Bayesian Mixture Modeling by Monte Carlo Simulation

Radford M. Neal
Technical Report CRG-TR-91-2

Department of Computer Science
University of Toronto

e-mail: radford@ai.toronto.edu

June, 1991

Abstract. It is shown that Bayesian inference from data modeled by a mixture distribution
can feasibly be performed via Monte Carlo simulation. This method exhibits the true Bayesian
predictive distribution, implicitly integrating over the entire underlying parameter space. An
infinite number of mixture components can be accommodated without difficulty, using a prior
distribution for mixing proportions that selects a reasonable subset of components to explain
any finite training set. The need to decide on a “correct” number of components is thereby
avoided. The feasibility of the method is shown empirically for a simple classification task.

Introduction

Mixture distributions [8, 20] are an appropriate tool for modeling processes whose output is
thought to be generated by several different underlying mechanisms, or to come from several
different populations. One aim of a mixture model analysis may be to identify and characterize
these underlying “latent classes” [2, 7], either for some scientific purpose, or as one realization
of “unsupervised learning” in artificial intelligence. In other cases, prediction of future obser-
vations is the objective. In a “classification” application [6], for example, we are interested in
predicting the category attribute of an item on the basis of various indicator attributes.

The standard Bayesian approach to this problem would be to define a prior distribution over
the parameter space of the mixture model and combine this with the observed data to give
a posterior distribution over this parameter space. The posterior distribution would then be
interpreted for latent class analysis, or used to derive a predictive distribution for use in class-
ification. Unfortunately, since the parameter space is extremely large, this approach is compu-
tationally difficult. As discussed later, one current approach is to find the single parameter set
with maximum posterior probability and use it as the basis for prediction and interpretation.
While this procedure often produces good results, it is not the proper Bayesian solution to the
problem, and for some prior distributions gives useless answers.

In this paper, I present a technique for exhibiting the true Bayesian predictive distribution, given
a conjugate prior for the parameters and a set of training items. In this method, the model
parameters are first integrated out analytically, reducing the problem to a summation over all



possible assignments of mixture components to data items. This still-formidable problem is
then solved by the Monte Carlo simulation technique of “Gibbs Sampling”.

It turns out that this procedure extends without any computational difficulty to models in
which the number of mixture components is countably infinite. Such infinite mixture models
are quite natural in many contexts. Consider, for example, an analysis of plant specimens
collected at random from some region. We expect a priori that the region will harbour many
thousands of plant species, and that furthermore there will be many distinct populations within
a species, due to varying soil conditions, etc. It therefore seems reasonable to consider the
number of latent classes in this example to be effectively infinite. Of course, any finite sample
will contain representatives of only a finite number of these classes. Indeed, we will generally
wish to explain the sample using many fewer classes than there are data items. As more data
is collected, however, more and more of the infinite number of classes will become apparent, as,
for example, we obtain significant numbers of specimens of the rarer species.

The empirical results presented in this paper demonstrate that modeling data as an infinite
mixture also works well when there are only a small finite number of components in the true
mixture. Infinite mixture models are thus an attractive option whenever the true number of
components is unknown, since one thereby avoids the problem of selecting between models with
different numbers of components. A similar idea has been applied to the problem of modeling
data by polynomials of indefinite degree in [22].

Below, I will define the Bayesian formulation of the mixture modeling problem, and describe
how it can be solved by Monte Carlo simulation. Following this, I briefly discuss other mixture
modeling approaches, and then present the results of applying the Bayesian mixture modeling
technique and some of these other methods to a simple classification task. Finally, I will discuss
some applications of the Bayesian method, and its potential extension to more general models.

Bayesian mixture modeling

In formalizing the Bayesian mixture modeling task, I will take prediction to be the primary
objective. This is natural in a classification application. In a latent class analysis application,
we might not have any real interest in predicting values of unknown attributes, but nevertheless
it is by their predictive value that the validity of underlying classes is demonstrated.

The prediction problem. Assume that some process produces data items represented by
attribute vectors ¥; = (vj1, ..., im), which are seen as realizations of corresponding random
variables I~/Z = (Vi1,..., Vim). In this paper, the range of attribute Vj; is taken to be the set of
integers {1, ..., N;}, but generalizations to real-valued attributes are possible.

We have some knowledge of, or interest in, n of these vectors: 171, ey (7n Specifically, we wish
to find the predictive distribution for one or more of the unknown attributes of these vectors,
given the values of the known attributes.

In a classification application, V;; might be the category of item ¢ and Vjs, ..., Vi, be various
indicator attributes. Perhaps we know the indicators and category of the first n — 1 items
(the training set) and have seen the indicators for item n (the test item). We wish to find the
consequent probability that item n is in category c:

PWVpr=c|Vi=0, Vgj=unj : 1<i<n, 2<j<m) (1)



The mixture model. Assume that the parameters of the process generating the data vectors
are stable, and that given knowledge of these parameters, the various data items, V;, are
independent and distributed identically. In the mixture model approach, we believe, or imagine,
that the process generates data items by several different mechanisms — which mechanism
being a random variable, G; — and that given knowledge of which mechanism generated a
given item, the various attributes are independent. In other words, the distribution for V;,
on the assumption that the process parameters are known, can be expressed as a mixture of
component distributions as follows:

M m
PVi=%) = Y P( P(Vij =vij | Gi=g)
g=1 ji=1
M m
= E bg - H Vgivi (2)
g=1 ji=1

Here, M is the number of generating mechanisms, ¢, the probability of mechanism g being
used, and v, ; , the probability that mechanism g will produce value v for attribute j.

At first, the number of mixture components, M, will be a finite constant, but later it will be set
to infinity. In a latent class analysis application, we will be interested in the components of the
mixture distribution as possible indicators of real underlying mechanisms. In a classification
application we might regard the use of a mixture distribution as just a device for expressing
correlations among the attributes.

A prior for the mixture model parameters. In a Bayesian treatment of this problem, the
parameter vectors q/) and 1/)gj are considered to be the values of random variables ® and \Ilg j
whose distributions reflect our prior knowledge of the process. It is mathematically convenient
to express this prior knowledge via independent Dirichlet probability densities for the parameter
vectors, since these are the conjugate priors for this problem. Later, I will briefly discuss the
situation where the actual prior knowledge is too unspecific to be captured by densities of this
form.

This combined Dirichlet prior density can be written as follows:

p@=¢, U, ; =t,;  1<g<M, 1<j<m)

= p(@=9) [] p(¥y; = ¥y;)
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where a and the $; must be greater than zero. Setting o = M and §; = N; in equation (3)
produces a uniform distribution over the parameter space. A smaller value for a produces a

prior distribution that favours values for the ¢, that are near 0 or 1 — i.e. a situation where a
few components are much more probable than the others. A larger value for a favours values of
¢4 near 1/M — i.e. a situation where the components are all about equally probable. Varying
B; has analogous effects on the priors for the distribution of attribute j in the various mixture
components.



Integrating out the parameters. The joint distribution of the G; and the V; can be found
by integrating their probabilities over the region of valid parameter values, as weighted by
prior probability density. This joint distribution will later provide the basis for obtaining the
conditional probabilities needed for classification (equation (1)). The V; and G; for different
values of 7 are of course not independent — they would be so only if the parameters ¢, and
g.jv Were known.

The required integration is as follows:

P(Gi=g;, Vi =% : 1<i<n)
= /P(Gizgz-, V=T 1<i<n|®=¢, Uy ;=0,; : 1<g<M, 1<j<m)
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where C' = ([(a)/T(a/M)M) . ng(F(ﬁj)/F(ﬁj/Nj)Nf), and é§(z,y) is one if = y and zero
otherwise. The integrals in the last formula are taken over the simplexes of valid probability
distributions — Sp = {(z1,...,2zp) : ; >0, > ,z; =1}.

These integrals are standard for Dirichlet distributions (see [14, section 2.4], for example). Their
evaluation gives the following:
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This formula can be interpreted as a prescription for generating a sequence of values for the
G; and V; according to a distribution picked in accord with the prior (equation (3)) — i.e. for
generating a sequence from the prior predictive distribution for sequences of GG; and V;. This
generation procedure uses the following incremental conditional probabilities, identified from
equation (5):

()

Don<i 09k, 95) + /M
i—-D+ea

P(Gi=gi |Gr=gr, Vi=T : 1<k<i) = (6)



D oh<i 009k, 9:)8(vkj, viz) + B /N;
D ke 09k, 9i) + Bj

To generate a sequence of G; and 172-, we choose values for the GG; in turn, based on the frequencies
with which components were previously chosen, biased by the term «/M. Once a G; is selected,
we chose values for the corresponding V;; based on the frequencies of the various attribute values
in vectors previously produced using the same component, biased by the §;/N; terms.

P(Vij:VZ’j|GiIgi,Gk:gk,vsztv’kllﬁk‘<i): (7)

Note that by summing over all possible sequences of G;, we can, via this procedure, define the
probability of any sequence of the observable variables, V;, without any explicit reference to
the parameters ¢, and 9, ; ».

Models with an infinite number of components. The above procedure for producing a
sequence from the predictive distribution for V;, remains well-defined even when the number
of mixture components, M, is infinite. Values for the underlying G; are also produced, but are
specified only up to identity or non-identity among themselves.

Consider first the choice of a value for G;1. There are an infinite number of candidates for this
value, but which of these is chosen has no effect on the values that are then chosen for Vi; —
equation (7) shows that these are in all cases picked from uniform distributions. Next, consider
the choice of a value for G2. From equation (6), we see that this value should be chosen to be
equal to G with probability (1+«/M)/(14+a) = 1/(1+ «) (since M is infinite). If this choice
is made, values for the V5; will be chosen with probabilities that depend on the corresponding
Vi, in accordance with equation (7). Alternatively, a value for G different from G; will be
picked with probability «/(1+ «). There are an infinite number of such alternatives, but again
it makes no difference which is chosen. Proceeding in this fashion, we can pick “values” for the
G that are defined only in so far as they are specified to be equal or not equal to previously
chosen values. This is sufficient to pick values for the corresponding V;;, which are the only
observable attributes.

As discussed in the introduction, models with an infinite number of components are natural
in many contexts. Nevertheless, one might feel uneasy about estimating an infinite number
of model parameters on the basis of a finite sample. In the Bayesian approach, however, we
do not attempt to settle on a single set of parameter values. Furthermore, the form of prior
distribution chosen here, in which the bias term, /M, goes to zero as M goes to infinity,
ensures that parameter values from the posterior distribution will give some of the infinite
number of components significant probability. As a result, overfitted solutions in which each
data item is attributed to a separate mixture component do not occur.

Prediction by Monte Carlo simulation

Although $ and the ngj have been integrated away, calculating P(I~/Z =7 : 1 <i<n) would
still require summing over all M” possible combinations of values for the (G;. For a classification
application, however, all that is needed is the distribution for the category attribute of a test
item, conditional on the known attributes of the test item and on the training data. A sample
from this conditional distribution can be obtained by a Monte Carlo simulation procedure.

Exhibiting a distribution via Monte Carlo simulation. Consider the problem of pro-
ducing a sample from the joint distribution of the random variables (Ay,..., A,) when only



the full conditional probabilities, P(A4; = a; | Aj = a; : j # i) are readily computable. This
problem arises in the context of statistical physics [16], image restoration [10], stochastic neu-
ral networks [1, 17], belief networks for expert systems [18], and general statistical calculation
[12, 9]. In each case, the problem has been solved by a Monte Carlo simulation method, un-
der names such as the “Metropolis algorithm”, the “Boltzmann Machine”, and the “Gibbs
sampler”.

The simulation starts with arbitrary values (af,...,a2). In iteration ¢, new values {(a}, ..., al)

are stochastically chosen in turn, with af, being picked at position h with probability:
P(An=a} | Ai=a}, Aj=a"" : 1<i<h h<j<n)

In other words, new values are picked at each position from the conditional distribution for
that position given the most-recently picked values at all other positions.

It is easy to see that if the distribution of (a¥, ..., aZl) for some T is that of (A1, ..., A,), then
the same will be true at all later iterations. Furthermore, the method is in fact guaranteed
to converge to this equilibrium distribution in the limit as the number of iterations grows, as
long as the conditional probabilities used are bounded away from zero. Accordingly, for some
suitably large T', we can treat the values (af,... al) as coming from the desired distribution
for (A;,..., A,). Several independent vectors can be obtained by running several simulations,

or by taking vectors from a single simulation at sufficiently widely separated times.

The number of iterations required for this method to give a reasonable approximation can
be difficult to determine, however, so empirical tests of the practicality of the method in any
particular application are necessary. The situation is analogous to the problem of local maxima
with deterministic optimization procedures, except that the stochastic aspect ensures that
the simulation will escape the local maximum eventually. The time required for this can be
reduced by the method of “simulated annealing”, as is done in [1], but such elaborations are
not considered in this paper.

Simulating the Bayesian predictive distribution. This Monte Carlo simulation tech-
nique can be used to solve the Bayesian prediction problem for mixture models. Given that we
know certain of the V;;, we would like to obtain a sample from the joint distribution for the
G; and the V;; whose values we do not know. This can be done by a simulation in which the
values of the V;; that are known are left fixed, while new values for each G; and each unknown
Vi; are chosen repeatedly from their distributions conditional on the current values of all the
other variables.

The conditional distributions for the G; and the unknown V;; are readily obtained from the
joint distribution of the G; and Vj; (equation (5)):
P(Vij=v|Gr=gr, Vi =Tk, Gi=gi, Va=v : 1<k<n, k#i, 1<I<m, [ #))
2onzi 6(9k,9:)0(vij, v) + B /N;

- D ki 0(9k, 91) + B; (8)

P(Gi=g|Gr=gr, Vi=0, Vi=0 : 1<k<n, k#1)

1 2 ki 6(9k, 9)6(vkj, vij) + B /N;




Here, 7 is a factor independent of g that normalizes the distribution to sum to one.

If the number of components is infinite, equation (9) is adapted to allow a new “value” for G;
to be selected that is defined in so far as it is equal to the value for some other Gy, or different
from all others, according to the following formulas:

P(Gi=g|Gr=gr, Vi=T, Vi=0 : 1<k<n, k#1)

1 > ki 0(ar, 9)0(vrj, vij) + Bj /N;
= 7 (Bewtton)  TT =500y (10)

J

P(Gitgr : 1<k<n, k#i|Gr=gr, Ve =, Vi=0 : 1<k<n, k#£1)

1 1
_E.Q.lz[ﬁj (11)

where again Z is a normalizing factor, the same for both the above formulas. The second
formula gives the probability for setting G; to one of the infinite number of components that
are not currently assigned to any of the other Gj. These components do not need to be
distinguished, since they all have equivalent effects on the rest of the simulation.

Implementation of the method. Figure 1 shows an implementation of the simulation
procedure for finite M. This procedure takes as inputs the values of attributes for training
items — v;;, for 1 <7< nand 1< j <m — along with the values of the indicator attributes
for a test item — v,;, for 2 < j < m. It outputs an estimate of the distribution for the category
attribute of the test item, V;1:

qc%P(Vm:cHZ-:@',an:vnj,:1§i<n,2§j§m) (12)

The number of mixture components, M, the number of simulation iterations, 7', and the pa-
rameters of the prior distributions, o and the §;, are additional inputs to the procedure.

This implementation incrementally maintains the required occurrence counts for mixture com-
ponents and for item attributes associated with mixture components. These are kept in the
arrays C' and A, with

C[g] = Zé(gi:g)a A[g’jfv] = Zé(giag)é(vijiv) (13)

This method results in a time complexity for the procedure of O((nmM + N1)T + M N), with
N = Ej N;. On the reasonable assumption that Ny < nmM and N < nm, this reduces to
O(nmMT).

If no limit is placed on the number of mixture components, the simulation can be done in time
O(anT), where M is the average number of distinct mixture components actually in use
(this is never more than n). Achieving this time bound requires maintenance of an additional
array listing mixture components currently in use.

In practice, several modifications to the procedure shown are desirable. Rather than initialize
all the ¢g; to 1, it may be better to set them to sequential or random values. It will also
generally be better to let the simulation run for some number of iterations, allowing it to reach
equilibrium, before starting to observe which values show up for the category attribute of the



Initialize the mizture component associated with each training item, and the unknown vy1.

for : — 1.n do ¢g; — 1 od
Unp — 1

Initialize the occurrence counts for components and for component/attribute combinations.
for g —1.M, 57— 1.m, v — 1..N; do C[g] — 0, Alg, j,v] — 0 od

for 1 — 1..n do

Clg:] = Clgi] + 1

for j — 1..m do Alygi, j, vi;] — Algi, j,vi;] + 1 od
od

Initialize the frequency counts for the unknown attribute, vy .
for ¢ — 1..N; do F[c] — 0 od
Conduct the simulation for T iterations.
for t — 1.7 do
Select a new mixture component to go with each item, while updating counts.
for 1 — 1..n do
Remove the old value for g; from the occurrence counts.
Clgi] = Clgi] -1
for j — 1..m do Algi, j,vi;] — Algi, 7,vi;] — 1 od
Calculate the distribution for the new value of g; and pick a value from it.
Z —0
for ¢ — 1..M do
Xlg] = Clgl+ a/M ,
for j — 1.m do X[g] — X[g] - (Alg, 7,vi;] + 8;/N;) / (Clg] + 5;) od
Z — 7+ X[g]
od

for g — 1..M do X[g] — X[g]/ Z od
gi — Value in the range 1..M picked according to the distribution X

Update the occurrence counts to reflect the new value for g;.

Clgi] — Clg:] +1
for j — 1..m do Algi, j,vi;] — Algi, 7,vi;] +1 od

od
Select a new value for vn1, updating the occurrence and frequency counts accordingly.
A[gn, 1a Unl] - A[gn, 1a 'Unl] -1

for v — 1..N; do Y[v] — (A[gn,1,v]+ B1/N1)/ (Clgn] + f1) od
vp1 — Value in the range 1..N; picked according to the distribution Y

A[gn, la 'Unl] — A[gna 1, 'Unl] + 1
F[’Un1] — F['Un1] —|— 1

od
Calculate the observed distribution for the category attribute of the test item, vp1.

for ¢ — 1..Ny do ¢g. — F[c]/T od

Figure 1: The simulation procedure for finite M.



test item.

The procedure shown assumes that all the attributes of the training items and all the indicator
attributes of the test item are known. If this is not so, values for the unknown V;; could be
selected during the simulation, just as is done for V,;. However, if these values are not of
interest, the factors that correspond to them in the calculation of the distribution X[g] can
instead be simply omitted. (The validity of this procedure can be seen by formulating the joint
distribution of the G; and the Vj; of interest, and from that deriving the appropriate conditional
distributions.)

The procedure could easily be modified to observe distributions for the category attributes of
several test items as the simulation is run. However, the results would not necessarily be the
same as would be obtained by running separate simulations for each test item, since correlations
among the indicator attributes of the test items could affect the rest of the simulation.

This effect is probably beneficial. It would, however, make comparison with other methods
difficult, since the usual criterion for evaluating a classification method is expected performance
on asingle test item, though naturally many test items are classified in order to obtain significant
statistics.

Accordingly, the empirical tests reported below used an implementation in which only the train-
ing items, V1,...,V,, participate in the simulation. The following quantities were calculated
with respect to a test item, Vi, as the simulation was run:

1 XT: sz: Clgl +a/M Alg, L, c]+ Bi/N ﬁ Alg, j, vsi]l + Bi/N;

T T4 4T v Cll+ 6 117 Cll+ 5
~ P(Va=c Vij=vs :2<j<m|Vi=7 : 1<i<n) (14)
One can then obtain the desired category probabilities:
P(Va=c|Vi=%, Vij=vj:1<i<n, 2<j<m) ~ po/ Y pe (15)

In this way, many test items can be classified simultaneously without any interaction between
them. The computation also yields the probability of the complete test item — this is just p,,,,
where v, 1s the true category of the test item.

By saving the contents of the A and C arrays at selected points during a simulation run,
equations (14) and (15) can also be used to classify many test items presented sequentially,
without re-running the simulation for each item. Compared to the direct method of Figure 1,
this approach also reduces sampling error in the estimates of category probabilities.

Other mixture modeling methods

In this section, I will review several other methods for modeling data as a mixture, and discuss
how they relate to the Bayesian method presented above.

Maximum likelihood estimation. Maximum likelihood is a standard non-Bayesian ap-
proach to fitting a model, in which the model parameters that maximize the probability of
the observed data (the “likelihood” of the parameters) are used as the basis for interpretation
and prediction. Computation of the maximum likelihood parameters for a mixture model can
conveniently be carried out by the EM algorithm [5, 8, 20]. In this iterative procedure, expec-



tations for which unobserved mixture component underlies each data item are first computed
using the current estimate of parameters (the E step), after which a new parameter estimate
is computed using these expectations for the unobserved data (the M step). With repeated
application of these steps, the method is guaranteed to converge to a set of parameters that at
least locally maximizes the likelihood. By running the algorithm from several starting points,
one may be able to find parameter values with likelihood close to that of the global maximum.

This method can be applied directly only if the number of mixture components, M, is considered
fixed. Trying to estimate M itself by maximum likelihood leads to overfitting, with a separate
mixture component assigned to each data item. In practice, setting M to a value at the high end
of prior expectations sometimes gives an acceptable result, with excess components having low
probability, or innocuously duplicating other components of the mixture. With some difficulty,
classical hypothesis testing criteria can be used to decide between models with different numbers
of components [8, 20]. The method of cross-validation [19] should also be applicable.

Maximum a posteriori probability (M AP) estimation. Rather than use the parameters
which maximize the likelihood, one can instead use the parameters with maximum posterior
probability density — the product of likelihood and prior probability density. From a Bayesian
viewpoint, this is theoretically justified only when the mode of the posterior distribution can
be shown to approximate the optimal parameter estimate under some relevant loss function,
though the method is commonly applied without such a demonstration. MAP estimation is
algorithmically identical to the non-Bayesian “penalized likelihood” method.

This method has been applied to latent class analysis using mixture models in the early versions
of the AutoClass system of [4]. In this system, a conjugate prior is used for the model parameters
(as in equation (3) here), allowing the MAP estimate to be found using the EM algorithm. If
the prior distribution used has §; significantly greater than N;, the problem of overfitting
encountered in maximum likelihood estimation is much reduced — there is a pressure for a
single mixture component to underly many data items, since that allows its posterior attribute
probabilities to overcome the prior bias and accurately fit the observed frequencies.

However, significant deviations from the true Bayesian result would still be expected if the user
has a prior with §; < N; — for example, using « = M and §; = N; gives estimates identical
to those of maximum likelihood. Furthermore, if several local maxima are found, selecting
between them on the basis of their posterior probability density will not, in general, give the
result which is most likely to be close to the best value.

Local approximations to the Bayesian solution. In later versions of the AutoClass
system [11], the EM algorithm is run from several starting points, with the number of mixture
components set to various values. The local maxima found in this way are then evaluated
by computing an approximation to the total posterior probability of the region of parameter
space in their vicinity. (In this calculation, the probability is adjusted for the number of
permutations of mixture component identities that give equivalent results, and a prior for the
number of components is introduced.) The local maximum with highest total probability is
then considered the best (or they are all used, with weights given by their probabilities).

The quality of the solutions found with this procedure depends on whether the posterior pa-
rameter probability is in fact concentrated in a set of discrete peaks, whether all the significant
peaks are found, and whether the approximations used to compute the total probability around
each peak are good. In comparison, the quality of the predictions made by the Bayesian method
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presented in this paper depends principally on whether the simulation approaches equilibrium
in the time allotted. Which method works best in practice will have to be discovered by
experience.

Both the method of this paper and the later versions of AutoClass can handle the case where
the number of mixture components is unknown, but they do so in rather different ways. The
relative merits of these two approaches will again have to be evaluated empirically.

Stochastic forms of the EM algorithm. In the E step of the EM algorithm, rather than
calculate exact expectations for the unobserved data, one can instead generate a sample from
the distribution for these variables conditional on the observed data and the current estimate
of the model parameters [21]. In some situations, this procedure will be computationally more
efficient than the standard E step (though this is not so for the mixture models considered in
this paper).

In the limit as the size of the sample taken grows, this stochastic form of the EM algorithm
will give the same results as the exact form. At the other extreme, one might generate only a
single value for each unobserved variable. This is the procedure used in [3] in the context of
maximum likelihood estimation for a mixture of Gaussians. Various benefits are claimed for this
method, but it would appear that the algorithm is guaranteed to settle to a state where only a
single mixture component is used if it is allowed to run long enough, since once a component
is eliminated due to random fluctuations it is never re-introduced.

This defect would not be present in the analogous algorithm for finding an approximation to the
MAP estimate, provided the prior has o > M and ; > N;. Such an algorithm would in fact
be quite close to the Monte Carlo simulation method for full Bayesian inference presented here,
with the differences lying in the timing of model parameter updates, and in the interpretation
of the bias terms as priors.

Performance on a simple classification task

An empirical test of the Bayesian mixture modeling technique was undertaken in order to
determine whether the Monte Carlo simulations involved reach approximate equilibrium in
a reasonable time, and to examine the effect of using a model with an infinite number of
components. Some preliminary comparisons with maximum likelihood and MAP estimation
using the EM algorithm and with nearest-neighbor classification were also done.

The classification task. The Bayesian and other methods were evaluated on the task of
modeling data synthetically generated from the mixture distribution shown in Table 1. This
mixture is composed of four equally-probable components, each of which produces a distribution
over nine two-valued attributes in which each attribute is independent of the others, given
knowledge of the mixture component.

The first of the attributes is considered to be the category of the item. The classification task is
to guess this attribute on the basis of the values for the other eight attributes. With knowledge
of the real distribution, the optimal error rate on this task is 18.6%. Note that none of the
indicator attributes provide any information about the category attribute when taken alone,
so good performance on this task requires that the procedure uncover the two latent classes
underlying each category.

11



9 | P(Gi=g) PVij=1|Gi=g), j=19

1 0.25 1.0 0.80.8 0.80.8 0.20.2 0.20.2
2 0.25 1.0 0202 0202 0808 0.80.8
3 0.25 0.0 0.80.8 020.2 0.80.8 0.20.2
4 0.25 0.0 0202 080.8 0.20.2 0808

Table 1: The true mixture distribution.

The methods were also evaluated on their ability to predict the entirety of a test item, I~/*,
whose true value is U, with a loss of —log,(P(Vi = 7)), where P is the estimated probability.
This would be the appropriate loss function for a data compression application. Performance
on this task with knowledge of the real distribution is its entropy, which is 7.67 bits.

Each method was applied to three training sets consisting of 12 data items each (S1, S2, and
S3), and to three training sets consisting of 48 data items each (L1, L2, L3). These sets were
randomly generated from the true distribution. A training set of size 12 is just large enough for
meaningful inference to be possible, but is also just small enough that for small M the exact
Bayesian solution can be computed in not completely unreasonable amounts of time. This
allowed the accuracy of the Monte Carlo simulations to be judged.

For each method and each training set, all 2° = 512 possible test items were used to evaluate
performance on classification and whole-item prediction, with each item weighted by its prob-
ability under the true distribution. There is thus no sampling error from this source in the
evaluations.

An illustrative run. A typical simulation run on training set S1 with the number of mixture
components, M, fixed at 4 is shown in Figure 2. The columns of the figure show which of the
mixture components, represented by the symbols &, &, O, and #, is associated with each
training item at successive iterations of the simulation, starting with an initial state in which
all items are assigned the same component ().

By about the sixth iteration, the simulation reaches an apparent equilibrium situation in which
11 of the 12 items belong to one of four stable or nearly stable groups. Items 8, 11, and 12
form a group associated with component {. Items 1, 7, and 10, items 2, 4, and 5, and items
3 and 9 also form groups, though the mixture components associate with these groups change
with time. Item 6 spends part of its time with the 8, 11, 12 group and part of its time with
the 2, 4, 5 group.

These groupings, including the ambivalent behaviour of item 6, are in accord with what one
would expect from manual examination of the data and/or knowledge of the true distribution.

Convergence of the simulations. A more objective picture of convergence to equilibrium
can be obtained by observing the predictive performance of the simulations as the number of
iterations increases. Such tests were performed for M = 4, with @ = 1 and all the 8; = 1.
Simulations using larger values for «a or the 3; would presumably reach equilibrium more quickly,
since the conditional probabilities that arise are bounded further away from zero. A larger value
for M would also be expected to improve convergence to equilibrium, by eliminating some local
maxima.
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# Data item Assignments of components to items at successive iterations

IR PARMIRIEE ¥ ¥ MVVIVIVIVVVVIVIVIVVIVIVIVIVIVVVIVIVIVVVIVVIVVIVVIVIV T T T Y T T T 7
2| (122222111) | SdhdddddddddddOOOAMMAAAMMAAMMMMEOALOAMALSOOOOV
31(211221222) | SAVAAAAAMAAALLELLLLLLLLLLLLLALLAAOLLOVOAAALS
4| (122221211) | Sdododhddddddddd bbhrAAAAAAAALAASKIAMASOOOOOOVO
5 (112221111) | SddddddddddddddbAAAAAAALALAAALALAAAAALSOOOOD
6| (222212111) | SdhdddAOOOROOOOOOOMMALSMMEALSOOOHOCMOROOOOOOO
(EIRIRIRARVANIN ¥ ¥ \VIVVIVIVVIVIVIVIVIVVIVIVVIVIVVIVIVVIVIVVVVIVIVVIVIVIVE P T T Y T T Y ¥ 3
81 (222112211) | SdhddddOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOCO
9 | (212221221) | ShSAAAAAAAALLLLLLLLLALLLLLLAALLAAALOOOAAAAAS
10 | (111212222) | &&ORVMOVVVVQVVVVKVVKVVVVVVVVVVMVVV&ISVdhddddd
11 | {(222122211) | Sdbdd&OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
12 | {(221112211) | Sbd&dOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Figure 2: A run of the simulation procedure for training set S1, with M =4, o =1, and 8; = 1.
The four mixture components are represented by the symbols &, &, O, and #.

Figure 3 plots the change in performance for classification and whole-item prediction for three
simulation runs on each of the training sets of size 12. For comparison, the performance using
the exact Bayesian predictive distribution for the 512 possible test items is also shown (the
dotted line). This was calculated using equation (5) by a summation over all 413 = 67 108 864
possible assignments of mixture components to the training data and a test item (a computation
taking sixteen hours for each training set). Performance using the training sets of size 48 is
shown in Figure 4. In this case, the exact Bayesian computation is out of the question.

In these two Figures, classification performance (in percent errors) is shown on the left, and
performance at whole item prediction with loss of —log2(13((7* = ¥x)) (in bits) is shown on
the right. Both vertical scales extend from the optimum level given knowledge of the true
distribution up to the level achieved with a uniform distribution. Performance is plotted for
every iteration up to 10, then every tenth iteration up to 100, and finally every hundredth
iteration up to 1000. Each run began with all items assigned the same mixture component.
After each iteration, classification and whole-item prediction for each possible test item were
done using equations (14) and (15), giving the results shown.

Note that these performance curves are the combined result of two effects — the approach
of the simulation state to an equilibrium distribution, and the accumulation of a sample of
sufficient size to give good estimates of the probabilities.

For the small training sets, convergence to the exact solution is evident within about 200
iterations, except for one run whose classification performance still differed somewhat from
that of the exact solution after 1000 iterations. This one anomaly may be due to the fact
that classification performance has a discrete set of possible values. Very small differences in
estimated probabilities can therefore have a significant effect on performance.

If anything, the simulations for the larger training sets appear to converge more quickly than
those for the smaller training sets. One might expect that equilibrium would be harder to reach
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Figure 3: Convergence of simulation runs on the training sets of size 12. Three runs taken
to 1000 iterations are shown for each set. Plots on the left show classification performance
(percent errors); those on the right show performance on whole-item prediction (in bits). The
dotted lines show the performance of the exact Bayesian solutions.
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Figure 4: Convergence of simulation runs for the training sets of size 48. Three runs taken
to 1000 iterations are shown for each set. Plots on the left show classification performance
(percent errors); those on the right show performance on whole-item prediction (in bits).
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when more data items are involved, but if so, it appears that this is out-weighed by the more
rapid accumulation of a significant sample.

Performance of the Bayesian method. The Bayesian mixture modeling method was eval-
uated on the three large and three small training sets, with the number of mixture components
(M) set to the true number (4), and to infinity. Various values of o were used, each with a
range of values for the §; (all equal) from % to 4 in geometric steps of /2.

The resulting performance at classification and whole-item prediction is shown in Figure 5. In
the simulations on which these results are based, mixture components were assigned sequentially
to data items (repeating, for M < o0), and the simulation was then run for 100 iterations so
as to reach equilibrium (as seen in the previous section, this is probably sufficient). Data was
then collected for 400 iterations for use in classification and prediction of the 512 possible test
items.

As expected, performance on the larger training sets was generally better than that on the
smaller sets. Performance on training set S3 was particularly bad, a fact explained by the
absence from this set of any good exemplar of one of the mixture components.

The results for both M = 4 and M = oo are quite insensitive to the value of «, within the
range explored. Results for the largest o were slightly better. For M = 4 at least, this is as
expected, since in the true distribution, the four components are all equally likely, a situation
favoured by a high «.

Sensitivity to the value of the §; is much greater. Since the attribute probabilities in the true
distribution are all near 0 or 1, one would expect a values of 3; somewhat less than N; = 2 to
be preferred. This is indeed the case for the small training sets. For the large training sets; a
value near 2 appears best, perhaps because these sets have enough data to force most of the
probability to the region near the true parameter values without assistance from a prior with
B; < N; — a prior which would also have the undesirable effect of increasing the probability
of parameter values more extreme than the true ones.

Perhaps surprisingly, performance with the number of mixture components set to infinity is as
good as, even better than, that with the number of components fixed to its true value. This
may seem paradoxical, but is explicable if one remembers that the value of « used is not optimal
— setting a to 100000 with M = 4 in fact gives better results than any shown. The results
certainly confirm the feasibility of using a model with M = co when the number of mixture
components is unknown or indefinite.

Performance of estimation with the EM algorithm. A parallel evaluation was done of
MAP estimation using the EM algorithm. For M = 4, Figure 6 shows results for the same
range of o and the ; as were used with the Bayesian method. In an attempt to mimic the
capability of the Bayesian method to give good results with M = oo, runs with M set to the
relatively large values of 10 and 100 are also shown.

In all cases, the EM algorithm was run for 100 iterations, which was ample to reach convergence,
starting from (the same) three initial sets of parameter values. These starting points were
obtained by setting the ¢, and ¥, ;. to values from a uniform distribution over the interval
[1.0,1.1] and then normalizing so that the parameter vectors summed to one as required. The
parameters from the run that converged to the point with highest posterior probability density
were then selected for use on the test items. When o < M and/or 8; < Nj, the posterior
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Figure 5: Performance of the Bayesian mixture modeling method. Results shown in the top row
are with the number of mixture components (M) fixed at its true value; those in the bottom
row with M set to infinity. In each case, graphs for various values of a are shown, with 3
varying along the horizontal scale. Classification performance is plotted with solid lines, using
the scale at the left (percent errors). Performance at whole-item prediction is plotted with
dotted lines, using the scale at the right (bits). Results on the small training sets are plotted

with “o”; those on the large training sets with “e”.
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Figure 6: Performance of mixture modeling using the EM algorithm. Results shown in the top
row are with the number of mixture components (M) fixed at its true value; those in the bottom
row with M set to 10 and 100. Results for various values of a are shown, with g varying along
the horizontal scale. Classification performance is plotted with solid lines, using the scale at the
left (percent errors). Performance at whole-item prediction is plotted with dotted lines, using
the scale at the right (bits), with performance worse than 9.0 shown as that value. Results on

1PN

the small training sets are plotted with “o”; those on the large training sets with “e”.
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density function has singularities at points where one or more parameter values are zero. In
these cases, the densities at different points were compared as if all such zero parameters were
set to the same infinitesimal value.

For M = 4, these results are qualitatively different from those obtained with the Bayesian
method. Classification performance with 8; < N; = 2 is relatively poor, especially with
the small training sets — the reverse of the results with the Bayesian method. Whole-item
prediction performance with such §; is very poor (in fact, often infinitely poor). This is not
surprising, since with 8; < IV, the singularities in the prior distribution at zero values of the
g jv Will encourage extreme overfitting. Results with o = 8 and 3; equal to 2.8 and 4.0, values
for which there are no singularities in the prior, show differences in both magnitude and trend
from the corresponding Bayesian results as well.

Clearly, the result of MAP estimation with given a and §; cannot be regarded as an approx-
imation to the true Bayesian solution. A better correspondence appears if one regards the
results of MAP estimation with #; > N; as an approximation to the Bayesian result with
ﬁ]’» = fB; — N;. Such a correspondence might be expected by analogy with the situation with
Dirichlet priors for a simple discrete distribution, though in the mixture case there appears
to be no exact equivalence. Alternatively, one might simply regard the EM algorithm as per-
forming maximum penalized likelihood estimation, abandoning any attempt to interpret it in
a Bayesian framework.

Nevertheless, for M = 4, o = 8, and 3; = 4.0, the results shown for MAP estimation are
quite good. The attempt at mimicing the success of the Bayesian method when the number of
components is regarded as unknown was somewhat less successful, and for M = 100 the results
shown are also fragile — apparently minor changes to M and/or « can give much worse results.

Comparison of the methods. For both the Bayesian and the MAP estimation methods,
the overall best values for o and the 3; with the number of components set to the true value
and to infinity (or a reasonable facsimile) were selected based on performance on items from the
true distribution, as shown in Figures 5 and 6. This is, of course, cheating. A proper Bayesian
treatment of the situation where a and the 3; are not fixed by prior knowledge would involve
treating them as hyperparameters, as is discussed below. For MAP estimation, cross-validation
might be used to estimate these parameters from the training data. Such procedures lie outside
the scope of this paper, however, so for what it is worth, the performance of the two methods
with parameters selected by this not-quite-legitimate method is displayed for comparison in
Figure 7.

Figure 7 also shows the performance of maximum likelihood estimation of the mixture distri-
bution parameters, which is equivalent to MAP estimation with o = M and 8; = N;. For
additional perspective, the performance of a nearest neighbor classifier is shown as well. This
classifier attributes a test item to the category of the training item that is closest to it in Ham-
ming distance. If several training items are equally close, they vote on the category. If the vote
is tied, it is assumed that a random choice is made; the performance shown is the average over
such choices.

If the true number of mixture components is assumed known, little difference is apparent
between the performance of the Bayesian method and that of MAP estimation. If the number
of components is not known, but for MAP estimation is assumed to be no greater than 10, the
Bayesian method gives significantly better performance at whole-item prediction, and perhaps
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Figure 7: Comparative performance of Bayesian prediction, MAP estimation, maximum like-
lihood estimation, and nearest neighbor classification. Results on the small training sets are
plotted with “{”; those on the large training sets with “4”.

slightly better classification performance with the larger training sets. Performance of the MAP
method deteriorates further if as many as 100 components are allowed.

Maximum likelihood estimation is not competitive with either the full Bayesian or the MAP
methods in any context. Nearest neighbor classification does surprising well, however, especially
for the small training sets. This is perhaps an indication that the problem is not tremendously
difficult (though in some respects, such as the equal importance of all attributes, the problem
is well-suited to this classifier).

All the methods compared required less than one minute of computation time on a 25 MIPS
machine to classify the 512 possible test items on the basis of one of the large training sets. For
small values of M, the EM algorithm is somewhat faster than the Bayesian method. The EM
algorithm has a relative advantage if a single training set is used to classify many test items,
since it processes the training data once, with the results then applied to any number of test
items, while, at least in a straightforward implementation, the Bayesian method examines all
test items throughout the simulation.

Clearly, results such as these on synthetic data can be suggestive only. A true picture of the
worth of the Bayesian method can be obtained only by applying it to significant real data sets.
Conclusion

I have presented a method for performing Bayesian prediction from data modeled by a mix-
ture distribution. The practical benefits of this method include simplicity of implementation,
avoidance of overfitting, and some protection from local maxima in the computation. Of both
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practical and theoretical significance is the new approach to handling problems where the num-
ber of mixture components is either unknown or indefinite. This approach is made possible by
the ability of the method to cope easily with countably infinite mixtures.

As is proper for a Bayesian solution to the problem, the method presented here does not
produce a single “best” set of model parameters. This might be seen as undesirable for latent
class analysis applications, but it would be an advantage if some convenient way of interpreting
the full output of the simulation could be found. For the related task of finding clusters in a set
of data items, one possible approach would be to accumulate a matrix recording how often each
pair of items was assigned the same mixture component in the course of the simulation. The
items could then be clustered on the basis of this similarity matrix by any of several methods

[13).

In this paper, I have assumed that the user’s prior knowledge can be adequately captured by
a choice of values for o and the §; in the prior distribution (equation (3)). Often, the real
prior will not be so specific. In this case, o and the 8; can be treated as hyperparameters
with their own prior distributions. At moderate computational cost, these hyperparameters
can be included in the Monte Carlo simulation, allowing Bayesian inference for this hierachical
model to be performed. Modifications to allow Dirichlet distributions that are not necessarily
symmetrical with respect to the discrete attribute values are also possible.

Preliminary experiments with an algorithm encorporating these extensions have been per-
formed. They show that one benefit of a hierarchical model is an increased ability to identify
“noise” attributes that do not discriminate between any of the mixture components. The dis-
tributions for such attributes can be modeled at the hyperparameter level more economically
than at the level of parameters for individual components, thereby eliminating the detrimental
effects that spurious correlations among such noise attributes can have.

Although the development in this paper is confined to discrete data, the technique should
also be applicable when items have real-valued attributes modeled by independent Gaussian
distributions if an appropriate conjugate prior is used. The method can also be extended to
the Hidden Markov Models used in speech recognition [15], and to the “noisy-OR” form of the
stochastic neural networks described in [17].
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