Circularly-Coupled Markov Chain Sampling

Radford M. Neal

Dept. of Statistics and Dept. of Computer Science
University of Toronto

http://www.cs.utoronto.ca/~radford/
radford@stat.utoronto.ca

April 2000

Markov Chain Sampling

We wish to sample values x; from some
complex distribution, .

We can’t easily sample independently from .
Instead, we construct a Markov chain that
leaves w invariant, and that will converge to =«
if run for long enough.

The transitions of the Markov chain are
simulated on the computer as follows:

Standard Markov chain simulation:

1) Randomly draw zg from the initial state
distribution, pg.

2) Fort=1,...,N:

Draw wu;_1 from the distribution U,
independently of previous draws.

Let x4 = ¢p(zp—1,us—1).

Problem: Diagnosing Convergence

One big problem with Markov chain sampling
is how to determine if we've run the chain long
enough to get close to the right distribution.

We could look at just one chain:

Or we could look at several:

But we can’'t be sure what we see is the real
asymptotic behaviour.

Problem: Discarding Burn-in Iterations

Assuming we think we have run long enough,
how do we decide how much of the early part
of the chain to discard as “burn-in" iterations?

We could judge by eye:

Or we could use some automatic procedure.
But both techniqgues may introduce biases.

Problem: Simulating Chains in Parallel

Markov chain simulation appears to be an
inherently sequential process — to generate
Ty41, We first must have generated x;.

Parallelism can be exploited when simulating
many independent realizations, and perhaps in
the detailed computations needed for a single
transition.

But can we also somehow bypass the apparent
sequential nature of the simulation process?

Total Variation Distance and the
Coupling Inequality

The total variation distance between two
probability measures, 4 and v, is defined as
the largest difference in the probabilities they
assign to events:

dio(p,v) = sup|u(A) —v(4)]

The coupling inequality can be used to bound
this. If X ~ u and Y ~ v, not necessarily
independently, then

div(pn,v) < P(X #Y)

Proof: P(X#Y) > P(XeAandY ¢ A)
> P(Xe€A) -PYeA

u(A) — v(A)

Similarly, P(X #Y) > v(A) — u(A), hence
P(X#Y) > |u(A) — v(A)|, for all A.

Coupling Markov Chains

To exploit the coupling inequality, we need to
introduce appropriate dependencies. We can

do this for two realizations of a Markov chain
by using the same random numbers for both.

For instance, {X¢} and {Y:} may be defined by

Ty = d(Te—1,Ut—1), Yt = ¢(Yr—1,us—1)

with the random numbers, us, in common.

The initial states, xg and yg, might come
independently from the same or different
distributions.

The same Markov chain can be produced using
many different combinations of distributions
for the random wu; and transition functions ¢.
Different schemes can produce different
dependencies between the coupled chains.

We hope for rapid coalescence, where X; = Y;.

Uses of Coupling

1. Prove theoretical bounds on convergence
rates (eg, Rosenthal 1995).

Suppose Xg ~ pg but Yg ~ m, sO Yy ~ & for
all t. If we can show P(X; #Y;) <€ for
some t, then we know X; has converged to
within e of .

2. Investigate convergence rates empirically.

Johnson (1996) simulates several coupled
chains from dispersed initial states. The
time for them all to coalesce is indicative
of the time needed for convergence.

3. Exact sampling using ‘coupling from the
past” (Propp & Wilson 1996).

Requires not only a coupling scheme, but
also a method for keeping track of large
sets of states.

Basic Circular Coupling Algorithm

1) Randomly draw xg from the initial state
distribution, pg.
2) Fort=1,...,N:
Draw u;_1 from the distribution U,
independently of previous draws.

Let ¢ = ¢d(xp—1,ut—1)-

3) Let yg = zy.

4) Fort=1,...,N while y;_1 # z4_1:
Let yr = d(yr—1,us—1)-

5) Let the remaining y; be the same as the
corresponding x:.

Theorem on Approximate Correctness

Each of the points yq,...,yxy dgenerated by a
circularly-coupled Markov chain simulation has
a distribution that is within 2¢ 4§ of the
equilibrium distribution, 7, in total variation
distance, provided € and § are such that the
following conditions on coupled chains hold:

1) If two chains are started from states drawn
from =, independently of each other, and
of the u¢, they will coalesce within N/2
iterations with probability at least 1 — e.

2) If one chain is started from a state drawn
from =, independently of the u, and
another is started from a state drawn from
po, independently of the initial state of the
other chain and of the u¢, then the two
chains will coalesce within N iterations
with probability at least 1 — .

Proof of the Theorem

W ~TI
N/2 :
+7 i X
Vo~ T4 + + X T X X X
° T X T VNIZT\{VIZ X
0 N/2 N 0 N2 N
Xo~ Po®
? i %o i
: 2 & : X% X % : X@
X : A A X : . .
T W o 5 T W " *
T ® H 2 T ® f . *
0 N/2 N 0 N2 N
The top left shows generation of wvg,...,vN/ and
wy/2,- .-, wn Starting from states drawn from . The

top right shows the continuation of these sequences,

UN/2 = v;‘V/Q,...,v}"\, and wy = wg,...,ij. In the bottom
left, the sequence yo,...,yn used for estimation is

marked. The bottom right shows a sequence xq,...,znN
started from po coalescing with the sequence yo,...,yn,

permitting this sequence to be found without the need

to sample from .

Using Auxiliary Chains to Check the
Assumptions Needed for Correctness

1-5) Perform steps (1) to (5) of the basic
circular coupling procedure.

6) Let ¢g be the number of steps needed
for the wrapped-around chain to
coalesce with the original chain.

7) Fori=1,...,r—1:

Let s =iN/r.
Randomly draw z; ¢ from pg.
Set ¢; = 0.

Fort =s+1,...,s+k (modulo N)
while Zit—1 7+— Yt—1 -
Let z;; = ¢(2i4—1,ut—1)-
Set ¢c; =c; + 1.
The coalescence times, cg,...,c,_1, are
indicative of whether condition (2) holds. If
almost all ¢; are less than N/2, we also have
reason to think that condition (1) holds.

A Parallel Simulation Method

In parallel, processors numbered ¢ = 0,...,r—1 do the
following:

1) Let s =iN/r.

2) Fort=ws,..., s+ N/r — 1:

Randomly draw u; from the distribution U,
independently of other draws.

3) Randomly draw ys; from the distribution pq,
independently of other draws.

4) Fort=s+1,...,s+ N/r — 1:
Set Yt — ¢(yt—1aut—1)'
5) Set z = ¢(y5—|—N/r—17 us—l—N/r—l)-

6) Send z to processor i+1 (modulo r) as the new
value for y,4 n/r-

7) Repeat the following:

Wait for a new value for y; to be received from
processor :—1 (modulo r).

Fort =s+1,...,s+N/r—1 while y; # ¢(yt—1,ut—1):
Set yr = ¢(yt—1, ut-1)-

If 2 7 G(YstN/r—1>UstN/r—1)"
Set z = ¢(YsN/r—1>Ust-N/r—1) -

Send z to processor i + 1 (modulo r) as the
new value for y,y n/,.

Terminate when all processors are waiting.

A Strategy for Coupling Chains

For these algorithms to be useful in practice,
we need a way of coupling good Markov chain
samplers so as to produce rapid coalescence.

For continuous state spaces, we can use a
hybrid strategy, in which two kinds of updates
alternate:

1. Updates that are good at moving about
the space, and will tend to bring chains
closer and closer together.

2. Specialized updates that can produce
exact coalescence once the states in two
chains have come close together.

I'll look at Langevin updates for (1) and a
specialized Metropolis method for (2).

Hypercube Metropolis Updates

The Metropolis algorithm updates state x; by
proposing a candidate state, z*, which is
accepted with probability min(1, w(z*) /7w (x:)).
If accepted, x;4 1 = z*; otherwise x4 1 = .

A proposal distribution, g(z*|x;), is needed,
which must be symmetrical: g(z'|z) = g(z|z’).

One possibility is for z* to be uniformly
distributed over a hypercube with sides of
width w, centred on the current state.

Coupling for Hypercube Metropolis

The most obvious implementation of these
transitions (in one dimension) is to generate

r* = z + w(uy — 1/2)
and then accept if uy; < min(1, 7(z*)/m(xs)),

where ug; ~ Uniform(0, 1).

But this cannot produce exact coalescence
with non-zero probability.

Instead, we can generate

r* = x4+ w[(u1;—1/2) + Round(z/w—(u1:—1/2))]

In any number of dimensions, we can visualize
this as randomly positioning a grid of
hypercubes, then letting z* be the centre of
the hypercube containing the current state, x:.

Exact coalescence occurs if the states of two
chains are in the same hypercube.

Example: Univariate Normal

Parallel circularly-coupled sampling from
N(0, 1), with 10 initial states from N (0, 52),
using 100 x 10 iterations of a hypercube
Metropolis update with w = 1.

10

&

6_

0,

| | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

Example: Univariate Normal Mixture

Same, but sampling from the mixture

(3/4)N(-1,1) + (1/4)N(1.5,0.1%)

4

O

| | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

A Failure to Sample Both Modes

Same, but with a different random seed, that
leads to only the lower mode being sampled,
without any clear indication of a problem.

6

0f Q
)

|

N

—0)

=0
=

_10 -

=12

~14

| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

A Failure to Coalesce

Same, but with a different random seed, that
results in the chains not coalescing.

0 100 200 300 400 500 600 700 800 900 1000

Coupled Langevin Updates

For more difficult problems, hypercube
Metropolis is probably not very good on its
own. We can try combining it with another
method.

In a Langevin update, the proposed state is
¥ = z + (€2/2)VIog n(zs) + euy

where u; ~ N(0,I). The stepsize, ¢, is chosen
as large as possible while keeping acceptance
high.

If we couple Langevin updates in the obvious
way, chains tend to get closer and closer, but
not coalesce exactly. We can fix that with an
occasional hypercube Metropolis update.

Example: Logistic Regression

Model:
P(yi=1|2;,8) = [1+exp(— (8o + Brx;1 + -+ Bsxi5))]

Prior: 8 ~ N(0,I)

Data: 500 cases generated with g = —2.5,

B1 =0.5, 8, =0, 63 = 1.0, B4 =0, 65 = —0.2,
and with z; generated independently from
N(u,X), with o =11,2,2,2,0] and

[1.04 1 1 1

1 1.01 1.01 1.01
1.01 1.02 1.01
1.01 1.01 1.02
0 0 0

_ O OOO

oOrrH

Sampling method: Parallel circularly-coupled
simulation with 10 initial states from the prior.
25 x 10 iterations, each consisting of 200
Langevin updates (e = 0.03) followed by one
hypercube Metropolis update (w = 0.03).

Coalescence occurred after 6 stages (36 runs).

Trace for Bg

250 —
2.00 —
1.50 —
1.00 —
0.50 —
0.00 —

-0.50 —

-1.00 —
-1.50 — i
-2.00 — \ /
250 — (/I ' 1. U
-3.00 —
350

0 50 100 150 200 250

Trace for (31

00000000000000000
22222222222222222

00000000000000000

Trace for (35

—
==

_
e e e e) O

100 150 200 250

Discussion

Circular coupling may be able to replace
current convergence diagnostics and
burn-in elimination methods.

The theoretical savings are only a factor of
two at most — the main benefit is from
ease of use in practice.

Achieving these benefits requires good
coupling schemes. Need more research on
schemes for hybrid Monte Carlo, Gibbs
sampling, Metropolis, slice sampling, etc.

Parallel simulation is another benefit, but
will most users have multiple processors?

