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Abstract. Empirically assessing the predictive performance of learning methods is
an essential component of research in machine learning. The DELVE environment
was developed to support such assessments. It provides a collection of datasets, a
standard approach to conducting experiments with these datasets, and software for
the statistical analysis of experimental results. In this paper, DELVE is used to
assess the performance of neural network methods when the inputs available to the
network have varying degrees of relevance. The results confirm that the Bayesian
method of “Automatic Relevance Determination” (ARD) is often (but not always)
helpful, and show that a variation on “early stopping” inspired by ARD is also
beneficial. The experiments also reveal some other interesting characteristics of the
methods tested. This example illustrates the essential role of empirical testing, and
shows the strengths and weaknesses of the DELVE environment.

1 Introduction

This paper has two purposes: To show how the performance of machine
learning methods can be assessed using the DELVE environment, and to
investigate some methods for dealing with learning problems in which the
available inputs are of varying relevance. These topics are linked by the use
of the DELVE environment to assess the performance of the relevance deter-
mination methods.

Below, I discuss the need for empirical assessments of learning methods,
and the deficiencies of current practice in this area. I then discuss the problem
of determining the relevance of the various inputs that may be available for
use in a supervised learning problem (either regression or classification). Fol-
lowing this introduction, I describe the DELVE environment for conducting
empirical assessments in more detail, and describe two types of neural net-
work methods, based on Bayesian learning implemented using Markov chain
Monte Carlo, and on ensembles of networks trained using early stopping.
Bayesian learning can be done in conjunction with the technique of “Auto-
matic Relevance Determination” (ARD), which past experiments suggest is
beneficial. The mechanics of ARD are the inspiration for a variation of early
stopping that we might hope will also be beneficial when some inputs are
more relevant than others.

The DELVE environment is then used to assess the performance of the
Bayesian and early stopping methods, with and without the use of relevance
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determination techniques. The results allow conclusions to be drawn about
the worth of these methods, and about the strengths and weaknesses of the
current DELVE environment.

1.1 The need for good empirical assessments of learning methods

One might hope that the performance of machine learning methods could be
fully analysed theoretically, eliminating any need for empirical assessments of
performance on actual problems. Theoretical analysis can be difficult, how-
ever. More fundamentally, without further knowledge, a complete analysis is
generally impossible in principle, since the performance of a learning method
usually depends on the real situation in which it is applied.

Bayesian methods do incorporate further knowledge of the problem, in
the form of a prior distribution that is meant to capture the user’s beliefs
about the real situation. If the prior distribution accurately reflects these
beliefs, a Bayesian might regard empirical tests of the method based on this
prior as irrelevant. In practice, however, one can seldom be sure that the prior
distribution used for a complex model actually captures the real prior beliefs.
Partly, this is because the substantial effort required to ensure this cannot
be justified when it is thought likely that a cruder approximation will suffice
for the problem at hand. Accurate expression of prior beliefs is also limited
by the difficulty of visualizing distributions in high dimensions. Empirical
tests may reveal flaws in the specification of the model or prior, and may
also be needed to assess the adequacy of the computational methods used to
implement a Bayesian model, which often involve approximations, at least
when allowed only a limited amount of computation time.

Methods justified within other frameworks will also often require empiri-
cal testing in order to assess their practical worth. Furthermore, performance
on actual problems is the only criterion by which one can compare methods
that have been justified within different philosophical frameworks, or that are
based on vague intuitions rather than coherent principles. Empirical testing is
how we will ultimately be able to see the relative merits of the Bayesian, min-
imum description length, structural risk minimization, and other approaches
— though of course, no single test will be decisive in this regard.

Despite their importance, good empirical assessments are rare. In the
statistical literature, it is quite common for newly-proposed methods to be
illustrated on a problem that is real (though often stale), with the apparent
intent of demonstrating that the method can produce interesting results in
actual applications. In working through such problems, it is typical for all
the data to be used in training the method, with the result that none is left
for checking the accuracy of the results. This practice seems to result from a
confusion between solving a real problem and doing methodological research.
When the goal is to solve the problem, one should of course use all the data
available, in one way or another. But when assessing the worth of a newly-
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proposed method, we need an independent check of its accuracy, which is
obtainable only by testing on data not used during training.

Tests on data separate from that used in training are more common in the
neural network and machine learning literatures. One approach is to divide
a dataset into a “training” set and a “test” set. Several methods are then
applied to the training set, on the basis of which each makes predictions for
cases 1n the test set. The predictive performances of the methods are then
compared. This methodology suffers from two serious problems. First, the
datasets used are often quite small (less than 1000 cases), the test sets are
even smaller, and consequently only quite large differences in performance
can be reliably discerned. Second, this methodology ignores the possibility
that the relative performance of the methods may vary with the random
choice of training set.

In an attempt to overcome these problems, n-fold cross-validation assess-
ments are sometimes performed, in which the data is divided into n portions,
and n training runs are done, each on all but one portion, with the held-out
portion being used as a test set. Unfortunately, the overlap of the training
sets in this scheme introduces unknowable dependencies between runs, mak-
ing formal statistical tests impossible. Investigations by Dietterich (1998)
show that applying a ¢-test despite these dependencies can result in invalid
results, though the situation is not as bad as for the widely-used resampled
t-test procedure, based on multiple random splits into training and test sets,
which is guaranteed to produce an apparently “significant” result if enough
random splits are used. Dietterich introduces a new “5x2cv” test intended to
replace these flawed tests, but by his own evidence, this test is itself deeply
flawed — it 1s based on numerous incorrect independence assumptions, and
in one example has a Type I error probability that is off by a factor of two.

The root cause of this sad state of affairs is an insistence on trying to
answer the following question: “Given two learning algorithms A and B and
a small data set S, which algorithm will produce more accurate classifiers
when trained on data sets of the same size as S7” (Dietterich 1998). This
question is fundamentally unanswerable, given that only a single instance of
a dataset of size S is available. Small datasets are simply not suitable for tests
of learning methods. One should use large datasets instead, from which one
can select several non-overlapping training sets of whatever size is of interest,
along with a separate test set that is reasonably large.

Invalid results can be obtained with this approach too, however, as il-
lustrated by Finnoff, Hergert, and Zimmerman (1990). In their experiments,
they use six separate training sets, each accompanied by a test set with 1000
cases. Good comparisons should be possible with such a setup, but unfortu-
nately they destroy the validity of the results by setting parameters of the
methods based on information from all six training sets. Furthermore, they
derive a statistical test based on the dubious assumption that the relative
performance of two methods is the same for all training sets. Not wishing
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to go to the effort of computing this test, they use an approximation which
discards the pairing information in the experiment, which usually greatly
reduces the power of a test to detect differences. They then use extremely
generous significance levels of 0.10 and 0.25 (or possibly 0.20 and 0.50, de-
pending on context). Their results would therefore appear to be essentially
meaningless. Other researchers have conducted equally flawed experiments.

The DELVE project (Rasmussen, et al 1996) aims to improve the quality
of empirical assessments by building a collection of large datasets suitable for
empirical assessments, along with software that supports a valid experimen-
tal methodology and valid analysis of the results. Collecting, producing, or
adapting suitable datasets is not a simple task, which goes some ways toward
explaining why unsuitable datasets are often used. We do not yet have the
variety of datasets that we would like to have in DELVE. We do have a first
version of the software, and a modest collection of results.

DELVE 1s described more fully in Section 2. First, however, I will discuss
a particular research problem that will be used in this paper to illustrate how
empirical assessments using DELVE can help answer interesting questions.

1.2 The problem of dealing with varying input relevance

For learning to be successful, we must always discard much information that
is known a prior:i to be irrelevant, as otherwise we will be fooled by the chance
associations that we are likely to encounter if we search for relationships with
a huge number of input variables. But what should we do when we think that
some inputs might be important, but might also be of little relevance? Can
we use the data to determine the degree to which each input is relevant, and
thereby avoid both the cost of not using inputs that are useful, and the cost
of being misled by chance associations with inputs that have little relevance?

One approach is to select a subset of input variables using some criterion
that balances data fit and model complexity (eg, AIC). When number of
inputs is large, considering all possible subsets is infeasible, but one can try
adding variables one at a time (forward selection), or removing them one at a
time (backward elimination). This approach has long been used in the context
of linear regression. Bonnlander (1996) reviews variable selection methods for
neural networks, and develops one based on mutual information.

Variable selection seems to me to be a dubious procedure, since if we
think an input might be relevant, we will usually also think that it is prob-
ably at least a little bit relevant. Situations where we think all variables are
either highly relevant or not relevant at all seem uncommon (though not,
of course, impossible). Accordingly, we should usually not seek to eliminate
some variables, but rather to adjust the degree to which each variable is
considered relevant. We may hope that a method of this sort for determin-
ing the relevance of inputs will be able to avoid paying undue attention to
the less relevant inputs, while still making use of the small amount of extra
information that they provide.
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This is the philosophy behind the Bayesian method of “Automatic Rele-
vance Determination” (ARD) (MacKay 1994; Neal 1996) for multilayer per-
ceptron networks. In this method, a hyperparameter is associated with each
input, which controls the size of the weights associated with connections out
of that input. If the hyperparameter for an input is small, weights for that
input will likely be small, and the input will therefore have only a small effect
on the network’s predictions. These relevance hyperparameters are set in a
Bayesian fashion, according to the resulting probability of the observed data.

The ARD procedure has a high-level justification, as the correct thing to
do given prior knowledge that some inputs may be less relevant than others.
One can also look at the low-level mechanics of how ARD operates, however,
which one can try to adapt for use in a non-Bayesian context. In this paper,
I will investigate a variation of training with early stopping that uses an
ARD-like method for dealing with inputs of varying relevance. The aim is to
determine whether such a method is actually an improvement over a plain
early stopping method, and how its performance compares to the Bayesian
ARD method. Some other aspects of these methods will be examined along
the way.

2 The DELVE environment

The DELVE environment, developed at the University of Toronto, aims to
support valid empirical assessments of learning methods for regression and
classification applications. We are especially interested in methods for finding
non-linear relationships in high-dimensional data. Neural networks, classifi-
cation trees, and nearest neighbor methods are among the many approaches
that have been taken to such problems. Each such approach has many vari-
ations. We hope that DELVE will help in determining which variations are
actually useful, and will allow new variations to be easily assessed.

DELVE consists of an archive of datasets for use in assessing learning
methods, a set of conventions and software that support experiments with
this data, and an archive of the results of such assessments. I will here
give a brief and somewhat simplified sketch of the main aspects of DELVE.
For complete details, see the DELVE manual (Rasmussen, et al 1996) and
the PhD thesis by Rasmussen (1996). The DELVE archive is located at
http://www.cs.utoronto.ca/~delve/.

2.1 From datasets to task instances

A DELVE dataset consists of a set of cases. For each case, the values of
certain attributes are recorded. At present, the cases in a DELVE dataset are
considered to be independent, though in future we may support experiments
with time series data or in which other sorts of dependencies are present.
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DELVE datasets can have various origins. Natural datasets from real-
world learning problems are useful because they are representative of the
problems we would actually like to solve. Artificial datasets based on simple
formulas are easy to construct, and can allow tests that are narrowly focused
on particular issues. At present, most DELVE datasets are of an intermedi-
ate type, produced by realistic simulation programs that mimic a situation
where one might well wish to use a learning method. This allows us to gener-
ate an unlimited number of cases, and also lets us produce families of related
datasets that can provide information about which factors influence the per-
formance of the learning methods. We hope that the simulations used are
realistic enough that they are representative of real applications.

The first step in using a dataset to assess learning methods is to define
what we call a prototask, in which one attribute is identified as the target to
be predicted, and some other attributes are identified as inputs, which are
available for use in predicting the target. When the target is a real number,
we have a regression prototask; when the target is from a finite set, we have
a classification prototask. In this paper, only regression prototasks are used,
but DELVE supports classification as well.

For each prototask, we can define one or more tasks, in which the number
of training cases is specified. It is meaningful to ask how well a particular
learning method does on a task, as judged by the expected loss when it is
used to predict the target in a test case using the information from a training
set of the specified size. Several loss functions are supported by DELVE, but
in this paper only squared error loss will be used.

The expected loss of a method on a task is the average loss with respect to
the random selection of a training set of the size specified for the task and the
random selection of a test case. Both these random selections are from the real
distribution from which the cases were drawn, not from the particular set of
cases that we have available for testing. The expected loss can therefore only
be estimated, with some uncertainty, on the basis of performance on several
task instances, each of which consists of a training set and a set of test cases.
The training sets for different task instances are always disjoint, because there
is no way of accounting for the dependencies that would occur if training sets
overlapped. In this paper, the test sets used are also non-overlapping. This
simplifies the statistical analysis, and is more efficient when there is no limit
on the amount of simulated data that can be generated.

Most DELVE prototasks are associated with a set of five tasks with train-
ing set sizes of 64, 128, 256, 512, and 1024. Eight task instances are usually
used for each of these tasks, except that often only four instances are used for
the task with 1024 training cases. It is important that such conventions be
established for each prototask, so that the results of experiments by different
researchers can be compared. However, different conventions might be used
for some new prototask if this was thought desirable.
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2.2 Defining and running a learning method

Before a learning method can be assessed, it must first be carefully defined.
A fully automatic method can be defined by a program that implements
it, perhaps supplemented by some explicit instructions on what the human
operator should do in certain situations (eg, reduce the gradient descent
learning rate for a neural network by a factor of two if instability is observed).
Methods that require substantial human judgement could in theory be defined
by a description of the method that could be understood by any data analyst
with a suitable background. Properly assessing such a manual method would
be quite costly, however, as many analysts would need to learn how to use the
method, and then analyse instances of various tasks. All the results currently
archived in DELVE are for automatic methods.

A program implementing a method reads the inputs and targets for the
training cases, plus the inputs for the test cases, and produces guesses at the
targets in the test cases. The guess for one test case is meant to be made
without reference to the inputs for other test cases. Some methods will make
use of random numbers — for example, to randomly initialize the weights
in a neural network, or as part of a Monte Carlo method for evaluating
integrals. Such methods should use a different random number seed for each
task instance. Otherwise, the results might depend on the particular seed
chosen, and if so would be very fragile, subject to change whenever a minor
modification to the program alters the sequence of calls to the random number
generator, or when the task is slightly altered (eg, the inputs are re-ordered).

It is up to the writer of a learning method how the training data and test
inputs are used to make predictions for the test targets. However, DELVE
provides support for some common encoding and normalization procedures,
which many researchers may choose to use if they are not specifically investi-
gating this aspect of learning. All the methods discussed in this paper use the
default DELVE normalization for inputs and targets, which is to shift them
so that they have median zero over the training set, and to scale them so
that over the training set their average absolute deviation from the median
is one. The DELVE software creates data files for each task instance using
this normalizing transformation (which is usually different for each instance).
The program implementing the method can then be run, after which DELVE
will transform the method’s guesses for the normalized test targets back to
the original form. For each test case, the squared error loss with respect to
the actual target value is then computed.

2.3 Analysing the results

The result of running a learning method on a task is a set of files that record
the guesses the method made for each test case in each task instance. These
guesses are retained for later analysis, which might potentially include a de-
tailed comparison of the guesses made by different methods. At present, how-
ever, the only analyses supported by DELVE are estimation of the expected
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loss (eg, squared error) on a task for a single method, and the comparison of
the expected losses on a task for two methods.

These analyses are fairly simple when both the training sets and the test
sets in different task instances are disjoint. Suppose that we have I task
instances, for each of which we have both a training set and a set of J test
cases. Suppose that when method A is trained on the training set for instance
1, its loss when predicting the target for test case j of instance 7 is y;;. We
can compute the average loss for test cases in instance ¢, written y;, and the
average loss over all instances, written y, as follows:

1 1<
Y = jzy”’ y = TZ:% (1)

Note that g is an unbiased estimate of the true expected loss for this method
with respect to the random selection of a training set and a test case. Because
the task instances are independent, it is possible to estimate the standard
error of § (see Rasmussen, et al (1996) for details). A confidence interval for
the true expected loss could be obtained if one were willing to assume that
the distribution of y is close to Gaussian, which is reasonable if I is large,
though perhaps not when I = 8. Such confidence intervals are not computed
by DELVE at present, however.

Our main interest is usually in comparing two methods, A and B, with
respect to their expected loss on a task. If these two methods have been
run in the standard way within the DELVE environment, we will have the
results for both methods on the same training sets and test cases. We can
therefore do a paired comparison of these results, which is more powerful
than a comparison using results on different training and test sets. Let x;;
be the difference in the loss for method A and the loss for method B when
each is trained on the training set for instance ¢ and then used to predict
the target in test case j of instance i. We can compute averages for these
differences in the same way as we did for the losses of a single method:

12 1
T = jzfﬁij, r o= Ei‘i (2)
7j=1 i=1

Here, z is an unbiased estimate for how much greater the expected loss of
method A is than the expected loss of method B. If ¥ is positive, then we have
evidence that method B is better than A, and conversely, if z is negative, we
have evidence that A is better.

However, even if there is no true difference in expected performance be-
tween A and B, we will generally obtain some non-zero value for z, and hence
some indication that one or the other method is better than the other. In-
deed, even if B is better than A, there is some chance that z will be negative,
indicating the reverse. We need some way of telling whether the sign of z is
a reliable guide to which method is better. Because the z; are independent,

~ =
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we can use a t-test for this, based on the following ¢-statistic:

—1/2

I R Vs .
t = z mZ(rl—x) (3)

i=1

If the z; have a Gaussian distribution, this ¢-statistic will have a ¢t-distribution
with 7 — 1 degrees of freedom. On this basis, we can find the p-value for the
comparison, which is the probability of obtaining a ¢-statistic at least as large
(in absolute value) as that observed, if in fact the two methods have the same
expected loss. If the p-value is small (traditionally, less than 0.05), we have
good evidence that the apparently better method is actually better.

There is no strong reason to believe that the distribution of the z; is
actually Gaussian, so use of this ¢-test is not beyond question. Fortunately,
however, the t-test is fairly robust in this respect, so the results are usable, if
treated with appropriate caution. The impact of the z; being non-Gaussian
would be less if I were larger, but we have nevertheless chosen I = 8 for most
DELVE tasks because many interesting methods take quite a long time to
run.

DELVE uses a more complex analysis of variance procedure when the
same test set 1s used for each task instance, as may be necessary for a natural
dataset with a fairly small number of cases. DELVE does not use overlapping
training sets, since there is no way of obtaining valid standard errors or
p-values in this context, at least not without detailed prior knowledge of the
behaviour of the methods, which is presumably not available for methods
whose behaviour is being investigated empirically.

3 The methods to be assessed

The methods assessed in this paper are built around multilayer perceptron
networks. Methods in the mlp-mc family use Bayesian learning implemented
using Markov chain Monte Carlo techniques. Methods in the m1p-bgd family
find an ensemble of networks trained using batch gradient descent with early
stopping.

I will start by describing some characteristics common to all these meth-
ods, after which I describe the two basic methods, which do not try to adapt
to varying relevance of the inputs. I then describe the Bayesian Automatic
Relevance Determination (ARD) method, and the variation on early stopping
inspired by it. A simpler variation on early stopping which might also help
when inputs vary in relevance is also described.

3.1 Common characteristics of the methods

All the methods defined in this paper are based on multilayer perceptron
(“backprop”) networks with one layer of 20 hidden units, with tanh activation
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Training set size
64 128 256 512 1024

3.3 7 14 27
13 26 52

mlp-bgd-* 8 inputs
32 inputs 6.2

3.5 9 16 31

9.4 16 31 64

N N O

1.

3.

mlp-mc-* 8 inputs 2.
32 inputs 6.

Fig. 1. Computation time in minutes, on a 194 MHz MIPS R10000 processor.

function. This number of hidden units was chosen in the hopes that it is large
enough for most tasks with up to 1024 training cases — ie, that little would
be gained by using more hidden units with that amount of data. Both the
Bayesian and the early stopping methods are supposed to avoid overfitting,
so the number of hidden units is not reduced for smaller training sets. The
hidden units have connections to all inputs, and also have a bias input. The
single output (whose activation function is the identity) is connected to all
the hidden units, and again has a bias input. One of the Bayesian Monte
Carlo methods (mlp-mc-2) had direct connections from the inputs to the
output as well.

Bayesian Monte Carlo and early stopping ensemble methods have pre-
viously been used in DELVE assessments by Rasmussen (1996). Both these
approaches can be automated relatively simply. In contrast, many commonly-
used approaches to network training require that human judgements be made
regarding how to set weight decay parameters, exactly how many hidden
units to use, or when to stop one training run and start another. Often, it is
not clear on what basis these decisions are to be made. Assessments of such
methods will only be possible if and when they have been properly defined.

Following Rasmussen (1996), the methods used in this paper are defined
such that they take a specified amount of computation time. However, I have
defined time in terms of the number of network forward and backward passes,
rather than actual computation time on a particular computer. In particular,
all the methods (except those in Section 5.3) were allowed the equivalent of
60,000 passes over the complete training set. With this definition, two meth-
ods designed to take the same amount of time may actually differ somewhat
in time taken, due to differing overheads, and this relationship may vary
somewhat depending on the computer used. The advantage of this approach
is that the results of the methods will be the same on any computer, aside
from possible differences due to random number generators and floating-point
roundoff error.

The actual times taken by the methods are shown in Figure 1, for different
sizes of training set, and different numbers of inputs. Time varied little for
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different methods within the same family. Rasmussen’s mlp-ese-1 procedure
used somewhat less time, and his mlp-mc-1 procedure used considerably more
time. (Due to differences in machines used and the time scaling employed,
these time differences cannot be summarized by a simple factor.)

All the methods in this paper are implemented using the software for flex-
ible Bayesian modeling available from my web page (specifically, the release
of 1997-07-22). The exact descriptions of the methods are in the DELVE
archive, along with the results of the experiments.

3.2 Bayesian learning using Markov chain Monte Carlo

In a Monte Carlo implementation of Bayesian neural network learning (Neal
1996), we do not try to find a single “optimal” set of network weights, but
instead try to sample from the posterior distribution for network weights,
based on a prior distribution and on the likelihood given the training cases.
We then make predictions for test cases by averaging the outputs produced
by the networks in this sample from the posterior distribution.

We can try to obtain a sample of networks from the posterior distribution
by simulating a Markov chain that has the posterior as its equilibrium dis-
tribution. For the methods in the mlp-mc family, this Markov chain is built
using two types of updates. One type changes the weights and biases in the
network using a dynamical technique that resembles gradient descent with
“momentum”. The other type of update changes the hyperparameters that
control the distribution of the weights and biases, along with the standard
deviation for the “noise” — the difference between the network output and
the actual target. For more details on these updates, see (Neal 1996) and the
software documentation.

The Markov chain converges to the desired distribution asymptotically,
but will not sample from the exactly correct distribution in a run of finite
length. In an application without strict time constraints, one should examine
the progress of the chain, in order to decide how long to let it run so as to
produce a nearly-correct result. The initial part of the run, before equilibrium
appears to have been (nearly) reached, should be discarded. Predictions can
then be made by averaging the outputs of networks from the remaining part
of the run.

In a time-critical application, one might not have the option of running
the chain for longer. In this case one can do nothing except use the latter
part of the chain for predictions, and hope for the best. There is not much to
be gained by judging exactly how much to discard of the beginning of such a
fix-length run — just discarding the first third and using the last two-thirds
for predictions seems to be generally suitable. This approach is convenient
for automated assessments, since it involves no human judgement.

The mlp-mc-1 method defined by Rasmussen (1996) uses this approach
of running the Markov chain for a fixed amount of time, and discarding a
fixed fraction. For the assessments done in this paper, I defined three related
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methods, mlp-mc-2, mlp-mc-3, and mlp-mc-4, which also use this approach,
but which use somewhat different Markov chain updates, involving “partial
gradients” (see Neal 1996, Section 3.5.1). These methods are also allowed
much less time than mlp-mc-1.

The three new mlp-mc methods differ in their network architecture and
in whether they use Automatic Relevance Determination. The mlp-mc-4
method has no direct input-output connections, and does not use ARD. It
does use a hierarchical prior that accounts for the differing roles of connec-
tions of different types (see MacKay 1992). The input-to-hidden weights are
placed in one group, whose standard deviation is a hyperparameter, the hid-
den unit biases form another group, controlled by another hyperparameter,
and the hidden-to-output weights form a third group, controlled by a third
hyperparameter. The noise standard deviation is also a variable hyperparam-
eter. The output bias has a fixed standard deviation of one.

The hope is that the posterior distribution of these hyperparameters,
which determine characteristics such as the smoothness of the relationship,
will be concentrated on values that are suitable for the actual problem. If
this works as intended, “overfitting” will not occur.

3.3 Ensembles of networks trained with early stopping

The technique of early stopping (Morgan and Bourland 1990) is a simple
and computationally cheap way of trying to avoid overfitting when training a
neural network. In the simplest form of this technique, the available training
data is divided into two portions. One portion is often called the “training
set”, but to avoid confusion with the full training set, I will here call it the
estimation set. The network is trained by some optimization method so as
to minimize squared error (or some other error function) on the cases in this
estimation set, starting from an initial state in which the network weights are
small. The other portion of the training data is called the validation set. The
error on cases in the validation set is used to select a network from among
those found in the course of minimizing the error on the estimation set. Due
to overfitting, the best network as judged by error on the validation set is
often not the one with smallest error on the estimation set (which will be the
last one found, if the optimization method is stable). The network with the
smallest validation error is used to make predictions for test cases.

This procedure seems rather ad hoc. The results will clearly depend on
the exact optimization procedure employed. Only part of the data is used
for estimating the weights, which seems wasteful. It’s hard to see how the
method can be justified within any general framework for learning. On the
other hand, the procedure requires only a single training run, and hence may
be feasible when other methods are not. Early stopping is also relatively easy
to automate.

Rasmussen (1996) has defined an early stopping method (mlp-ese-1)
that uses an ensemble of several networks. The ensemble is found by training
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networks with early stopping using several random splits of the training data
into estimation and validation sets. Predictions for test cases are then found
by averaging the outputs of all the networks in the ensemble. Training an
ensemble obviously requires more time than training a single network, but
it has the advantage that all the data is likely to be used for estimating the
weights, in at least some of the networks. Predictions using an ensemble are
in fact guaranteed to be better than predictions from a randomly selected
network in the ensemble (Perrone 1994), though there is no guarantee that
using all the available time to continue training a single network would not
have been better.

I have defined a similar but somewhat simpler method, m1p-bgd-1. This
method randomly partitions the training data into four equal portions and
then trains an ensemble of four networks by early stopping. Each training
run uses three of the four portions as the estimation set and the remaining
portion as the validation set. In contrast, mlp-ese-1 uses an ensemble of
variable size, with the data being split randomly for each member of the
ensemble. The mlp-bgd-1 method minimizes the error on the estimation set
using 20,000 epochs of simple batch gradient descent. It is therefore not an
“early stopping” method in the literal sense, since it continues training for
this number of iterations regardless of what is happening to the error on the
validation set. In contrast, mlp-ese-1 uses a variable number of iterations
of the conjugate gradient method, though it too generally continues training
for a while past the point where validation error starts increasing, in case it
should go down again later.

In detail, each batch gradient descent iteration of mlp-bgd-1 changes the
weights in following way (with biases being handled similarly):

N
, € 0FE,
L = i = ——— 4
wl] Wij N—}—l;aw” ()

Here, w;; is the weight on the connection from unit 7 to unit j, NV is the
number of cases in the estimation set, and E. is half the squared error on
case c. The stepsize, €, was set to 0.1, which was adequate for all the tests
done, but if instability is observed, it should be reduced as necessary. (Note
that the inputs and targets are normalized, so there is no general need to
change € to match changes in the scaling of the inputs or targets.)

Networks are saved after 63 of the 20,000 batch gradient descent iter-
ations. These 63 iterations are spaced approximately logarithmically. Once
training is finished, the best of the 63 saved networks is selected, as judged
by squared error on the validation set.

Unlike mlp-ese-1, the networks trained by mlp-bgd-1 have no direct
input-to-output connections. In tests on toy problems, including such connec-
tions changed the behaviour of early stopping substantially, and apparently
for the worse.
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3.4 Bayesian Automatic Relevance Determination (ARD)

The Automatic Relevance Determination (ARD) method (MacKay 1994;
Neal 1996) uses an elaboration of the hierarchical prior used in mlp-mc-4 (see
Section 3.2). Rather than placing the weights on all input-to-hidden connec-
tions in one group, controlled by a single hyperparameter, input-to-hidden
weights are grouped according to which input they are associated with, and
a separate hyperparameter is used for each such group. The hyperparameter
for an input determines the standard deviation of the weights on connections
from that input, and represents the relevance of that input to the task of
predicting the target. We hope that the relevance hyperparameters for the
less relevant inputs will take on small values, preventing these inputs from
having an undue effect on the predictions.

I have defined two ARD methods, mlp-mc-2 and ml1p-mc-3. The mlp-mc-1
method defined by Rasmussen (1996) also uses ARD. The only difference
between mlp-mc-2 and mlp-mc-3 is that mlp-mc-2 has direct input-output
connections (as does mlp-mc-1), whereas mlp-mc-3 does not (like mlp-mc-4).
When present, direct input-output connections are associated with relevance
hyperparameters that are separate from those associated with input-to-hidden
connections. I found in preliminary tests that the presence of direct input-
output connections sometimes slowed the convergence of the Markov chain.
Which model is better with unlimited computation time should depend on
whether inputs that are relevant to the linear component of the relationship
of inputs to target are generally also relevant to the non-linear component of
this relationship.

ARD can be understood and justified in high-level terms, as the correct
Bayesian procedure when one has prior information that some inputs are
likely to be more relevant than others. However, one can also look at the
mechanics of how a Bayesian procedure using ARD operates, as a way of
gaining insights that might be applied in other contexts. ARD can be imple-
mented either by Monte Carlo methods (Neal 1996), or by using Gaussian
approximations (MacKay 1992, 1994). Although these implementations differ
substantially, they can both be viewed as operating in roughly the following
fashion, if we assume that both the weights and the relevance hyperparame-
ters for all inputs start out small:

1) The data forces some input-output weights to take on larger values, in
order to better predict the targets, overcoming the tendency of the small
relevance hyperparameters to keep these weights small.

2) The relevance hyperparameters associated with inputs for which some
input-output weights are now larger also become larger, since they must
reflect the distribution of the weights they control.

3) Other weights from the inputs with larger relevance hyperparameters are
now allowed to get bigger.
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This is a positive feedback mechanism, in which some large weights out of an
input encourage all weights from that input to be larger, including weights
that were not initially forced to be large by the data. This positive feedback is
the mechanistic expression of a prior belief that if an input is relevant in one
way (as captured by one weight from it), it is likely to be relevant in other
ways as well (as captured by other weights from it). We can try to adapt
ARD to other contexts by building similar positive feedback mechanisms.

3.5 An early stopping method inspired by ARD

The mlp-bgd-2 method is an attempt to build an ARD-like feedback mecha-
nism into the batch gradient descent procedure with early stopping. It oper-
ates in the same way as mlp-bgd-1 (see Section 3.3), except that the stepsizes
for the weights on input-output connections vary according to the total gradi-
ent on connections from that input, mimicking to some extent the mechanics
of ARD.

In detail, a batch gradient descent iteration for mlp-bgd-2 changes the
weights as follows:

N
S I e ) 2

This is the same as equation (4) except that the stepsize for weight w;; is
potentially altered by a factor r;. For the biases and the hidden-to-output
weights, r; is always one. Stepsizes for input-to-output weights are adjusted
by factors computed as follows:

P = Gf/mﬁme?, (6)

Here, GG; is the magnitude of the error gradient with respect to weights out
of input i:

o - 2(om) "

The effect of this modification is that the weights out of the input that is
most important (at the present stage of learning) are updated with the same
stepsize as in mlp-bgd-1, but weights out of inputs that are less important are
changed by smaller amounts. We hope that this will allow the relationship of
the target to the more relevant inputs to be discovered before much overfitting
to the less relevant inputs has occurred. The details of this method, such
as the use of the fourth power of the gradient magnitude, were arrived at
empirically, based on tests on toy datasets, and a small amount of testing
on datasets in the kin family, which DELVE designates as “development”
datasets, on which such preliminary tests are allowed.
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3.6 A simpler variation on early stopping

The mlp-bgd-2 method defined above continually changes the stepsizes for
weights out of different inputs during the course of learning. One could instead
try to find a simpler static scheme, in which the stepsizes are fixed at the
beginning, based on simple statistics that can be computed from the data.
One would certainly want to know if such a scheme does as well as or better
than the more elaborate scheme inspired by ARD.

The mlp-bgd-3 method uses such a static scheme. It is the same as
mlp-bgd-1 except that the stepsize for updates of weights out of input i
is adjusted by the following factor:

r; = max {10_4, ci/ rr;z/meﬁ} (8)

C; 1s computed from the inputs, I‘EC), and targets, () in the cases in the
estimation set, as follows:

N
o= Y= 9)
c=1

Since the inputs and targets are normalized to have medians of zero and
average absolute deviations from the median of one, C; will be approximately
N times the correlation of input ¢ with the target. When the weights are all
zero, C; is also the error gradient with respect to unit ¢ of a linear regression
model for the target. At the beginning of training, when all the weights are
small, it will thus be analogous to G; of Section 3.5.

The actual implementation of this method uses the same stepsize for all
weights, but scales input i (after the usual normalization) by the factor |/r;.
This has the same effect as using a stepsize proportional to r;, since the
weights out of input ¢ must now be larger by a factor of 1/,/r; to achieve
the same effect as without scaling, while the gradient is smaller by the same
factor.

4 The main experiments and their results

The previous section defined Bayesian Monte Carlo and early stopping ensem-
ble methods, with and without techniques for adapting to varying relevance
of inputs. This gives four basic combinations, but with further variations, a
total of six new methods were defined. These are summarized in Figure 2,
along with two related methods assessed by Rasmussen (1996). In this sec-
tion, I describe how the performance of these methods was assessed in a
systematic manner using DELVE.



Assessing Relevance Determination Methods Using DELVE 17

FEarly stopping ensemble methods
mlp-ese-1 Rasmussen’s method: direct [-O connections, no ARD

mlp-bgd-1 New method: no direct I-O connections, no ARD
mlp-bgd-2 New method: no direct I-O connections, ARD
mlp-bgd-3 New method: no direct I-O connections, static ARD scheme

Bayesian Monte Carlo methods
mlp-mc-1 Rasmussen’s method: direct I-O connections, ARD, long time

mlp-mc-2 New method: direct 1-O connections, ARD
mlp-mc-3 New method: no direct 1-O connections, ARD
mlp-mc—4 New method: no direct 1-O connections, no ARD

Fig. 2. Summary of the six new methods, along with Rasmussen’s two methods.

4.1 Questions to be addressed

The primary motivation for the assessments described here is to answer the
following questions:

1) Does ARD actually improve the performance of the Bayesian Monte Carlo
method? If so, by how much?

2) Does the variation on early stopping inspired by ARD improve perfor-
mance? If so, by how much?

3) Is the performance of early stopping with an ARD-like procedure better
or worse than the Bayesian ARD method?

Experiments relevant to question (1) have previously been done by Vivarelli
and Williams (1997). Their results suggest that ARD was beneficial, but the
differences observed lacked statistical significance, and were for a single task.

While investigating the performance of the relevance determination meth-
ods, we will also inevitably obtain further information about whether the
Bayesian Monte Carlo method is better than early stopping ensembles, a
question previously addressed by Rasmussen (1996). One should note that
the relative performance of these techniques may well depend on the amount
of computation time they are allowed. The six new methods are defined to all
take roughly the same amount of time, which is much less than that allowed
for the Bayesian Monte Carlo method defined by Rasmussen (mlp-mc-1).
Rasmussen found that mlp-mc-1 was better overall than his early stopping
ensemble method (mlp-ese-1), even when it was restricted to using the same
amount of time. However, since the early stopping methods defined in this
paper differ in important ways from mlp-ese-1, it is possible that the com-
parison with the Bayesian Monte Carlo methods might turn out differently.
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4.2 Tasks on which the methods were tried

DELVE contains several families of datasets intended for use in systematic
experiments. Data in each family is generated using a realistic simulation
program. In the present families, a single prototask is defined for each dataset,
in which a target attribute is to be predicted from the other input attributes.
The target attribute was always real-valued for these experiments, producing
a regression task. Datasets within a family are distinguished by the number
of inputs, by the amount of noise in the relationship of the target to the
inputs, and by the degree to which this relationship is non-linear. For each
prototask, five tasks are defined, in which the number of cases in the training
is 64, 128, 256, 512, or 1024.

These families allow assessments of how the performance of a method
varies with the characteristics of the dataset. Running methods on all mem-
bers of a family can take a long time, however. For the assessments of the
relevance determination methods, I used only the datasets for which the re-
lationship was non-linear, with a moderate amount of noise. However, I did
run the methods on both the datasets with 8 inputs and those with 32 inputs,
since this dimension of variation is clearly important in assessing methods for
determining input relevance. These two members of a family are identified
by the suffixes “8nm” and “32nm”.

Three families of datasets were used in the experiments reported here:

kin This data comes from a simulation of the kinematics of a robot
arm. The target attribute i1s the distance of the end of the arm
from a target; the inputs are various joint positions, angles; etc.
This family was created by Z. Ghahramani.

pumadyn This data comes from a simulation of the dynamics of the Puma
560 robot arm. The target attribute is the angular acceleration of
one of the links; the inputs are various angular positions, velocities,
torques, etc. This family was created by Z. Ghahramani.

bank This data comes from a simulation of customers being served by
banks. The target attribute is the proportion of customers who
go away because all the queues in the bank are full; the inputs
are various parameters of the simulation, such as the maximum
lengths of the queues, and the sizes of the population in different
areas. This family was created by C. E. Rasmussen.

The kin and pumadyn families were also used by Rasmussen (1996) to assess
mlp-mc-1 and mlp-ese-1. The results of these assessments are in the DELVE
archive, allowing comparison of these methods with the new methods.

4.3 Running the methods on the task instances

In the main series of experiments, the six methods were each run on instances
of 30 tasks: 3 families, 2 datasets per family (with 8 and 32 inputs), and
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5 tasks per prototask (with varying training set sizes). Performance on each
task was assessed using 8 instances, each of which consisted of a training set
and a set of test cases, except that only 4 instances were used for the tasks
with 1024 training cases. The total computation time used in running one of
the methods on all these task instances was approximately 50 hours.

Before a method is run, the DELVE software is used to produce data
files for each instance, in accordance with the encoding and normalization
options specified for the method. When the targets are normalized (as they
were here), DELVE also translates the guesses the method makes back to the
original format. DELVE conventions for directory hierarchies and file names
make it easier to keep straight what is happening during this process.

These runs produce quite a bit of data. At a minimum, a guess for the tar-
get in each test case of each instance must be saved. Many methods produce
more than one guess, intended for use when different loss functions are used
(this is the case for the mlp-mc family, though not for mlp-bgd family). The
losses that result from using these guesses are usually saved as well, so that
they will not have to be recomputed whenever the method is compared with
another. Some methods also produce files recording what happened during
learning for each instance — eg, the mlp-bgd methods record which itera-
tion was selected for use based on validation error. These final results can be
submitted to the DELVE archive.

4.4 Presentation and interpretation of the results

Once a method has been run on the instances of a task, the DELVE software
can be used to estimate the expected squared-error loss of the method on
that task, as described in Section 2.3. An estimate of the standard error of
this estimate is obtained as well.

The estimated expected loss is printed both in “raw” form, corresponding
to the original scaling of the targets, and in “standardized” form. For squared-
error loss, losses are standardized by dividing by the variance of the targets
in the complete set of test cases used for all instances of the task. A method
that just guesses the mean of the targets in the training set would therefore
be expected to have a standardized expected loss of close to one. Note that
standardization of losses is purely a convention for presenting results in a more
meaningful form. It has nothing to do with the normalization of attributes
that may (or may not) be part of the definition of a method.

Figures 3, 4, and 5 show the standardized squared-error losses that the
methods achieved on tasks from the three families. The name of the dataset,
followed by the name of the (only) prototask, are shown at the top of each
plot. Each plot shows results for the six new methods, along with mlp-ese-1
and mlp-ese-1 for the kin and pumadyn families. For the bank family, these
older methods have not been run, so the results of a simple linear regression
method, 1in-1, are included for comparison instead.
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These figures have a format due to Rasmussen (1996). The results for one
task are contained in a vertical rectangle labeled at the top with the size
of the training set for that task. Within this rectangle, each method has a
column, with the left-to-right order of the methods being the same as the top-
to-bottom order of the list of methods lower in the figure. The horizontal line
in the column for a method marks the estimated expected loss of that method
on the task. The vertical line extends up and down a distance corresponding
to plus or minus the estimated standard error.

Below the rectangle for each task is an array of p-values for pairwise
comparisons of the performance of two methods on this task, using the paired
t-test described in Section 2.3. If the estimated expected loss of method A is
significantly less than that for method B, a digit giving the significance level is
placed in the column for method A and the row for method B. This digit is 100
times the p-value for this comparison, rounded up (eg, the digit 5 indicates a
p-value between 0.04 and 0.05). A dot is shown in a row and column position
if the observed difference between the methods is not significant (p-value
greater than 0.09), or if the better method is the one associated with the
row, rather than the column.

When examining these figures, the plots of the estimated expected losses
for the various methods can be viewed first, in order to get a general impres-
sion of the results. One can then check whether those observed differences
that seem of interest are statistically significant by looking at the p-value
for the relevant comparison. If this is small, one can be reasonably confident
that the apparent difference in performance of the two methods reflects at
least the sign of the actual difference. On the other hand, if the p-value for
a comparison is not small, the apparently better method might actually be
worse.

Another way of viewing the results is to look across the row of p-values
for a method. A digit will appear in this row if some other method was
observed to be better, with the difference being significant at the indicated
level. Similarly, looking down the column of p-values for a method will reveal
which methods it has been shown to be better than.

5 Preliminary conclusions and further experiments

The results of the main experiments can be interpreted to give some prelim-
inary answers to the questions asked in Section 4.1. As is typical, however,
really understanding the results requires further investigation, including some
further experiments.

5.1 Summary of results of the main experiments

I will start by summarizing what one can conclude from the results of the
main experiments on the three families of tasks.
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Fig. 4. Results on the pumadyn family of tasks.




Assessing Relevance Determination Methods Using DELVE 23

bank-8nni r ej

64 128 256 512 1024
0. 40+
0.304 H
e o 0
+ 7+ T
0. 204 ++JF + N JF
T +H
+
0. 104 o
00?in»l 8 - - 315 5 1173 111111 111111
L o 2o SR I R
mg.bgd»s . 4 43 .. 11 63 33 3.7
mpre-2p T c3l 3 S I
msm;_4 ...... . 9. 5. 0. .11 PO S
bank-32nni r ej
64 128 256 512 1024
0. 50+
+
0. 40+ +
4 T
0. 30+ —++ ++ N ++ ++
R ++++++++ -+ L ++
B —+ +
0. 20+ 4
0. 10+
00?in»l 111111 1121 31- 111 . 112 -
m p-bgd-1 |- 111 2 1- 6 2 - 1 . 2 - -
m p- bgd-2 |- . . .
Mo ' 311 s
mSm:-s ----- 183 | |- 62118 | |- - -
m p-nt-4 |- 11 I 42113 6222

Fig. 5. Results on the bank family of tasks.



24 Radford M. Neal

Results for the kin family (Figure 3) are generally favourable for the
Bayesian Monte Carlo methods, particularly on the tasks with larger train-
ing sets. This is very clear for the task with 8-inputs and 512 training cases
and the tasks with 32-inputs and 512 or 1024 training cases, on which all
the Bayesian Monte Carlo methods are better than all the early stopping
methods, with the p-values for these comparisons being 0.03 or lower. The
magnitude of the advantage is not huge, but is large enough that it would
often be practically important. For smaller training set sizes, the Bayesian
Monte Carlo methods are not consistently better. For some tasks, it seems
that the Markov chain used for sampling may not have come close to con-
verging. This would explain the fairly large differences among the Bayesian
Monte Carlo methods for the 8-input tasks with 128 or 256 training cases —
in particular, since the models for mlp-mc-1 and mlp-mc-2 are quite similar,
it 1s most plausible that the differences between them are due to the longer
computation time allowed for mlp-mc-1.

Among the early stopping ensemble methods, the most striking result is
that m1p-bgd-3, which uses the simple static approach to relevance determi-
nation, does very poorly on the 8-input tasks. It also appears worse than the
other early stopping ensemble methods on the 32-input task, though the dif-
ference there is less dramatic. No large differences are seen among mlp-ese-1,
mlp-bgd-1, and mlp-bgd-2. There is some indication that mlp-bgd-2, which
uses the relevance determination technique, is a bit better than mlp-bgd-1,
which does not, but is similar otherwise. However, when judged on a task-by-
task basis, the observed advantage for mlp-bgd-2 is statistically significant
only for the 32-input task with 1024 training cases.

Differences among the Bayesian Monte Carlo methods are small, except
for the two tasks where it seems that convergence was a problem. For the
tasks with 32-inputs and 512 or 1024 training cases, a small but statistically
significant disadvantage is seen for the method without ARD (mlp-mc-4).
This non-ARD method performed better on some of the tasks with smaller
training sets, but one might suspect that this is due to faster convergence of
the Markov chain, rather than the ARD model being bad.

Some large differences in performance are seen on the pumadyn datasets
(Figure 4). Looking first at the relative performance of the four early stopping
ensemble methods, we see that m1p-bgd-3 does very well on the 8-input tasks,
particularly when the training set 1s small, but it does very badly on the 32-
input tasks. The mlp-ese-1 method also does much worse than mlp-bgd-1
and mlp-bgd-2 on some tasks, and it never does much better. There is also
a consistent advantage of mlp-bgd-2 (with relevance determination) over
mlp-bgd-1. For the tasks with 32-inputs and 128 or 256 inputs, this advantage
is quite large.

The results of the Bayesian Monte Carlo methods on the pumadyn tasks
are confusing. Some large differences are seen among these methods, which
are very likely the result of the Markov chain being far from convergence
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for some methods on some task instances. Large standard errors are also
seen, which are probably the result of large variation in how well the Markov
chain converged on different training sets (or with different random numbe
seeds). Because of the convergence problems, which are especially pronounced
for the 32-input tasks, detailed comparisons of the Bayesian Monte Carlo
methods are probably not very fruitful. Useful comparisons with the early
stopping ensemble methods are also difficult. When convergence seems to
be a problem, the early stopping ensemble methods (especially mlp-bgd-2)
may perform better, but the Bayesian Monte Carlo methods seem to do
better when convergence is presumed to not be a problem (eg, with mlp-mec-1,
mlp-mc-3, and mlp-mc-4 on the 32-input task with 1024 training cases).

For the bank tasks (Figure 5), the mlp-bgd-2 is consistently a bit better
than mlp-bgd-1, and both are usually much better than both mlp-ese-1
and mlp-bgd-3. The Bayesian Monte Carlo methods do surprisingly poorly
here. None of them are ever significantly better than mlp-bgd-2, and they are
sometimes substantially worse. On the 32-input task with 512 training cases,
mlp-mc-3 and mlp-mc-4 are even worse than the simple linear regression
model (1in-1).

This preliminary look at the results needs to be supplemented by a more
detailed examination of the behaviour of the methods, so that the source of
the differences seen can be identified.

5.2 More on the early stopping ensemble methods

To better understand the results for the early stopping methods, the first
thing to look at is what iteration was selected for use on the basis of the
error on the validation set.

For mlp-bgd-1 and mlp-bgd-2, quite early iterations are often chosen.
Indeed, for several task instances, the network after only one iteration of batch
gradient descent was used! Only rarely is the network chosen the last one
found, after the full 20,000 iterations. It therefore seems that these methods
would not benefit much from being allowed more computation time. The fact
that very early networks are sometimes chosen may explain why mlp-ese-1
sometimes performs worse than mlp-bgd-1, as it uses the more sophisticated
conjugate gradient optimization method, which may be “too good”, moving
past the optimal point in the first iteration. However, it is also possible that
the presence of direct input-output connections in mlp-ese-1 is the source
of the performance difference.

The last iteration was chosen much more often by mlp-bgd-3. This might
be expected whenever its static selection of stepsizes for the weights out of
different inputs turns out to be inappropriate. Although the method might
then benefit from being allowed more time, the objective of slowing down
learning for the less relevant inputs will not have been achieved in any event.

Finally, we might wonder how much the use of an ensemble contributes
to the performance of the early stopping methods. This is not directly rele-
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Fig. 6. Results using early stopping with and without an ensemble.

vant to the main objective of this investigation, but it is easily to determine,
by just making predictions based on the first of the four networks already
trained in the main experiments. Figure 6 shows the results of a comparison
of the performance of mlp-bgd-2 and a modification of it without the ensem-
ble (mlp-bgd-2b). As can be seen, the ensemble often reduces the expected
loss by a substantial amount, especially when the training set is small. Note
that for this question, the p-values for the comparisons are irrelevant. Theory
guarantees that using an ensemble is better than using just one arbitrarily
selected network from the ensemble. The only question is whether the ad-
vantage of the ensemble is big enough to justify the computational cost of
training four networks rather than one.
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5.3 More on the Bayesian Monte Carlo methods

Two issues regarding the Bayesian Monte Carlo methods need to be resolved:
Are the variable results seen on the pumadyn tasks in fact due to the methods
not always having sufficient time to approach convergence? And what 1s the
reason for the poor performance on the bank tasks? One possibility is that
this poor performance also results from the methods not having enough time
to converge.

To investigate these questions, I did further runs on the pumadyn-32nm
and bank-8nm tasks, using variations on the Bayesian Monte Carlo methods
called mlp-mc-2b, mlp-mc-3b, and mlp-mc-4b. These methods were identical
to mlp-mc-2, mlp—mc-3, and mlp-mc-4 except that they were allowed three
times as much computation time. The results are shown in Figure 7.

More time did indeed improve the performance of the Bayesian Monte
Carlo methods on some of the pumadyn-32nm tasks. With the extra time,
mlp-mc-3bis very much better than the best early stopping ensemble method
(mlp-bgd-2) for all training set sizes, except perhaps for training sets of size
64, for which the p-value of the comparison is 0.13. (See Figures 4 and 7.)

The results for mlp-mc—2b are still anomalous, as the model used by this
method is very similar to that of mlp-mc-1, but its performance is sometimes
much worse. On the task with 1024 training cases, its poorer performance
is due to bad results on one of the four instances. When the run on this
instance is allowed even more time, the Markov chain moves to a state with
much different hyperparameter values, similar to those found with the other
instances. It therefore seems that the performance of mlp-mc-2b is still lim-
ited by computation time.

With or without extra time, the use of ARD appears beneficial on the
pumadyn-32nm tasks, as seen by comparing mlp-mc-3 or mlp-mc-3b with
mlp-mc-4 or mlp-mc—4b. However, one might still wonder whether at least
part of the very large benefit of ARD seen for the tasks with 128 and 256 train-
ing cases might be due to poorer convergence when ARD is not used, rather
than to the ARD model being better. Examination of the hyperparameter
values during individual runs of mlp-mc-4b suggests that poor convergence
may still be a problem for this method.

The results of allowing the Bayesian Monte Carlo methods more time for
the bank-8nm tasks are rather surprising — with more time, the performance
is worse, especially on the tasks with larger training sets. Examining these
runs in detail shows that the Markov chains eventually converge to states in
which the noise level 1s quite small.

Recall that the target for the bank tasks is a proportion, which will be be-
tween 0 and 1. The distribution of this target for bank-8nm is quite skewed,
with many values at or near zero, but a few that are much larger (up to
about 0.5). Tt seems quite likely that the conditional distributions for the
target given particular values for the inputs are also skewed, and further-
more have a variance that varies depending on the inputs (ie, the data is
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“heteroskedastic”). In contrast, the models used by all the Bayesian Monte
Carlo methods tested assume that the noise is Gaussian, and that its variance
does not vary with the inputs. This mismatch between model and reality is
likely the problem. The model thinks the noise variance is small because in
some regions of the input space the targets can indeed be predicted quite
accurately. This small noise variance then produces poor results in the parts
of the input space where the real noise variance is large.

6 What was learned about the methods

In light of these experimental results, what can we say concerning the ques-
tions posed in Section 4.17

The Bayesian Monte Carlo method using ARD (mlp-mc-3) generally per-
formed a bit better than the corresponding method without ARD (mlp-mc-4).
For a few tasks, the advantage of ARD was dramatic (pumadyn-8nm with 64
training cases, pumadyn-32nm with 128 and 256 training cases). More often,
however, ARD performed only slightly better, and in some cases no signif-
icant difference was observed. A significant disadvantage for mlp-mc-3 was
seen for the kin-8nm and kin-32nm tasks with 128 training cases. Since this
disadvantage was not shared with the other two ARD procedures (mlp-mc-1
and mlp-mc-2), it was probably due to lack of convergence within the allowed
time.

Although the benefit of ARD in terms of predictive performance is often
modest, identifying the less relevant inputs may also help in interpreting the
results of training. Interpretability is important in many applications, but is
not addressed by DELVE assessments.

Another conclusion from these experiments is that obtaining reliable re-
sults using Bayesian Monte Carlo methods requires somewhat more compu-
tation time than was allowed for the methods assessed here. Even increasing
the time allowed by a factor of three was not completely satisfactory. Never-
theless, even with the time restriction used here, the Bayesian Monte Carlo
methods sometimes performed better than the early stopping methods.

The variation on early stopping inspired by ARD (mlp-bgd-2) appears
to be very successful. It was sometimes substantially better than the corre-
sponding procedure without relevance determination (mlp-bgd-1), and was
never seen to be significantly worse. The simpler static method (mlp-bgd-3)
occasionally performed well, but more often it performed very badly.

In contrast with the Bayesian Monte Carlo methods, the early stopping
methods mlp-bgd-1 and mlp-bgd-2 appear to have reached most of their
potential within the computation time allowed here. The advantage of us-
ing an ensemble of four networks in these methods was fairly substantial,
and probably worthwhile in most applications, given that training time was
not too large. These methods generally performed as well as or better than
Rasmussen’s (1996) mlp-ese-1 method, even though it uses a more sophis-
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ticated optimization method and a more complex heuristic for building an
ensemble. The conjugate gradient optimization method used by mlp-ese-1
may actually be too good, sometimes moving past the optimum point in the
first iteration.

An ugly aspect of the ARD-like modification of early stopping is that,
apart from the inspiration from Bayesian ARD, it is rather arbitrary and
ad hoc. This may be a general characteristic of early stopping methods. Cer-
tainly the success of the ARD-like modification is a further demonstration of
how sensitive early stopping is to the exact method used for optimization.

The comparison of Bayesian ARD with early stopping using ARD-like
relevance determination is complicated by the apparent lack of convergence
of some runs of the Bayesian ARD methods and by the unusual behaviour
of the Bayesian methods on the bank tasks. Reliable results using Bayesian
Monte Carlo methods can be expected only if two conditions are satisfied:

1) There is sufficient time for the Markov chain sampler to converge to a
good approximation to the posterior distribution.

2) The probabilistic model used is a fairly close approximation to reality.

Sometimes, a Bayesian Monte Carlo method may produce better results than
other methods even though it has not come close to converging, but relying on
this is not advisable if allowing more computation time i1s an option. Models
seldom correspond exactly to the real situation, and we may hope that minor
flaws will not have drastic effects, but there is no reason to expect good
results from a Bayesian model with serious flaws in the specification of either
the likelihood or the prior.

When the above two conditions are met, Bayesian Monte Carlo using
ARD appears to perform better than early stopping ensembles; even with
the ARD-like modification. However, the results on the bank tasks show that
early stopping ensembles can perform better when the Bayesian model is not
appropriate for the situation.

When manual intervention is possible, one should of course check for ma-
jor departures from model assumptions, and modify the model if necessary.
For the bank tasks, it might be appropriate to apply some non-linear trans-
formation to the target in order to better match the model’s assumption of
Gaussian noise with constant variance. It would be interesting to compare
the various methods on a variation of the bank tasks with such a transformed
target, or in which the methods were provided with prior information that
such a transformation might be useful (but still made predictions for the
original target).

Finally, one should note that all the conclusions in this study are based on
only three families of datasets, for all of which the input attributes represent
diverse quantities. It is to be expected that some of these heterogeneous
inputs will turn out to be more relevant than others. On the other hand,
tasks certainly exist for which any sort of relevance determination method
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will be disadvantageous. For example, if the inputs are pixels of an 1mage,
and the task is known to be invariant with respect to translation of the image,
all pixels must be equally relevant.

7 What was learned about DELVE

I hope the experiments reported here have served to illustrate how DELVE
can be used to assess the performance of learning methods. Major assessments
using DELVE are also described by Rasmussen (1996) and by Waterhouse
(1997).

The goal of such assessments is not simply to obtain a table of num-
bers, but to gain insight into the methods assessed. In the StatLog project
(Mitchie, et al 1994) many methods were assessed on many datasets, and an
attempt was then made to obtain insight by exploratory methods such as
multidimensional scaling and hierarchical clustering, without any attempt to
assess statistical significance. In my opinion, it 1s more useful to address ex-
plicit questions, and in doing so, it is important to obtain valid indications of
statistical significance, as otherwise one may be led to “explain” phenomena
that were simply chance occurrences.

This approach has here produced an important result — that the ARD-
like variation on early stopping is beneficial for tasks of the sort used in this
assessment — as well as several other interesting results. This demonstrates
that the present DELVE conventions for numbers of instances and numbers
of test cases can produce statistically significant results when interesting dif-
ferences are present. Experiments on smaller datasets may instead produce
inconclusive results except when extreme differences exist (Rasmussen 1996).

The results reported here also illustrate the importance of running the
methods on tasks with varying numbers of training cases. Many of the inter-
esting phenomena seen might have been missed if a single size of training set
had been arbitrarily chosen.

One of the strengths of the DELVE environment seen here is the ease
with which comparisons can be made to the results of other methods held in
the DELVE archive. Note that for paired significant tests to be possible, it
1s necessary for the losses on each test case to be archived for each method.
When only the average loss for a method is known (eg, from a report in
the literature), no significance testing is possible. When the average loss is
accompanied by an estimated standard error, significance tests are possible,
but these tests will be of low power, since the pairing information is ignored.

One weakness of DELVE at present is that we have only a few families
of datasets, along with some isolated datasets. The number of families could
certainly be increased, but how best to decide on the types of datasets to
create is an open question. Interpretation of results can also be difficult if the
nature of a dataset is not clear. The programs that generated the DELVE
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datasets are available from the DELVE archive, but some more accessible
characterization of each dataset would be desirable.

A more fundamental problem is that running a method on all the tasks
in many families can take a large amount of computation time. This practi-
cal difficulty is why the experiments in this paper used only the “nm” tasks
(non-linear, medium noise). The DELVE software is itself a bit slow, due
to its being written in the tcl language. Fixing this would be helpful, espe-
cially when the methods being assessed are fast. Assessing methods that are
slower, such as neural networks, will inevitably require a substantial amount
of computation time, but one may hope that the benefit obtained from this
effort will increase as the results of more methods are placed in the DELVE
archive.
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