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The Metropolis-Hastings Algorithm

We can sample from a distribution with
density w(x) by simulating a Markov chain
with transitions defined as follows:

From the current state, x, a candidate state,
x*, is drawn from a proposal distribution,
S(x,x*). The proposed state is accepted as
the next state of the Markov chain with
probability

w(x*)S(x*,x)
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If £* is not accepted, the next state is the
same as the current state.

If the proposal distribution is symmetric —
ie, S(z,z*) = S(z*, ) — then the acceptance
probability depends only on n(z*)/w(x).



Proposals for the Metropolis Algorithm

What proposal distribution, S(z,z*), should we
use? Two possibilities:

Independent Proposals: S(z,z*) does not
dependent on z. Every proposal is from a fixed
distribution that we select to be close to .

Advantage: We can move far in one step.

Disadvantage: The rejection rate will be high
when we can’t find a good approximation to .

Random Walk Proposals: S(z,z*) depends
only on z* — x. Each proposal is from a
distribution centred on the current state.

Advantage: We can get a high acceptance
rate by not trying to move too far in one step.

Disadvantage: If we move in small steps, it
takes a long time to move a long distance.



Can we find a way to propose states that are
far from the current state
and that will be

accepted with high probability?



Deterministic Proposals

The proposals I will discuss are not random:
x* = s(x), for some deterministic function s.

What symmetry conditions on s are needed for
validity of the Metropolis algorithm, using
min[1l, n(z*)/7(x)] as the acceptance probability?

Proposal functions must be reversible:
If 2* = s(x), then z = s(z*).

Proposal functions must preserve volume:
Their Jacobian must have absolute value one.

Example of a valid proposal: z* = —=z.
Examples of invalid proposals:

z¥=z+1 Not reversible

x*=1/x Jacobian is not one

Of course, we will need to use other, random
transitions too, to get an ergodic Markov chain.



Hamiltonian Dynamics

Proposal functions that are reversible and
volume-preserving can be obtained using
Hamiltonian dynamics.

et the state consist of n “position” variables,
q;, and n “momentum’ variables, p;. This
state changes through “time” according to
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where H(q,p) is the “Hamiltonian” function.
Two properties of this dynamics:

e It preserves volume in (q,p) space.

o It keeps H(qg,p) constant.

We can simulate this dynamics approximately
with some small time step. This can be done
sO volume is preserved exactly, but H won't
stay exactly constant.



From Probability Density to Energy

We will start with a density n(q) < exp(—FE(q))
for the variables of interest.

We introduce p; to be independent of the g;,
with independent standard normal distributions.

The joint probability density for ¢ and p can
be written as

w(q,p) o exp(—H(g,p))

with the Hamiltonian function defined as

H(g,p) = E(q) + Y p?/2
=1

E(q) is called the “potential energy”; the
second term is the “kinetic energy’.

We hope to sample jointly for ¢ and p, then
just ignore the unneeded p variables.



The HMC Algorithm

Here is the “Hybrid Monte Carlo” algorithm of
Duane, Kennedy, Pendleton, and Roweth (1987).

Alternately perform the following two steps:

1) Draw new values for the p; independently
from standard normal distributions. This is
a Gibbs sampling update.

2) Perform a Metropolis update, with the
candidate state found by simulating
Hamiltonian dynamics for time 7" and then
negating the p;.

With H(q,p) = E(q) + > p?/2, the dynamics is
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It is easy to see that if we negate the p; and
then continue, we will retrace our path. The
proposal function is therefore reversible, and
since it also preserves volume, it is valid.



Example: Univariate t Distribution

Here are some steps of HMC sampling from a
t distribution with 5 degrees of freedom, for

which E(q) = 3log(1 + ¢2/5):
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The time step used to simulate the dynamics
above is smaller than needed to keep H almost
constant, and hence accept most proposals.



Example: Bivariate Gaussian

Here is a trajectory for sampling a bivariate
Gaussian with 01 = 0o =1 and p = 0.998:
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The plot shows g1 and ¢o, but not the
corresponding momentum variables, p; and p».



Advantages of HMC

HMC can propose and accept distant
points. Computing such a proposal may
require taking many small steps, but...

The steps HMC takes can move in one
direction consistently. Hence in k£ steps, we
can move a distance proportional to k£, not
V'k, as for random walk Metropolis updates.

HMC can quickly change the probability
density. With n dimensions, the momentum
replacement changes the log density by order
vn. A single Metropolis update changes the
log density by order 1 (Caracciolo, et al 1994).

This is a reason why HMC may work better
than other ways of proposing distant points.
With n dimensions, at least order n transitions
are needed to reach an independent point
using only Metropolis updates.



But HMC Doesn’t Solve Everything!

HMC can be trapped in isolated modes.
Each point along a trajectory is distributed
approximately according to m, so trajectories
are unlikely to pass through the low-probability
points that separate the modes.

This can be addressed by “tempering” the
trajectories (Neal 1996).

HMC can be slow to move to points with
vastly different probability density. Since H
IS almost conserved along a trajectory, E for
the proposed point can differ by only order /n
(what the kinetic energy is likely to vary by).

This is not a problem for roughly Gaussian
distributions. It is for high-dimensional skewed
distributions, and when there are modes with
different widths, but similar total probability.



Can we find a way to propose states that have
vastly different probability density
and that will be

accepted with high probability?



Sampling with Spirals

By abandoning preservation of volume, we can
propose and accept states with vastly different
probability density — since the acceptance

criterion will involve not only w(z*)/nx(x), but a
Jacobian factor accounting for volume change.

Here is an update for the “spiral’ method:
1) Choose k uniformly from 0... K.

2) From the current state, (q,p), simulate k
steps of Hamiltonian dynamics. Before and
after each step, multiply all the p; by +/a.
Number these states from 1 to k.

3) From the original state, simulate K — k
reversed steps of Hamiltonian dynamics.
Before and after each step, divide the p; by
va. Number the states from —1 to k — K.

4) Select the next state from among all K+ 1
states seen above (0 is current state), with
probabilities proportional to 7 (g{®, p(1)) a?.



The Double Spiral Method

The spiral method won't move easily between
isolated modes — by the time it reaches the

other mode, the momentum will be too large
to stay there.

The “double spiral” method solves this.

As for the spiral method, we simulate steps of
Hamiltonian dynamics both ways from the
current state, and multiply or divide by /a
before and after each step.

But: We now switch from multiplying to
dividing after a randomly selected number of
steps. This switches us from an expanding
spiral to a contracting spiral, which can
converge on another mode.

Unlike my previous “tempered trajectory”
method, there’s a good chance of going to a
mode with greatly different probability density.



Example: Bimodal Mixture

Here is a double spiral trajectory for an equal
mixture of two tgs distributions, centered at O
and 50, with widths of 10 and 1:

-40 -20 0 20 40 60

If the start point was a typical point in one
mode, there is a good chance that the next
state will be a point in the other mode —

even if it has much lower probability density.
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