired minimum and maximum conditional probability is obtained by respectively

minimizing and maximizing the ratio
P(Vi = 1lpa(Vi)) x T  P(Vjlpa(V}), Vi = 1)
Vj€e(Vi)

P(Vi = 0lpa(Vi)) x T1  P(Vjlpa(V}), Vi =0)

Vi€e(Vi)

The rules for selecting the appropriate states are summarized in table 5.3.
Provided that sibling variables are not directly connected, then to minimize or max-

imize P(V, = 1|V_y), it is sufficient to minimize or maximize, respectively, each of the

conditional probability ratios, %%% and % for V; € ¢(Vi). To justify



CHAPTER 5. EXACT SAMPLING FOR NOISY-OR BELIEF NETWORKS 34

this, each of the terms in the product P(Vy = z|pa(Vi))x [1  P(Vi|pa(V;), Vi = x) are
Vi€e(Vi)

independent of each other, except where two children share a different parent besides V;.
However, the setting of that other parent is still the same for arriving at the minimum
and maximum conditional probability ratio for each child.

For the variables that can be both 0 and 1 in a set of states, there are three cases to

consider for the settings in the conditional probability expression:

1. Parent variables : It is clear from the noisy-or definition that the minimum and

maximum of i(v’“zllpa(v’“» is obtained by selecting the states with parent variables

(Vi=0lpa(Vy))

equal to 0 and to 1 respectively.

2. Child variables : To show that the child V; of V) should be 0 to minimize and 1

(Vylpa(V;),Ve=1)

to maximize the ratio PV [pa(V)) Vo=0) it is shown that

P(V; = 0[pa(
P(V; = 0[pa(

Ve=1) _ PV =1lpa(V;), Vi = 1)
Ve =0) ~ P(V; = 1[pa(V;), Vi = 0)°

Vi)
Vi)
Let wy be the noisy-or weight between V;, and V;. The right side is

1= P(V; = 0lpa(V}), Vi = 0) x (1 — )
1= P(V; = 0fpa(V}), Vi = 0)

The left side is

P(V; = Olpa(V;), Vi = 0) x (1 — wi)
P(V; = 0lpa(Vj), Vi = 0)

:1—wk

(1= P(V; = 0lpa(V}), Vi = 0)) x (1 — wy)
1= P(V; = 0lpa(V}), Vi = 0)

(L= w) — P(V; = Olpa(Vy), Vi = 0) x (1 — wy)

1= P(V, = 0]pa(V}), Vi = 0) |

which is less than the right side.

3. Parents of child variables : It is required to find the values of another parent

P(V;lpa(V;), Vi=1)

V, of a child V; of Vi, p # k, that minimize and maximize the ratio PV pa(V ) Ve=0) "

There are three cases to consider:
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(a) The child variable V; = 1: To show that when V; = 1, another parent

P(V;lpa(V;), Vi=1)

Vi(p # k) of Vj is 1 to minimize and 0 to maximize the ratio PV pa (V) V,=0)
J 1/ -

it is shown that

P(V; = 1pa(Vy), Vy =1, Vi =1) _ P(V; = 1|pa(V}), V, =0,V = 1)
P(V; = 1pa(V;),V, = 1, Vi = 0) = P(V; = 1[pa(V;),V, = 0, Vi = 0)

Let w, be the noisy-or weight between V,, and V;. For brevity, let P(V; =
0|pa(V;),V, =0, Vi = 0) be denoted by . The right side is

1 —P(V; =00pa(V;),V, =0,Vi =0) x (1 —w) 1 —a(l —wy)
1_P(‘/j:0|pa(‘/j)7‘/p:07‘/k:0) a l—a
_ (=l —wy))(1 —a(l —wy))
(1 =a(l —w))(1 —a)

The left side is
1= P(V; =0Jpa(V;),V, = 0,Vi = 0) X (1 —wy)(1 — wy)
T PV, = Olpa(V)),V, = 0,V = 0) (1 — )
_ I —ax(1—=w)(l—w)
I—ax(1—w)
_ (I —a(l —wp)(1 —wp))(1 — )
(1 —a(l —wy))(l —a)
I —a(l —w)(1 —wi) —a+a?(1 —wy)(l — wy)
(1 —a(l —wp))(l — o)
1 — a1+ (=)0 =) + (1 —w)(1 — i)
)

(1 —a(l —wy))(1 —a)
_ I—a((l—w,)+ (1 —wi)) 4+ *(1 —wp)(1 —wi) — aw,wy
(1=l —w))(1 —a)
_ (1 —a(l —w,))(1 — a1l —wy)) — awpwi

(1=l —w))(1 - a) ’
which is less than or equal to the right side.

(b) The child variable V; = 0: If the child variable is 0, it does not matter what
the other parents are.

P(V;lpa(V;),Vi=1)
P(V;lpa(V;),Vi=0)’

the other parents of V; besides Vi should be set as they are when V; = 0 (it

(c) The child variable V; =7: To minimize or maximize the ratio

does not matter) or V; =1 (0), respectively.
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Figure 5.2: Directly-connected sibling variables

It is assumed that sibling variables are not directly connected, as in figure 5.2. That
is, a child does not share a parent with its parent Vi. If this were so, the setting of
that parent could have opposite effects on the conditional probability ratios for the child
and for V;. This happens if the child of V; can be 1, and the value of the other parent
is not given by evidence. For the two-level networks examined in this thesis, and more
generally for any layered network where arrows go down only one layer, this case does

not happen.

5.4 Algorithm

The algorithm for exact sampling using a summary chain is shown in figure 5.3. If the
chain is allowed to run for long enough, the state of the summary chain will represent a
single state. Since no chains are lost in the approximation, the true set of chains have

coalesced when that happens. However, the summary chain may be late in detecting
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T+ —1
Repeat
(V) 7, Vk.
run summary Markov chain with initial state V(%)
from time t = T to t = 0, outputting state V),
T 2T
until V) contains no ? variables

?

Begin Gibbs sampling with initial state V € S :V, = V;»( ), Vi.
Figure 5.3: Algorithm for Exact sampling using Summary chain

coalescence because of the spurious chains that can be added to the approximation.

A search strategy for a starting time successively tries powers of 2, —T> =1,2,4,8, ...,
until the summary chain represents one state by time ¢ = 0. This starting time is typically
not the latest possible starting time for obtaining a single state at time ¢ = 0, which could
be found by repeatedly decrementing 7' by 1. Propp and Wilson (1997) show that the
search strategy requires an average total number of simulation of time steps around
—2.89 times the latest possible starting time (section 4.1). The total amount of work is
the number of simulations to be done at each time step times the total number of time
steps simulated. There are two calculations of conditional probability at each time step.
Therefore, the expected computational work is —5.78 times the latest possible starting
time.

The performance of the summary chain method is explored in the following chapters.
In chapter 6 the reasons for the delay in detecting coalescence due to spurious chains are
studied. In chapter 7 the additional work factor due to the delay is determined empirically
as a multiple of the number of time steps necessary to couple the chains when tracking
every chain. In chapter 8 the performance of the proposed summary chain method is

evaluated in comparison to the standard method, Gibbs sampling with a burn-in period
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Chapter 6

Coalescence Time

Coalescence time is the minimum number of time steps in the past that are required
for the coupled chains to coalesce by time t = (0. The benchmark for the coalescence
time of the summary chain method is the coalescence time for tracking every chain.
The relationship between the two is explored by examining small problems and studying

eigenvalues and test results.

6.1 Transition matrix eigenvalues

The convergence of an ergodic Markov chain is related to the magnitudes of the eigen-
values of the transition matrix M. There is an eigenvector specifying the invariant
distribution 7 of the Markov chain with eigenvalue equal to 1. The magnitudes of the
other eigenvalues are less than 1. If the rows of the transition matrix are the transition
probabilities out of states, then the eigenvectors are left eigenvectors.

As the Markov chain is generated from an initial distribution pg, the distribution at
time n is p, = poM™. As n — oo, p, — 7. If the absolute value of eigenvalues of M are
|A1] = 1,]A2] < 1,- -, then the absolute values of eigenvalues of M™ are |A}| = 1,|A}],---.
As n — oo, |N| — 0,2 > 1. The larger the magnitude of the second-largest eigenvalue,

the slower the convergence of the Markov chain.

39



CHAPTER 6. COALESCENCE TIME 40

The transition matrix of the Markov chain on the summarized set of states has all the
eigenvectors and eigenvalues of the Markov chain on the state space of (0/1) variables.
In particular, the eigenvectors are the same that have eigenvalues equal to 1. Hence,
they both converge to the same invariant distribution. It contains the second largest
eigenvalue of the chain on the states of (0/1) variables. In addition, there are some
eigenvectors and eigenvalues associated with states with 7-valued variables, which may
be larger in magnitude than the second largest eigenvalue of the chain on the states of
(0/1) variables. Therefore, the chain on the summarized set of states cannot converge
any faster than the chains it summarizes, and may actually converge more slowly.

The eigenvectors and eigenvalues of the transition matrices of some simple problems
can be examined to verify that the results obtained through testing actually reflect the
true characteristics of the problems. This lends further credence to results obtained for

more complex problems.

6.2 Experimental tool

The method of the chain of summarized set of states is compared against the method
of keeping track of every chain, by doing test simulations. For a given two-level belief
network, and observations of known variables, a number of samples are collected from
the step t = 0 by repeated sampling from the past. Fach sample is collected in both
ways, and the number of steps —7% required for the summary chain is compared to the
number of steps —Tgg required for the tracking every chain. The occurrences of the
vector (—Tgs, —17) are plotted on a 2-dimensional histogram (see figure 6.1 for example
and figure 6.2 for interpretation).

The average (—Trs, —T7) characterizes each test and is used for comparison with other
tests. The Median —Tgs is used to determine the ratio between median coalescence times

and average coalescence times, which is necessary to relate the work of exact sampling
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Histogram of (—Tgs, —T")
—TEs
1 2 4 8 16 32 64 |
256 0 0 0 0 1 1 r | 3
128 0 0 0 5 I | 20
64 0 0 0 7 7 7 2 | 23
32 0 1 2 7 6 11 | 27
16 0 0 1 3 12 | 16
— T 8§ 0 0 0 4 |4
4 0 0 4 | 4
2 0 2 | 2
11 | 1
- | _
1 3 T 26 35 24 4 | 100
Average(—Tgs, —T7) = (18.3,59.7), % = 3.27
Median — Tys = 16, 472240152 — | 14
Figure 6.1: Example coalescence-time histogram
result interpretation
Entries concentrated near the diagonal summary chain coalesces as quickly as

keeping track of every state

Entries concentrated above the diagonal ~ summary chain does not coalesce as

quickly as keeping track of every state

Entries concentrated in columns with low Gibbs sampling mixes well
value of —Tgg

Entries concentrated in columns with high  Gibbs sampling probably does not mix

value of —Tgg well (but this is not guaranteed)

Entries below the diagonal Impossible: cannot do better than keeping

track of every state

Figure 6.2: Interpretation of coalescence-time histogram
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to the burn-in period for Gibbs sampling (section 8.1).

6.3 Perfectly summarized networks

The transitions of the chains being coupled from the past can be perfectly summarized
in certain types of networks. A trivial example is a one-disease network with one or more
symptoms that have evidence. When there is just one 7 variable in the summary state,
it is an exact representation of a set of two states.

Any network with two unknowns can also be perfectly summarized. Although it is
possible that the state of the summary chain does not exactly represent the states of
the set of chains, the variables of the summary chain always correctly summarize the
variables of the set of states. Therefore, when the set of chains finally coalesces, the
summary chain does represent the state of the coalesced chain.

When there are two unknowns, the first state of the summary chain has two 7 vari-
ables, which correctly summarizes each variable. As long as the prior state of a summary
chain transition correctly summarizes each variable of the set of states, and the transition
correctly sets the variable to be changed, then the resulting state of the transition will
correctly summarize each variable. The maximum and minimum conditional probabili-
ties calculated for the summary chain transition are correct for the set of states, since
they depend on a summary of sub-states with at most one ? variable, which is an exact
representation of a set of sub-states. Therefore, the transition does correctly set the
variable.

An example two-disease network is shown in figure 6.3. The Markov chains to be
coupled have 2? = 4 states of Dy, Dy, enumerated as (00,01,10,11). A summary chain
has 3% = 9 states of Dy, Dy, enumerated as (00,07,01,70,77,71,10,17,11). The non-
zero eigenvalues of the transition matrices, with associated eigenvectors (transposed into

column vectors) are shown in table 6.1.
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Two diseases Dy and D, apriori probability = 0.1, status unknown

One symptom S, apriori probability = 0, status 5; = 1

noisy-or weights = 1

Figure 6.3: Two-disease network

eigenvalues/eigenvectors

1 .81
states —— ——
00 | 0 0
01 | 0.47368  0.49809
10 | 0.47368 —0.44828
11 | 0.05263 —0.04981

states
00
0?
01
70
77
71
10
17
11

(for chains to be coupled)

etgenvalues/eigenvectors

0.05263 —0.04981 —0.01070

1 81 81
0 0 0
0 0 0

| 0.47368 0.49809 —0.44178
0 0 0
0 0 0.49391
0 0 0.05488
| 0.47368 —0.44828 —0.09631
0 0 0

|

(for summary chain)

Table 6.1: Two-disease transition matrix eigenvectors and eigenvalues
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—TEs
71 2 4 8 16 32 64 |

64 0 0 0 0 0 0 [ 1
32 0 0 0 0 0 40 | 40
16 0 0 0 0 158 | 158
—Ts 8 0 0 0 260 | 260
4 0 0 263 | 263
2 0 1% | 184
194 | o
- o __ | _
94 184 263 260 158 40 1 | 1000

Figure 6.4: Two-disease results histogram

Besides the eigenvalue of 1, there is no other eigenvalue of the summary chain that is
larger than 0.81, the magnitude of the second largest eigenvalue of the chain on the states
of (0/1) variables. This suggests that the summary chain converges just as quickly. A his-
togram of experimental results (figure 6.4) shows that both methods perform identically,

always converging from the same number of steps —T" in the past.

Simple networks such as these are not of great interest by themselves, but they may
exist as a sub-networks within a larger network. In a noisy-or network, symptoms which
are known to be absent are not able to convey any influence between the diseases that are
potential causes. Sections of the network can effectively be independent with sub-states
that make transitions through simulation in a way that is independent of other sections of
the network. If a large network consists only of independent single disease sub-networks,
exact sampling always converges at { = 0 from a starting step of "= —1. This condition
is established at run-time, depending on how the symptoms are instantiated. A small
example is given, with two positive symptoms and a negative symptom separating the

diseases (figure 6.5).

The conditions that allow for quickly converging networks should be avoided for test-
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DISEASES : Unknown vartables

SYMPTOMS : Known variables

Figure 6.5: Perfectly summarized network containing independent sub-networks

ing purposes, since the objective is to look for the problem areas. Therefore, the analysis
above suggests that further tests be done with networks that have sufficient number of
positive symptoms and edges to suppress the occurrences of independent sections of the

network.

6.4 Imperfectly summarized networks

6.4.1 Moderate example

In general, network transitions cannot be perfectly summarized by chains of states of
(0/7/1) variables. The example of figure 6.6 has moderately worse convergence for the
summary chain.

The eigenvalues (non-zero) and associated eigenvectors (transposed into column vec-
tors) of the summary chain transition matrix are shown in (table 6.2). Some of these
are the same as for the transition matrix of the chains to be coupled. The additional
eigenvector which specifies non-zero probabilities for states with ?-valued variables has a

magnitude greater than all the other secondary eigenvalues. Its magnitude of .97 com-

pared to 1/0.85050% 4 0.075162 ~ 0.85 reflects moderately worse convergence.

An experimental run shows that the summarizing method is required to go back on
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eigenvalues/eigenvectors

1 0.97275  0.85050 + 0.07516:  0.85050 — 0.07516¢

states —— — — ——

000 | 0 0 0 0

00? | 0 0 0 0

001 | 0 0 0 0

070 | 0 0 0 0

077 | 0 0 0 0

071 | 0 0 0 0

010 | 0 0 0 0

017 | 0 0 0 0

011 | 0.32143 —0.19274 0.33826 + 02 0.33826 + 0z

700 | 0 0 0 0

707 | 0 0 0 0

701 | 0 0 0 0

770 | 0 0 0 0

777 | 0 0.44104 0 0

771 | 0 0.04900 0 0

710 | 0 0 0 0

717 | 0 0.04900 0 0

711 | 0 0.00544 0 0

100 | 0 0 0 0

107 | 0 0 0 0

101 | 0.32143 —0.19097 —0.15222 — 0.282507 —0.15222 + 0.28250¢
170 | 0 0 0 0

177 | 0 0.04451 0 0

171 | 0 0.00495 0 0

110 | 0.32143 —0.18922 —0.16744 + 0.25425: —0.16744 — 0.2542%:
117 | 0 0 0 0

111 | 0.03571 —0.02102 —0.01860 + 0.02825: —0.01860 — 0.02825:

Table 6.2: Imperfectly summarized network eigenvectors and eigenvalues, moderate ex-

ample
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0.1

Disease apriort probability 0.1000
Symptom apriort probability 0.0000
Noisy — or weirght 1.0000

Figure 6.6: Imperfectly summarized network, moderate example

Histogram of (—Tgs, —T")
—Tgs

T 1 2 4 8 16 32 64 |
520 0 0 0 0 1 0 | 1
2% 0 0 1 0 11 12 4 | 28
1220 1 3 28 53 46 11 | 142
64 0 1 11 57 111 61 21 | 262
32 0 3 11 56 72 99 | 241
6 0 00 9 34 118 | 161
8§ 0 0 6 85 91
40 2 35 |37
2 0 30 |30
17 |7
o | __
737 76 260 365 219 36 | 1000

Average(—Tgs, —T>) = (17.6,53.9), vrae . — 306

? Awerage Tgs

Table 6.3: Imperfectly summarized network, moderate example results histogram



CHAPTER 6. COALESCENCE TIME 48

0.001

0.001

Disease apriort probability 0.0010
Symptom apriort probability 0.0010
Noisy — or weirght 1.0000

eigenvalue eigenvector
1.00000 invariant distribution
0.99601 component of distribution of states with

?-valued variables
0.31138 4+ 0.16522: component of distribution of states with
(0/1)-valued variables before convergence
0.31138 — 0.16522:  component of distribution of states with
(0/1)-valued variables before convergence

Figure 6.7: Imperfectly summarized network, extreme example

average 53.9 time steps in the past, compared to only 17.6 time steps for the method of

keeping track of every state (table 6.3).

6.4.2 Extreme example

If the probabilities in the imperfectly summarized network are more extreme, the method
of the chain of summarized states does much worse than keeping track of every state. A
problem that couples well when keeping track of every state, and hence converges easily
for Gibbs sampling, can couple very badly when summarizing the states (figure 6.7).
The extreme value of the eigenvalue (.996) reflects the very poor convergence of the

summary chain, compared to the convergence of the chains to be coupled (eigenvalue
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2048
1024
512
256
128

64
T

— DN = CO0 D

Average(—Tgs, —T) = (3.44,357)

— O O OO O OO oo oo~

1

—Tgs
2 4
9 5
45 51
120 98
111 97
101 67
54 41
32 22
13 12
8 6
1 3
2
496 402

8
2
10
19
27
18
14
4
1
2

97

Histogram of (—Tgs, —T")

[
D

|
|16
| 106
| 237
| 237
| 187
| 110
| 58
|
|
|
|
|
|

OO = =N OO

26

[
(=]

— DD

4
Average T
? Awerage Tgs

1000

49

=104

Table 6.4: Imperfectly summarized network, extreme example results histogram
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= +/0.311382 + 0.165222 ~ 0.35). This difference is reflected in the test results (table 6.4),
where many of the entries of the histogram are far above the diagonal. The configuration
of this network helps the set of chains to coalesce in much fewer time steps than does the
summary chain, by having a non-zero symptom apriori probability that allows for other
explanations of the evidence besides the diseases of the network. That feature does not
help the summary chain to reduce to a single chain faster, because the effect is lost when
approximating the states. It is evident by the testing (chapter 7) that special kinds of

networks like this do not occur very often when randomly generated.



Chapter 7

Test Cases

The objective of testing is to compare the coalescence time of the summary chain method
with keeping track of every chain. A variety of network configurations are needed to
make the testing as thorough as possible, within the realm of two-level medical diagnosis
networks. It is convenient to search the space of possible networks, with constraints as
parameters, by randomly generating the networks. Then on each network generated, a

number of exact sampling runs are performed to collect statistics.

7.1 Random network generation

Randomly generated networks conform to certain criteria (table 7.1). A network config-
uration is randomly generated according to input parameters (table 7.2) which specify
the attributes. Most of these are self-explanatory, except for the density of edges. When
the network is built, edges are randomly added until the network is minimally connected.
The density of edges specifies the proportion of the remaining edges to randomly add to
the network. Then a test case is generated by simulating a patient entering the clinic
with one or more symptoms (table 7.3).

A belief network is tested by performing a number of runs for one particular set of

symptoms, or test case. Each run generates the summary chain and the complete set

51
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e The network should have at least one symptom positive to reflect a patient visiting
a clinic with a complaint.

e The status of diseases is unknown.

e Disconnected networks are not considered because the convergence behaviour can
be observed in smaller fully connected networks.

e The number of unknown variables is limited to a reasonable number n because the
experiment of tracking every possible state must cope with 2" states

Table 7.1: Criteria for Random Network Generation

Number of diseases

Number of symptoms

Disease apriori probability
Symptom probability, no disease
Noisy-or weight

Density of edges

Table 7.2: Belief Network attributes

e Stochastically instantiate the state of the diseases according to their apriori prob-
abilities.

e Given the disease state, stochastically set the given-values of the symptoms (the
evidence) according to their noisy-or probabilities.

e Throw away any memory of the disease state.

e Repeat the above if necessary until at least one symptom is positive.

Table 7.3: Generating a Test Case
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of chains to be coupled, by using a new set of pseudo-random numbers. A comparison
statistic, (=Tgs, —T%), is plotted on a 2-dimensional histogram. It records the starting
times in the past necessary to coalesce by t = 0 for the set of chains (Tgs) and the
summary chain (77). Each network and its test case is characterized by an average

vector (—Tgs, —T%), with components average Tgs and average T».

The random network generator produces and tests a batch of belief networks. At the
end of the batch test, there is a batch summary that includes a histogram with plots
of the comparison statistic, (—=Tgs, —1%) for every run of every network in the batch.
As well, networks are listed in order of the sum of squares magnitude of the average

(=Tgs, —1T%) vector, to identify extreme cases.

7.2 Tests on plausible networks

Parameters can be supplied to the random network generator that are plausible for a
medical diagnosis application (table 7.4). The test results for networks generated with
the plausible parameters show very good behaviour for the summary chain method (table
7.5). A few individual cases show slightly worse results than the rest. It is difficult
looking at the individual examples to determine exactly why they are worse. A cursory
observation shows that the well behaved networks often had only one or two positive
symptoms. The worst behaving networks seemed to have more than a fair share of low

probability diseases, as well as several positive symptoms.

Nevertheless, the results are too good to be interesting. If the network was to be
expanded into a realistic network of a few hundred variables, the results may be less
favourable, but for large networks it is not possible to compare with the method of
keeping track of every chain. Also, we do not know for sure what networks will be used

in practice.
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Number of diseases 10

Number of symptoms 10

Number of DAGs 100

Samples per DAG 100

Total number of samples 10000

Disease apriori probability 1. 0.0100 to 0.0500
Symptom probability, no disease 2. 0.0000 to 0.0500
Noisy-or weight 3. 0.0100 to 1.0000
Density of edges 4. 0.2000

1. Typical diseases should vary from rare (close to 0) to common (0.05).

2. Symptoms may have causes not explained by the network. The more comprehensive
is the network the lower this probability should be. For this test, it is assumed the
network is fairly reliable in this respect, and no more than 5 percent of the causes
of a symptom cannot be explained by the network.

3. The effect of a disease on a symptom may vary from weak to strong. There is no
reason this should not vary over all the possible range, (except 0 for this would

delete the edge).

4. The density of the edges will be low if the weight is 0 on many of the edges between
diseases and symptoms. It seems reasonable that some of them will be zero, so
after the network is minimally connected, only .2 of the remaining edges to add
have non-zero probability.

(Justification for parameter choices)

Table 7.4: Plausible medical diagnosis network parameters
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Histogram of (—=Tgs, —T%) for batch of DAGs
—Tgs

=T 1 2 4 8 16 32 64 128 256 |
512 0 2 1 3 2 4 2 0 0 | 14
256 0 1 13 19 17 10 8 6 3 | T
128 0 3 30 42 32 17 13 13 | 150
64 0 7 74 83 52 34 32 | 282
32 0 10 100 113 72 86 | 381
— I 16 0 26 136 123 169 | 454
8 0 30 181 342 | 553
4 0 110 998 | 1108
2 0 1880 | 1880
1 5101 | 5101
_ _ - | _
5101 2069 1533 725 344 151 55 19 3 | 10000
Average(—Tgs, —T) = (3.82,10.1), % = 2.65
number of number of diseases
Average (—Tgs,—T») positive symptoms  with prob < .01
(20.6,135) 6 3
(52.4,115) 3 3
(13.6,110) 6 1
(5.18,83.1) 5 1
(8.52,65) 3 2

(Five worst performing networks)

Table 7.5: Plausible medical diagnosis network test summary
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7.3 Tests on more difficult networks

Criteria for choosing the parameters of belief network generation that are thought to
produce adverse results while keeping the size of the network small are shown in table
7.6. These come about from the work of section 7.2 (Plausible networks) and chapter
6 (Coalescence time), plus additional observation of a network configuration known to
cause poor Gibbs sampling convergence.

Poor Gibbs sampling convergence occurs when there are areas of the state space that
have low probabilities of transitions to other areas of the state space. An simple example
is shown in figure 7.1. In this network, there can be no other cause for the symptom
besides the two diseases. Therefore, Gibbs sampling certainly instantiates one of the
diseases to positive. Then there is not much reason to instantiate the other disease, since
its apriori probability is very low. Gibbs sampling will probably not change the state for
quite a while, until by a low probability both diseases are instantiated to positive. Then
the first disease will have a chance to be negative. Running Gibbs sampling for a short
time will produce results that strongly favour one disease over the other, when in fact
they are equally probable. It is necessary to sample for a long time to converge to the
correct distribution.

Test runs are included for five classes of networks. Each class includes 100 randomly
generated networks, each having 100 samples obtained through exact sampling. These
are designed to produce bad convergence, by using the aforementioned criteria to vary
the parameters of network synthesis (table 7.7).

Detailed summaries of the tests for each class of network are contained in the ap-
pendix. There are 10000 exact sampling runs represented in the histogram for each class
of networks, compiled from 100 runs each of 100 networks. Each network has a constant

set of symptoms for each of the 100 runs.

Average T»

The characteristic ratio —=24¢ 2
Average Tgs

indicates the how much a coupling run on the

summary chain is slowed down by the introduction of spurious chains (section 5.2). For



CHAPTER 7. TEST CASES 57

e more extreme (near zero) probabilities for diseases

e high density of edges to connect multiple diseases to each symptom and to activate
more symptoms

e small (or zero) probability of symptom, given no diseases

o weight of edges anywhere between 0 and 1

Table 7.6: Criteria for generating poorly performing test networks

DISEASES : Unknown varitables
0.001 0.001

1 1
0

SYMPTOMS : Known variables

Disease apriori probability 0.0010
Symptom probability, no disease 0.0000
Noisy-or weight 1.0000

Histogram of (—Tgs, —T")
—Tgs

T 4 8 16 32 64 128 256 512 1024 2048 4096 |
4096 0 0 0O O O O O 0O 0 0 2 | 2
2046 0 0 0O O O O 0 0 0 8 | 8
024 0 0 0 0 0O O 0O 0 28 | 28
520 0 0 0 0 0 0 25 | 25
2% 0 0 0 0 0 0 17 |17
-7, 128 0 0 0 0 0 9 |9
64 0 0 0 0 7 | 7
32 0 0 0 1 |1
6 0 0 0 | 0
8 0 2 | 2
4 1 | 1
S R N | [
1 2 0 1 7 9 17 25 28 8 2 | 100

Average(—Tgs, —T>) = (721,721), FxeroseT: _

? Awverage Tgs

Figure 7.1: Example of a network with poor Gibbs sampling convergence
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Keys to Class heading:

Disease apriori probability (1) 0-0.01, all cases

Symptom probability, no disease (2)

Noisy-or weight (3)

Density of edges (4)

Average Average

Class (2) (3) () (-Tms,—Tn) umlerr Spopires
1. high density edges 0-0.01 0.01-1 1.00 (124,501) 4.04 1.22
2. medium density edges 0-0.01 0.01 -1 0.50 (35.7,402) 11.3 1.22
3. low density edges 0-0.01 0.01-1 0.00 (4.06,29.9) 7.37 1.14
4. stronger weights 0-0.01 050-1 1.00 (1280,2520) 1.97 1.25
5. no outside causes 0 0.01-1 1.00 (686,1460) 2.13 1.39

of symptom

Table 7.7: Results summarized by class of network

almost all of the networks tested, the ratio is moderate, even for the networks with the
longest coalescence times. The exceptions are two extreme cases out of a total of 500
networks tested, which far exceed all other cases. One case had an average (—Tgs, —17)
= (51.8,19900). It was the only network that simulated a patient coming into the clinic
with two rare diseases. As a result, the number of instantiated symptoms is higher for this
case (8 out of 10 positive) than for the others, causing more widespread interdependencies
among the variables of the network. The other extreme case had an average (—Tgs, —T%)

= (4.56,711). It had one rare disease, but 6 out of 10 symptoms were positive.

Over all the classes of networks, about half of the networks tested have a characteristic
ratio of one, indicating perfectly summarized chains. An exception is class number five,
for which few of the networks have ratios that are equal to one, although the characteristic
ratio for that class is still low. The classes with the lowest characteristic ratio have the
least variation of the ratio for the networks in the class, making the class ratio a better

predictor of the performance of the summary chain method for the networks of the class.
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The problems that have the slowest coalescence rates (highest —Tggs) have the lowest

T
Tgs

ratio, as evidenced in the average (—Tgs, —T%) for certain classes of networks (see
table 7.7). As mentioned, that ratio is most reliable for these classes, giving the most
confidence about the efficient performance of exact sampling on networks in the class.
Having a slower coalescence rate means that Gibbs sampling probably (not guaranteed)
converges poorly. This is noteworthy because it implies that the exact sampling works

better where it is most needed, by eliminating error where error is the most troublesome.



Chapter 8

Conclusions

There is evidence that exact sampling using the summarized set of states may be a valu-
able alternative to discarding a burn-in period in Gibbs sampling, especially in difficult
cases where Gibbs sampling converges poorly. Excessive Gibbs sampling burn-in times
employed by users who are uncertain about the convergence characteristics of the prob-
lem strengthen the case for exact sampling. However, the inability to say that Gibbs
sampling cannot perform well when exact sampling performs poorly weakens the case
for exact sampling. The always present benefit of exact sampling is the removal of un-
certainty about the systematic error, since it is always zero. (As in any Monte Carlo

problem, sampling error is present, but its magnitude can easily be assessed.)

8.1 Comparison to Gibbs Sampling

The test results give averages for various classes of synthetic networks produced by vary-
ing the parameters of synthesis. The averages are Tgg, the time in the past needed to
couple the chains keeping track of every state, and T, the time needed to reduce the

approximating chain to a mapping to one chain. As well, the ratio of these averages

Average Tp

o8- is obtained. For each network, a median of Tgs is determined empirically.
verage Tgg

Average Tgg

Nediom T ratio is calculated.

Over all the networks in a class, the average of the

60
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The median coalescence time can be used to arrive at an upper bound on the Gibbs
sampling error. This provides a guarantee, that if Gibbs sampling is burned in for a
given length of time, then an error tolerance is satisfied. The amount of computational
effort to guarantee Gibbs sampling can then be compared to the effort of coupling from
the past, for various error tolerances. Thus a quantitative evaluation of coupling from
the past in terms of the alternative, ordinary Gibbs sampling, can be arrived at. The
median coalescence time is estimated by a rule of thumb ratio of the average T, using
the above empirically determined ratios, which is meant to be universally applied to any

of the medical diagnosis networks studied here.

Median coalescence time: Let 7,,.; be the median coalescence time for the method
that tracks every chain. If 7, is a random variable which is the coalescence time of a
coupling simulation, then Prob(T, > Tp.q) < % This is the probability of the chains
failing to coalesce after T,,.4 time steps. If the chains are coupled starting from ¢ = 0,
the tail probability is the same, due to the chains being governed by the same probability
distribution as in the case when they are started in the past.

To determine the required burn-in time, suppose Gibbs sampling is started from
an initial distribution pg, and burned-in for k7.4 steps. We can measure the error
by the total variation distance between the distribution of the chain and the invariant
distribution. For a finite state space y, this is

1
15T s = 7l = 5 20 bTea() = 7 ().
rEX

The error can be bounded as

error = ||z, ., — 7

| < Prob(T. > kTyea) < (%)k.

The left inequality indicates that the error is bounded by the tail probability of the
coalescence time (Rosenthal 1995). To arrive at the bound for Prob(T, > kT,,.q4), consider

running k couplings for 7),,.4 steps independently. The probability of all £ of the couplings
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failing to coalesce is at most (3)*. If coupling is done for kT, steps, then Prob(T, >
kTmed) < (3)%, and is likely to be less since the k couplings are not independent. Then,
for example, an error tolerance of .004 = (%)8 is guaranteed by a burn-in time of 8 X T),,.4.
In general, if the median coalescence time can be determined, and an error tolerance of

¢ is required, then a burn-in time that is guaranteed to satisfy the error tolerance is
burn in = —logoe X Teq.

For a particular network, the coalescence time can be estimated from the coalescence
time found empirically by the search strategy, which overshoots by an expected factor

of 1.44 (section 4.1). The expected median coalescence time is Ty,eq = W. The

Average —Tgsg

expected average coalescence time is T

The median coalescence time over a class of networks can be estimated from the

average coalescence time over the class of networks. Empirically, table 7.7 shows that

Average Tgs

the average of the ratio 57522 T

varies from 1.14 to 1.39, depending on the class of
the network. On individual networks, the ratio varies from slightly less then 1 to slightly
more than 2. A rule of thumb might be stated as Median Tgps ~ 2 x Average Tgs.

4

Then a reasonable estimate of the median coalescence time for a class of networks is

3
g XAverage —Tgs __ Average —Tgs

Tined 1.44 ~ 2

This ratio is derived empirically for chains coupled in the past. Since the behaviour
of the chain is the same whether started in the past or from ¢ = 0, it can be considered
valid for chains started from ¢ = 0. A burn-in time that guarantees an error tolerance e

can then be stated as

Average — Tgs
2

burn in ~ —logye X

The work of coupling from the past: A coupling from the past run using the
summary chain method searches for a starting time in the past, 77, which allows the

chains represented by the summary chain to coalesce by time ¢ = 0. The computational
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1. Transition probabilities calculated at each 2 transitions
time step

2. Searching for a starting time 7% in the past (=T — 1) time steps

3. Simulating summary chain from starting —T> time steps
time T~
Total amount of computational work (—4T; — 2) transitions

Table 8.1: Computational work of the summary chain method

work required by the summary chain method is given in table 8.1. Each simulation time
step requires doing the work of two Markov chain transitions for the chains that have the
minimum and maximum transition probabilities in the set of chains represented by the
summary chain. There is an additional —7T7 — 1 simulation time steps required to search
for a starting time in the past, for a total of 277 — 1 time steps. Thus, there is a total of
4Ty — 2 Markov chain transitions to be simulated. The average amount of computation

for the summary chain method is about 4 x (Average T») transitions.

The ratio % is a random variable characterizing each coupling run, that indicates

how much longer it takes for the summary chain to coalesce compared to the set of chains
it summarizes. A ratio greater than one indicates that coupling of the summary chain is

slowed down the introduction of spurious chains (section 5.2). The characteristic ratio

Average T

£vE2de 2t The characteristic
? Awverage Tgg

of a network or class of networks is the ratio of averages
ratio has been determined empirically for the various classes of networks tested (table

7.7).

When the number of Markov chain transitions for a burn-in period and for coupling
from the past are equal, the cross-over point at which one method is more efficient than

the other is reached. The factor relating the two quantities of work depends on the

Average T»

for the class of network of interest. as:
Average Tgs ?

tolerance € and the characteristic ratio
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number of
burn in Average — Tgs ( —logye ) transitions
~ —logye X = X
2 8 for summary
chain method

Average T

time _Average T7
Average Tgs

As the user’s error tolerance decreases, the summary chain method becomes more
favoured. The required burn-in effort is equal to the work of coupling from the past
when
Average Ty

[ = -8—
0g2¢ Average 1gs

A few examples in table form are:

Average Tp 1 9 4 8 16

Average Tgs

€ 2—8 2—16 2—32 5—64 2—128

p4

The accuracy obtained by doing the same amount of work on Gibbs sampling burn-in
as on exact sampling is greater than needed in most cases. However, an experimenter

unsure about how long to burn-in may easily do more than that amount of work. The

Average T;

=292 1 was found to range around 2 or 4, without much variation
Average Tgg ’ 3

characteristic ratio
for networks that exhibit slower coalescence rates (table 7.7). Practically, the amount of
work required for exact sampling for these types of network is not unreasonable. They
could be considered as good candidates for exact sampling. Moreover, networks with

slow coalescence likely (but not proven) have the most problem with systematic error in

Gibbs sampling; exact sampling has no systematic error at all.

8.2 Qualitative considerations

Other considerations may broaden the interpretation of the quantitative analysis above,
to cause a preference for exact sampling even if the estimate of ideal burn-in is less than
the work of coupling from the past, or to take an apparently advantageous comparison

with scepticism.
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e The Gibbs sampling user is ignorant about the convergence behaviour. Conserva-
tive users tend to exceed the ideal burn-in time, but still fall short of it sometimes
and receive a wrong answer without knowing it. This is because they have to guess
how well the Markov chain converges. In practice the burn-in runs in use may

exceed the ideal by many times.

e There is no lower bound on how fast Gibbs sampling can converge (see section 4.3.1)
in terms of the coalescence rate. Therefore, it may be possible that the Markov
chain could converge very rapidly when it does not coalesce quickly. However, there
is no particular reason to believe that it should, and there are no examples known
to show such behaviour. It is a matter of further research to try to specify a lower
bound on the mixing rate, or to find examples where Gibbs sampling can work

much better.

These conclusions are based on the results of testing on small synthetic networks using
extreme values for parameters to cause poor convergence characteristics. Comparisons
are made with exact sampling by tracking every chain, a strategy only possible with small
networks. It would be helpful to try the summary chain method of exact sampling on real

full-scale noisy-or belief networks and compare the performance with existing inference

methods used in the field.
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Random DAG Test Parameters
Number of diseases

Number of symptoms

Number of DAGs

Samples per DAG

Total number of samples
Disease apriori probability
Symptom probability, no disease
Noisy-or weight

Density of edges

10

10

100
100
10000
0.0000
0.0000
0.0100
1.0000

to
to
to

0.0100
0.0100
1.0000

Comparison of chain lengths (—=7') to couple from the past.

Histogram of (—Tgs,

T 1 2 4 8 16 32
322768 0 0 0 0 0 0
16384 0 0 0 0 0 0
8192 0 0 0 0 0 4
006 0 0 2 2 4 11
208 0 3 7 16 19 29
1024 0 3 20 35 67 65
512 0 9 23 48 96 108
256 0 5 30 62 89 113
v 498 0 3 21 55 76 88
64 0 0 17 32 48 48
32 0 0 6 21 34 123
6 0 0 5 19 73
8 0 0 5 56
40 1 93
2 0 155
1 5242

5242 179 229 346 506 589

Average(—Tgs,

List of DAGs ordered from slowest coalescence to fastest:

DAGNumber

1

53
79
50
26
a8
48

Average

(=Tgs, —T+)

(525,7.13e+003)
(850,4.29¢+003)
(879,2.56e+003)
(974,2.23e+003)
(626,2.19¢+003)
(896,2.02¢+003)
(527,2.09¢+003)

Average Tp
Average Tgs

13.6
5.05
291
2.29
3.49
2.25
3.96

—T%) for batch of DAGs

Average Tgs
Median Tgs

1.02
1.66
1.72

1.9
1.22
1.75
2.06

0
1
4
12

17

~TEs

64 128 256 512 1024 2048 4096

0 2 0 4 1 0

0 0 8 4 4 0

4 4 17 30 21 13

11 23 51 47 52 38

49 63 84 113 97 56

81 123 125 122 164

122 137 135 223

100 90 226

68 217

163

598 659 646 543 339 107
—T7) = (124,501), feersde e — 4.04

67

17
97
253
536
805
901
715
528
308
184
97
61
94
155
5242

10000
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84
7

d

93
8

31
96
90
12
47
37
92
43
9

32
97
)
62
66
33
52
98
4

74
20
30
13
35
64
44
3

49
94
57
28
19
56
41
59
72
65
70
54
14
17

(480,1.82¢+003)
(774,1.61e+003)
(206,1.67e+003)
(372,1.46e+003)
(646,1.32¢+003)
(381,1.38¢+003)
(362,1.39%¢+003)
(408,1.23¢+003)
(290,1.02¢+003)
(245,829)
(233,802)
(195,786)
(293,693)
(223,714)
(110,738)
(20.2,716)
(93.6,668)
(68.8,638)
(263,509)
(137,549)
(171,524)
(24.3,541)
(116,484)
(80.4,488)
(192,439)
(54.4,473)
(29.7,452)
(199,398)
(87,419)

(17.9,419)
(37,381)

(25.5,368)
(26.5,343)
(44.3,330)
(70.5,310)
(40.9,218)
(13.9,188)
(13.7,182)
(4.88,6.34)
(2.18,2.18)
(2.09,2.09)
(1.06,1.06)
(1.04,1.04)
(1.03,1.03)
(1.03,1.03)

3.79
2.08
8.11
3.93
2.04
3.63
3.83
3.02

3.5
3.39
3.44
4.03
2.36

3.2

6.7
35.4
7.14
9.27
1.93
4.01
3.07
22.3
4.19
6.08
2.28

8.7
15.2

4.81
234
10.3
14.4
13
7.47
4.4
5.33
13.6
13.3
1.3

—_ = e e

0.938
1.51
1.61
1.45
1.26
1.49
1.41
1.59
1.13
1.91
1.82
1.52
1.15
1.74
1.15
1.26
1.46
1.43
2.06
1.07
1.33
1.52
1.81
1.26

1.5
1.7
1.86
1.55
1.36
1.12
1.16
1.6
1.66
1.38
1.1
1.28

0.868
1.71
1.22
1.09
1.04
1.06
1.04
1.03
1.03

68
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L B e I e B e B e B e B e R e A e B s B e B e O e e B e B e B s B s T e B e B e O L e e B e B e B e s B s TR e B e B e

1.03
1.03
1.02
1.01
1.01
1.01
1.01
1.01
1.01

L B e e B e B e B e e A e DR s B e TR e B s B e I e B e O e T e TR e B s B e B e B e A e R e B e TG e B e B e B e B e AR s A e B e T e B e T e e B e B e B e B e B e B |

)
)
)
)
)
)
)
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)

N N N e T T N N N T N e N T N N e N T N N e N N T N e N e N N S T N
R e B e R e B et e B e B s B e R e TR e B e T e R s R e B e TR e B A e R e B e B e B e R e T e e A e S e R e R e B e B e O T e T e B s |

R e B e T e T e B et A e B e B s B e O i s B s B e N e I e B e B e B e B s O e B e e O e A s A e B e B e B s B s B s O e B e B

1.03,1.03
1.03,1.03
1.02,1.02
1.01,1.01
1.01,1.01
1.01,1.01
1.01,1.01
1.01,1.01
1.01,1.01

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

46
91
11
2

21
29
36
42
95
6

10
15
16
18
22
23
24
25
27
34
38
39
40
45
51
60
61
63
67
68
69
71
73
75
76
7
78
80
81
82
83
85
86
87
88
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89 (1,1
99 (1,1
100 (1,1

Average Tps __ 1.99

Average of 77 T
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Random DAG Test Parameters

Number of diseases 10
Number of symptoms 10
Number of DAGs 100
Samples per DAG 100
Total number of samples 10000
Disease apriori probability 0.0000
Symptom probability, no disease 0.0000
Noisy-or weight 0.0100
Density of edges 0.5000

Comparison of chain lengths (—

Histogram of (-Tkgs,

~Tgs
-T 1 2 4 8 16 32 64 128 256 512 1024 2048
653 0 0 0 0 2 2 4 3 1 0 0
3268 0 0 0 2 1 9 6 1 0 0 0
16384 0 0 0 0 O 6 11 2 0 0 0
8192 0 0 0 1 6 9 9 3 1 0 0
4096 0 0 1 2 7 14 13 7 9 5 1
2048 0 0 14 17 27 29 36 23 26 11 5
1024 0 3 38 65 79 89 84 57 49 26 44
512 0 7 98 128 156 167 134 103 52 62
256 0 16 98 145 134 150 146 118 143
126 0 17 100 132 130 137 130 180
64 0 22 76 108 106 103 186
32 0 21 61 67 68 156
16 0 14 41 53 125
8§ 0 10 27 117
4 0 13 99
2 0 436
1 4542
4542 559 653 837 841 871 759 497 281 104 50
Average(—Tgs, —Tr) = (35.7,402), fiertae L — 113

DAGNumber Average(—Tgs, —1T7)
68 51.8,1.99e+004)
43 351,1.48e+003)

25 151,1.1e+003)
39 29.2,1.02e+003)

(-

E

24 (137,1.45e+003)
(

(

64 (35.3,918)

0.0100
0.0100
1.0000

to
to
to

T) to couple from the past.

—T%) for batch of DAG's

List of DAGs ordered from slowest coalescence to fastest:

Average T; Average Tgs
Average Tgs Median Tgs
384 1.62
4.22 1.37
10.6 1.07
7.29 1.18
34.9 0.912
26 1.1

(W2 B e i e B e B o

6

71

12
19
19
29
60
193
534
907
950
826
601
373
233
154
112
436
4542

10000
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78
37
6

23
33
20
46
62
97
8

89
15
58
56
98
91
38
71
84
48
10
33
19
81
92
60
69
18
99
63
27
72
o1
d

96
29
45
82
26
61
86
83
42
44
9

(112,691)
(476,503)
(386,568)
(26.6,650)
(45.4,594)
(6.18,589)
(81.1,491)
(63.4,476)
(18.2,462)
(26.8,454)
(10.2,452)
(9.12,451)
(124,431)
(124,402)
(187,374)
(34.6,396)
(78.7,380)
(28.4,372)
(8.16,350)
(46.6,324)
(22.8,310)
(63.8,300)
(6.46,293)
(82,276)
(41.1,280)
(5.62,283)
(76.6,270)
(104,258)
(24,267)
(39.9,256)
(38.3,251)
(82,238)
(42.9,232)
(75.7,223)
(6.89,225)
(6.48,166)
(20.8,164)
(64.2,149)
(17.8,145)
(15.3,89.4)
(3.1,71.9)
(14.5,63.3)
(10.3,32.1)
(4.91,21.8)
(2.69,2.87)

6.19
1.06
1.47
24.4
13.1
95.3
6.06
7.51
254

17
44.4
49.4
3.49
3.24

11.4
4.83
13.1
42.9
6.96
13.6
4.71
45.4
3.36
6.82
50.3
3.52
2.47
11.1
6.41
6.56

2.9
5.42
2.95
32.6
25.7
7.91
2.32
8.17
5.83
23.2
4.37
3.13
4.45
1.07

1.75
1.86
1.51
1.11
1.42
1.54
1.27
0.99
1.14
1.67
1.27
1.14
1.93
0.97
1.46
1.44
1.23
1.78
1.02
1.46
1.43
0.997
0.808
1.28
1.28
1.41
1.2
1.63
1.5
1.25
1.2
1.28
1.34
1.18
1.72
1.62
1.3
2.01
1.11
1.92
0.775
1.81
1.28
1.23
1.35

72
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50
3

52
40
)
47
85
59
70
36
1

57
75
14
28
74
2

49
13
21
32
41
79
16
54
66
7
88
93
95
4

12
31
65
90
7

11
17
22
30
34
35
67
73
76

(1.88,1.88)
(1.68,1.84)
(1.67,1.79)
(1.34,1.34)
(1.28,1.28)
(1.2,1.2)

(1.18,1.18)
(1.16,1.16)
(1.14,1.14)
(1.13,1.13)
(1.12,1.12)
(1.09,1.09)
(1.09,1.09)
(1.07,1.07)
(1.06,1.06)
(1.06,1.06)
(1.05,1.05)
(1.05,1.05)
(1.04,1.04)
(1.04,1.04)
(1.03,1.03)
(1.03,1.03)
(1.03,1.03)
(1.02,1.02)
(1.02,1.02)
(1.02,1.02)
(1.02,1.02)
(1.02,1.02)
(1.02,1.02)
(1.02,1.02)
(1.01,1.01)
(1.01,1.01)
(1.01,1.01)
(1.01,1.01)
(1.01,1.01)
(1,1
(
(
(
(
(
(
(
(
(

\_/

—_ = e e e e e e
] G UG S O 'y
e N e N e e N e e

1.1
1.07

—_

—_ e e e e e e e e e e e e e e e e e e e e el e e e e e e e e e e e e e e e e e e

0.94
1.68
1.67
1.34
1.28

1.2
1.18
1.16
1.14
1.13
1.12
1.09
1.09
1.07
1.06
1.06
1.05
1.05
1.04
1.04
1.03
1.03
1.03
1.02
1.02
1.02
1.02
1.02
1.02
1.02
1.01
1.01
1.01
1.01
1.01

—_

—_ = e e e e e e

73



CHAPTER 9. APPENDIX

80 (1,1)
87 (1,1)
94 (1,1)
100 (1,1)

Average Tps __
Average of =2 =—0s s =1.22

—_ =

—_ = = =
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Random DAG Test Parameters

Number of diseases 10
Number of symptoms 10
Number of DAGs 100
Samples per DAG 100
Total number of samples 10000
Disease apriori probability 0.0000 to
Symptom probability, no disease 0.0000 to
Noisy-or weight 0.0100 to

Density of edges 0.0000

T

Comparison of chain lengths (=7') to couple from the past.

0.0100
0.0100
1.0000

Histogram of (—=Tgs,—T%) for batch of DAG's

~T1Es
=T 1 2 4 8 16 32
8192 0 0 0 0 0 0
4096 0 0 0 0 1 0
2048 0 3 12 3 3 4
1024 0 3 20 5 4 4
512 0 6 27 21 14 10
256 0 8 39 22 7 17
128 0 8 61 33 17 24
64 0 5 47 30 11 12
32 0 5 b4 22 14 42
16 0 11 76 45 74
8 0 28 108 169
4 0 39 493
2 0 1663
1 6530

6530 1779 937 350 145 113
Average(—Tgs, —T7) = (4.06,29.9)

64
1
0
3
8
19
16
9
21

77

128 256
0 0
2 0
6 2
8 2
13 3
8 5
13
50 12
Average Ty

' Awverage Tgs

List of DAGs ordered from slowest coalescence to fastest:

DAGNumber Average

97
99
85
64
57
75
67
19
9

(-
(124,908)
(4.56,711)
(54.1,436)
(5.49,236)
(6.04,208)
(33.6,200)
(5.51,51.9)
(4.92,45.6)
(17,23.7)

/ Average T,
TES’ T?) Average Tgs

7.34
156
8.05
43
34.4
5.95
9.41
9.27
1.39

Average Tgs

512
0

1
1
1
4

7

=737

Median Tgs

1.29
1.14
1.69
1.37
1.51
1.05
1.38
1.23
1.06

37
55
117
122
165
126
137
206
305
532
1663
6530

10000

75



CHAPTER 9. APPENDIX

29
15
1
90
61
83
10
24
66
88
30
44
80
70
48
22
91
26
100
12
69
43
79
72
31
33
49
3
3
68
16
93
34
62
27
46
47
86
35
76
6
4
8
45
56

(12.7,14.7)
(4.2,10.3)

(6.12,8.42)
(5.36,7.04)
(4.31,6.67)
(3.12,7.2)

(3.92,4.12)
(3.28,3.72)
(2.57,3.99)
(2.95,3.03)
(2.58,2.62)
(2.3,2.3)

(2.25,2.29)
(2.18,2.34)
(2.01,2.01)
(1.95,2.01)
(1.93,1.93)
(1.87,1.89)
(1.85,1.85)
(1.79,1.79)
(1.75,1.75)
(1.74,1.74)
(1.67,1.67)
(1.55,1.55)
(1.53,1.53)
(1.44,1.44)
(1.38,1.38)
(1.37,1.37)
(1.36,1.36)
(1.36,1.36)
(1.32,1.32)
(1.32,1.32)
(1.31,1.31)
(1.27,1.27)
(1.26,1.26)
(1.24,1.24)
(1.24,1.24)
(1.22,1.22)
(1.2,1.2)

(1.2,1.2)

(1.18,1.18)
(1.17,1.17)
(1.17,1.17)
(1.17,1.17)
(1.16,1.16)

1.16
2.46
1.38
1.31
1.55
2.31
1.05
1.13
1.55
1.03
1.02

1.02
1.07

—
(]
QO =

—_
o

—_ = e e e e e e e e e e e e e e e e e e e el e e e e el e

1.58
1.05
1.53
1.34
1.08
0.78
0.98
1.09
1.28
1.48
1.29
1.15
1.13
1.09

0.975
0.965
0.935
0.925
0.895
0.875
0.87
1.67
1.55
1.53
1.44
1.38
1.37
1.36
1.36
1.32
1.32
1.31
1.27
1.26
1.24
1.24
1.22
1.2
1.2
1.18
1.17
1.17
1.17
1.16
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13
37
65
7

23
73
94
11
28
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89

Average of 7= T

(1,1)

{ Average Tgs —1.14
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Random DAG Test Parameters

Number of diseases 10
Number of symptoms 10
Number of DAGs 100
Samples per DAG 100
Total number of samples 10000
Disease apriori probability 0.0000 to 0.0100
Symptom probability, no disease 0.0000 to 0.0100
Noisy-or weight 0.5000 to 1.0000
Density of edges 1.0000

Comparison of chain lengths (—=7') to couple from the past.

Tgs,—T7) for batch of DAGs

ES
2 1024 2048 4096 8192 16384 32768 65536 131072 262144

(—
-7 1 2 4 8 16 32 64 128 256 51
102 o o o0 o o o o o o a o 1 1 o 1 & = 2 '
65536 0 0 0 0 0 0 0 0 4] 4] 1 1 7 10 14 18 20
leas o o 1 0 o o o 5 5 1 m: s s s 10s
w06 0 0 o 32 1 &4 5 1o 37 & e 7 im
2048 0 1 2 4 3 21 21 31 57 67 71 211
! g ? ;1 8 g 171 1 ?) ; g 2 z; 15095 17080 17098 26181 20t
% 0 2 13 20 4 7 m osm
64 0 0 25 49 53 57 178
5004 48 108 202 356 505 548 532 527 423 404 384 316 204 150 71 27 10 s
Average(—Tgs, —Tz) = (1.28e + 003, 2.52¢ + 003), % =1.97
List of DAGs ordered from slowest coalescence to fastest:
DAGNumber Average(—Tgs, —T") % %jgjﬁ
6 (4.28e+004,5.74e+004)1.34 1.31
28 (1.6e+004,4.02e+004) 2.52 1.95
34 (1.17e+004,2.74e+0042.34 1.43
89 (9.48¢+003,1.63e+004)1.72 1.16
24 (5.34e+003,1.37e+004)2.56 1.3
68 (4.27e+003,1.34e+004)3.14 2.09
81 (8.28¢+003,1.1e+004) 1.33 1.01
73 (3.31e+003,9.36e+003)2.83 1.62
94 (2.79e+003,6.76e+003)2.43 1.36
48 (3.33e+003,5.35¢+003)1.61 1.63
19 (2.09¢+003,5.04e+003)2.41 2.04
82 (2.63e+003,4.52e+003)1.72 1.28
57 (1.38¢+003,4.94e+003)3.59 1.35
32 (1.64e+003,4.28¢+003)2.61 1.61
16 (1.76e+003,4.06e+003) 2.3 1.72
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4.69
6.62
4.55
4.25
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Random DAG Test Parameters

Number of diseases 10
Number of symptoms 10
Number of DAGs 100
Samples per DAG 100
Total number of samples 10000
Disease apriori probability 0.0000 to 0.0100
Symptom probability, no disease 0.0000
Noisy-or weight 0.0100 to 1.0000
Density of edges 1.0000

Comparison of chain lengths (—=7") to couple from the past.

Histogram of (—Tgg,—T7) for batch of DAGs
—Tes

-T 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
65536 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
32768 0 0 0 0 0 3 0 0 0 0 2 3 3 3 4 7
16384 0 0 0 0 1 0 1 5 3 9 12 7 7 20 37

8192 0 0 1 1 6 1 8 12 17 36 64 52 37 143
4096 0 0 3 5 11 15 23 52 81 98 107 121 250

2048 0 3 8 17 41 51 72 129 150 172 185 435

1024 0 3 25 58 68 126 170 214 237 194 529

512 0 9 61 135 153 208 225 240 194 515

256 0 6 82 189 206 175 205 177 537

128 0 7 80 150 176 116 150 410

64 0 6 61 141 101 82 289
32 0 2 27 64 51 214
16 0 3 21 40 148
8 0 1 12 96
4 0 0 50
2 0 20
1 5
5 60 431 896 962 991 1143 1239 1219 1024 899 618 297 167 41 7 1

Average Ty

Average(—Tgg, —T-) = (686, 1.46e + 003), Fverage Tps

= 2.13

List of DAGs ordered from slowest coalescence to fastest:

79

DAGNumber Average(—Tgs, —17) % %jgjﬁ
90 (4.58e+003,1.07e+0042.34 1.12
100 (8.14e+003,8.14e+003) 1 1.99
76 (5.1664+003,7.51e4003)1.46 1.26
69 (4.314003,5.41¢4003)1.26 1.05
91 (2.11e+003,6.32¢+003) 3 1.03
58 (4.07e+003,4.98e+003)1.22 0.994
80 (2.82e+003,3.92e+003)1.39 1.38
35 (2.34¢+003,3.77e4+003)1.61 1.52
92 (1.54e+003,4.13e+003)2.68 1.51
5 (2.61e4003,3.52¢+003)1.35 1.28
43 (966,3.27e+003) 3.38 1.89
63 (674 3. 24e—|—003) 4.81 1.32
4 (616,2.65e+003) 4.3 1.2
7 (959,2.51e+003) 2.61 1.87
49 (1.74e+003,1.95e+003)1.12 1.7

(

1.14e+003,2.32e+003 2.04 1.11
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68
12
45
27
13
84
87
78
52
73
81
83
25
64
37
20
36
66
21
96
54
15
70
24
40
3

57
46
50
39
75
10
41
60
23
86
72
)
9

16
82
65
17
19
33

1.37e+003,2.16e+003)1.58
1.2e+003,1.93e+003) 1.61
1.47e+003,1.7e+003) 1.16

(

(

(

(606,2.16e+003) 3.55
(447,2.19e+003) 4.9
(937,2.03e+003) 2.16
(1.12e+003,1.93e+003)1.73
(640,2.07e+003) 3.24
(732,2.03e+003) 2.77
(344,2.04e+003) 5.93
(304,1.98¢+003) 6.52
(1.19e+003,1.6e+003) 1.35
(681,1.67e+003) 2.45
(509,1.67e+003) 3.28
(558,1.63e+003) 2.91
(785,1.45¢+003) 1.85
(948,1.26e+003) 1.33
(973,1.13e+003) 1.16
(488,1.38¢+003) 2.82
(378,1.38¢+003) 3.66
(540,1.27e+003) 2.35
(529,1.22e+003) 2.31
(699,1.07e+003) 1.53
(721,1.04e+003) 1.44
(291,1.21e+003) 4.14
(333,1.13e+003) 3.4
(204,1.12e+003) 5.48
(336,1.06e+003) 3.17
(551,956) 1.74
(441,980) 2.22
(253,1.02e+003) 4.04
(319,959) 3
(169,947) 5.59
(122,950) 7.76
(234,904) 3.85
(177,911) 5.14
(127,908) 7.16
(124,890) 7.19
(150,865) 5.75
(100,807) 8.06
(164,795) 4.84
(110,744) 6.76
(131,700) 5.36
(158,666) 4.23
(213,590) 2.76

1.34
1.17
1.43
1.18
1.75
1.83
1.09
1.25
1.43
1.34
1.19
1.16
1.33
1.99
2.18
1.53
1.85
0.95
1.91
1.48
1.06
1.03
1.37
1.41
1.14
1.3
1.59
1.31
1.08
1.15
0.987
1.25
1.32
1.28
1.83
1.39
1.98
0.967
1.18
1.56
1.28
1.72
2.04
1.23
1.67
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14 (101,597) 5.9 1.58
94 (29.5,543) 18.4 0.922
32 (106,501) 474 1.65
62 (88.9,501) 5.63 1.39
85 (118,479) 4.08 1.84
6 (161,450) 2.79 1.26
1 (32.4,471) 14.6 1.35
26 (95.2,451) 474 1.49
95 (130,413) 3.16 1.02
8 (91.9,422) 4.59 1.44
28 (42.1,396) 9.39 1.32
30 (62.8,391) 6.23 0.981
61 (134,371) 2.76 2.1
11 (32.5,393) 12.1 2.03
34 (12.9,383) 29.7 1.61
44 (28.9,382) 13.2 1.8
98 (66.4,359) 5.4 1.04
33 (77.7,338) 4.35 1.21
31 (27.9,332) 11.9 1.74
99 (42.4,328) 7.74 1.33
97 (15.4,296) 19.2 0.962
48 (109,273) 2.5 1.71
88 (50.7,287) 5.67 1.58
59 (34.4,276) 8.04 1.07
38 (13,272) 21 1.62
71 (65.3,264) 4.05 1.02
51 (36.6,225) 6.15 1.14
2 (10.3,218) 21.1 1.29
74 (18.7,216) 11.6 1.17
89 (11.5,208) 18.1 1.44
29 (23.9,199) 8.34 1.5
42 (11.9,190) 15.9 1.49
56 (31.3,187) 5.97 0.977
93 (10.7,187) 17.5 1.34
A7 (12.8,176) 13.7 1.6
18 (11.8,164) 13.9 1.48
67 (11.3,162) 14.3 1.42
22 (7.54,149) 19.8 0.943
77 (7.42,113) 15.2 0.927

Average Tps __ 1.39

Average of 57+ T
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