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Abstract. We show how large improvements in the accuracy of MCMC estimates for posterior
expectations can sometimes be obtained by coupling a Markov chain that samples from the posterior
distribution with a chain that samples from a Gaussian approximation to the posterior. Use of
this method requires a coupling scheme that produces high correlation between the two chains. An
efficient estimator can then be constructed that exploits this correlation, provided an accurate value
for the expectation under the Gaussian approximation can be found, which for simple functions
can be done analytically. Good coupling schemes are available for many Markov chain samplers,
including Gibbs sampling with standard conditional distributions. For many moderate-dimensional
problems, the improvement in accuracy using this method will be much greater than the overhead
from simulating a second chain.

1 Introduction

Bayesian inference problems require calculation of the expectations of various functions of the
model parameters with respect to their posterior distribution. If the posterior density, f(y), is easy
to sample from, the expectation of a(y) with respect to f can be estimated using Monte Carlo
integration by @, = (1/n) Yi-; a(y;), where y1,...,y, is a sample of n independent points drawn
from f.

Drawing samples directly from the posterior distribution is not feasible in most Bayesian infer-
ence problems because the posterior distribution, f, is usually too complicated. One of the early
solutions for this problem was to find a Gaussian approximation, g, for f and use E4(a(y)) as
an approximation to Er(a(y)). This reduces the problem to calculating the expected value of the
function a with respect to a Gaussian distribution, which, depending on the function a, may be
doable analytically, or by Gaussian quadrature (Thisted 1996, Section 5.3), or by efficient Monte
Carlo techniques. Another possible solution is importance sampling (Tanner 1993, Section 3.3.3),
perhaps using the Gaussian approximation to the posterior distribution. A sample from the Gaus-
sian distribution is drawn and the points of the sample are reweighted to account for the fact that
the sample is not from the correct distribution.
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In many problems, the Gaussian approximation will be close to the posterior distribution, but
not close enough to provide sufficiently accurate estimates. If the posterior distribution has heavier
tails than the Gaussian approximation, even importance sampling will not provide good estimates,
as in this case the importance sampling weights will be very variable, and only a few points from the
sample drawn from the Gaussian approximation will contribute to the estimate. For this reason,
Markov chain Monte Carlo techniques are now commonly used to estimate expected values with
respect to complex or high-dimensional posterior distributions.

In this paper, we will use the Gaussian approximation to the posterior distribution to improve the
accuracy of Markov chain Monte Carlo estimates. The mean of the Gaussian approximation is taken
to be the mode of the posterior distribution. The mode can be found using the Newton-Raphson
algorithm, for example, perhaps using as an initial value the sample mean, 7 = (1/n) > vi,
where y1,...,Y, is a sample generated by simulating a Markov chain that converges to f. The
variance-covariance matrix for the Gaussian approximation is chosen to be minus the inverse of the
Hessian (matrix of second derivatives) of the logarithm of the posterior density, evaluated at the
mode of the posterior distribution.

The Markov chain used to generate the sample y1,...,y, from f will be coupled with a chain
that converges to the Gaussian approximation, g, producing a sample z1,...,z, . We hope that
these two samples will be highly correlated. To take advantage of this correlation, we construct new
estimators for E(a(y)) that depend on both the y’s and the 2’s and which make use of Ey(a(z)),
which is assumed to be accurately known.

One such estimator is

ay — @y — Ey(a(z))), (1)

where @, = (1/n) Y/ a(z;). For a = Cov (ay,a;)/Var (a,), this is the best unbiased linear
estimator. In practice, @ will have to be determined from the data, introducing some small bias.
This new estimator is sometimes much more accurate than @,, due to the information provided by
the sample drawn from the Gaussian approximation, which for problems of moderate dimensionality
can be found with little computational effort.

In the context of simple Monte Carlo estimation from simulation data, a similar technique has
been used to reduce variance using control variates (Kelijnen 1974, Section ITI.4; Ripley 1987).
Cheng (1978) investigates the properties of estimators of type (1) when the joint distribution for z
and y is Gaussian, an assumption that seems to be reasonable in their queueing system context, but
perhaps not for our application. Lavenberg, Moeller and Welch (1982) discuss the loss of variance
reduction due to estimating « from the data. Another use of coupling to improve estimation is due
to Frigessi, Gasemyr and Rue (2000), who use antithetic coupling of two chains sampling from the
same distribution.

In Section 2, we introduce the coupling procedure and show how it can produce correlation
between chains. Section 3 presents the estimator (1) and discusses its properties and efficiency. In
Section 4, this estimator is seen as the simplest of a larger class of estimators that can also model
more complex relationships between the two chains. Section 5 presents an example based on the
data on pump failures from Gelfand and Smith (1990). We conclude, in Section 6, by discussing
possible further extensions and applications.



2 The Coupling Technique

Two chains are coupled when their transitions are determined by the same random numbers.
Suppose we have two distributions, g and f, from which we want to draw samples (z1,...,z,)
and (y1,...,Yyn), respectively. We will start with o = yo. At each iteration we randomly draw
v; from some distribution V' and generate the updates for the two chain by z; = ¢¢(z4—1,v;) and
Yt = ¢f(yYi—1,v:). The transitions functions, ¢y and ¢y, take two inputs, the state at time ¢ — 1
and some randomness v;, and return the state at time ¢. These transition functions are chosen
to keep the target distributions, f and g, invariant. From the chains obtained, an initial burn-in
period that depends on how fast the chains converge to their joint stationary distribution will be
discarded.

Coupling is used in Propp and Wilson’s (1996) coupling from the past method of exact sampling.
In this context, chains are started from all possible starting points and are run using the same
transition probability function. Under certain assumptions, if we start the chains far enough back
in the past, they will all coalesce by time zero.

We couple two chains using different transition functions, sampling from similar but different
distributions. We start both chains from the same initial state and hope the chains will stay close
together for the whole run, producing high correlation between the states of the two chains. The
success of coupling in producing chains that move together depends on the Markov chain Monte
Carlo methods used to sample from the distributions, and on the way they are expressed in terms
of ¢ functions.

To illustrate how coupling works, and later the properties of the estimators we introduce, we
consider a toy example in which a gamma, distribution is approximated with a Gaussian distribution.
In Figure 1, we can see the effect of coupling a chain sampling from the Gamma(10,5) distribution
with a chain sampling from its Gaussian approximation. If we denote by f the density of the
Gamma distribution, then the parameters of the Gaussian approximation, g, are the mean u, set
to the mode of f, and the variance 02 = — [d? log f(:z:)/alacQ]*1 evaluated at the mode. We used
the Metropolis algorithm to sample from the Gamma and Gaussian distributions. The proposal
used by the Metropolis algorithm was a Gaussian distribution centered at the current point and
with standard deviation three. The coupling for this example is done by using the same Gaussian
random numbers for the proposals and the same uniform numbers for the accept-reject decisions.
The random noise v; = (n¢, u;) has two components, n; ~ N(0,3?) and u; ~ Uniform(0,1), and the
two deterministic functions ¢; and ¢, are defined by

Y1+ if ug < fye—1 +ne)/ (Y1)
b (Y1, (1, ut)) { i1 otherwise (2)
and similarly
_ o1 +mne ifu < gzt +n)/g(z-1)
bg(-1, (Nt ur)) = { Ti_1 otherwise (3)

where f is the gamma density f(z|a,3) = (z* ‘e */#)/(T'(a)B%) with parameters = 10 and
B =5, and g is the Gaussian density with y = B(a — 1) and 0% = $%(a — 1).

How high the correlation between chains will be depends on the coupling technique and on how
close the Gaussian approximation is to the posterior distribution. In this example, the coupling is
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Figure 1: Coupling of chains sampling from Gamma(cq, 3) and the Gaussian approximation with
mean g = B(a — 1) and variance 0? = $%(a — 1). Here a = 10 and 8 = 5. Every hundredth point
of a long run of the Metropolis chains is plotted for each distribution. The solid line is the sample
from the Gamma distribution and the dotted line is the Gaussian approximation.

good because the step size is small — smaller than would be optimal if only one chain were being
simulated. For realistic problems, methods that produce good coupling at less cost are needed, as
illustrated in the example of Section 5.

3 A Simple Estimator Exploiting Coupling between Two Chains

Assume we have samples from two coupled chains, (yi,...,y,) from the distribution f, and
(#1,...,2,) from g, the Gaussian approximation to f. The usual estimator for Et(a(y)) would
be @, = (1/n)Yi; a(y;). To exploit the correlation of the two chains, we can construct a new
estimator for Ef(a(y)) of the form:

ay — (@ —Eg(a(x)), (4)

where @; = (1/n) 37, a(z;). This estimator is unbiased for any fixed a. It has minimum variance
(Ripley, 1987, Section 5.3) when

o — Cov(ay,a)
Var(a,) (5)

If the pairs of points from the two chains were independent, the appropriate estimate for a would
be

& — iz (a(yi) —ay)(a(zi) — aﬁ)_ (6)

- L (a(e:) —a5)
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For samples of dependent pairs obtained using Markov chains, we will still use estimator (6), since
it is close to optimal.

For notational simplicity, assume we are interested in uy = Ef(y) and we know pg = Ey(x).
The first estimate for u; we will look at is:

A = g-a@ - u) (7)

where, applying (6),

n . .
6 - Zi-l T(Lyz 9)(zi i z) (8)
Yie1 (@ — T)
Estimator (7) is unbiased if « is not estimated from the data. When « is estimated from the data,
we can still prove that the estimator is consistent. If the two chains are ergodic, the ergodic theorem
helps us establish the following:

Y —p Hf (9)
T —p i (10)

n (g — )2
L@ By g t
722:;%% —=p Erg(zy) (12)

The last statement is justified if the joint coupled chain (z,y) is ergodic. However, for the purpose
of this proof, all that is required is that the joint coupled chain converges to some distribution, such
that (12) converges to some constant. From (9) to (12) it follows that « converges to a constant
and that

iD=y uy (13)

The asymptotic efficiency of this estimator can be investigated by considering « to be constant. If
(1) _

we write the estimator (7) as iy (1/n) 3271 z , where z; = y; — a(z; — p1g), We can estimate its
variance by:

ot ()

n—tT n

- o~ 1

Var (,uge )) = , (14)
where 7 is the estimated autocorrelation time, which is obtained by summing the autocorrelations
of (z1,...,2,) at all positive and negative lags up to the lag past which the autocorrelations seem
to be nearly zero.

For the example presented in Section 2, we ran two coupled chains 100,000 iterations long and
found that the autocorrelations were close to 0 past lag 350. The correlation between the two chains
is 0.9466 and @ = .9926. The parameter estimated here is the mean of Gamma(10,5), which is 50.
The estimate using (7) is 50.21 with standard error of 0.22 and the traditional estimate is 49.34
with standard error of 0.63. These results show that exploiting the correlations between chains
improves the efficiency of the estimator by a factor of (0.63/0.22)% ~ 8.
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Figure 2: Every 350th point of the chains from Gamma(10,5) and the Gaussian approximation
with y = 45 and o = 15, along with the regression lines for first and third order models.

4 Coupled estimators based on regression models

The relationship between the samples y1,...,y, and z1, ..., z, could be modeled by a simple linear
regression:

yi = Po+ Puilwi—pg) + e (15)

The estimator (7) is exactly the least square estimator for the intercept in this simple linear re-
gression model. This observation leads us to consider new estimators for 1y based on higher-order
regression models. The samples based on the two coupled chains in Section 2 will not be linearly
related because the upper tail of the Gamma distribution is heavier than that of the Gaussian
distribution. In Figure 2 we can see that a third-order regression model fits better than the linear
model.

Assume we fit the following model for how (y1,...,y,) relates to (z1,...,zy):
yi = Bo+bilmi — pg) + Balwi — pg)” + Ba(mi — py)® + € (16)

If Bo, 31, 32, 33 are the least square estimates for the regression coefficients, we propose the following
estimator for p:

/75"3) = 5~ Bi(x — ng) + Baoy — ol — 19)? — Balz — pig)? (17)

where 03 = E((z - Mg)Q)a (T —pg) = (1/n) Xiea (@i — pg), (. —pg)? = (1/n) iy (i — Ng)2a
and (z — pg)® = (1/n) X1, (zi — py)3. By using the ergodic theorem, we can establish that the



coefficients, Ei, converge to some constants, and that
(@ —pg) —p 0
(@ —pg)? = 99
(& —pg)® —p 0
Y —p by

It follows that ﬂ§c3) —p lf-

) ~ ~ ~ ~ (3
Letting z; = yi— 01(2i —pig) + 8205 — Pa (i —p1g)> — B3 (i — p1g)°, we can write M§v )= (1/n) 2L 2,
and estimate its variance by:

Yin1 (Zz - ﬁSvg))?

n—7T

7 (1)

where T is the estimated autocorrelation time for the z;.

S

(22)

We expect this estimator to be better because the z;’s are the residuals of the model plus the

constant Bo + 3102. The better the model we fit, the smaller the variance of the residuals and hence

g
the smaller the variance of ﬁ(?’). Note, however, that the estimators based on these methods are

valid even when the regression model is not correct.

For the gamma example presented in Section 2, this third-order regression estimator, ﬂsc?’), gives
an estimate for py of 50.20 with standard error 0.18. This estimator is about 1.5 times better than

(1)
f

the linear regression estimate, iy ’, and about 12 times more efficient than the standard estimator

based on one chain.

5 Pumps Data Example

To illustrate the performance of the new coupled estimators we will consider the model for data on
pump failures from Gelfand and Smith (1990). The data consists of p counts, s1,...,sp, that rep-
resent the number of failures for p pumps over known periods of time, #1,...,%,. It is assumed that
conditionally on unknown failure rates Aq,..., A,, the counts s1,... s, are independent and Poisson
distributed with means \;t;. Given 3, the unknown \}s are independent, and each has a gamma
distribution with a known shape parameter o and unknown scale factor 8. The hyperparameter 3
is assumed to have an inverse gamma distribution with a known shape parameter v and a known
scale parameter J.

The densities for this hierarchical Bayesian model are given by:

P(SZ|AZ) = e_)wlti%a 1= ]-7"'7p (23)
!
1 1 .
P(\ilo, B) = P(a)ﬁaxg LeM/B i=1,...,p (24)
&1
P(:8) = poygae (25)
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The joint conditional distribution of the parameters of interest, 8, A1,...A, given the observed
S1y-.-,8p and t1,...,%p is:

P(B, M,y Apls1,...8p) o< P(ByAi,..., Ap, 81, .. 5p) (26)
x  P(s1,...8p|A1, ... Ap)P(A1,. .., Xp|B)P(B) (27)
e Dt )N e (1 a1 1
x H( aiti ” )H (@)\? le Al/ﬂ) —ﬂ7+1e o8 (28)
Si: i=1
It is more convenient to work in terms of § = 1/3. The joint conditional density for 6, A1, ..., Ap,

which we will denote by f, is:

p p

FONL, . NS0, 8p) e Niti(\it;)%i goNeLeAi0) gr—1e—90 (29)
y4 P 7

=1 i=1

We will use Gibbs sampling to sample from the posterior distribution of 6, A1,..., ;. The
conditional distribution for # given the \;’s is Gamma(pa +v,1/ (6 + >2_; Ai)). The conditional
distribution for each A; given 6 and all {);},.; is Gamma(s; + o, 1/ (t; +6)). One step of Gibbs

sampling at time ¢ is done by generating u(()t),...,ug) from the Uniform(0,1) distribution and
applying the following deterministic transition functions:
09 = F (Uc()t); pa+7, 1 C 1)) (30)
S+YP N
t _ t 1 .
AE) = F l(uz(); 3i+a, m), ’L:].,...,p, (31)

where F~! is the inverse cumulative distribution function for the gamma distribution with shape
and scale parameters as specified. This method of generating gamma, variates is not the fastest,
but it is used to produce good coupling.

The Gaussian approximation, g, for the joint posterior distribution (29) has mean p equal to
the mode of the posterior distribution and variance-covariance matrix 3 equal to minus the inverse
of the Hessian of the logarithm of the posterior density evaluated p. To do Gibbs sampling for

the Gaussian approximation, consider ¢ = (zg, z1,...,,%p), a p + 1 dimensional Gaussian random
vector with mean p and variance-covariance matrix 3. Denote by €2 the inverse of the variance-
covariance matrix X, with elements w;j, 4,57 = 0,1,...,p. The conditional distribution of x; given

the other components {x;};; is Gaussian with mean p; — (1/wy;) 3°; 4 wij(z; — p;) and variance
1/wi. The coupling of the two chains in this example is done by using at each step the same
Uniform(0,1) random numbers. One Gibbs sampling step at time ¢ for the Gaussian approximation
is

1 :
acz(t) = ¢ (ugt’ w (wa o Hy +wa ;Y “j)>’ f)’ e
j<i J>i

where G~ is the inverse cumulative distribution function for the Gaussian distribution with mean
and variance as specified.



Following Gelfand and Smith (1990), we set the known parameters to p = 10, § =1, v = 0.1,

and a = 2%/(s3 — p~'p X0, £;'Y), where p; = ;/ti, p = (1/p) Sy pi» and 52 = (1/p) S (pi — ).
We draw a sample from the posterior distribution using fixed starting values #(®) = 1 and /\Z(O)
s;/t;. Based on this sample we find Monte Carlo estimates for means of the parameters and use
them as starting values for the Newton-Raphson method to find the mode, which is used as the
mean of the Gaussian approximation. Estimating the parameters of the Gaussian approximation
is computationally inexpensive in this example; Newton-Raphson converges to the mode of the

posterior distribution in 11 steps using the starting value mentioned.

We are interested in estimating the expected value of each of the parameters 6, \1,..., A, with
respect to the posterior distribution. We ran coupled chains 1000 iterations long and discarded the
first 100 states of each chain as burn-in, which is more than adequate for this problem, for which the
autocorrelations are close to zero by lag 5. The results for three estimators and their standard errors
are presented in Table 1. The estimators evaluated are ¥, the traditional Markov chain estimator
based on only one chain, estimator (1) presented in Section 3, and estimator Z® introduced in
Section 4. The last three columns of Table 1 present the relative efficiencies of the estimators as
ratios of their estimated variances. For this problem the estimates based on third-order regression
are all much more efficient than the estimates based on one chain, or even those based on simple
linear regression. Particularly striking is the estimate for A\; based on third-order regression, which
is approximately 24000 times more efficient than the estimate based on one chain. This is because
the relationship between the two chains is very tight, with little variation unexplained in the third-
order model, as seen in Figure 4. From Table 2 we can see that the correlations between A; and
all 10 other components in the Gaussian approximation are close to zero. For the parameter 6, the
third-order model still the provides the most efficient estimate, but as we can see in Figure 3, the
relationship between the coupled chains is not as tight as for A;.

Table 1 shows one more estimate labeled “Precise Estimate”, which is obtained by running 200
pairs of coupled chains for 1000 iterations and discarding the first 100 states. We fit a third order
model for the first pair of chains and with these fixed coefficients we find 199 estimates based on
the other chains using (17). Due to the fact that the coefficients are fixed, these 199 estimates are
unbiased. The precise estimate is taken to be the average of these 199 unbiased estimates, and
the standard error for this estimate is found using their sample variance. The result is much more
accurate than any of the three estimates, and hence can be used to evaluate their accuracy.

For the 200 pairs of coupled chains we also calculated the estimates and standard errors for all the
parameters based on simple linear regression and on third-order regression. For each parameter,
we constructed 95% and 90% confidence intervals around these estimates by taking as margin
of error the estimated standard error multiplied by the corresponding quantile for the standard
normal distribution. We then found the coverage probabilities for these confidence intervals, as
the proportion of intervals that contain the precise estimate. As seen in Table 3, these coverage
probabilities are close to the desired values of 95% and 90%, confirming that the estimators are
close to being unbiased and that their standard errors are close to being correct.

As we reduce the length of the chains, we would expect that bias may be present. Also, since
the procedure for estimating the standard errors doesn’t take into account the variability of the
regression coefficients, the standard errors will be underestimated for short chains. Since these
problems are expected to be worse when there are many regression coefficients, we recommend
using the estimates based on simple linear regression when the chains are short.
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Estimate Based on Relative Efficiency
Parameter Precise One Chain | First-order Third-Order | y vs. | g vs. ) vs.

Estimate (@) Model (V) | Model (®) | a®M i) i®)

0 2.4895321 | 2.4674625 | 2.4874835 2.4884441
0.0002776 | 0.0303696 | 0.0064195 0.0042179 22 52 2.3

A1 0.0702695 | 0.0708782 | 0.0701613 0.0702695
0.0000003 | 0.0008800 | 0.0001644 0.0000056 29 24000 850

Ao 0.1541290 | 0.1573713 | 0.1545877 0.1542453
0.0000057 | 0.0028258 | 0.0007910 0.0000655 13 1900 150

A3 0.1040727 | 0.1052354 | 0.1039408 0.1040741
0.0000007 | 0.0013133 | 0.0002370 0.0000120 31 12000 390

VI 0.1232198 | 0.1233812 | 0.1232257 0.1232186
0.0000005 | 0.0010237 | 0.0001227 0.0000071 70 21000 300

A5 0.6264700 | 0.6309189 | 0.6243196 0.6260541
0.0000333 | 0.0098097 | 0.0021989 0.0004975 20 390 20

A6 0.6133804 | 0.6089641 | 0.6134456 0.6133659
0.0000084 | 0.0042671 | 0.0004532 0.0001238 89 1200 13

A7 0.8240495 | 0.8280188 | 0.8229350 0.8264169
0.0001540 | 0.0191607 | 0.0054209 0.0019331 12 98 7.9

Ag 0.8242431 | 0.8505378 | 0.8292412 0.8247778
0.0001599 | 0.0193552 | 0.0071622 0.0021677 7.3 80 11

Ag 1.2951942 | 1.3148071 | 1.2966271 1.2939680
0.0000974 | 0.0224054 | 0.0046176 0.0014573 24 240 10

A10 1.8407347 | 1.8321169 | 1.8416890 1.8401319
0.0000594 | 0.0143102 | 0.0017195 0.0008827 69 260 3.8

Table 1: The estimates based on 900 states of the coupled chains and their standard errors,along
with the relative efficiencies rounded to two significant digits.

Zo I L2 T3 T4 Ts L6 T 3 Z9 10
zo | 1.0000 | -0.0205 | -0.0596 | -0.0302 | -0.0247 | -0.1952 | -0.1065 | -0.2737 | -0.2737 | -0.3437 | -0.2836
x1 | -0.0205 | 1.0000 | 0.0012 | 0.0006 | 0.0005 | 0.0040 | 0.0022 | 0.0056 | 0.0056 | 0.0070 | 0.0058

Table 2: Correlations between zg (f) and z1 (A1) and all the other the components of the Gaussian
approximation.
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Coverage probabilities
Simple Linear Regression | Third Order Regression

Parameter 95% 90% 95% 90%
0 0.95 0.88 0.95 0.89
A1 0.92 0.86 0.95 0.91
Ao 0.92 0.84 0.93 0.84
A3 0.95 0.93 0.95 0.91
A4 0.95 0.91 0.96 0.92
As 0.93 0.89 0.96 0.92
A6 0.97 0.93 0.94 0.89
A7 0.96 0.93 0.96 0.89
Ag 0.91 0.86 0.96 0.91
Ag 0.93 0.89 0.95 0.89
Ao 0.93 0.88 0.96 0.89

Table 3: The fraction of 95% and 90% confidence intervals that contain the precise estimate. Each
confidence interval was determined from an estimate based on a pair of chains 900 iterations long.
The standard errors for the coverage probabilities for the 95% confidence intervals are 0.015; for
the 90% confidence intervals, the standard errors are 0.021.

6 Discussion

We have shown that estimators based on coupling to a chain that samples from a Gaussian ap-
proximation can be much more precise than the traditional Markov chain Monte Carlo estimators
based on one chain. This method is applicable to those Bayesian problems for which the poste-
rior distribution can be approximated reasonably well with a Gaussian distribution. The success
of this method is related to the coupling technique used. The two sampling techniques used in
this paper, Gibbs sampling and the Metropolis algorithm, both have computational drawbacks.
Gibbs sampling seems to produce samples that are highly correlated, but at the expense of hav-
ing to compute inverse cumulative distribution functions, which for some conditional distributions
might be expensive. Moreover, for more difficult problems, the conditional distributions will not
be available, and therefore Gibbs sampling will not be applicable. For the Metropolis algorithm,
the inefficiency is introduced by the small step size needed to keep the rejection rate small and
therefore the correlation between chains high. These inefficiencies can be avoided by using other
sampling techniques, such as higher-order Langevin methods, which can produce very low rejection
rates using reasonable step sizes.

Finding the mean and the variance-covariance matrix for the Gaussian approximation requires
time of order m?, where m is the number of parameters, and one step Gibbs sampling requires time
of order m?. The methods of this paper are therefore probably not useful when m is more than a
few hundred.

Methods similar to those we have presented can be applied to problems where samples from
several similar distributions are needed. These problems occur when assessing the effect on the
posterior distribution of deleting observations (Peruggia 1997) or changing the prior or likelihood
(Gelman, et al. 1995, Chapter 12). These authors use importance sampling to obtain estimates for
expected values with respect to all distributions by drawing a sample from one of the distributions,

12



and then reweighting these sample points to reflect the other distributions. Unfortunately, the
importance weights can vary wildly when the distributions are too different. We propose the
following strategy for sampling from many different, but similar, distributions. Simulate a long
Markov chain converging to one of the distributions, from which a precise estimate for the expected
values of the parameters with respect to this distribution can be found. For the other distributions,
run short chains coupled with the first part of the long chain, and then use the methods presented
in Sections 3 and 4 to find accurate estimates of the expected values of the parameters with respect
to these other distributions, taking advantage of the precise estimates from the long chain.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada
and by the Institute for Robots and Intelligent Systems. The first author was supported by an
Ontario Graduate Scholarship.

References
Cheng, R. C. H. (1978) “Analysis of simulation experiments under normality assumptions”, Journal
of Operational Research Society, vol. 29, pp. 493-497.

Frigessi, A., Gasemyr, J. and Rue, H. (2000) “Antithetic coupling of two Gibbs sampler chains”,
Annals of Statistics, vol. 28.

Gelfand, A. E and Smith, A. F. M. (1990) “Sampling-based approaches to calculating marginal
densities”, Journal of American Statistical Association, vol. 85, pp. 398-409.

Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (1995) Bayesian Data Analysis, Lon-
don: Chapman & Hall.

Kelijnen, J. P. C. (1974) Statistical Techniques in Simulation, New York: Marcel Dekker.

Lavenberg, S. S., Moeller, T. L. and Welch, P. D. (1982) “Statistical Results on Control Variables
With Application to Queueing Network Simulation”, Operations Research, vol. 30, pp. 182-202.

Peruggia, M. (1997) “On the variability of case-deletion Importance sampling Weights in the
Bayesian linear model”, Journal of the American Statistical Association, vol. 92, pp. 199-207.

Propp, J. C. and Wilson, D. B. (1996) “Exact sampling with coupled Markov chains and applica-
tions to statistical mechanics”, Random Structures and Algorithms, vol. 9, pp. 223-252.

Ripley, B. D. (1987) Stochastic Simulation, New York: Wiley.
Tanner, M. A. (1993) Tools for Statistical Inference, Second Edition, New York: Springer Verlag.
Thisted, R. A. (1988) Elements of Statistical Computing, Chapman and Hall/CRC.

13



