LEARNING HYPERPARAMETERS FOR NEURAL NETWORK MODELS
UsING HAMILTONIAN DYNAMICS

Kiam Choo

A thesis submitted in conformity with the requirements
for the degree of Master of Science
Graduate Department of Computer Science
University of Toronto

Copyright (© 2000 by Kiam Choo

Abstract

Learning Hyperparameters for Neural Network Models Using Hamiltonian Dynamics

Kiam Choo
Master of Science
Graduate Department of Computer Science

University of Toronto

2000

We consider a feedforward neural network model with hyperparameters controlling groups
of weights. Given some training data, the posterior distribution of the weights and the
hyperparameters can be obtained by alternately updating the weights with hybrid Monte
Carlo and sampling from the hyperparameters using Gibbs sampling. However, this
method becomes slow for networks with large hidden layers. We address this problem
by incorporating the hyperparameters into the hybrid Monte Carlo update. However,
the region of state space under the posterior with large hyperparameters is huge and
has low probability density, while the region with small hyperparameters is very small
and very high density. As hybrid Monte Carlo inherently does not move well between
such regions, we reparameterize the weights to make the two regions more compatible,
only to be hampered by the resulting inability to compute good stepsizes. No definite
improvement results from our efforts, but we diagnose the reasons for that, and suggest

future directions of research.

1

Dedication

I dedicate this thesis to my family, who have accepted my wanderings over the years. |

especially dedicate this to my mother, whose strength and will I carry on.

Acknowledgements

I thank Prof. Radford Neal for his invaluable guidance on this thesis. I also thank Faisal
Qureshi for his helpful suggestions and friendship during this thesis. Thanks also to the
other inhabitants of the Artificial Intelligence Laboratory who have helped me in some

way to complete this thesis.

1l

Contents

1 Introduction
1.1 Overview. o o
1.2 The Neural Network Learning Problem
1.3 Bayesian Approach to Neural Net Learning
1.3.1 Bayesian Inference 0 o 0oL
1.3.2 A Simple Example 000 Lo
1.3.3 Making Predictions oo oo
1.3.4 Determining the Hyperparameters From the Data

1.4 Motivation

2 The Hybrid Monte Carlo Method
2.1 Background on Markov chain Monte Carlo Sampling
2.2 The Metropolis Algorithm with Simple Proposals
2.3 The Hybrid Monte Carlo Method
2.3.1 Leapfrog Proposals L.
2.3.2 Stepsize Selection

2.3.3 Convergence of Hybrid Monte Carlo

3 Hyperparameter Updates Using Gibbs Sampling
3.1 Neural Network Architecture.

3.2 Neural Network Model of the Data

v

10
10
14
17
19
21

26

29

3.3 Posterior Distributions of the Parameters and the Hyperparameters . . . 32
3.4 Sampling From the Posterior Distributions of the Parameters and the Hy-
perparameters L. 33
3.4.1 Convergence of the Algorithm 34
3.5 Inefficiency Due to Gibbs Sampling of Hyperparameters 35
Hyperparameter Updates Using Hamiltonian Dynamics 37
4.1 The New Scheme 37
411 Theldea 37
4.1.2 The New Scheme in Detail 38
4.2 Reparameterization of the Hyperparameters 41
4.3 Reparameterization of the Weights 42
4.4 First Derivatives of the Potential Energy 44
4.4.1 First Derivatives with Respect to Parameters 45
4.4.2 First Derivatives with Respect to the Hyperparameters 47
4.5 Approximations to the Second Derivatives of the Potential Energy 48
4.5.1 Second Derivatives with Respect to the Parameters 48
4.5.2 Second Derivatives with Respect to the Hyperparameters 50
4.6 Summary of Compute Times 52
4.7 Computation of Stepsizes Lo 54
4.8 Compute Times for the Dynamical A Method 54
Results 57
5.1 Training Data 57
5.2 Verification of the New Methods 59
5.2.1 Results From Old Method 60
5.2.2 Results of New Methods Compared with the Old 60
5.3 Methodology for Evaluating Performance 64

5.3.1 The Variance of Means Measurement of Performance 68

5.3.2 Error Estimation for Variance of Means 71
5.3.3 Geometric Mean of Variance of Means 71
5.3.4 lterations Allowed for Each Method 72

5.4 Markov chain start states o o000 73
541 Master Runs. 73
5.4.2 Starting States Used 0oL 75
5.4.3 Modified Performance Measures Due to Stratification 77

5.5 Number of Leapfrog Steps Allowed 79
5.6 Results of Performance Evaluation 79
5.7 Pairwise Bootstrap Comparison 85
6 Discussion 91
6.1 Has the Reparameterization of the Network Weights Been Useful? 91
6.2 Making the Dynamical B Method Go Faster 93
6.2.1 Explanation for the Rising Rejection Rates 93
6.2.2 The Appropriateness of Stepsize Heuristics 98
6.2.3 Different Settngs for mp/n, o oo 98
6.2.4 Fine Splitting of Hyperparameter Updates 100
6.2.5 Why the Stepsize Heuristics are Bad 102
6.2.6 Other Implications of the Current Heuristics 103

6.3 Conclusion L 103

A Preservation of Phase Space Volume Under Hamiltonian Dynamics 105

B Proof of Thorem 2: Deterministic Proposals for Metropolis Algorithm107

C Preservation of Phase Space Volume Under Leapfrog Updates 111

vi

Bibliography 113

Vil

Chapter 1

Introduction

1.1 Overview

A feedforward neural network is a nonlinear model that maps an input to an output. It
can be viewed as a nonparametric model in the sense that its parameters cannot easily
be interpreted to provide insight into the problem that it is being used for. Nevertheless,
feedforward neural networks are powerful as with sufficient hidden units they can learn to
approximate any nonlinear mapping arbitrarily closely (Cybenko, 1989). Partly because
of this flexibility, they have become widespread tools used by many practitioners in
the sciences and engineering. These practitioners typically use well-established learning
techniques like backpropagation (Rumelhart et al., 1986) or its variants. But despite the
multitude of learning methods already in existence, learning for feedforward networks

remains an area of active research.

A recent approach to feedforward neural net learning is Bayesian learning (Buntine
and Weigend, 1991; MacKay, 1991, 1999; Neal, 1996; Miiller and Insua, 1998). This new
approach can be viewed as a response to the problem of incorporating prior knowledge
into neural networks. However, the computational problems in Bayesian learning are

complex, and none of the existing techniques are perfect. In the interests of computational

CHAPTER 1. INTRODUCTION 2

tractability, both the works of MacKay (1991; 1999) and Buntine and Weigend (1991)
assume Gaussian approximations to the posterior distribution over network weights.

A more general and flexible approach is to sample from the posterior distribution of
the weights, as has been done by Neal (1996) and Miiller and Insua (1998). Neal obtains
samples by alternating hybrid Monte Carlo updates of the weights with Gibbs sampling
updates of the hyperparameters. Miller and Insua also alternately update the weights
and Gibbs-sample the hyperparameters, but in addition, they observe that, given all
weights except for the hidden-to-output ones, the posterior distribution of the latter is
simply Gaussian when the data noise is Gaussian. While the other weights still need
to be updated by a more complicated Metropolis step, this does allow them to sample
directly from the Gaussian distribution of the hidden-to-output weights. However, as
will be described later, both methods are expected to become slow for large networks,
possibly to the point where they become unusable.

This thesis addresses the above inefficiency for large networks. Specifically, it is
concerned with improving on the hybrid Monte Carlo technique used by Neal so that

both parameters and hyperparameters are updated using hybrid Monte Carlo.

1.2 The Neural Network Learning Problem

The rest of this thesis is about feedforward neural networks only, so we drop the “feed-
forward” for simplicity.

In this section, we define the neural network learning problem that underlies this
thesis.

Given a set of inputs X = {x°}Y°, and targets Y = {y°}2*,, a neural network can be

used to model the relationship between them so that:
f(x5W)~y° (1.1)

where f(-; W) is the function computed by the neural network with weights W. This

CHAPTER 1. INTRODUCTION 3

modeling is achieved by “training” the weights W using the training data consisting of
the inputs X and the targets Y. Once training is complete, the neural net can be used
to predict targets given previously unseen values of inputs.

Conventionally, the learning process is viewed as an optimization problem where the
weights are learned using some kind of gradient descent method on an error function such

as the following:
Ne
. N\ 2
BOW) = 3 (665 W) — y°) (12)
c=1
The result of this procedure is a single optimal set of weights W,,; that minimizes

the error. This single set of weights is then used for future predictions from a new input.

The conventionally-trained network prediction is thus:

fo (x) = £(x; W) (1.3)

1.3 Bayesian Approach to Neural Net Learning

The Bayesian approach to neural network learning differs fundamentally from the con-
ventional optimization approach in that, rather than obtaining a single “best” set of
weights from the training process, a probability distribution over the weights is obtained

instead.

1.3.1 Bayesian Inference

Generally speaking, Bayesian inference is a way by which unknown properties of a system
may be inferred from observations. In the Bayesian inference framework, we model the
observations z as being generated by some model with unobserved parameters (. Specif-
ically, we come up with a likelihood function p(z|(), the probability of the observable
state z given a particular setting for the parameter (. Next, we decide on p((), the prior

probability distribution over parameters (.

CHAPTER 1. INTRODUCTION 4

With these two functions in hand, we use Bayes’ rule to infer the posterior probability

that the parameters have the value (when we observe the state z:

p(¢lz) = % (1.4)

Bayesian learning can be applied to neural networks in the following way. We model
the targets as the neural network output f(x; W) plus some noise, which defines the
likelihood p(Y|W, X'), and we assume some form for the prior distribution of the weights

p(W). The posterior distribution of the weights is then:

p(W)p(Y|W, X)
p(Y[X)

p(W|X,Y) = (15)

where we have set p(W|X) = P(W) since the prior distribution of the weights does not
depend on the inputs. p(W|X,Y) in Eqn. 1.5 is the probability distribution over weights

that we infer in the Bayesian framework.

1.3.2 A Simple Example

As a simple example, assuming that the noise in the output of each unit is Gaussian with

fixed standard deviation o, we get for a net with N, outputs:

2} (1.6)

! NeN, L
p(YIW, X) = <\/ﬂa) exp[—ﬁ Z‘f(XC;W)_yc
c=1

And assuming a simple prior where all the weights W = {w;}Y* have Gaussian

distribution of fixed inverse variance 7:

p(W) = (%)Nw exp [—%X_:wf] (1.7)

This gives the posterior distribution for W:

p(W|X,Y) o< p(W)p(Y|W, X)

Noy

1o, . ﬂ
o exp {—%wa — EZ‘f(XL;W) —y°
c=1

=1

2] (1.8)

CHAPTER 1. INTRODUCTION 5

Here, the symbol o< denotes proportionality. We have dropped the normalizing con-
stant 1/p(Y'|X) as well as factors not dependent on the weights. This is because we are
considering the posterior distribution over the weights only in this simple model, with o

and 7 fixed.

1.3.3 Making Predictions

The prediction of the net trained using Bayesian inference is obtained as the expected

output over all possible weight settings, weighted by their posterior probabilities:
fa(x) = BIECx W)hwixy = [€00 W)V LY, Y)W (1.9

Compared to Eqn. 1.3, Bayesian prediction is clearly more complicated.

1.3.4 Determining the Hyperparameters From the Data

The inverse variance of the weights 7 is called a hyperparameter because it is a parameter
that controls the prior distribution of the parameters w;. In practice, it is reasonable to
let the hyperparameters be determined from the data. For instance, the input-to-hidden
weights for one training set might need to be larger than for another training set because
its outputs vary more rapidly. Evidently, it is possible to infer the hyperparameters from
the training data.

But we infer the hyperparameters not just because it is possible, but because it is
desirable as well. This is because it is difficult for a human operator to guess a good setting
of the hyperparameters, but it is easier to guess a prior distribution for hyperparameters,
e.g., in terms of its mean and some measure of its spread. Moreover, allowing the precision
7 to vary in Eqn. 1.7 couples the weights in their prior distribution and allows for a richer
prior, whereas all the weights would be independent in their prior if 7 were fixed. Details
of the incorporation of the hyperparameters into the sampling procedure will be given in

later chapters.

CHAPTER 1. INTRODUCTION 6

Once we have the posterior distribution of the weights and the hyperparameters, the
network has been “trained”. Predictions from the net now involve the joint posterior

distribution of the weights and the hyperparameters W:
f(x) = Ef(x; W, ¥)|wuxy = /f(x; Wp(W,¥|X,Y)dWdw (1.10)

The above integral usually cannot be analytically obtained for neural network models.
Note that o, the variance of the data, is often also regarded as a hyperparameter
because the role it plays in controlling the network error is similar to that played by

other hyperparameters in controlling their respective weights.

1.4 Motivation

The practicality of the Bayesian framework hinges on the existence of computationally
efficient ways to evaluate or approximate Eqn. 1.10. The main problem is that the
posterior distribution p(W, ¥|X,Y) is often such that the integral in Eqn. 1.10 cannot
be performed analytically.

In the interests of computational feasibility, Buntine and Weigend (1991) and MacKay
(1991; 1999) approximate the posterior distribution of the weights and hyperparameters
as a Gaussian distribution. Unfortunately, it usually cannot be seen in advance from the
training data if a Gaussian distribution is a reasonable approximation to the posterior
distribution. For instance, for a small network that has just enough hidden units to model
some given data, we would expect that, ignoring multiple modes due to units swapping
roles, the posterior distribution is peaked at a single mode because each unit has a well-
constrained role to play in the mapping. In such a case, one might reasonably expect the
posterior to be approximately Gaussian. However, when there are more hidden units,
units are no longer so constrained, and the posterior distribution will be broader in ways

that do not necessarily retain a Gaussian appearance.

CHAPTER 1. INTRODUCTION 7

Neal’s (1996) and Miiller and Insua’s (1998) approach to the problem is to sample from
the posterior distribution using Markov chain Monte Carlo (MCMC) techniques. MCMC
techniques do not approximate the posterior distribution as a Gaussian, but instead
sample faithfully from its true form. With n samples from the posterior distribution, we

can obtain the expected output of the net as:
1 n
f ~— Y f(x; W, ¥, 1.11
RS (111)

In order for this method to be effective, each sample (W;, ¥;) must be as independent
of the previous sample as possible. A common problem of MCMC techniques is that
samples can be highly correlated, in which case even though they are drawn from the
correct distribution, they sample the distribution very slowly, and a huge number of
samples might be needed for reliable estimates. In severe cases, the method becomes
infeasible for practical use. The MCMC technique used by Neal faces this problem when
the number of hidden units becomes large. His method alternates between using hybrid
Monte Carlo to update the network parameters, and Gibbs sampling to sample the
hyperparameters. Unfortunately, it is this alternation between updating the parameters
and the hyperparameters that causes high correlations from one sample to the next as
the number of hidden units becomes large.

The root of this inefficiency is that, during each hybrid Monte Carlo process that
yields one sample of the weights, the hyperparameters are held fixed. This would not
be a problem if, to obtain the next sample of the weights, the hyperparameters can be
shifted to an uncorrelated value. However, because the hyperparameters are updated
using Gibbs sampling given the current values of the weights, they are “pinned” and
unable to move much. The larger the number of hidden units, the greater the pinning
effect 1s.

Miiller and Insua’s method suffers from the same inefficiency as it also alternates
Gibbs sampling of the hyperparameters with Markov chain updates of the network pa-

rameters.

CHAPTER 1. INTRODUCTION 8

This problem is the motivation for this thesis. In this thesis, we propose and inves-
tigate a modification to the hybrid Monte Carlo technique used by Neal. Specifically,
rather than updating the weights by hybrid Monte Carlo and the hyperparameters by
Gibbs sampling, we update both the weights and the hyperparameters using hybrid
Monte Carlo. The idea is that, because both the weights and the hyperparameters are
now changing at the same time, we no longer have the pinning effect, and hybrid Monte
Carlo should then be able to produce samples that move much more efficiently through

the posterior distribution.

Of course one might ask why we would want to use large hidden layers in the first
place. There are several reasons for this. Firstly, since a neural network is a nonpara-
metric model, it makes sense when modelling some data to use a lot of hidden units in
order to maximize the network’s power of representation. That is, we want the function
computed by the neural network to not be constrained by there being too few units, and
be determined instead by the data. Secondly, small numbers of hidden units often leads
to local maxima in the posterior distribution of the weights because the few available
hidden units can get trapped into representing suboptimal features in the data, leaving
no spare “unused” units to seek out the important features. Using a larger hidden layer
tends to connect the multiple modes into ridges and thus improves mobility. Finally, in
his book, Neal (1996) has shown that the prior distribution of a neural network becomes
tractable for infinite-sized hidden layers. So, using many hidden units allows for a more
precise specification of a neural network’s prior distribution. Incidentally, overfitting is
not a problem in the first justification given above because Neal’s results show how to

assign appropriate priors for increasing network size.

This thesis is organized as follows. As an effort to make this a self-contained work,
Chapter 2 lays down the background material on Markov chains and the hybrid Monte
Carlo method that is necessary and hopefully sufficient to understand the rest of what

follows. Chapter 3 describes the original method of Neal. Chapter 4 presents the new

CHAPTER 1. INTRODUCTION 9

method that is the subject of this thesis. Results of the investigations of the new method
are presented in Chapter 5, followed by the discussions and conclusions in the final

chapter.

Chapter 2

The Hybrid Monte Carlo Method

In this chapter, we introduce the hybrid Monte Carlo method, which is the main method

by which we sample from the posterior distribution of a neural network.

2.1 Background on Markov chain Monte Carlo Sam-

pling

In this section, we present some necessary background on Markov chains at a level of
technical detail sufficient to explain the rest of this work. More detailed presentations

may be found elsewhere, such as Feller’s (1966) book.

Definition 1 (Markov chain) A Markov chain is a series of random variables Xo, X1,

Xy, ..., ete., such that:
P(Xi|Xiz1, Xiza, ..., Xo) = P(X;|Xi21) (2.1)

That is, given X;_1, X; is independent of all “earlier” X ’s.
A Markov chain is defined by the state space S in which the X;’s live, the distribution

over the initial state P(Xo), and the transition probability function P(X;|X;_1).

10

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 11

For us, the utility of Markov chains lies in the fact that, under the right conditions,
they converge to some probability distribution regardless of starting state. In other
words, independent of starting state, in the limit of large n, X, will become a sample
from a particular distribution Q(z). This allows us to obtain samples from posterior

distributions that arise in probabilistic inference.

Below, we present a theorem obtained from Rosenthal (1999) that tells us the con-
ditions under which a Markov chain converges to a distribution. In this presentation,
probability density functions will be used in two ways: with a state as an argument, or
with a set as an argument. Thus, p(z) will refer to the probability density at z, while
p(A) will mean the total probability mass in the set A. First, we need the following

definitions. Let S be the state space of the Markov chain.

Definition 2 (Multitransition probability) For x € S and A C S, we define the
multitransition probability T™(x, A) as the probability of ending up in the set A after n
transitions according to the Markov transition probabilities given thal we started at state
x. T™(x,A) is really P(X, € A|Xo = x). For one transition, we also write T(x, A)

rather than T'(z, A).

Definition 3 (Invariant distribution) n(z) is an invariant distribution of « Markov

chain with transitions T'(x, A) if, for all sets A C S:

n(A) = / ~(dy)T(y, A) (2.2)

where dy is a set of infinitesimal volume at state y. We also say that the Markov chain

leaves m(x) invariant.

Note that a Markov chain may not have an invariant distribution, and if it has one,

it may not be unique.

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 12

Definition 4 (Total variation distance) The total variation distance belween two

probability distributions p and q on S is given by:

lp—q| = sup Ip(A) —q(A)] (2.3)

Suppose we start a Markov chain from state x € S. Then, depending on the history
of transitions it takes, it will take varying numbers of steps to enter the set A C S of
nonzero volume, if it does at all. Let 74 be the history-dependent random variable that
denotes the first time the Markov chain enters A, i.e., 74 = inf{n > 1; X,, € A}. Note
that 74 could equal infinity. Then, we have the following important definitions about the

mixing properties of a Markov chain:

Definition 5 (Irreducibility) A Markov chain is irreducible if for any set A C S of
nonzero volume, P.(T4 < o0) > 0 for all starting points x € S. That is, any starting
point x has some probability of going to any nonzero volume within a finite number of

steps.

Definition 6 (Aperiodicity) A Markov chain is aperiodic if there does not exist a
partition of the state space S = S1|JS2J... | Sm for some m > 2 such that T'(x,S;41) =

1 for allz € S; withi=1tom —1, and T(x,51) =1 for all z € S,,.

If a Markov chain has an invariant distribution, and it is both irreducible and ape-
riodic, then it converges to that invariant distribution. This theorem, presented below
without proof, is a slightly modified version of the one given by Rosenthal (1999), who

also proves it.

Theorem 1 (Markov Chain Convergence) Let T'(z, A) be the transition probabilities

for an irreducible, aperiodic Markov chain having invariant distribution w(x) on a stale

space S. Then, for all x € S such thal w(z) # 0:

lim |T"(z,-) — x(-)] = 0 (2.4)

n—oo

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 13

That is, as the number of lransitions goes to infinily, the total variation distance
between the invariant distribution and the distribution of the Markov chain started from

any state x such that w(x) # 0 goes to 0.

Using the above theorem, we can construct Markov chains that converge to a desired
distribution by ensuring that it is aperiodic, irreducible and has the target distribution as
an invariant distribution. However, while the above theorem guarantees convergence in
theory, it does not say anything about the speed with which convergence is achieved. This
is important as the initial portion of a Markov chain is typically not representative of the
invariant distribution, and needs to be discarded in order not to bias the distribution.
Moreover, a badly-constructed Markov chain can converge far too slowly to be useful
in practice. Nevertheless, having one that converges to the correct distribution, and
knowing that it does, is a good start.

A Markov chain that is constructed to generate samples from some target distribution
is known in the literature as a Markov chain Monte Carlo (MCMC) method. An example
of an MCMC method that is commonly used for multivariate distributions is Gibbs
sampling. Gibbs sampling consists of update steps where each variable is updated in
turn. During each update, a variable is replaced by a sample from its target distribution
conditional on all the other variables having their current values. Note that the new
value of the variable is chosen without reference to the old value it replaces. This leaves
the desired distribution invariant because the resulting multivariate state is an outcome
drawn according to the target distribution. Furthermore, because all values of a variable
have non-zero probability of being generated, the method is irreducible and aperiodic so
long as all the variables get updated at some point.

Although it is conceptually simple, Gibbs sampling requires that one is able to sample
from the conditional distribution of each variable. For complicated distributions like the
neural network posteriors in this thesis, this is usually not possible. Other schemes exist

that do not have this requirement. Below, we present the Metropolis algorithm with

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 14

simple proposals, which requires only that we be able to evaluate the target probability
density at a given state, but whose weaknesses will motivate the more sophisticated

hybrid Monte Carlo method used in this thesis.

2.2 The Metropolis Algorithm with Simple Propos-

als

The Metropolis algorithm (Metropolis et al., 1953) is a well-known algorithm for con-
structing a Markov chain with a desired invariant distribution.

Let 7(X) be the desired invariant distribution. Suppose our Markov chain currently
has state X;. The Metropolis algorithm amounts to the following Markov chain transition
rule. First, propose a transition to a new state X! from the current state X;, where the

proposal probability density M (X;, X!) must be symmetric, that is:
M(X;, Xi) = M(X}, Xi) (2.5)

M (X;, X]) is the probability density of going to X! given that we were originally at X;.
Next, accept the proposed state as the next Markov chain state X;;; with the following

probability:

P(accept) = min(l, :g;) (2.6)

If we reject, the state X;;1 is set to be the previous state X;.

One can show that the Metropolis algorithm guarantees that the target distribution
7(X) is an invariant distribution of the Markov chain. However, it does not guarantee
that the Markov chain is irreducible and aperiodic.

Let us consider the performance of the Metropolis algorithm in sampling from some

target distribution when we use a simple Gaussian proposal with a fixed covariance X

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 15

centred on the current point X;:

1
exp|—= (X! — X)TY (X! - X)) (2.7)

1
P(X!
2

RNCENTE
where d is the dimensionality of the state space. This example will illuminate the key
issues in sampling a distribution with the Metropolis algorithm.

If the variance of the Gaussian proposals are too large compared with the width of the
target distribution, the Metropolis algorithm almost always rejects, as proposals usually
end up in regions of low target probability. Clearly, this may lead to a slow exploration of
the state space, and a proposal with a smaller variance and higher acceptance rate may be
better. Indeed, with the exception of special cases like two-dimensional Gaussian target
distributions, fairly high acceptance rates (& 0.5) are better than very low acceptance
rates. But in order to keep the acceptance rate high, the standard deviation of the
proposal distribution must be of a size comparable to the distribution’s thinnest cross
section, and so the steps taken must be very small compared to the overall distribution
if the distribution is very thin in one direction, but very long in others.

Thus, the first problem is that the presence of a long, thin region in a distribution
constrains such a scheme to take steps which may be very small compared to the size
of the overall distribution. This by itself is not so bad if the direction of the next
step is somehow correlated with that of the first. However, it is not, and that is the
second problem: the next step is chosen independently of the first, and because it has
the possibility of doubling back on the first step, a random walk results. This effect is
illustrated in Fig. 2.1.

We expect that the posterior distribution of a neural network’s weights is complicated
under most circumstances, and might potentially have long, narrow regions. Thus, to
sample from the posterior distribution of a neural network using the Metropolis algo-
rithm with Gaussian proposals, we would need to use proposal distributions with small
variances. This leads to inefficient random walks as described above.

A method that is more appropriate for the complicated posteriors seen in neural

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 16

0.8

0.4r

0.2

finish

start

Figure 2.1: Illustration of random walk when using the Metropolis algorithm with sim-
ple Gaussian proposals to explore a two dimensional Gaussian distribution. Here, the
standard deviation of the Gaussian proposals was 0.05, and of the 200 samples obtained,
there were 14 rejections. (Large steps are actually more efficient for the special case of
a two-dimensional Gaussian target distribution; this figure serves as an illustration of

random walks only.)

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 17

network models is the hybrid Monte Carlo algorithm, which addresses the random walk
problem by having auxiliary momentum variables that allow it to keep going in the
same direction for many steps. This means that, in the case of hybrid Monte Carlo, the
Metropolis rejection test is applied only after many steps to give it a chance at travelling

a long distance.

2.3 The Hybrid Monte Carlo Method

The hybrid Monte Carlo method, first used in physics by Duane et al. (1987), can be
thought of as a Metropolis algorithm with a sophisticated proposal. In this section,
we describe how the hybrid Monte Carlo method works. Neal (1993, 1996) has written
relevant expositions of this technique, but we include it here for completeness. We will
use the symbols C' and C’ to denote normalizing constants.

In hybrid Monte Carlo, we associate a physical system with the distribution that
we want to sample from. In essence, we simulate the movement of a particle moving
in a potential energy well equal to the negative log of the probability density for the
distribution that we want to sample from. Each iteration consists of randomizing the
velocity of this particle, simulating its motion for some time, and then obtaining its
position, which becomes a new sample.

Suppose that we wish to sample from the distribution P(q), where q € R%. R? is
then the state space of our associated physical system, and q is a state of the system.
We augment each state variable ¢; with a momentum variable p;, and we define the

Hamiltonian:

H(q,p) = E(q) + K(p) (2.8)

where the potential energy F(q) is obtained from the desired distribution as:

E(q) = —log P(q) —log Z (2.9)

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 18

for any choice of Z, and the kinetic energy K (p) is defined with the set of masses {m;}%_;:

K(p)=)_ an : (2.10)

Hybrid Monte Carlo allows us to set up a Markov chain that converges to C’ exp(—F(q)—
K(p)) as its unique invariant distribution. By ignoring the values of p, we obtain samples
of q drawn from the target distribution P(q), since this is the marginal distribution.

In the hybrid Monte Carlo method, we simulate the time evolution of the physical

system with the above Hamiltonian using Hamiltonian dynamics, which is given by:

dp
o —VE(q)

2.11
dg _ p 210
dt m;

Let us assume for now that we have the ability to do the simulation with perfect
accuracy. Since Hamiltonian dynamics leaves H invariant and keeps phase space volume
constant (see Appendix A), simulating the system over any fixed length of time yields
a new pair (q,p) that leaves any distribution that is a function of H invariant. In
particular, it leaves C"exp(—H(q,p)) = C"exp(—F(q) — K(p)) invariant.

However, a Markov chain that consists of only this update is not irreducible, as all
points generated from a starting point never leave a hypershell of constant H, thus vio-
lating the irreducibility requirement for Thm 1. To rectify this situation, we update the
momentum variables in such a way that the Markov chain has some chance of reaching
all the other values of H after some number of iterations. Specifically, before the simu-
lation of Hamiltonian dynamics, we replace all the momentum variables by new values
drawn from the distribution Cexp(—K(p)). Again, this update leaves the distribution
C"exp(—FE(q)— K(p)) invariant since it draws p from the correct conditional distribution,
which happens to be independent of q.

So the joint update consisting of the momentum update followed by the Hamiltonian
dynamics simulation is a Markov chain that leaves C"exp(—F(q) — K(p)) invariant. If

we can construct such a Markov chain and prove that it is irreducible and aperiodic,

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 19

then we have a Markov chain that converges to the desired distribution C”exp(—FE(q) —
K(p)), and we can obtain the desired samples by ignoring p. Moreover, if, during the
Hamiltonian simulation, we follow the dynamical trajectory of a state for a long time, we
might obtain a state that is much less correlated with the original state than a Metropolis
algorithm with simple proposals.

The method presented thus far is not the actual hybrid Monte Carlo algorithm, but
it contains all the essential ideas. What is different about hybrid Monte Carlo is that, in
reality, we are unable to simulate Hamiltonian dynamics perfectly. Owing to the fact that
neural network models are highly complex and so lead to non-integrable Hamiltonians,
we have to settle for an approximate discretized simulation of Hamiltonian dynamics,
followed by a Metropolis rejection test that ensures that C'exp(—H) is kept invariant.
As before, the update consisting of momentum resampling followed by the simulation
keeps the desired distribution C’exp(—H) invariant. The conditions under which this
Markov chain is irreducible and aperiodic depends on its details, and we delay discussing
this until Section 2.3.3.

Finally, we note that the discretized simulation is now also a Metropolis proposal,
with the probability of rejection increasing as the simulation error as measured by the
rise in H increases. When we do the simulation well, we keep H almost invariant over long
trajectories, so it is in our interests to do the simulation as well as we can in order to have
a high acceptance rate, even though simulation errors are corrected by the Metropolis

rejection test to give the exact desired distribution.

2.3.1 Leapfrog Proposals

Because the discretized simulation used as a Metropolis proposal is deterministic, the
standard reversibility condition for Metropolis proposals (Eqn. 2.5) does not apply.
Instead, the equivalent reversibility conditions for deterministic proposals are that the

mapping that is the Metropolis proposal is its own inverse, and that it has Jacobian 1.

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 20

That is:

Theorem 2 (Deterministic Proposals for Metropolis Algorithm) If Y = M(X)

is a deterministic mapping that satisfies the two conditions:

oY .
‘@—X =1 (volume conservation) (2.12)
M(M(X)) =X (reversibility) (2.13)

then by accepting the update X < M(X) with probability min(1,7(M(X))/m (X)) and

rejecting it otherwise, the distribution m(X) is left invariant.

We give the proof of this in Appendix B.

To satisfy the two conditions of volume conservation and reversibility, we use a deter-
ministic proposal composed of “leapfrog updates” to simulate the Hamiltonian dynamics
by performing a trajectory of [steps each lasting € time. At the end of each trajectory,
we negate the momentum p. Each leapfrog update consists of:

€ el
pi(t + 5) = pi(t) — 58(]2'

6pi(t +¢/2)

(q(t)) for each:i=1.d

qi(t+¢€) =q(t) + for each 1 = 1..d (2.14)
m;
€ eV .
pi(t+¢) =pi(t+ 5) — 58% (a(t+¢€)) foreachi=1..d

Note that, in the above scheme, all the components are updated before moving on
to the next line. For instance, all the components of p;({ 4 §) are calculated before the
update for q is computed.

To see that the leapfrog update satisfies the volume conservation condition, we note
that the change in each component of each state variable does not depend on itself, and
so each component’s update amounts to a shear, which is a volume-preserving trans-
formation, and which therefore has Jacobian 1. This is discussed in greater detail in

Appendix C.

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 21

Also, it is easy to check that the negation of the momentum at the end of a leapfrog
trajectory of multiple leapfrog steps means that, if a trajectory takes us from point A to
point B, then starting at B takes us back to A. Thus, leapfrog trajectories also satisfy
the reversibility condition.

We summarize the algorithm for the hybrid Monte Carlo in Algorithm 1 and Algo-
rithm 2. Note that the momentum negation is not implemented as the momentum is
replaced by resampling before the next leapfrog trajectory anyways.

The algorithm discussed thus far avoids random walks by allowing long trajectory
lengths. However, the actual algorithm implemented by Neal (1996) has an additional
optimization of the stepsizes that estimates the local second derivative of the potential
energy in order to take steps that are appropriately scaled in the various dimension. This

is discussed next.

2.3.2 Stepsize Selection

In using the hybrid Monte Carlo method, the question of what values to choose for the
stepsize € and for the masses m; naturally arises. As we shall see, it turns out that
choosing the masses is equivalent to choosing different stepsizes in different dimensions
of the state variable, and the careful choice of these stepsizes is necessary for hybrid
Monte Carlo to perform well.

It is clear from Eqn. 2.14 that, since € is the timestep of a discretized simulation
of Hamiltonian dynamics, large values of € cause an inaccurate simulation so that H
can wander far from its initial value. In particular, such an inaccurate simulation will
typically land the proposed state in a region of low target probability. This is analogous to
using a Gaussian proposal with too large a variance in the Metropolis algorithm example
of Section 2.2, and so having to reject frequently. Thus, keeping rejection rates low
requires careful selection of € that is low enough, and yet not so low that we explore the

distribution laboriously.

CHAPTER 2. THE HYBRID MONTE CARLO METHOD

22

Algorithm 1 HybridMonteCarlo(nsamples,, €, qinit)

q’ < Qinit
for each component 5 do
p} < N(mean = 0, variance = m;)
end for
for : = 1 to nsamples do
for each component 5 do
p) « N(mean = 0, variance = m;)
end for
p' < p'
q — q!
for y =1tol do
(q',p') « LeapfrogUpdate(q’, p', ¢)
end for
if U[0,1] > min[l,exp(—H(q',p') + H(q""!,p'™!))] then
q « q!
p' < p'
end if

end for

Return {q’, p'}/25"""**

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 23

Algorithm 2 LeapfrogUpdate(q, p, €)

for each component 7 do

pi = pi — (¢/2) X d(E[dqi)(q)
end for
for each component 7 do

Gi <= gi + (e/mi) X p;
end for
for each component 7 do

pi = pi — (¢/2) X d(E[dqi)(q)
end for

Return q, p

As described by Neal (1996), for a toy quadratic Hamiltonian of the form:

2

|

2
P
2.15

202

H diverges under the leapfrog discretization if a stepsize € > 20 is used, whereas H stays

bounded if ¢ < 20. To transfer this result to a general non-quadratic H(q,p), we note

that, near equilibrium, samples are usually obtained near local minima of F(q), where it

can be approximated by its Taylor expansion to second order. Thus, we expect a stepsize
¢ ~ (02E/8q*)~/? to be appropriate near equilibrium.

In the case where the state space is multi-dimensional but the Taylor expansion to

second order has no correlations between its dimensions, we could set:

2\ 73
€ ~ m}n(%qf) (2.16)

in order to prevent the leapfrog simulation from diverging. But if the Taylor expansion

has correlations between its dimensions, the above might not be small enough, as the
stability of the leapfrog updates is constrained by the narrowest cross-section, which

might not be axis-aligned at all. In general, the stepsize € has to be adjusted downwards

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 24

by different amounts depending on the shape and orientation of the energy function. To
take this into account, we introduce an operator-defined tuning parameter n, which we

call the stepsize adjustment factor, and which controls the stepsizes as follows:
AN
€ =1 X min 2.17
TN <5Q?) 217

However, choosing the same stepsize to use in all directions may cause slow, random

walk-like exploration in those directions unless we use very long trajectories, which may
be unnecessarily computationally intensive. The underlying problem is that of making a
move that is compatible with the local length scales of the distribution. It is the same
problem that we encountered earlier in considering the Metropolis algorithm with simple
proposals, but under a slightly different guise.

Clearly, it is preferable to use different and appropriate stepsizes for each direction,
the values of which we choose by looking at the local length scales of the distribution.
Ideally, we would like to set the stepsize for direction 7, ¢;, based on the width of the

potential energy bowl in the direction g¢;:

AN

However, one may wonder if the leapfrog update with different stepsizes for different

components still simulates Hamiltonian dynamics. The answer is that the masses are
the extra degrees of freedom that enable us to implement different stepsizes in different
directions and still keep H approximately constant. To see this, we first note that, if we

rewrite the leapfrog equations in terms of p; = p;/\/m;, they become:

it + <) = pi(t) — 1l e Ok
pi = P 3 T da

G(t+¢)=q(t)+ pi(t +¢/2) (2.19)

(a(t))

NG
Pilt+) = pilt+35) -

l e OF
2‘/mi (‘3qi

(a(t +¢))

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 25

We set the stepsizes ¢; = ¢/ /m;, and rewrite the leapfrog updates as:

e+ 5) =0 - S5 (a(0)
ai(t+ €)= (1) + eifi(t + ¢/2) (2.20)
Pilt+) = plt+5) - %gi(q(t +¢))

These new updates are exactly equivalent to the original ones in Eqns. 2.14, except
we work in terms of rescaled momenta. Should we choose to, we can always recover the
old momenta after an update. But rather than using the original leapfrog updates, we
can work in terms of p; using the new mass-absorbed updates. We note the following

important facts about one mass-absorbed update of q and p using Eqns. 2.20:

Fact 1 Fach mass-absorbed leapfrog update keeps H(q,p) = E(q) + 2?21 p2/2 approxi-
mately invariant. This is because il keeps H(q,p) = F(q) + 2?21 p?/2m; approximalely

invariant, and the two H'’s are equal.

Fact 2 Fach mass-absorbed leapfrog update conserves phase space volume in the state
space (q,p) since p; is related to p; merely by the scale factor \/m;. This holds if the €;’s

are set independently of the current value of q or p.

Fact 3 FEach mass-absorbed leapfrog update is reversible so long as the ¢;’s are set without
using the current values of q and p, since these are different at the beginning and at the

end of each step.

In view of these three facts, we have the following revised algorithm that stores p

instead of p. Before the leapfrog updates, we estimate the stepsize ¢;:

2R\ "2

independently of the current state using some problem-dependent heuristic. The leapfrog

trajectory now consists of mass-absorbed updates, at the end of which we apply the

Metropolis rejection test using the Hamiltonian H(q,p) = E(q) + 2?21 p?/2. Since the

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 26

proposals in the (q, p) state space are reversible and conserve phase space volume, the
Metropolis rejection test can be used to produce an update that keeps exp(—H(q, p))
invariant. Thus, we have a Markov chain that leaves exp(—FE(q) — Zle p?/2) invariant.

We summarize hybrid Monte Carlo with stepsize selection in Algorithm 3, where the
function Stepsizes() computes the appropriate stepsize to use for each component. We
call the function LeapfrogUpdate() with a vector for its stepsize parameter unlike the
scalar in Algorithm 2, but what we mean here should be clear. The setting of the stepsizes
depends on the exact problem at hand. For a neural network model, Neal (1996) sets
them based on the current values of the hyperparameters. These do not change over

the course of a leapfrog trajectory in the scheme presented in his book, so that leapfrog

trajectories are reversible.

2.3.3 Convergence of Hybrid Monte Carlo

In this section, we discuss the conditions under which this Markov chain algorithm con-
verges to a unique invariant distribution.

Thm. 1 tells us that, in order for hybrid Monte Carlo to converge to a unique
distribution, it must be both irreducible and aperiodic. Whether or not this is true
depends on the details of the Hamiltonian, the leapfrog trajectory length, and the stepsize
adjustment factor. Although we have no formal proof, we have strong reasons to believe
that both conditions are satisfied in most neural network applications, whose Hamiltonian
dynamics are highly nonlinear and whose Hamiltonians have values that are finite for
finite values of the state parameters.

Let us first discuss peridocity. For most problems involving complex nonlinear Hamil-
tonians such as the ones we encounter in neural network applications, we expect that
periodicity is unlikely and, if it should appear, is pathological rather than typical. An
example of such an unlikely periodicity is a case where the Hamiltonian dynamics takes

us exactly halfway or completely around a hypershell of constant H, and this periodicity

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 27

Algorithm 3 HybridMonteCarloWithStepsizes(nsamples,l, 1, Qinit)
qO & Qinat

p? <« N(mean = 0, variance = I)
for : = 1 to nsamples do
p’ < N(mean = 0, variance = [)
€ < n X Stepsizes()
p' P’
q — g
for y =1tol do
(a',p") ¢ LeapfrogUpdate(q’,p', €)
end for
if U[0,1] > min[l,exp(—H(q',p') + H(q""!,p'™!))] then
q « gt
p' < p'
end if

end for

Return {q’, p'}/25"""**

CHAPTER 2. THE HYBRID MONTE CARLO METHOD 28

persists in hypershells of all values of H so that momentum resampling does not avail
us of an escape from periodicity. Such a situation appears very unlikely for the highly
nonlinear neural network Hamiltonians that we use, so we expect that we will probably
always have aperiodicity in practice. Still, if one wishes to be on the safe side, one can
vary the stepsize adjustment factors randomly over a small range, and that should re-
move any periodicities (Mackenzie, 1989). This modification was not implemented in our
version of the algorithm.

Irreducibility depends on the exact shape of the potential energy surface. Let us
assume for now that our hybrid Monte Carlo algorithm is able to simulate Hamiltonian
dynamics perfectly. Then it seems intuitively clear that, so long as the potential energy
does not become infinity for finite values of q, hybrid Monte Carlo should be irreducible.
In particular, while moving around in a local minimum, it always has some probability
of gaining a sufficiently large kinetic energy from momentum replacement to leave it and
visit other parts of state space. This can only be prevented if that local minimum is
bounded by walls of infinite potential energy. And since our neural network Hamiltonian
is always finite for finite values of q, we expect that we will always have irreducibility.
However, hybrid Monte Carlo really only simulates Hamiltonian dynamics approximately,
so it is conceivable that a finite potential well could be a trap like an infinite one. Never-
theless, the fact that hybrid Monte Carlo does simulate Hamiltonian dynamics is reason

to believe that the above argument for irreducibility should usually apply.

Chapter 3

Hyperparameter Updates Using

Gibbs Sampling

3.1 Neural Network Architecture

In this thesis, we concern ourselves with a neural network with one hidden layer only.
The techniques described here can readily be extended to networks with more hidden

layers.

The neural network model used here will have N, input units, N, hidden units and
N, output units. The parameters of the neural network are referred to collectively as 6.

As shown in Fig. 3.1, they are:

Input-to-hidden weights U = {uikiy
Hidden-to-output weights V= {Ui}f\iﬁ
Hidden biases A={q 5\211
Output biases B = {bi}f\g

where N, = NN, N, = N, N, = N, N, and N, = N,,.

We will sometimes use the alternative notation:

29

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 30

N, output units

Uy

> N;, hidden units

Uj

- - —Q N, input units

Figure 3.1: Neural network architecture used in this work

Input-to-hidden weight from unit : to unit j Ui
Hidden-to-output weight from unit j to unit & Vik
Bias on hidden unit j A;

Bias on output unit & By

In this neural network, we use the tanh(-) nonlinearity, and it occurs only at the single

hidden layer. Thus, for input vector {J;Z}fvle the 7’th hidden unit output is:

Nx
h]‘ = tanh (Z U”.IZ + AJ> (31)
=1

while the output at unit k& has no nonlinearity:

Np,
Je = Z Vikh; + By (3.2)

i=1

3.2 Neural Network Model of the Data

The neural network model of the data is as follows. Let § be the error in the output of

the neural network for training input x and target y:

0 =1f(x;0)—y (3.3)

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 31

We assume that each component of d has precision (or inverse variance) 75. Then,
given an input case x, the parameters of the network #, and 75, the probability of ob-
serving the target y is:

Ny /2
T T
Pl = (52) x| -Fitexio) -y (3.4)

The prior distributions of the four groups of parameters are normal with means 0 and
precisions 7T,. The asterisk indicates the corresponding group of network parameters, and
may be u, v, a or b. For instance, for the input-to-hidden weights U:

_—N -7)
PU|r,) = (ﬂ) exp(—?;%) (3.5)

The prior distribution of the parameters 6 is simply the joint distribution:
P(0ly) = P(U|r,) P(V|r) P(Alr.) P(B|7) (3.6)

where v denotes {75, T, 7o, Tu, 7o }. 7 is the set of hyperparameters which control the prior
distribution of each group of parameters. These prior distributions keep the network
parameters small, and amount to a principled formulation of the weight decay terms
found in the neural network training literature (see Bishop, 1995).

Rather than fixing the hyperparameters, we allow them to vary also, and we let them
each have gamma distributions. For instance, for 7,:

0y [2y,)1 2-1
P(r,) = %7’3“/ exp(—Ty 0, [2w,) (3.7)

which is a gamma distribution with mean w, and shape parameter «, for each 7,. The

prior distribution of the hyperparameters P(«) is simply the joint distribution:
P(y) = P(75) P(7u) P(7,) P(7a) P() (3.8)

In this work, a, and w, are fixed by hand.

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 32
3.3 Posterior Distributions of the Parameters and
the Hyperparameters

We can infer the posterior distributions for the parameters § = {U,V, A, B} and the
hyperparameters v = {75, 7, 7o, T, 7o} When the training data is observed. In the Monte
Carlo approach, we do this by obtaining samples from the distribution P(8,~|z,y), where
z = {x}¥, and y = {y°}Y, are the training data.

Neal (1996) samples from P(6,~v|z,y) by obtaining a series of Markov chain samples
{0;, 7}, where v; ~ P(v|0 = 6;_1, ,y) is obtained by Gibbs sampling, and 6; is obtained
from 6;_; as a hybrid Monte Carlo update that leaves the distribution P(8|y = i, z,y)
invariant. During the first iteration, v, is set to some moderate values. We discuss the
convergence properties of this Markov chain in Section 3.4.1.

In the remainder of this section, we give the distributions P(0|y, z,y) and P(v|0, z,y),

which are required for the above sampling scheme.

Using Bayes’ Rule, we obtain the posterior distribution for 4 as:

P(yl0,~,z)P(0]y, z)
P(ylv)

o< P(ylf, 7s5,2) P(0]7) (3.9)

P(0|77$7y) =

x [1_1 P(y©|0, s, XC):| PU|r,)P(V|r,)P(A|7.)P(B]|m)

The reader is referred to Eqns. 3.4 and 3.5 for the full expansion of the above expres-
sion.
The posterior distribution for v, P(v|6, z,y), is the probability of the hyperparameters

conditioned on 8, x and y:

Consider the hyperparameter 7,. Since each 7, is the precision of its group of pa-

rameters, it can be inferred solely from those parameters independently of x and y. For

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 33

instance, for 7,:

P(r.l0,,y) = P(rul{ui}2)

oc P({ui}iZ 7) P(7) (3.11)

Nu
(autNu)/2-1 _T_u % 2
X T, exp[5 (wu—l_ZuZ)]

=1

75, on the other hand, is the noise in each component of y°. 75 is inferred from the

[

errors 6° = f(x%0) — y*

P(T5|evxvy) & P({5C}Jc\7:cl|7_57‘97x)P(T5)

N.
A |2 (03) -y)

Note that Eqns. 3.11 and 3.12 are gamma distributions.

3.4 Sampling From the Posterior Distributions of

the Parameters and the Hyperparameters

Since Eqns. 3.11 and 3.12 are gamma distributions, independent samples for the hyper-

parameters can be drawn using well-known techniques (Devroye, 1986).

Drawing samples from the posterior distribution of the parameters is more difficult.
For instance, standard Gibbs sampling cannot be used because the conditional distribu-
tion of each network parameter can be a very complicated function due to the training
error terms. A simple Metropolis method suffers from random walks as previously de-
scribed. So instead, Neal (1996) obtains samples from the network parameters using
the hybrid Monte Carlo technique with stepsize selection as described in Algorithm 3 of

Section 2.3. To sample from the posterior distribution for 6, the potential energy is set

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 34

as follows:

E(0) = —log P(0|v,z,y)

Nc Nu Nv Na Nb
T, R Tu Ty Ta T
B S SURM D SETSS SE) S a8 S po
c=1 =1 =1 =1 =1
(3.13)

where the constant is immaterial because it does not affect the dynamics of the system
that gives rise to the desired probability distribution. This constant corresponds to
prefactors in the distribution P(8|v,z,y) that do not depend on #. The parameters 6

correspond to q in Algorithm 3.

3.4.1 Convergence of the Algorithm

In this section, we discuss the conditions under which this Markov chain algorithm con-
verges to a unique invariant distribution.

Recall that our algorithm alternately updates the hyperparameters by Gibbs sampling
and the parameters using hybrid Monte Carlo. In Section 2.3.3, we have already discussed
the reasons why hybrid Monte Carlo by itself should converge to a unique distribution.
The question is, combined with the hyperparameter Gibbs sampling update step, does
the resulting Markov chain converge?

A Markov chain update is periodic so long as it is periodic in one of the parameters
of its state space, so the fact that Gibbs sampling of the hyperparameters has non-zero
probability of producing any value does not immediately imply aperiodicity. However,
when the hyperparameters are updated from one iteration to the next, hybrid Monte
Carlo sees a random modification of the potential energy surface that, if anything, would
prevent systematic behaviour like periodicity. Thus, the Gibbs sampling step renders
periodicity even more unlikely than ever.

When the hyperparameters change from one iteration to the next, hybrid Monte Carlo

sees a modification of the potential energy surface that does not introduce any infinite

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 35

barriers, so the argument from Section 2.3.3 still applies, and we expect that, with
sufficient iterations, all regions of the network parameters’ state space can be visited
regardless of the values the hyperparameters have. Thus, we expect that all regions of
the joint state space containing both parameter and hyperparameter can be visited after
a sufficient number of iterations, and our algorithm should be irreducible.

Although we have no formal proof, based on the above arguments, we expect that

our Markov chain does converge to a unique distribution.

3.5 Inefficiency Due to Gibbs Sampling of Hyperpa-
rameters

Despite the fact that we avoid random walks in network parameter space given the hy-
perparameters, Gibbs sampling of the hyperparameters can lead to a slow random walk
in the joint state space of the hyperparameters and the network parameters. This is be-
cause the distribution of the parameters conditional on the hyperparameters is restricted
by the conditioning on the hyperparameters; this restricts the possible values the param-
eters are likely to visit, and so the distribution of the hyperparameters conditional on
the parameters are unlikely to change much from the previous iteration in order to be
consistent with the parameters.

This is especially apparent when there are many hidden units. Consider sampling
the input-to-hidden weights u; given 7,. When there are many of them, they represent
their distribution well, with a variance close to 1/7,. Thus, when 7, is Gibbs-sampled,
we are likely to obtain a value close to 7, again, and so the Markov chain becomes highly
correlated from sample to sample.

This problem can be alleviated when there are many training cases. In Eqn. 3.13, the
prior terms will be of order (N, + N, + N, + N;)/2. When N.N, > N, + N, + N, + N,

the likelihood term has a stronger effect in determining the shape of the potential energy

CHAPTER 3. HYPERPARAMETER UPDATES USING GIBBS SAMPLING 36

bowl sampled from, and so the weights move mostly to fit the data rather than to satisfy
the prior constraints imposed by their precisions, and so in this case, the hyperparameters
become slaved to the weights, which in turn are well-determined by the data.

When we do not have the option of obtaining more training cases, and we use large
numbers of hidden units, the random walk described above becomes an issue, and may
slow the method down so much as to render it impractical to use. The next chapter intro-
duces the solution that is considered in this thesis: that of updating the hyperparameters

using hybrid Monte Carlo as opposed to Gibbs sampling.

Chapter 4

Hyperparameter Updates Using

Hamiltonian Dynamics

4.1 The New Scheme

To overcome the slow movement of the hyperparameters when using Gibbs sampling, we
propose to update the hyperparameters using Hamiltonian dynamics in the same way as

the parameters.

4.1.1 The Idea

The problem with the old scheme is that the alternating updates of the hyperparameter
and its associated parameters cause them to pin each other down, resulting in Markov
chain moves that are small compared to the overall distribution, and which can double
back since Markov chains have only state memory and no momentum memory. This
doubling back is similar to the random walk behaviour of the Metropolis algorithm with
simple proposals. Since hybrid Monte Carlo is our way of overcoming that, we hope that
hybrid Monte Carlo, by producing trajectories that can keep going in the same general

direction for long distances, may also allow hyperparameters to travel long distances in

37

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 38

a single leapfrog trajectory without doubling back. This should lead to gains in how

rapidly the parameters and the hyperparameters sample the posterior distribution.

4.1.2 The New Scheme in Detail

Rather than updating the parameters conditional on the hyperparameters, and vice versa,
our aim is now to update the parameters # and the hyperparameters ~ jointly according

to the joint posterior distribution:

P(0,~]z,y) = P(7)P(O]7) Pylf,~, 2)/ P(y|)

o< P(7)P(Oly)P(yl0, 75, x)

(4.1)

where we have dropped the normalizing constant P(y|z) and used the fact that, given 0,
y’s dependence on the hyperparameters v is restricted to just the noise hyperparameter
Ts.

From Eqns. 3.4, 3.6 and 3.8, we get:
E(0,7) = —log(P(0, v]x,y))

- < 3 E) - <%N5 - 1) log(7s5) + %[Z—i + 22: (%7 0) — y0|2]

*=u,v,a,b

(4.2)

where N5 = N.N, (the total number of target variables in the training data), and:

N,
Oy, —|— Nu Ty | Oy - 2
E,=— <72 — 1) log(7,) + 5 {E + Zuz} (4.3)

i=1
and F,, £, and Fj are similarly defined.
The above is the new potential energy that hybrid Monte Carlo must use in its
simulation. Accordingly, we now expand the state space to include the hyperparameters.
We denote the position and momentum variables corresponding to the parameters and

hyperparameters with the subscripts and ~ respectively:

q=(qs,9,)

p = (Ps, P~)

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 39

However, some complications now arise due to the necessity for the leapfrog proposals
to be symmetric. The main problem is that the hyperparameters at the beginning and
at the end of a leapfrog trajectory are now different, so setting the parameter stepsizes
based on the hyperparameters at the beginning does not lead to reversible dynamics,
i.e., by reversing the momentum and following the leapfrog dynamics backwards from

the finishing point, one does not arrive back at the starting point.

The solution is to first update just the parameters by one step using stepsizes based
on the current value of the hyperparameters. This is the same dynamical update with
stepsize selection as before, and due to Fact 3 of Section 2.3.2, it is reversible, as the
hyperparameters have not changed. Then, we update the hyperparameters by one step
using stepsizes based only on the newly-computed value of the parameters. This is also
reversible as the parameters do not change over the step. These two updates comprise
one step in the new leapfrog trajectory updating both parameters and hyperparameters.
By repeating this [times, we obtain a leapfrog trajectory of length [that, by being

reversible in each step, is fully reversible end to end.

Due to Fact 1, each step leaves H(q,p) = F(q) + >_ p?/2 approximately constant,
and so H is left approximately constant over the entire trajectory for small enough 7.
Also, phase space volume is conserved by each step due to Fact 2, and so it is conserved
over the entire trajectory. Thus, we see that we have a trajectory that keeps H roughly
constant, and is a valid Metropolis proposal due to reversibility and phase space volume

conservation.

There is actually a slight complication: if we update first the parameters, then the
hyperparameters, the reversed trajectory is the one that updates first the hyperparame-
ters and then the parameters, which is not actually the one we are using. To overcome
this problem, at the beginning of a trajectory, we choose with equal probability to update
either the parameters or the hyperparameters first. Thus, a trajectory that goes from

point A to point B is proposed with 50% probability, while one that goes in reverse from

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 40

B to A is proposed also with 50% probability, and so we have symmetric proposals. We
summarize this algorithm in Algorithm 4. There is a different stepsize for each com-
ponent of q, including the expanded 7 portion of the state, and we denote the set of

stepsizes for the parameters as vy and the stepsizes for the hyperparameters as v,.

Algorithm 4 Leapfrog trajectory that updates both parameters and hyperparameters

using Hamiltonian dynamics

r« U[0,1]

if r < 0.5 then
for: =1toldo
vg < ParamStepsize(q,)
{as, po} < LeapfrogUpdate(qs, ps; ve, q,)
v, < HyperparamStepsize(qy)
{ay, Py} < LeapfrogUpdate(qs, py; vy, o)
end for
else
for: =1toldo
vy — HyperparamStepsize(qg)
{ay, Py} < LeapfrogUpdate(qs, py; vy, o)

vg < ParamStepsize(q,)

{qs,pe} < LeapfrogUpdate(qq, pe; ve, q)

end for

end if

An alternative way of achieving reversibility is to always start and end a leapfrog
trajectory with either a parameter update or with a hyperparameter update. The exact

method used should not significantly affect the performance of the algorithm.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 41
4.2 Reparameterization of the Hyperparameters

Numerically, it is inconvenient to work with the hyperparameters as precisions, as neg-
ative values of precisions are invalid. Thus, we reparameterize the hyperparameters by

working with log precisions instead:

As = log(7s)
Ay = log(7,)
Ay = log(7,) (4.5)
Ao = log(,)
Ay = log(m)

We let the set denote the reparameterized hyperparameters:
8= s M Ao Ay o} (4.6)

The posterior probability density is changed by this reparameterization. The new
density is obtained by multiplying by the appropriate Jacobian of each variable transfor-

mation in turn:
075
0)s

0T,
O

P(0,Blz,y) = P(0,7|z,y) x

[I

*=u,v,a,

= P(8,7|z,y) x eXp</\5 + Z /*)

*=u,v,a,b

And so the new potential energy is:

=E0,7) - - Y A

*=u,v,a,b

Nc
— D Oz5—|—N5 e_/\é% c. _ w2
—() E) (')m 2[w5+;|f<x,e> y|]

(4.8)

where:

=
>
I

a, + N e* [a N
el v 2 4.9
u (2) T [wu + ;u] (49)

and E}, E} and E; are similarly defined.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 42
4.3 Reparameterization of the Weights

The current parameterization scheme has a weakness that can be seen by considering
the potential energy as a function of the weights U and their hyperparameter A,. In
the absence of data, the potential energy depends on U/ and), simply through E?, and
we see that it is shallow and broad for low values of A, and narrow and deep for higher
values (but not too high). This is because, for fixed \,, E: is quadratic in u; with width
proportional to 1/ve*:. This makes sense as 1/ve = 1/\/7a is the prior standard
deviation of u;. When there is data, the landscape will be changed somewhat, but the
tendencies imposed by the priors will still be there.

The effect of this shape of the potential energy function is to make it unlikely for a
sample that starts in the broad, shallow region to end up in the narrow, deep region. The
reason is because, since H is (approximately) conserved during a leapfrog trajectory, a
particle that enters the narrow, deep region from the shallow region has enough energy to
escape out to the shallow region again, and will indeed likely do so before we catch it in
the deep region, since the latter has a comparatively small volume. Similarly, a particle
that starts off in a narrow, deep region will likely not have enough total energy to escape
unless it acquired an unusually large amount of energy during momentum resampling.

This situation is suboptimal as it increases autocorrelations. To move around more

easily in state space, we introduce the following reparameterization of the weights:
iy = ui/Tu = ue™?

By = vi\/Ty = v;/?

(4.10)
i = a;\/Ta = a;e™/?
b = bi/m = bie™?
and we continue to use:
)\5 = 10g(7'5)
(4.11)

A = log(7e) where * = u,v,a,b

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 43

The notation of Chapter 3 will continue to apply, except we will use a tilde to indicate
a reparameterized parameter. For instance, {7 will represent the group of reparameter-
ized input-to-hidden weights {u;} ", and 02']' will represent a reparameterized weight
from input unit ¢ to hidden unit j. We will also use the following naming for all the

reparameterized weights:

¢={U,V,A B} (4.12)

Due to the reparameterization, the posterior probability of the parameters and the
hyperparameters must change accordingly. The complete reparameterization is obtained

from Eqn. 4.7 as:

P(¢, Blz,y) = P(0,5lz,y)

N auZ H Ov; H da; H_‘

| (4.13)
= P(0, Ble.y) x exp<—5 > bm*>
And so under the reparameterization, the potential energy becomes:
1
= E(evv) -)\5 - _Z b)* + 5(_Z bN*)*)
1
_ A oA A)2
_< ZbE;)—I-Q[(Ns + as)As + €5+€52|f B) =yl
(4.14)
where:
1
E) = 5(Ay + —eM + Z ~2> (4.15)

and similarly for E2, F3 and Eé\.
It can be seen that the the quadratic term @? in E2 now has a constant coefficient,
so this reparameterization is effective at removing the variation with its hyperparameter

of the width of u;’s potential bowl.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 44

To distinguish between the new methods with and without the reparameterization
of the weights, we will call the new method before the weight reparameterization the
Dynamical A method, and the new method with the weight reparameterization the Dy-

namical B method.

4.4 First Derivatives of the Potential Energy

Each leapfrog step update requires the first derivatives of the Hamiltonian with respect
to the parameters and the hyperparameters. To take steps that are appropriately scaled
in the various directions for stability and efficiency, we need the second derivatives as
well, which we give in Section 4.5. Here, we give the expressions for the first derivatives.

We first define:

L¥(¢,) = e¥If (x5 ¢,) — y°I*/2 (4.16)

which is the negative log likelihood of one training case, less the normalizing term. We

then obtain from Eqn. 4.14:

IE(4,5) _

N,
l _ A5 s - cf i
PR _2[(N5+a5)—|—w56]+C§:1L(<p,ﬁ) (4.17)

OE(,8) 1 a L\ s AL,)
o - §<—a*+w—€/\) —I_ZT,* (4.18)

* c=1

where, as usual, * = u,v,a or b, and:

OBG.5) _ 43~ 0L (6.0

ot 6(7”

- 4.19
o (4.19)

e=1
Derivatives for the other weight types are obtained from Eqn. 4.19 by replacing Uij
by the corresponding parameter.
To compute the derivative FE/0\s using Eqn. 4.17, we need to compute the net-

work outputs for every training case. This involves performing a forward pass through

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 45

the net for each training case, each pass requiring compute time of order the number
of connections in the network. The fact that we do a forward pass means that using
backpropagation to compute other first derivatives will be efficient. We now explain how

these other derivatives are computed.

4.4.1 First Derivatives with Respect to Parameters

To compute the derivatives with respect to the parameters (Eqn. 4.19), we need to find
the corresponding derivatives of the output L°. They are most efficiently computed using
backpropagation provided certain results are stored during a preceding forward pass such
as the one required by the above computation of dF/0\;s.

The backpropagation works as follows. Consider Figure 4.1, which represents two

arbitrary adjacent layers in the network.

hy

—A/2
e

Figure 4.1: Two adjacent layers.

Here, ‘N/ije_’\/Q is the weight connecting a source unit 7 to a destination unit 5. We use
g: to denote the total activation of unit ¢ before the tanh(-) nonlinearity, and k; to denote
the output of unit ¢ after the nonlinearity. Source unit values are denoted by superscript
S, while destination unit values have superscript D. The total input into destination

unit 7 is:

g = Ve g by (4.20)

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 46

where X' is the hyperparameter controlling the biases ZN)]'. Thus, the first derivative of the

potential energy with respect to ‘N/Z'j can be computed as follows:

OL(4,8) _ 9L°(9,8) g}

oV Og7 OV (4.21)
_ _ OL°(¢, 5)hs —)/2
dgP

J

A similar expression holds for derivatives with respect to biases. In the above, if j is

actually an output unit, then g]D = f;, so:

0L($,8) _
dgP

J

eV1fi(x 6. 8) - y;] (4.22)

The outputs f;(x° ¢, 3) can once again be considered to have already been obtained
“free” from the forward pass. As in standard backpropagation, we start with the above

error derivatives at the output layer and propagate them backwards using:

dL(5, B) Z@L (6,3) DgP OhS

97 dgP Oh dg? (4.23)
AL (4,5) 5 _ '
sech2 g ;e K
g'l agj

If g; was stored for every unit during the forward pass, the above derivatives can be
computed rapidly in a backward pass taking time of order the number of connections in
the network for each training case. Actually, we will see below that, if we can save only

one quantity, the most useful one is:

= e MY " hiV (4.24)

which is the total input going into unit j from all the units feeding into it. From p;, g; can
easily be obtained in constant time. Furthermore, it will be useful in other calculations
that will be presented in the subsequent discussion.

Note that, thus far, we have seen how the computation of dF/d)s and the first
derivatives with respect to all the parameters is dominated by a forward pass and a

backward pass through the network.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 47

4.4.2 First Derivatives with Respect to the Hyperparameters

The computation of dFE/0As has already been described. To compute OFE/J\., we need
to compute the corresponding derivatives of L°(¢, 3). In a similar fashion as the weights’

computation, we can write for the hyperparameter A in Eqn. 4.20 that controls weights:

IL(sbﬁ ZaL (¢,5) @9]
dgP

- ZaL (¢.8) (Zhs) A2 (4.25)

8gj

while for the hyperparameter \':

aLe qbﬁag]
"L o

Z @g] —/\’/2

8)\’
(4.26)

We already computed the derivatives dL°/dg; during the backward pass for the deriva-
tives of the parameters. By ensuring that we save y; during the forward pass, the first
derivatives of L¢ with respect to the u, v, a and b hyperparameters can be efficiently com-
puted in time of order the number of units in the network. Summed over all cases, the

computational cost is O(N.(N + N,));

Because the number of units is considerably smaller than the number of parameters,
calculating these first derivatives with respect to the u,v,a and b hyperparameters is
considered to add negligible cost to the forward and backward passes we have already
done. Therefore, the computation of all the first derivatives is dominated by the forward

and backward passes through the net, each of which takes O(N,|¢|)

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 48
4.5 Approximations to the Second Derivatives of the

Potential Energy

The second derivative of the potential energy with respect to the weights and the hyper-
parameters are needed to compute stepsizes for each leapfrog step update. Unlike the
first derivatives, we cannot compute the second derivatives exactly because, in order to
preserve phase space conservation and reversibility of leapfrog steps, the stepsizes used
for, say, hyperparameters, cannot depend on the current values of the hyperparameters.

We will also use additional simplifications to make evaluation easier and faster.

From Eqn. 4.14, we see that the problem is to obtain for the parameters:

PE($.5) | =L, 5)
— _1+278&f (4.27)

c=1

and similarly for &;,d; and b;; and for the hyperparameters:

PE(6,0) a5 = .
" D RACN) (4.28)

c=1

and for * taking the values u,v,a and b:

PE($B) _ aw ., N~ L)
IV W +; A2 (42)

4.5.1 Second Derivatives with Respect to the Parameters

To obtain the derivative 9*L¢/du?, we follow the heuristic given by Neal (1996, Appendix
A), which we include here for completeness. The heuristic operates by approximately
backpropagating the 2nd derivative of L® with respect to the output units back through

the net. Its details are as follows.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 49

Referring to Fig. 4.1, Neal uses the following approximation:

0*L°(¢,8) _ 0*L°(9,) (69?)2

i~ aPr \av,
. o i (4.30)
0L, B) _ (z£)* for 7 an input unit,
~ o
! 1 otherwise.
Correspondingly, for biases:
2Lc / 2Lc ,

d (9976) ~ d (qbvﬁ)e—/\ (431)

ob? a(gp)?
We see that it is necessary to compute the derivatives @QLC/@(QJD)Q. We will do so in

a way analogous to the backpropagation of the first derivative aLc/a(gJD) as described in

Section 4.4.1. In the case that unit j is an output unit, the derivative is fixed, namely:

PL(6B) _ PL) _ o,
d(gP)? a(f;)?

(4.32)

This is propagated backwards to obtain the second derivatives of L¢ with respect to
all the inputs g;’s except for the input units’, whose derivatives are not needed. Neal
propagates the derivatives using:

82LC(¢7 /8) ~ Z 82L6(¢7 /8) ‘N/Qe—)\

d(g?)? (

@(g]D)Q > (4.33)

J

Because we are not allowed to use the current value of the parameters, we replace Vg
in the above by the estimate 1, since ‘N/j has variance 1 at equilibrium. Thus, we actually

use:

PLAG) P L(D0)

From Eqns. 4.32 and 4.34, we see that the second derivatives are the same for all
training cases. Thus, the backpropagation pass is done only once regardless of the number
of training cases, after which the second derivatives with respect to the parameters can

be estimated in time of order equal to the number of parameters.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 50

4.5.2 Second Derivatives with Respect to the Hyperparameters

To obtain Zi\f:cl L¢in Eqn. 4.28, we need to calculate the network output for each training
case. Like the computation for £ /0\s, this can be done with a forward pass for each
case. Unlike that computation, we cannot use the current values of the hyperparameters.

In this thesis, we replace 3 by B, the prior hyperparameter means:

;\5 = log ws
;\u = logw,
A, = logw, (4.35)
:\a = log w,
;\b = log wy,
Thus, we really compute:
N
Qigggélﬁdé%%e%—+;;;L%¢5B) (4.36)

For the second derivatives with respect to the other hyperparameters, we similarly
replace all occurrences of 3 by B From Eqn. 4.29, we see that we need to estimate
2L (o, B)/@/\z For this, we will use the same kind of backpropagation as when estimat-
ing the second derivatives with respect to the parameters.
Once again referring to Fig.4.1, for A being either a hyperparameter for the weights

or the biases that contribute to the calculation of the g]D’s

9*Lc 9 (9L
X2 9N\ I\

oLe 89
/\Z ;
—[or 82 g L dgP (4.37)
_Z ag]D oN? 8)\89? o\

J
oy _19g7 ZZ ‘L dg 097
B - 89}7 2 0\ 8gDag]D ox 0

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 51

where we have made the replacement @QQJD/@/\2 = —(1/2)@9] /00X, which can easily be

checked. Thus:

oL 19L¢ 2Le gl dgP
o3~ 2 0n ZZ dgRagP OX A (4.38)

For the second term, following Neal (1996, Appendix A), we ignore multiple con-
nections from the same unit, which amounts to dropping all cross terms. We end up

with:

D*Le 10L° 2Le (dg?
R —— 4.39
=35+ S () (49
We have already seen how we can estimate @QLC/@(QJD)Q using the approximate back-
propagation (Eqn. 4.34) of Section 4.5.1. The difference here is that we can use the

actual values of the parameters, but not the hyperparameters. Thus, we replace A by its

estimate \ € B in the backpropagation equation:

j{: ac ¢.3) Ve (4.40)

As before, we compute the above quantity in a backward pass only down to the first
hidden layer, and these derivatives are all independent of the training case.
For the second factor in a summation term in Eqn. 4.39, evaluation is straightforward.

From Eqn. 4.20, we have:

dgP\? eV
<a§> = (4.41)

for a hyperparameter controlling biases, and:

ag]D 2 e_;\ n ~ 5 2
(%) _T(;m)

1 2
e

(4.42)

for a hyperparameter controlling weights. Once again, if we save p; during the forward

pass to obtain the network outputs for estimating 0?FE /A3, the above factors can be

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS H2

obtained almost for free. We emphasize here that the this p; differs from the p; used in
first derivative calculations in that the forward pass during which p; is saved uses the
estimates B instead of 3.

Thus far, the dominating computation in estimating the second derivative of £ with
respect to the hyperparameters is the estimation of 9?E/dA%, which requires a forward
pass for every training case.

Let us now turn our attention to the first derivative dL°/OX in Eqn. 4.39. Its
computation was already discussed in Section 4.4.2; except that it uses the estimates B
instead of 3, and the error propagated backwards comes from the forward pass used in
estimating 0% E/0\3.

The estimation of this derivative requires one backward pass, which must be done
for each training case. Thus, combined with the forward passes of 9*E/J)\}, two passes
through the net are necessary to estimate the second derivatives of £ with respect to the

hyperparameters.

4.6 Summary of Compute Times

In this section, we summarize the compute time required by the Dynamical B method per
leapfrog update of both the parameters and hyperparameters. Recall that the Dynamical
B method includes the reparameterization of the weights.

First, we summarize the compute times required to calculate each group of derivatives
in Table 4.1. The compute times are dominated by passes through the network for each
training case, which takes time O(N,|¢|)), and we consider other operations as essentially
free.

Examining a leapfrog update in detail, we see that it looks like Table 4.2.

When the parameters are changed (step 2), the first derivatives of both parameters

and hyperparameters need to be recalculated in order to update the momenta in steps

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 53

Group of Derivatives Compute time

Ist with respect to parameters and hyperparameters | 2 x O(N,|¢|)
2nd with respect to parameters “free”

2nd with respect to hyperparameters 2 x O(N,|9|)

Table 4.1: Cost of computing various groups of derivatives for the Dynamical B method.

Step | Description

1 Update momentum of parameters

2 Update parameters

3 Update momentum of parameters

4 Update momentum of hyperparameters
5 Update hyperparameters

6 Update momentum of hyperparameters

(Step 1 is then repeated for the next leapfrog update)

Table 4.2: The steps in one complete leapfrog update in the Dynamical B method. The

Dynamical A method has the same sequence of steps comprising one leapfrog update.

3 and 4. The cost is one forward-backward pass pair. Also, at the end of step 2, the
second derivatives with respect to the hyperparameters need to be recalculated for use
in steps 4 through 6, taking a second forward-backward pass pair. After the update of
the hyperparameters at step 5, the first derivatives need to be recalculated again for the
momentum updates at step 6 and step 1 of the next complete leapfrog update. This
requires a third forward-backward pass pair. Finally, the second derivatives with respect
to the parameters also need to be recalculated for use in step 1 of the next iteration, but
this is essentially free.

Thus, each leapfrog update costs 3 forward-backward pass pairs. This result will
be used later in determining how long to let the parameterized new method run when

comparing its performance to the old method.

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS H4

4.7 Computation of Stepsizes

We have described our heuristic for approximating the second derivative of the potential
energy with respect to the hyperparameters. The stepsize is then computed as the inverse
square root of that second derivative, as in Eqn. 2.21. But because this heuristic uses
Eqn. 4.39, second derivatives have the possibility of being negative, and square roots
would then be imaginary. We note that when the second derivative becomes negative,
it merely indicates that the potential energy surface is now concave downwards, but its
magnitude should still be indicative of the length scale of the surface variations in the
region. Thus, the negative sign is really no problem, and we take absolute values to
obtain the stepsize as:

_1
2

2F
<= Max

(4.43)

Similarly, the stepsize for the parameters are obtained as:
1
PEN "2
e=n <—@ﬂf) (4.44)

and similarly for the other parameter types.

4.8 Compute Times for the Dynamical A Method

We also give the compute time for one leapfrog update for the Dynamical A method
as this has to be taken into account later in performance comparison. Recall that the
Dynamical A method is the new method before the weight reparameterization.

The computation of the first and second derivatives with respect to the weights in this
scheme are not significantly different from Dynamical B’s. The algorithmically demand-
ing portions of these computations are the derivatives of L¢ with respect to a weight,
and the backpropagation algorithms given above work the same way except that the

22

factors of e7*/# that always go with the reparameterized weights are missing. Thus, first

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS H5d

derivatives with respect to the weights also require one forward and one backward pass
for each training case, while second derivatives are essentially free.

The computation of the first derivatives and second derivatives with respect to the
hyperparameters differ substantially, however, because the hyperparameters do not ap-
pear in the computation of the network output f(-) in this case. The first derivatives

are:

c=1

and:

OE(0,8) oy, + N, e [ay, N)
_EE___C_?_>+2 E+Z)” (4.46)

and similarly for hyperparameters of v, a and b.

The compute times for hyperparameters of first derivatives of A, where * = u,v,a
and b take time of order the number of parameters and is independent of the number
of training cases. This makes it of lower order time complexity than that the forward
and backward passes for computing the first derivatives of the parameters. The compu-
tation of dF /)5 requires all the network outputs for each training case, but which were
already computed during the forward passes for the first derivatives with respect to the
parameters, so we essentially get this derivative for free as well.

The second derivatives with respect to the hyperparameters are:

D?E0,8) eY[a e . o2
a7)\(%:7[@‘1—2—%;:;@'()(;(9)—y)} (4.47)

and:

*E0,3) e a, a
'Tﬂ_:2[5+zﬁ} (4.48)

=1
and similarly for hyperparameters of v, a and b.

The compute times for each second derivative is essentially the same as that for the

first derivative with respect to the same hyperparameter. Once again, we can use the

CHAPTER 4. HYPERPARAMETER UPDATES USING HAMILTONIAN DYNAMICS 56

network outputs already computed for the first derivatives with respect to the parameters.
Note that this differs from the case of the reparameterized weights because, there, the
hyperparameters are involved in computing the network outputs, and so the the outputs
computed during the forward passes for the first derivatives cannot be used, as the
second derivatives with respect to the hyperparameters cannot use the current values
of the hyperparameters. That forced us to redo the passes through the network with
estimates for the hyperparameters, but we do not have to do that here, thereby saving
computation.

We summarize the various compute costs in the Table 4.8

Group of Derivatives Compute time

Ist with respect to parameters and hyperparameters | 2 x O(N,|¢|)

2nd with respect to parameters “free”

2nd with respect to hyperparameters “free”

Table 4.3: Cost of computing various groups of derivatives for the Dynamical A method.

Like before, one leapfrog update requires the computation of all the first derivatives
twice. Therefore, one leapfrog update requires two forward-backward pass pairs in this

case.

Chapter 5

Results

5.1

Training Data

To verify the new methods and compare their performance with the old method, the
synthetic data set of Table 5.1 was used. We use a small data set to reduce the compute
time required to obtain the results for this thesis. Even then, months passed before all

the necessary runs were completed.

Table 5.1: Training data has two inputs and 1 output. These data are plotted in Fig.

5.1.

Input z

Input y

Output z

5.8964216e-01
9.1368690e-01
4.5180698e-02
7.6028441e-01
-6.5408772e-01
9.5949379e-01
-4.5710548e-01
-4.9534131e-01

7.5148380e-01
4.7461198e-01
-7.2696252e-01
-9.7648663e-01
7.8779593e-01
-6.0172387e-01
-4.0255398e-01
3.2288515e-01

1.9992522e4-00
2.4043475e+00
9.3298996e-01
5.4781275e-01
1.9858707e-01
4.6687881e-01
6.4682705e-03
-1.7153228e-01

57

38

RESULTS

CHAPTER 5.

Q

Figure 5.1: 8 points comprising the synthetic data set used. There are 2 inputs (2 and

y) and 1 target (z). The training data are shown using asterisks. The circles represent

the training data before the addition of Gaussian noise, while the crosses are the input

data drawn on the plane z = 0.

o
‘..‘..‘.“.“
oo

!
i

" \
S SRXELHRXNRMMMN
RN e
SRR T
R R RARNNNNN
R RN
R R RRRRY
R R AR
SRR RN
R R AN
R N R
RN
R NN
R NN
R AR

Sooss

<S
SIS

SIS

s

SISSO

NS
=
SN
DN

AN

<
N
AN

Figure 5.2: The surface from which the synthetic data was taken.

CHAPTER 5. RESULTS 59

The training data was synthesized as follows. The inputs (z;,y;) were uniformly
drawn from [—1, 1] x [—1, 1]. The mapping used on each input pair was calculated using

the function below:
flz,y) = 0.3 +1.22 +0.7(y — 0.2)* + 2.3y(x + 0.1)* (5.1)

This mapping is illustrated in Fig. 5.2. Gaussian noise with standard deviation 0.1

was added to each function output to obtain the target.

5.2 Verification of the New Methods

To verify the correctness of the new methods, the posterior distribution was obtained
using all the methods for a network of 8 hidden units on the above training data. The
old Gibbs sampling program as implemented by Neal was treated as the standard against
which the new programs were compared.

The priors for the hyperparameters are specified as gamma distributions as in Eqn.
3.7 using a and w parameters. For the demonstration of the correctness of the new

methods, they were set as in Table 5.2.

Parameter | Setting Parameter | Setting
wy? 0.10 as 0.50
wa® 1.00 o 0.50
wy? 0.45 o 0.50
wat 1.00 » 0.50
wy 0.80 o 0.50

Table 5.2: Settings for parameters specifying the priors of the hyperparameters

Fairly long runs were done with all three methods at the settings in Table 5.3.

CHAPTER 5. RESULTS 60

5.2.1 Results From Old Method

Method n 1 | Saved every
Gibbs 0.35 | 400 100
Dynamical A | 0.48 | 100 10
Dynamical B | 0.08 | 300 10

Table 5.3: Settings for the various methods in order to verify correctness of new programs.
For the new methods, we set the parameter and hyperparameter stepsize adjustment

factors equal to each other, and indicate their value by n in this table.

The output surface as predicted from 5000 samples obtained using the Gibbs update
method is shown in Fig. 5.3. We see that the data points are being fitted reasonably. The
fact that the points are being fitted implies that the posterior distribution has changed
from the prior. Indeed, from Fig. 5.4, we see that the marginal posterior distributions of
the hyperparameters differ from the marginal prior distributions.

We show in Fig. 5.5 the correlation between the input-to-hidden and the hidden bias
hyperparameters. As expected, when larger input-to-hidden weights are allowed, larger
biases (with the opposite sign) are required to compensate. This is because the output
function cannot be composed of hidden units that all saturate, so the input into at least
some of the hidden units must be kept small.

Also, we show in Fig. 5.6 how, as the number of hidden units increases, the hidden
bias hyperparameter becomes more pinned to the actual standard deviation of the hidden
biases, and vice versa. This is manifested as an increased correlation between them. This

is a direct demonstration of the problem we set out to solve.

5.2.2 Results of New Methods Compared with the Old

To verify the correctness of the programs implementing the new methods, we compare

the posterior distributions obtained using the new programs against that from the old.

CHAPTER 5. RESULTS 61

Figure 5.3: The surface predicted by the samples obtained for the master run for 8 hidden
units. The training data are shown using asterisks, while the crosses are the input data

drawn on the plane z = 0.

To obtain the posterior distribution, any samples near the beginning found by visual in-
spection not to be in equilibrium were first dropped. 950 samples from each method were
then used to plot the histogram of each hyperparameter. Here, we look at the histogram
of log o,, which is the log of each hyperparameter specified as a standard deviation. Fach

such histogram approximates the marginal distribution of a hyperparameter.

We need to be able to compare the joint distribution over hyperparameters for two
methods. Because we are unable to plot a distribution over the joint 5-dimensional space
of all the hyperparameters, we compare marginal distributions instead. This compari-
son is valid because, if the marginal distributions of the hyperparameters match for two
methods, then they almost certainly have the same joint distribution over hyperparame-
ters. While it is true that, in principle, equal marginal distributions does not imply equal
joint distributions, the fact that the marginals match is too amazing a coincidence to be

explained any other way than by concluding that the joint distributions match.

CHAPTER 5. RESULTS 62

Figure 5.4: Dotted lines represent prior densities (obtained analytically) while solid lines
represent posterior marginal distributions obtained from the Gibbs sampling method.
These plots, obtained using 8 hidden units, show that the posterior distributions of the

hyperparameters have changed from the priors.

CHAPTER 5. RESULTS 63

10

10" .. " ~ . E

10

10 10 10 10° 10

Figure 5.5: Correlation between input-to-hidden and hidden bias hyperparameters ob-

tained using the old method.

log SD(2)
T

log SD(2)
T

2 3 E 2 3
logo, log o,

(a) 8 hidden units (b) 20 hidden units

Figure 5.6: Correlation between the standard deviation of the hidden biases and the their

hyperparameter becomes stronger as the hidden layer size increases.

CHAPTER 5. RESULTS 64

As can be seen in Figs. 5.8 and 5.7, the marginals for all the hyperparameters
obtained by the programs running both the new methods match those of the original as

implemented by Neal.

5.3 Methodology for Evaluating Performance

Having shown that the new methods have been correctly implemented, we are now ready
to assess their performance.

A Markov chain Monte Carlo method typically goes through a “burn in” phase before
settling down to equilibrium. Before reaching equilibrium, its samples are not representa-
tive of its invariant distribution. As these non-representative samples should be discarded
in order not to skew later estimates, the speed with which a Markov chain equilibrates
is a matter of interest. However, due to time constraints, we will not be considering
this question. Instead, we will only assess the relative performances of the old and the
new methods in moving about in the posterior distributions of the hyperparameters once
equilibrium has been reached. We do not consider the speed with which the posterior of
the parameters is explored as there can be large numbers of parameters, and it is difficult
to know which parameters to compare as they can sometimes taken on different roles.

In addition to examining the performances of the original method and the Dynamical
B method, we also look at the performance of the Dynamical A method to ascertain if
the reparameterization of the weights is indeed beneficial.

The performance of the methods depends on the number of leapfrog steps allowed in
one trajectory and the stepsize adjustment factor. These can be viewed as tuning param-
eters that affect the efficiency of each method. Since performance can vary dramatically
depending on the setting of these tuning parameters, it is only fair to compare how well
the methods work when optimally tuned.

For the old method, the tuning parameters are [, the number of leapfrog steps allowed

CHAPTER 5. RESULTS 65

) o
016 018
014 oep
014
012
012
g o 7
g S 01
g g
& o08f &
008
0.061
0.06
0.04
0.04
0.02 002
s E 2 4 3
log o,
o o
018
0161 o02f

&

301 H
& &
0.081 o1f
006
0.04f 005

Frequency

Figure 5.7: Crosses represent the distribution obtained from the original Gibbs update
method, while circles represent that of the Dynamical A update method. Each distribu-

tion has been normalized to have area 1.

CHAPTER 5. RESULTS 66

Figure 5.8: Crosses represent the distribution obtained from the original Gibbs update
method, while circles represent that of the Dynamical B update method. Each distri-
bution has been normalized to have area 1. Note that the distribution for the original
method looks slightly different from that of the plots for the previous comparison with

the Dynamical A method because the binning for the histograms is slightly different.

CHAPTER 5. RESULTS 67

in one trajectory, and 7, the stepsize adjustment factor. For the new methods, [is also
a tuning parameter, but we now have two stepsize adjustment factors: n, for the param-
eters, and 1y, for the hyperparameters. We have two stepsize adjustment factors because
we might wish to control how fast the parameters move compared to the hyperparameters
in order to obtain the best performance. Moreover, the different heuristics with which
the stepsizes are computed for the parameters and the hyperparameters means that their
relative magnitudes might be quite different, which also suggests separate stepsize ad-
justment factors. However, due to time constraints, we will not explore the problem of
how to set the two adjustment factors separately, and will instead set them equal to each
other (n, = nx) and call it n, with the understanding that the performance of the new

methods could be increased if the two n’s are not set equal to each other.

The performace of a method on a hyperparameter is assessed using the variance of
means measure, whose presentation we delay till the next section. For a given setting
of the tuning parameters, this measure can be computed for each hyperparameter. The
smaller the measure is, the more efficiently the method explores the marginal posterior
distribution of that hyperparameter. Since we wish to compare the methods when they
are operating optimally, we will compare their variance of means measures at optimal

settings of [and 7.

To find the optimal setting of [and n for a given method, we run it over a grid
of settings in tuning parameter space, measuring its variance of means performance at
each setting. The geometric mean of the variance of means of the hyperparameters is
computed to obtain a single measure that combines the performances over the different
hyperparameters. In computing the geometric mean, we leave out the variance of means
measure for the output bias hyperparameter as that hyperparameter controls only one
parameter for this network and is therefore not that meaningful. The optimal setting of

the tuning parameters is then picked as the setting that minimizes the geometric mean.

It is not safe to directly use the variance of means at this optimal setting to compare

CHAPTER 5. RESULTS 68

the performances of the methods, however, as they are biased downwards as a result of
this selection process. Instead, the programs are then re-run with different random seeds
to re-obtain the variance of means measures so as to avoid the bias. In the next section,

we describe the variance of means measure in greater detail.

5.3.1 The Variance of Means Measurement of Performance

The variance of means measure characterizes how well a method explores the posterior
distribution of a hyperparameter at a fixed setting of the tuning parameters. To obtain
this measure, we run several Markov chains, each started from an independent point
drawn from the posterior distribution of the parameters and hyperparameters. Each
chain is run for a fixed number of N; leapfrog steps regardless of what [is.

For a given setting of the tuning parameters, we obtain the means of the hyperpa-
rameters sampled by each chain. The entire chain of N; leapfrog steps can be thought
of as being divided up into a fixed number of N, super-transitions each comprised of
N¢/N;s leapfrog steps. Although each leapfrog trajectory yields a sample from the cor-
rect distribution, we use only one sample per super-transition to compute the means of
the hyperparameters for each chain. Thus, regardless of the value of [, the same number
of samples Ny is used to compute the means as shown in Table 5.4. For the ¢’th chain,

the hyperparameter means obtained are:

(log o5, log o, log i, log o, log 77) (5.2)

where, for instance, each mean log ¢! is computed as follows:

N
log ol = Zlog o7 /N, (5.3)

i=1

o refers to a hyperparameter expressed as a standard deviation. We take the log
before computing the mean as experience shows that the standard deviation can vary
over several orders of magnitude, and yet variations on a small scale are as interesting as

variation on a scale a few orders of magnitude larger.

CHAPTER 5. RESULTS 69

Chain Samples
ot ot oy o™ = logo;
ou! ot oy° o = logal
1 oyt oyt o) oy = logo)
oyt ot o) oM = logo,
TS o, — logol
L S oy = loga
ot opt or’ o = logo;
2 ol o2? 023 olNe = logo?
oyt ot o’ optNe = logog
ot oyt o’ oy = logo}
Jéval gév’m? gév"“?’ e Uévm’Ns — logos™
gNml GNm2 GNm3 o GNmNe o Jog g Nm
Ny | o)mt glm? glimd o gl log olNm
gNml gNm2 GNm3 GNeNe _y JoggNm
B % SN O v

Table 5.4: Each chain is run for Ny super-transitions at some setting of [and n. The
samples obtained from the super-transitions are used to compute the means of each

hyperparameter.

CHAPTER 5. RESULTS 70

If we run N,, Markov chains, we will have N,, values of log o.. The variance of means
measure that we have been talking about is then just the variance of these values of

log o.. We define p, to be these variance of means measures:

ps = Var|[log o]

pu = Var[log o]

p» = Var|log o] (5.4)

p. = Varllog o,]

py = Var[log o]
Each variance is calculated using the mean estimated from a very long run of the old
method, which we assume to be very close to the true mean. For example, if the mean for

log o, obtained from a very long run of the old method is < log ,, >, then we compute

the variance from N,, Markov chains as:

Zﬁ”{(log ol — < loga, >)*
Ny,

Pu = (5'5>

This is the variance of means measure of performance, with lower variance indicating
better performance.

Let T, be the inefficiency factor in units of super-transitions for Ny samples of log o,.
T, measures the worth in computing log o, of each super-transition of log o, relative
to one independent sample of log o,. For example, if T, is 2, then it takes twice as
many super-transitions to obtain a given variance of log o, as would be needed using
independent samples. Mathematically, the variance of means measures are related to

inefficiency factors as follows:

T,
Pu = F\/ar[log Ou) (5.6)

Since Var[log o,] is a constant property of the posterior, and we are using the same
N; for all tuning parameter settings, our estimate of Var[loga,] is proportional to 7.

Although this 7}, is for this particular number of samples Ny only, we would expect that,

CHAPTER 5. RESULTS 71

if a method has a lower T, than another for this N, then it really is more efficient at
exploring the posterior distribution, and so it should remain better for a different N.

Thus, this measure is indicative of performance in general.

5.3.2 Error Estimation for Variance of Means

Error bars on the variance of the means are obtained as follows. Since the variance of p,

is calculated as the mean of the square deviations (logci— < log o, >)?, its variance is

given by:

Var[(log ol — < log o, >)?

which is valid so long as the chains are independent. We ensure this by picking their
starting points sufficiently far apart from a long master run and by using a different

random number seed for each chain.

5.3.3 Geometric Mean of Variance of Means

Rather than characterizing performance by the variance of the hyperparameter means for
all the hyperparameters, we define the following single geometric mean scalar measure of

performance:

N

9= (mmmm) (5.8)

We obtain error bars for g by bootstrapping (see Efron and Tibshirani, 1993) as
follows. Let Z be the original set of N,, Markov chains. Thus, Z determines a single value
of g. A bootstrap realization Z* is a set of NV,, Markov chains sampled uniformly with
replacement from the original chains. During bootstrapping, many bootstrap realizations
Z* are generated from Z. The idea is that the empirical distribution represented by Z
contains within it the natural variations that g has over the true distribution from which

7 is drawn. So, a value of g can be calculated from each Z*, and the histogram of these

CHAPTER 5. RESULTS 72

resulting ¢’s gives an estimate for the actual distribution of g. We quote error bars as
the 90% confidence interval of the histogram of g, i.e., we quote the error bar [g1,, g,
where g, and g,; are such that 5% of the values of g obtained from Z* are below ¢;,, and

5% are above gr;. We use 1000 bootstrap samples to obtain these error bars.

5.3.4 Iterations Allowed for Each Method

As shown in Eqn. 5.6, p, is proportional to the inefficiency factor of the method in units
of super-transitions. In order for comparisons of variances between two methods to make
sense, the amount of compute time used per super-transition should be the same in both
cases. However, the compute time of a program is tricky to calculate from things such as
number of multiplications, as programming style can affect it. Thus, in this thesis, the
amount of “work” that goes into a super-transition is estimated in algorithmic terms in
which we assume that the number of training cases N, is large, and the number of hidden
units Nj is also large so that the number of weights |¢| is large. This results in terms of
order N.|¢| dominating the time complexity, which comes entirely from complete sweeps
through the neural network for each training case.

In the old method, each trajectory is composed of 3 steps: sampling the hyperparam-
eters, computing the stepsizes, and performing the leapfrog steps. First, we note that
each leapfrog step requires the evalutaion of the derivative of the potential energy with

respect to a parameter:

OF Y o L Of(x%0)
. =75 ;[f(x ;9)—y]-TUi—I—Tuui (5.9)

which is most efficiently computed for each training case using a forward sweep through
the network for f(x°; 0) —y®© and a backward sweep for 9f (x°; 6)/0u;. Each of the 2 sweeps
takes O(N,|¢|) compute time for all the training cases. By comparison, the sampling of
the hyperparameters is dominated by the computation of the sum of the square of the

weights, as can be seen in Eqn. 3.11, and by the computation of the total squared error

CHAPTER 5. RESULTS 73

of the network output (Eqn. 3.12). The former takes O(|¢|), while the latter costs only
O(N.) since the network error has already been computed at the end of the last leapfrog
step for the Metropolis rejection test. So, both can be neglected when compared to the
compute time required for a leapfrog step. The computation of the stepsizes is also free
by comparison because its summation over training cases (Neal, 1996, Appendix A) can
be factored out and computed at the very beginning of the program. Thus, each super-
transition in the old method is approximately dominated by the leapfrog steps, each of
which takes 1 pair of forward-backward sweeps, each of which takes O(N.|¢|) compute

time. We summarize this along with the compute times for the new methods in Table

5.5.
Hyperparameter updates by | Network passes per leapfrog step
Gibbs 2
Dynamical A 4
Dynamical B 6

Table 5.5: For a detailed explanation of the number of passes required for the two

dynamical methods, please refer to Section 4.8.

Because of the results in Table 5.5, the Dynamical B method is only allowed a third
as many leapfrog steps per super-transition as the old method, while the Dynamical A
method is allowed half. These measures ensure that each super-transition uses approxi-

mately the same amount of compute time regardless of method.

5.4 Markov chain start states

5.4.1 Master Runs

As mentioned earlier, each chain is started from a state chosen from equilibrium. To

obtain the starting points for a particular network, a very long run was done using the

CHAPTER 5. RESULTS 74

old method, typically resulting in several hundred thousand to a million or more samples.
Any initial portion of the run not in equilibrium was discarded, and starting points were
then obtained from the remaining samples. These starting states were spaced many

inefficiency factors apart so that they are likely to be nearly independent points that

represent the posterior distribution well.

The long run was done with a relatively small stepsize adjustment factor so that the
rejection rate is low (around 5%). This is because chains using large stepsize adjustment
factors may sometimes be unable to enter certain regions of state space where its rejection
rate is high. The reason for this is because, once it enters, it is likely to stay there for a
long time due to its high rejection rate. Because it remains stuck there for a long time,
it follows that it is unlikely to enter that region in the first place. Thus, using a low

rejection rate reduces the risk of overlooking such regions.

Long runs were obtained for networks with 8, 12, 16 and 20 hidden units. Table 5.6
shows the prior settings used for these networks, while table 5.7 tabulates the various

run settings used, the number of samples obtained, and the resulting rejection rate.

Hidden units [w;? wi? w? wi’ w? a5 o o an o
8 0.10 1.00 0.45 1.00 0.80 0.50 0.50 0.50 0.50 0.50
12 0.10 1.00 0.37 1.00 0.80 0.50 0.50 0.50 0.50 0.50
16 0.10 1.00 0.32 1.00 0.80 0.50 0.50 0.50 0.50 0.50
20 0.10 1.00 0.285 1.00 0.80 0.50 0.50 0.50 0.50 0.50

Table 5.6: Prior settings for the neural net architectures tested.

In order to ensure that our start states are from the equilibrium distribution, the

hyperparameters from the master runs were visually checked for the absence of long

term trends.

CHAPTER 5. RESULTS 75

Hidden units | 1 n | No. of samples | Rejection rate
8 400 | 0.35 500000 6.16%
12 400 | 0.32 800000 7.22%
16 400 | 0.26 3500000 5.711%
20 400 | 0.24 700000 5.95%

Table 5.7: Tuning parameter settings, number of samples collected and rejection rates.
Rejection rates were chosen to be relatively low to reduce the risk of not being able to
enter regions where the rejection rates are high. For all the runs, only one sample was

saved for every 100 samples collected.

5.4.2 Starting States Used

Variance of means measures were obtained for networks with 8, 12, 16 and 20 hidden
units. This requires several Markov chain starting states for each number of hidden units.
This section shows in detail how these states were obtained.

Table 5.8 shows the inefficiency factors of log o, as that was found to be the slowest
moving hyperparameter, i.e., it had the highest inefficiency factor. We use o, to denote
7'*_%. It is the hyperparameter expressed as a standard deviation and is often easier to
understand. We compute the inefficiency factor of log o, rather than simply o, as the
inefficiency factor is then the same regardless of what power o, is raised to, thus removing
any questions as to whether it is more appropriate to measure the inefficiency factor of
the variance or the standard deviation.

As each chain used in the variance of means measure should be started from an
independent point, we use samples from the master run spaced many inefficiency factors
apart.

All the variance of means measures were computed using 50 chains. The start states
of the first 40 chains are evenly spaced according to Table 5.8. It was decided to add 10

more chains because it was empirically observed that the different methods seem to do

CHAPTER 5. RESULTS 76

very differently on chains starting at large log o, and log o, large meaning greater than 4
in this case. Specifically, it appeared from the first 40 chains that the old method and the
Dynamical A method do badly on chains starting at large values of these hyperparam-
eters, whereas the Dynamical B method does well. Because such large hyperparameter
values appear rarely in the posterior distribution, there are few of them among the 40
chains, so assuming that they do have an important effect on the results, it is necessary
to oversample the region with large values of logo, and log o, and then downweight
those points accordingly in the computation of the variance of the means. Otherwise,
one might by chance compute the variance of means without any chain starting at large

values of those hyperparameters, and erroneously conclude that all the methods perform

similarly.
Hidden Start state separation Start state Initial samples
units h (samples) separation (7,’s) dropped
8 320 10000 31 0
12 470 10000 21 0
16 2500 50000 20 0
20 770 10000 13 0

Table 5.8: First 40 starting states are drawn so that they are many inefficiency factors

T, apart. T, is the inefficiency factor of log a,,.

To ensure that we have a decent number of points from the region G satisfying
log o, > 4 or log o, > 4 or both, it was decided to stratify the starting points so that 40
of them are outside G and 10 are inside. Of the first 40 points chosen according to the
separations in Table 5.8, some are already in G. So, the choice of points 41 through 50
was done as follows: for each number of hidden units, we chose enough additional points
in (¢ so as to make them total 10 in number, and we also chose enough points outside of

(G so as to obtain 40 of them.

CHAPTER 5. RESULTS 77

To obtain these 10 new points, a long sequence of many points was obtained from
the master file at fixed separations (always at least 3 inefficiency factors). For 12 and 16
hidden units, the 10 new points were obtained past the end of the portion of the master
run used to obtain the first 40 starting states; for 8 and 20 hidden units, the new points
used the portion already used for the first 40 states, and beyond if available, taking care
to always maintain at least 3 inefficiency factors from the first 40 points. This sequence
was then uniformly sampled to obtain the desired number of points in G and points

outside of .

5.4.3 Modified Performance Measures Due to Stratification

The stratification of the starting states does change the calculation of the variance of
means measure and its error somewhat. For Ng equal to the number of points taken
from region GG and Nz the number of points taken from outside, the variance of means

within each stratum for hyperparameter o, is:

Nz
pug = 7=) _logoi— <loga, >)*
G =1
N (5.10)
1 - -
Pu,G = No Z (logoi — < log o, >)?
Z:Na-i—l
so that the overall variance of means that takes stratification into account is:
pu= (1 =plpug + PPuc (5.11)

where p is the fraction of the posterior distribution in region G.
For error estimates of the variance of the means, we compute the variance of the
above as before, which is similarly computed as the weighted sum of the error variances

computed separately for each stratification:

Var[p,] = (1 — p)*Varp, 5] + p*Var[p.c] (5.12)

CHAPTER 5. RESULTS 78

Hidden units P
8 4.98%
12 5.29%
16 7.05%
20 4.91%

Table 5.9: Estimated fraction of the posterior distribution in region G for each number
of hidden units. Region G is defined as the region for which logo, > 4 or logo, > 4 or

both.

The above expressions correct for the oversampling of GG using p. Table 5.9 gives

estimates of these quantities from each master run.

It should be noted that we have assumed that p is known in the calculation of the
error bars of the variance of means measures; but really, all we have are estimates. This
simplification introduces some inaccuracies into the error calculations, but it is not likely

to change our conclusions much, as we will see later.

One might question why the various values of p in Table 5.9 are quite different. The
author has some empirical experience showing that ' is a region of somewhat higher
rejection rate than normal (around 12% for 20 hidden units). It is possible that some of
the master runs have n’s that are high enough that they enter (¢ rarely enough to make
a difference in the estimates of p. This aspect of the experiment is difficult to control, as
it is usually not possible to tell in advance what the regions with high rejection rates are
going to be, and if they will make a difference to the final variance of means estimates in
the end. Furthermore, if such regions are identified after obtaining master runs, it can

be very costly computationwise to redo the master runs at a smaller setting of 7.

Finally, the bootstrap procedure takes the stratification into account as follows: the
first 40 chains in Z* are sampled uniformly with replacement from the first 40 chains in

7, while the last 10 chains in Z* are sampled uniformly with replacement from the last

CHAPTER 5. RESULTS 79

10 chains in Z. This ensures that each realization Z* is obtained from the same empirical

distribution represented by Z.

5.5 Number of Leapfrog Steps Allowed

In accordance with the deemed ratios of computation involved in each super-transition
for the various methods (Table 5.5), different numbers of leapfrog iterations were used

for each Markov chain. These are listed in Table 5.10.

Hyperparameter updates by | Leapfrog steps per chain
Gibbs 614400
Dynamical A 307200
Dynamical B 204804

Table 5.10: The varying numbers of leapfrog steps that were allowed per Markov chain
in accordance with the ratios of computation involved in each super-transition for the

various methods as listed in Table 5.5

5.6 Results of Performance Evaluation

The optimal tuning parameter settings for each method and for each number of hidden
units were assessed from Figs. 5.9 to 5.12. The optimal tuning parameters thus obtained
are given in Table 5.11. The corresponding ¢’s and variance of means and rejection rates
obtained at these optimal settings but in new runs with new random seeds are given in
Table 5.12.

As can be seen from Table 5.11, the optimal setting of n for the Gibbs and Dy-
namical A methods tends to drecrease with increasing hidden layer size. Dynamical B,

interestingly, increases with increasing hidden layer size.

CHAPTER 5. RESULTS 80

a) Gibbs update b) Dynamical A update
(a) p y p

(c) Dynamical B update

Figure 5.9: 8 hidden units: a circle is drawn at the optimum point, and the surface as
a function of [and 5 are backprojected on to the walls at optimal 1 and [respectively.

Note that the vertical scale is inverted.

CHAPTER 5. RESULTS 81

a) Gibbs update b) Dynamical A update
(a) p y p

(c) Dynamical B update

Figure 5.10: 12 hidden units: a circle is drawn at the optimum point, and the surface as
a function of [and 5 are backprojected on to the walls at optimal 1 and [respectively.

Note that the vertical scale is inverted.

CHAPTER 5. RESULTS 82

107

a) Gibbs update b) Dynamical A update
(a) p y p

(c) Dynamical B update

Figure 5.11: 16 hidden units: a circle is drawn at the optimum point, and the surface as
a function of [and 5 are backprojected on to the walls at optimal 1 and [respectively.

Note that the vertical scale is inverted.

CHAPTER 5. RESULTS 83

a) Gibbs update b) Dynamical A update
(a) p y p

(c) Dynamical B update

Figure 5.12: 20 hidden units: a circle is drawn at the optimum point, and the surface as
a function of [and 5 are backprojected on to the walls at optimal 1 and [respectively.

Note that the vertical scale is inverted.

CHAPTER 5. RESULTS 4

Hyperparameter updates by | Hidden units | 1 n Rejection rate
Gibbs 8 200 | 0.400 8.2%
Dynamical A 8 25 | 0.640 42.9%
Dynamical B 8 533 | 0.040 21.7%
Gibbs 12 200 | 0.400 12.6%
Dynamical A 12 100 | 0.453 26.7%
Dynamical B 12 533 | 0.080 51.6%
Gibbs 16 100 | 0.400 15.8%
Dynamical A 16 200 | 0.453 44.0%
Dynamical B 16 66 | 0.160 30.8%
Gibbs 20 50 | 0.283 7.9%
Dynamical A 20 100 | 0.320 15.6%
Dynamical B 20 17 | 0.160 14.8%

Table 5.11: The optimal tuning parameters for each method and each number of hidden

units.

The values of g are plotted for each number of hidden units in Fig. 5.13. The error
bars are big, and it is possible that there is essentially no difference in all the three
methods. However, there is some evidence that when the number of hidden units N, is
increased to 16, the Dynamical B method begins to work better than the old method.
Note that the error bars in the figure are 90% confidence intervals of the performance
measures, and do not take into account inaccuracies in assessing the optimal settings of
the tuning parameters. Thus, the real error bars are actually bigger by some unknown

amount.

From the graph, the Dynamical A method does not seem to perform that differently
from the other methods, except at 16 hidden units. The cause of this seeming anomaly

at 16 hidden units is discussed in the next chapter.

CHAPTER 5. RESULTS 85

The graph also shows that the Dynamical B method does not show any improvement
over the old method that is measurable given the size of the error bars. This is unfor-
tunate. However, the old method does seem to show a noticeable upward trend, while
the two new methods do not. This suggests that the old method is becoming more and
more inefficient as the number of hidden units N, increases even though the compute
time given to it is also increasing linearly with Nj,. Thus, the graph suggests that the
compute time required to maintain the same level of performance as measured by ¢ grows
superlinearly with N}, for the old method. On the other hand, the two new methods ap-
pear more likely to be either linear or sublinear, although it is difficult to tell for certain
with the limited number of data points and the noise.

The size of the error bars impedes our analysis of the results. In the next section,
we show how we can perform bootstrapping on pairwise comparisons to obtain clearer

indications of how one method does compared to another.

5.7 Pairwise Bootstrap Comparison

To more sensitively compare how two methods perform, we can compute the ratio of ¢’s
for two different methods, and use bootstrapping to obtain a confidence interval for that
ratio. Here, a bootstrap realization is a choice of 50 Markov chain start states rather
than Markov chains, as the chains themselves differ for the two methods. This couples
the g’s for the 2 methods together, causing them to be evaluated at the same Markov
chain start state for each bootstrap realization. In this way, we might be able to better
distinguish between good and bad methods. For example, we might see that one method
always has a higher g than another when started from the same point even though their
individual ¢g’s wander over a large range for different bootstrap realizations so that the

error bars in the 2 ¢’s overlap significantly.

In Fig. 5.15, we show these ratios with 90% confidence intervals obtained using 500

CHAPTER 5. RESULTS 86

0.22

0.2

0.18 -

0.16 -

0.14 (0]

0.12

0.11-

0.08

0.06 -

0.04 | | | | | | | J
6 8 10 12 14 16 18 20 22

Number of hidden units

Figure 5.13: Comparison of g between the three methods at the optimal setting of the
tuning parameters as the number of hidden units increases. Crosses are the old method,
triangles are the Dynamical A method, and circles are the Dynamical B method. Error
bars terminate with the same symbol that represents each point. These error bars rep-
resent 90% confidence intervals, and do not take into account the error in the estimation

of the optimal tuning parameters. Thus, the true error bar is greater than those shown.

CHAPTER 5. RESULTS 87

Data noise hyperparameter Input-to-hidden weights' hyperparameter
022 0o
02 08
018 o
016}
06
014 =
S 205
g g
goa2r g
E £o4
£ 5
S 01 s
03t
o8
o2t
006
004 01
o . . . ,
6 B 10 12 14 16 18 20 2 (] 8 10 1 14 16 18 20 22
Number of hidden units Number of hidden units
Hidden-to-output weights' hyperparameter Hidden biases’ hyperparameter
007 08
07
006
06
005
4 Sos
g g
§0.04 H
£ E
3 504
s s
003
o3f
002
02
001 01 L L
2 8 10 18 20 22

12 14 16
Number of hidden units

Output biases’ hyperparameter

12 14 16 18 20 2
Number of hidden units

Figure 5.14: Comparison of optimal performance of the three methods as the number
of hidden units increases. Error bars terminate with the same symbol that represents
each point. These error bars are the standard deviation in the each variance of means
measure, and do not take into account the error in the estimation of the optimal tuning

parameters. Thus, the true error bar is greater than those shown.

CHAPTER 5. RESULTS 88

boostrap samples. From Fig. 5.15a, it seems fairly convincing that Dynamical B works
better than the old method for 20 hidden units. Fig. 5.15b suggests that Dynamical
B tends also to work better than Dynamical A, while Fig. 5.15c is inconclusive on the
relative performances of Dynamical A and the old Gibbs method. However, we should
note that that there is some uncertainty in the error bars due to the fact that we might
not really have found the true optimal settings of the tuning parameters. Also, the 50
Markov chains we used might not have been enough to capture all the important regions.

Thus, even though the pairwise comparisons might suggest that Dynamical B works
better than the Gibbs method for 20 hidden units, it is better to be cautious and conclude
that Dynamical B may work better than Gibbs, and if it does, it is not by much.

Now that it is clear that Dynamical B is not as good as one might hope, the question
is, why is that, and can it be made to go faster? We address these questions, as well
as the question of Dynamical A’s large error bars in ¢ at 16 hidden units, in the next

chapter.

CHAPTER 5. RESULTS 89

12 14 16 18 20 22
Number of hidden units

(b) Dynamical B vs. Dynamical

A

12 14 16 18 20 22
Number of hidden units

(c) Dynamical A vs. Gibbs

Figure 5.15: Pairwise comparisons of the various methods obtained by taking the ratio
of g. Error bars represent 90% confidence intervals obtained using 500 bootstrap realiza-

tions. Dashed lines have been drawn at the level of 1, which signifies equal performance.

CHAPTER 5. RESULTS 90

Hidden

Method ps Pu Pu Pa Pb g
units

0.0378 £ | 0.1777 & | 0.0353 £ | 0.1595 £+ | 0.0864 +
Gibbs 8 0.0784
0.0070 0.0367 0.0073 0.0480 0.0262

Dynamical 0.0637 £ | 0.2171 &+ | 0.0419 £+ | 0.1931 £+ | 0.0650 £
8 0.1039
A 0.0117 0.0815 0.0085 0.0376 0.0120
Dynamical 0.0909 £ | 0.1463 £+ | 0.0551 & | 0.1743 £+ | 0.0762 £
8 0.0683
B 0.0160 0.0190 0.0083 0.0261 0.0141

0.0479 £ | 0.2034 £+ | 0.0203 £ | 0.2267 £ | 0.0745 £
Gibbs 12 0.0818
0.0080 0.0399 0.0035 0.0433 0.0189

Dynamical 0.0478 £ | 0.1277 £ | 0.0263 £ | 0.2510 £+ | 0.0499 £
12 0.0797
A 0.0093 0.0279 0.0041 0.0667 0.0126
Dynamical 0.1420 £ | 0.1581 &+ | 0.0305 £ | 0.1586 £+ | 0.0743 £
12 0.1021
B 0.0707 0.0313 0.0049 0.0330 0.0188

0.0509 £ | 0.2238 &+ | 0.0256 £+ | 0.2083 £+ | 0.0496 £
Gibbs 16 0.0883
0.0102 0.0509 0.0054 0.0856 0.0106

Dynamical 0.0637 £ | 0.6173 & | 0.0193 £+ | 0.4893 £+ | 0.0578 £
16 0.1389
A 0.0124 0.2459 0.0030 0.2758 0.0105
Dynamical 0.0571 £ | 0.1460 £+ | 0.0208 & | 0.1768 £+ | 0.0515 £
16 0.0731
B 0.0121 0.0359 0.0043 0.0357 0.0105

0.0630 £ | 0.2319 &+ | 0.0290 £+ | 0.4259 £+ | 0.0528 £
Gibbs 20 0.1159
0.0134 0.0973 0.0078 0.1517 0.0096

Dynamical 0.0764 £ | 0.1576 & | 0.0163 £ | 0.3363 £+ | 0.0555 £
20 0.0901
A 0.0141 0.0348 0.0034 0.1092 0.0117
Dynamical 0.0749 £ | 0.1579 & | 0.0207 £ | 0.2109 £ | 0.0557 £
20 0.0848
B 0.0156 0.0337 0.0037 0.0445 0.0109

Table 5.12: Variance of means performances obtained by re-running the various methods
with new random seeds at the optimal tuning parameter settings. Each error bar is the

standard deviation of its variance of means measure.

Chapter 6

Discussion

6.1 Has the Reparameterization of the Network Weights

Been Useful?

As we saw in the last chapter, the Dynamical A method seems to perform comparably to
Dynamical B except for 16 hidden units. Upon closer examination, we see that the large
value of g for the Dynamical A method at 16 hidden units is due to it not performing
well for some Markov chain starting states with large hyperparameter values for log o,
and logo,, i.e., the second stratum. This can be seen in Fig. 6.1, and is a manifes-
tation of Dynamical A’s inability to move efficiently between large and small values of
hyperparameters. This effect is less pronounced for 20 hidden units probably because
the starting states in the second stratification are less extreme in value. As mentioned
before, this is an aspect of the experiment that is difficult to control. Nevertheless, our
present results indicate that the Dynamical A method should be avoided because it may

move extremely slowly from some starting states.

91

CHAPTER 6. DISCUSSION 92

a

log
>
;

a

log
>
;

(c) Dynamical B update

Figure 6.1: These plots compare how the various method fare on the 10 Markov chain
starting states with large hyperparameters for 16 hidden units. The circles show the 10
starting states with large hyperparameters, the crosses show the hyperparameter means
of all 50 chains, while the dots show the means for the 10 Markov chains that started
at the large hyperparameter values. Dashed lines connect each starting state with its

resulting mean.

CHAPTER 6. DISCUSSION 93

6.2 Making the Dynamical B Method Go Faster

As we saw in the last chapter, the Dynamical B method offers only a small improvement
over the old method, if any at all. The question then is, why.

The key may lie in the rejection rates. As can be seen in Fig. 6.2, the rejection rates
of the Dynamical B method differ from those of the old method and the Dynamical A
method in that it shows a significant increase with leapfrog trajectory length [.

The primary motivation for the new methods is to allow the hyperparameters to be
updated with the parameters during the course of a leapfrog trajectory. For this to
explore the posterior distribution efficiently, long trajectory lengths are necessary. As
we can see from Fig. 6.2, the Dynamical B method ended up having rejection rate
characteristics that penalizes long trajectory lengths with high rejection rates. Thus, the
optimal setting of [is not as long as we might like.

With this observation in mind, if we can find out why the Dynamical B method has
this behaviour, we might be able to fix it. The next section formulates a simple model

that accounts for this increase in rejection rate with /.

6.2.1 Explanation for the Rising Rejection Rates

If the stepsizes were infinitesimally small, the leapfrog trajectories would simulate Hamil-
tonian dynamics perfectly, and the rejection rate would be zero. However, they are not,
and are furthermore calculated by heuristics that may yield inappropriate values some-
times. This leads to rejection behaviour that affects the rate at which the Markov chain
explores the state space.

There are two qualitatively different ways by which a leapfrog proposal under the
Dynamical B method may be rejected. In the first way, the leapfrog simulation of the
Hamiltonian dynamics is stable and H varies over a small range due to the discrete

nature of the simulation. At the end of the trajectory, the distribution of H over this

CHAPTER 6. DISCUSSION

Rejection rate

10 E
)
8
ol M | : |
g
——= T =0010 T
-6~ n=0.020 «
—*= 1 =0.050
107 —-n=0100 o E
5 n=0.141
= 1 =0.200
¥ n=0283
- —<+ n=0.400
0 —# n=o0800| 3 3
—* n=1600
lorsn ‘1 ‘2 ‘3 ‘4 5 lorsn ‘1 ‘2 ‘3 ‘4
10 10 10 10 10 10 10 10 10 10 10 10

Rejection rate

(c) Dynamical B update

Figure 6.2: Rejection rates versus trajectory length [for 20 hidden units.

94

CHAPTER 6. DISCUSSION 95

small range determines the rejection rate. In the second way, the leapfrog simulation
becomes unstable at some point during the trajectory due to the heuristics yielding
stepsizes inappropriate for that region of state space. The effect of this is catastrophic
because the simulation is almost never able to recover: the value of H either diverges
or moves to a much higher value, resulting in near certain rejection. H has a much
greater tendency to move to a higher rather than a lower value because stepsizes that

are inappropriately large may still be stable in a wider orbit.

To illustrate this instability, H is plotted in Fig. 6.3 for 10 trajectories started from
the same state but with different randomly-selected initial momenta. We see that once
an instability can occur at any time, and once it occurs, recovery is virtually impossible,
and will lead to near-certain rejection at the end of the trajectory. The cumulative effect
of risking a grossly wrong stepsize with each step is that, for very long trajectories, the
probability that we manage to get to the end without once having experienced a catas-
trophic instability is tiny. Therefore, the rejection rate should increase with trajectory

length. This explains the observed increase of the rejection rate with [for Dynamical B.

Another view of the instability of H is shown in Fig. 6.4, which shows how the

distribution of H broadens with increasing number of leapfrog steps.

The old method, which updates the hyperparameters by Gibbs sampling, is not prone
to this cumulative rejection effect as its stepsize is not being constantly recalculated
during a trajectory. Even if its stepsize heuristic gives inapporpriate stepsizes with too
high a probability, the stepsizes are computed only once at the beginning of the trajectory,
and a good stepsize will tend to lead to a stable trajectory no matter how long it is. Such
long trajectories then become unstable only by entering a region for which its stepsizes are
inappropriate. This effect leads to rejection rates that increases with [as, the longer the
trajectory, the more likely such regions are encountered. However, the fact that rejection
rates for the old method show very little dependency on [(see Fig. 6.2) indicates that

entry into such regions happens very rarely. Thus, for the old method, most rejections

CHAPTER 6. DISCUSSION 96

180

.
160 B
1401 g

I
120 ~
100 ~
T

80 { |
60 (B

e

I T
40F | R
20 ~
o L L L L Il Il Il

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Leapfrog steps x 10*

Figure 6.3: H plotted over 10 trajectories started from the same state but with different
initial momenta. Each trajectory has 20000 leapfrog steps. As each trajectory progresses,
it may become unstable. If it does, H usually rises catastrophically. A transition to
infinite H is shown here as a transition to 0. n was set at 0.040, and a network of 8

hidden units was used.

are due to the normal deviation of H away from its initial value.

That the repeated stepsize calculations handicaps the Dynamical B method with its
cumulative rejection effect might be cause for pessimism. However, the fact that the
Dynamical A method achieves fairly flat rejection rates (Fig. 6.2) shows that the rise
in rejection rates is not an inescapable cost of calculating the stepsizes before each step;
rather, with appropriate stepsize heuristics, it might be possible to achieve flat rejection

rates even in the Dynamical B method.

The stepsize heuristics used in the Dynamical B method for the parameters are the
same as that used in the old method, so they are unlikely to be the cause of the catastroph-
ically wrong stepsizes. We expect that it is the stepsize heuristics for the hyperparameters

that is at fault. The next section seeks to confirm this.

CHAPTER 6. DISCUSSION 97

30

30

Frequency
i
&
Frequency
i
&

L n n L L L L L L n L L
0 20 40 60 80 100 120 140 160 180 0 20 40 100 120 140 160 180

H!_\ [
60 80
H

(a) Before any leapfrog steps (b) After 5000 leapfrog steps

30

30

Frequency
i
&
Frequency
i
&

= I Hﬂm = 0O
20 40 60 80 " 1

0 20 40 60 80 100 120 140 160 180 0 00 120 140 160 180
H

(c) After 10000 leapfrog steps (d) After 20000 leapfrog steps

Figure 6.4: The distribution of H broadens as a trajectory progresses. Infinity is binned
at 0 in these histograms. 50 trajectories, all started at the same state but with different

initial momenta, were used to generate these histograms. n was set at 0.040. A network

of & hidden units was used.

CHAPTER 6. DISCUSSION 98
6.2.2 The Appropriateness of Stepsize Heuristics

If a stepsize is inappropriately large and leads to instability, then perhaps a smaller
stepsize half as large might not. If, for example, the parameter stepsizes are sometimes
inappropriate, then under a leapfrog discretization where the hyperparameter update re-
mains the same but where each parameter update is split into two consecutive updates,
each with half the stepsize adjustment factor, the acceptance probability p should in-
crease, since the parameter update is now closer to the true Hamiltonian dynamics. On
the other hand, if the parameter stepsizes are usually appropriate and it is the hyperpa-
rameter stepsizes that are at fault, then the rejection rate should not change much.

As shown in Fig. 6.5, when the parameter updates were split, the rejection rates
did not change, while they dropped when the hyperparameter updates were split. This
indicates that the hyperparameter stepsizes calculated according to the current heuristics
are often inappropriate. Fig. 6.5 was obtained by averaging the rejection rates over a
small number of Markov chains run at various settings of [with n = 0.010. A network
with 8 hidden units was used, along with the training data from the last chapter. The
Markov chain starting states were chosen from the ones used in the tests in the last
chapter, with momenta randomly initialized from the unit normal distribution.

To remedy the inappopriateness of the hyperparameter stepsizes, it is possible that
the stepsize heuristics for the hyperparameters needs to be changed. On the other hand,
it is also possible that some setting of n, < n, rather than n;, =), is all that is necessary.

In the next two sections, we explore these two possibilities.

6.2.3 Different Settngs for /7,

In this section, we report the results of some experiments to test the possibility that
some setting of 7, < 1, can flatten the rejection rate versus [curves without us having

to change the stepsize heuristics.

CHAPTER 6. DISCUSSION 99

100 F

10|]

10 !

Rejection rate

107]

—©— Parameter updates split
—— Hyperparameter updates spli
—£— Regular run

107 " S R | " S R | " PR R |
10 10° 10° 10 10°

Figure 6.5: Effect on rejection rates of splitting either the parameter updates or the
hyperparameter updates into two while using the Dynamical B method. Here, n, =n, =

0.010. This plot was obtained using a network with 8 hidden units.

We used a network with 16 hidden units and the training data from the last chapter.
20 Markov chains were run at various trajectory lengths [with n, = 0.32 and 0.64, and
nn = 1,/100. The Markov chain starting states were taken from the states used for the
tests in the last chapter, and the momenta were randomly initialized from a unit normal
distribution. The resulting rejection rates averaged over the 20 chains are plotted in Fig.
6.6. Compared to the case when 1, = n,, the rejection rates do not rise as fast as the

trajectory length increases.

This suggests that, by decreasing the ratio n/n,, it may be possible to gain enough of
the advantage of having long trajectory lengths to offset the smaller distances travelled
in each step due to the smaller ;.

The geometric mean performance measure g was also calculated at each setting of [.

It was found that the best value of ¢ is 0.14, which occurs at [= 17067,n, = 0.32. This

value of ¢ is considerably worse than the optimal one (0.0731) found for the Dynamical B

CHAPTER 6. DISCUSSION 100

10° % V T 10°

— n=0320)
-6~ n =0.640)

:npzoazo
o N,=0.640

.
10° 10! 10° 10° 10° 10° 10° 10! 10° 10° 10° 10°

(a) np =1mp = 0.32 and n, = 7, = 0.64 (b) 5, = 0.32 and 5, = 0.64. 5, = n,/100

Figure 6.6: These pictures show rejection rates for 16 hidden units when different ratios
of nu/n, are used. The rejection rates do not rise as fast with increasing trajectory length
when 7, 1s set to be smaller than 7n,. The first set of rejection rates were averaged over

50 Markov chains while the second were obtained using 20.

method at this number of hidden units. So we see that, even though we are able to take
much longer trajectories with smaller 1y, /n,, the smallness of 1, may erase our advantage.
It is possible that some other setting of 7,, or some other ratio of n,/n, does better than
setting ¢ = 0.0731, but this question will not be explored further in this thesis due to
time constraints. The key conclusion of this section is that smaller ratios of n;/n, can

flatten the rejection curve and may be more advantageous than simply setting n; = 7,.

6.2.4 Fine Splitting of Hyperparameter Updates

Apart from setting a low ratio for n,/n,, we conjecture that, with sufficiently good
heuristics, we should also be able to get the rejection rate to stay flat as [increases. To
test this, we split the hyperparameter updates into 100 fine updates (many more than
the two before). The reason for doing this is that the more stable trajectory obtained by

the splitting may roughly model what a good heuristic gives.

CHAPTER 6. DISCUSSION 101

Split updates

Rejection rate

- n=0.200
-7~ 1 =0.080
< n=0.160
-+ n=0.320

10~ M| N | | N |

Figure 6.7: Effect on rejection rates of splitting the hyperparameter updates into 100
updates while using the Dynamical B method with 5, = n, = 0.200. Compared to the
normal unsplit updates, rejection rates are now much lower. The network used here has

8 hidden units.

The split hyperparameter updates were tried on a network with 8 hidden units, using
the same training data as in the last chapter, and using 10 Markov chain starting states
taken also from the tests conducted in the previous chapter. Momenta were randomly
initialized from a unit normal distribution. The 10 Markov chains were run at n = 0.20
with various values of [. Fig. 6.7 shows that the resulting rejection rates for runs with
split hyperparameter updates still increases with [, but its rate of increase is much gentler
now, increasing about one order of magnitude from about 1%. This is much better than
the rejection rate obtained from the normal unsplit updates, which we contrast in the

same figure. The unsplit updates do worse even for n less than half the size.

This suggests that, with sufficiently good heuristics, trajectories might be able to go

far enough to truly reap the advantages of updating the hyperparameters dynamically.

CHAPTER 6. DISCUSSION 102

6.2.5 Why the Stepsize Heuristics are Bad

A possible explanation for why the hyperparameter stepsize heuristics do not work well is
that we cannot use the current values of the hyperparameters to compute their stepsizes.
As we are unable to get an estimate of them from the weights due to their reparame-
terization, we are forced to use their prior means, which are not necessarily very good

estimates.

In retrospect, this should have been obvious. The backpropagation of the second
derivative of the likelihoods multiplies together the hyperparameter variances of each
layer of weights that it propagates derivatives through. For instance, the second deriva-
tive of the likelihood with respect to the input to hidden weight hyperparameter A, is
proportional to 1/(w,w,), the product of the prior variances of the hidden to output
weights and the input to hidden weights. In an 8 hidden unit run, our settings were such
that 1/(w,w,) = 0.2. Yet, from Fig. 5.8, it is clear that, as the Markov chain ranges over
the posterior distribution, the product of these two variances can actually range up to
el? 2~ 1.6 x 10° or more. Clearly, 0.2 as an estimate of 1.6 x 10° is bad. This can lead to
stepsizes which are (0.2/e7'*)7%® ~ 1000 times larger than what they would have been

if we had used the actual values of the hyperparameters.

The Dynamical A method does not suffer from this multiplicative effect of wrong
hyperparameter estimates as its neural network function does not depend on the hyper-
parameters, so there is no need to do backpropagation of second derivatives. Indeed, the
second derivative of the potential energy in Eqn. 4.9 is proportional to just the precision
of the hyperparameter, so if our estimate of the hyperparameter is k£ times too small, the
stepsize is only going to go up by a factor of Vk. Furthermore, the parameters contain
information about the value of the hyperparameter: the Dynamical A method estimates

a hyperparameter as its posterior mean given its weights.

CHAPTER 6. DISCUSSION 103

6.2.6 Other Implications of the Current Heuristics

The fact that the current heuristics uses the prior means of the hyperparameters as esti-
mates of the hyperparameters themselves during stepsize calculations has the implication
that, when the Dynamical B method is used, the prior means must be carefully selected
to be close to values where the hyperparameters have high posterior probability. This
allows the stepsizes to be accurate when moving about in areas of high posterior proba-
bility. If the prior means are badly set, exploration of the posterior is expected to become
very inefficient.

A hybrid Monte Carlo method that computes bad stepsizes in some region of state
space may usually be unable to enter that region because it rejects once a trajectory
enters it. Furthermore, once having entered that region, it is obliged to stay in there a
long time (through its high rejection rate in that region) in order to compensate for its
inability to enter that region in the first place. This leads to high autocorrelations.

We might ask if the B method actually suffers from this problem. If it does, it
is small, as an effect like this was not noticed: the marginal posterior distributions of
the hyperparameters obtained by the B method matches those from the old (Fig. 5.8).

However, this is no guarantee that it will work similarly well for other problems.

6.3 Conclusion

In this thesis, we have introduced a new way of learning the hyperparameters in a neural
network model using Hamiltonian dynamics. We have presented two versions of the new
method: the Dynamical A method, and the Dynamical B method, which is the former
with weights reparameterized to enhance movement between large and small values of
the hyperparameters. We have also developed performance evaluation methodologies
that measure the rate of exploration of the posterior while accounting for the different

compute times required for the different methods. The observation that some parts of

CHAPTER 6. DISCUSSION 104

state space might have a large effect on the results then led us to a stratified version
of the performance measures. After extensive testing, we have found that these same
regions of state space can cause Dynamical A to become very inefficient for the reasons
that led us to formulate Dynamical B. However, we have also shown that Dynamical B
does not show a measurable performance improvement over the old method.

The Dynamical A method as it currently stands suffers from expected inefficiencies,
but it was hoped that Dynamical B would overcome them and yield better performance.
Instead, there is currently no reason to recommend either new method over the old one.

We strongly believe that the Dynamical B method’s Achilles’ heel is the fact that
its rejection rate increases with trajectory length. If longer trajectories can be achieved
while keeping rejection rates low, it is expected that the Dynamical B method can become
significantly faster. To achieve this, future work might focus on an improved parameteri-
zation of the weights and/or more accurate hyperparameter stepsize heuristics. Also, the
stepsize heuristics can potentially be simplified to allow more leapfrog steps to be taken.

Ultimately, our efforts are being hampered by the fact that the volume of the state
space under the posterior having large hyperparameter variance is huge and low density,
while the region having small hyperparameter variance is small and very high density,
and hybrid Monte Carlo does not move well between these two types of regions. Doing
nothing about this leads to the Dynamical A method, which we have shown can have
severe inefficiencies in certain regions. On the other hand, our effort to reparameterize
the weights to tackle this problem leads to the hyperparameters being confounded with
the weights in the computation of the network output, and that is the cause of our
inability to have long trajectories while keeping rejection rates down. It may be that we
are pushing against the inherent limitations of the hybrid Monte Carlo method here, but

we nevertheless hope that further work will overcome the present difficulties.

Appendix A

Preservation of Phase Space Volume

Under Hamiltonian Dynamics

Here, we show the well-known result that Hamiltonian dynamics keeps the Hamiltonian

H as well as phase space volume constant.

Hamiltonian dynamics is characterized by:

OH
q= —@p
_ OH
P="%¢

where ¢ and p are the state and the momentum variables respectively.

The following shows that Hamiltonian dynamics keeps H constant:

an _on o
dt — 9dq dp

_OH (0H +9_H _oH
~ 9q \ p Ip \ 9q

=0

(A.2)

To show that Hamiltonian dynamics conserves phase space volume, consider the phase

space flow (¢, p), which defines a vector field in the phase space (¢, p). The fact that phase

105

APPENDIX A. PRESERVATION OF PHASE SPACE VOLUME UNDER HAMILTONIAN DYNAMICS106

space volume is conserved is due to the fact that the divergence of this vector field is 0:

.. J . 0 .
V(¢,p) = a—qq+ o,

_PH OH
~ 9qdp Opdq

Appendix B

Proof of Thorem 2: Deterministic

Proposals for Metropolis Algorithm

Here, we prove Theorem 2 from Section 2.3.1.

First, we need the following definition:

Definition 7 (Detailed Balance) We say that the transition probabilities T'(x, A) de-
fined for all points x and all sels A satisfies detailed balance with respect to the densily
m(x) if, given any two sets A and B:

/AW(;L')T(QC,B)d:E:/ﬂ(m)T(m,A)dm (B.1)

B

In words, the detailed balance condition says that, in equilibrium, the probability of
starting in A and moving to B in one transition is exactly equal to the probability of
starting in B and moving to A.

Recall that to say that a Markov update leaves a distribution 7(z) invariant is to say
that the total probability mass m(A) in some arbitrary set A is unchanged by the Markov

transition. That is:

/RW(:I:)T(:I:,A)dm =m(A) (B.2)

107

APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR METROPOLIS ALGORITHM1

&

M(A)

Figure B.1: A maps to A’ under M, and B maps to B’ under M.

where R is the state space.

It is easy to see that if a Markov transition satisfies detailed balance with respect to
m(x), then it leaves 7(x) invariant: we need only set B to R to see this. Thus, we only
need to prove that the Metropolis algorithm with deterministic proposals satisfying the
two conditions in Theorem 2 yields Markov updates that satisfy detailed balance with

respect to the desired distribution 7(z). That is our aim in the below discussion.

Consider the deterministic mapping M : R — R. Let AC R and B C R. Under M,
the image of A might in general have some part outside B, and the image of B might

have some part outside A, as shown in Fig. B.1.

Assume that the mapping M (-) is the inverse of itself so that M (M (z)) = x, we must
have that the M(AN B") = BN A’. Suppose not. Then, there is a point z € AN B’
that maps into BN A’, which we show as “M(z)” in Fig. B.2. (M(x) must be in A’ as
z € A.) But the fact that = is in B’ means that it is the image under M (-) of some point
yin B, so that M(y) = x. If indeed x maps on to the point “M(z)”, then M(M(y)) # v,

for y is in B but “M(z)” is not. Since this violates the assumption that M(-) is its own

APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR METROPOLIS ALGORITHM1

Figure B.2: x € AN B’ must map onto BN A'.

inverse, we conclude that M(AN B’) = BN A’. Note that M(B N A’) = AN B also due

to the self-inverting assumption on M ().

With this fact in hand, we are ready to show how to achieve detailed balance for the
Metropolis algorithm. We assume self-inverting deterministic proposals. Since the total

probability mass flowing from A to B takes place in the flow from AN B’, we can rewrite

the left hand side of Eqn. B.1:

- /AQB,W(:C)mmO, M) dx (B.3)

where we have used the Metropolis transition probability T'(z, B) = min[l, 7(M(z))/7(z)].

APPENDIX B. PROOF OF THOREM 2: DETERMINISTIC PROPOSALS FOR METROPOLIS ALGORITHM1

We can then rewrite the right hand side of Eqn. B.1:

(B.4)

Comparing the expressions resulting from manipulating the left and the right hand
sides of the detailed balance condition, we see that they are equal if the Jacobian
|0y/0x| = 1. Thus, detailed balance with respect to m(x) is achieved if the Metropolis
algorithm is used with deterministic proposals that are reversible (self-inverting) and that

have Jacobian 1, and we are done.

Appendix C

Preservation of Phase Space Volume

Under Leapfrog Updates

In this Appendix, we show that leapfrog updates preserve phase space volume.
Consider the simultaneous update of 2 variables such that each update does not

depend on the variable it updates, but depends on the value of the other variable:

'+ f(y) 1)

v < y+glx)
It can easily be shown that the Jacobian of such an update is 1 — f'(y)¢'(z), so the
update does not preserve phase space volume in general. On the other hand, consider
two sequential updates where each update also depends on the variable updated by the

other only, but the updates are performed one after another:

' x4+ f(y) (©2)

y —y+g@)=y+glz+ fly)

The Jacobian of such an update can be shown to be identically equal to 1, and so
it preserves phase space volume. This is simply a demonstration of the fact that each

sequential update of a variable that does not depend on itself amounts to a shear in the

111

APPENDIX C. PRESERVATION OF PHASE SPACE VOLUME UNDER LEAPFROG UPDATES112

direction of that variable. Thus, each sequential update preserves phase space volume,
and indeed, a chain of such updates does as well.

The leapfrog updates are:

€ el
(T + =) =p;(t) — = t for each 1 =1..d
e+ 5) =) - 572 (a0)
gi(t+¢€) =q(t) + GM for each i = 1..d (C.3)
m;
€ el .
pi(t+¢) =pi(t+ 5) — 5@% (a(t+¢€)) foreachi=1..d

The update for p appears to be simultaneous in that p; is updated without reference
to any newly-updated components of p. However, in the leapfrog update, the update of
each p; does not actually depend on any other component of p, so the update of each p;
can be viewed as being sequential and conserving phase space volume. The same applies

to q;.

Bibliography

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995.

W. L. Buntine and A. S. Weigend. Bayesian back-propagation. Complex Systems, 5:603—
643, 1991.

G. Cybenko. Approximation by superpositions of a sigmoid function. Mathematics of
Control, Signals and Systems, 2:303-314, 1989.

L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid monte carlo. Physics
Letters B, 195(2):216-222, September 1987.

B. Efron and R. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, 1993.

W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley and

Sons, Inc., 1966.

D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, California Institute
of Technology, 1991.

D. J. C. MacKay. Comparison of approximate methods for handling hyperparameters.
Neural Computation, 11:1035-1068, 1999.

P. B. Mackenzie. An improved hybrid monte carlo method. Physics Letters B, 226:369—

371, August 19809.

113

BIBLIOGRAPHY 114

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical Physics,

21:1087-1092, 1953.

P. Miller and D. R. Insua. Issues in bayesian analysis of neural network models. Neural

Computation, 10:749-770, 1998.

R. M. Neal. Probabilistic inference using markov chain monte carlo methods. Technical

Report CRG-TR-93-1, University of Toronto, September 1993.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag, 1996.

J. S. Rosenthal. A review of asymptotic convergence of general state space markov chains.

March 1999.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Nature, 323:533-536, 1986.

