Technical Report No. 9805, Department of Statistics, University of Toronto

Annealed Importance Sampling

Radford M. Neal

Department of Statistics and Department of Computer Science
University of Toronto, Toronto, Ontario, Canada
http://www.cs.utoronto.ca/~radford/
radford@stat.utoronto.ca

18 February 1998

Abstract. Simulated annealing — moving from a tractable distribution to a distribu-
tion of interest via a sequence of intermediate distributions — has traditionally been
used as an inexact method of handling isolated modes in Markov chain samplers. Here,
it is shown how one can use the Markov chain transitions for such an annealing sequence
to define an importance sampler. The Markov chain aspect allows this method to per-
form acceptably even for high-dimensional problems, where finding good importance
sampling distributions would otherwise be very difficult, while the use of importance
weights ensures that the estimates found converge to the correct values as the number
of annealing runs increases. This annealed importance sampling procedure resembles
the second half of the previously-studied tempered transitions, and can be seen as a
generalization of a recently-proposed variant of sequential importance sampling. It is
also related to thermodynamic integration methods for estimating ratios of normalizing
constants. Annealed importance sampling is most attractive when isolated modes are
present, or when estimates of normalizing constants are required, but it may also be
more generally useful, since its independent sampling allows one to bypass some of the
problems of assessing convergence and autocorrelation in Markov chain samplers.

1 Introduction

In Bayesian statistics and statistical physics, expectations of various quantities with
respect to complex distributions must often be computed. For simple distributions, we
can estimate expectations by sample averages based on points drawn independently from
the distribution of interest. This simple Monte Carlo approach cannot be used when the
distribution is too complex to allow easy generation of independent points. We might
instead generate independent points from some simpler approximating distribution, and
then use an importance sampling estimate, in which the points are weighted to compen-
sate for use of the wrong distribution. Alternatively, we could use a sample of dependent
points obtained by simulating a Markov chain that converges to the correct distribution.
I show in this paper how these two approaches can be combined, by using an importance
sampling distribution defined by a series of Markov chains. This method is inspired by
the idea of “annealing” as a way of coping with isolated modes, but it may be attractive



even when multimodality is not a problem.

Importance sampling works as follows (see, for example, Geweke 1989). Suppose that
we are interested in a distribution for some quantity, x, with probabilities or probability
densities that are proportional to the function f(z). Suppose also that computing f(z)
for any z is feasible, but that we are not able to directly sample from the distribution it
defines. However, we are able to sample from some other distribution that approximates
the one defined by f(z), whose probabilities or probability densities are proportional to
the function g(z), which we are also able to evaluate.

We base our estimates on a sample of N independent points, (), ..., 2, generated
from the distribution defined by g(z). For each 2, we compute an importance weight
as follows:

Wl = f(a9) ] g(a¥) (1)

We can then estimate the expectation of a(z) with respect to the distribution defined

by f(z) by

a = Zw(l)a(m(l))/ Z'w(l) (2)
=1 =1

Provided g(z) # 0 whenever f(z) # 0, it is easy to see that N=' Y w() will converge
as N — oo to Zs/Z,, where Zy = [f(z)dz and Z, = [g(z)dz are the normalizing
constants for f(z) and g(z). One can also see that a will converge to the expectation of
a(z) with respect to the distribution defined by f(z).

The accuracy of a depends on the variability of the importance weights. When these
weights vary widely, the estimate will effectively be based on only the few points with
the largest weights. For importance sampling to work well, the distribution defined by
g(z) must therefore be a fairly good approximation to that defined by f(z), so that the
ratio f(z)/g(x) does not vary wildly. When z is high-dimensional, and f(z) is complex,
and perhaps multimodal, finding a good importance sampling distribution can be very
difficult, limiting the applicability of the method.

An alternative is to obtain a sample of dependent points by simulating a Markov chain
that converges to the distribution of interest, as in the Metropolis-Hastings algorithm
(Metropolis, et al 1953; Hastings 1970). Such Markov chain methods have long been used
in statistical physics, and are now widely applied to statistical problems, as illustrated
by the papers in the book edited by Gilks, Richardson, and Spiegelhalter (1996).

Markov chains used to sample from complex distributions must usually proceed by
making only small changes to the state variables. This causes problems when the dis-
tribution contains several widely-separated modes, which are nearly isolated from each
other with respect to these transitions. Because such a chain will move between modes
only rarely, it will take a long time to reach equilibrium, and will exhibit high autocor-
relations for functions of the state variables out to long time lags.

The method of simulated annealing was introduced by Kirkpatrick, Gelatt, and Vecchi
(1983) as a way of handling multiple modes in an optimization context. It employs a
sequence of distributions, with probabilities or probability densities given by po(z) to



pn(z), in which each p; differs only slightly from p;4+;. The distribution pg is the one of
interest. The distribution p,, is designed so that the Markov chain used to sample from
it allows movement between all regions of the state space. A traditional scheme is to set

pi(z) < po(z)%, for 1= By > B1 > -+ > f3,.

An annealing run is started at some initial state, from which we first simulate a Markov
chain designed to converge to p,,, for some number of iterations, which are not necessarily
enough to actually approach equilibrium. We next simulate some number of iterations of
a Markov chain designed to converge to p,,_1, starting from the final state of the previous
simulation. We continue in this fashion, using the final state of the simulation for p; as
the initial state of the simulation for p;_;, until we finally simulate the chain designed
to converge to pg.

We hope that the distribution of the final state produced by this process is close to pg.
Note that if py contains isolated modes, simply simulating the Markov chain designed to
converge to pg starting from some arbitrary point could give very poor results, as it might
become stuck in whatever mode is closest to the starting point, even if that mode has
little of the total probability mass. The annealing process is a heuristic for avoiding this,
by taking advantage of the freer movement possible under the other distributions, while
gradually approaching the desired pp. Unfortunately, there is no reason to think that
annealing will give the precisely correct result, in which each mode of pg is found with
exactly the right probability. This is of little consequence in an optimization context,
where the final distribution is degenerate (at the maximum), but it is a serious flaw for
the many applications in statistics and statistical physics that require a sample from a
non-degenerate distribution.

The annealed importance sampling method I present in this paper is essentially a way
of assigning weights to the states found by multiple simulated annealing runs, so as to
produce estimates that converge to the correct value as the number of runs increases.
This is done by viewing the annealing process as defining an importance sampling dis-
tribution, as explained below in Section 2. After discussing the accuracy of importance
sampling in general in Section 3, I analyse the efficiency of annealed importance sampling
in Section 4, and find that good results can be obtained by using a sufficient number
of interpolating distributions, provided that these vary smoothly. Demonstrations on
simple distributions in Section 5 confirm this.

Annealed importance sampling is related to tempered transitions (Neal 1996), which
are another way of modifying the annealing procedure so as to produce correct results.
As discussed in Section 6, annealed importance sampling will sometimes be preferable to
using tempered transitions. When tempered transitions are still used, the relationship
to annealed importance sampling allows one to find estimates for ratios of normalizing
constants that were previously unavailable. Section 7 shows how one can also view a
form of sequential importance sampling due to MacEachern, Clyde, and Liu (1998) as
an instance of annealed importance sampling. Finally, in Section 8, I discuss the general
utility of annealed importance sampling, as a way of handling multimodal distributions,
as a way of calculating normalizing constants, and as a way of combining the adaptivity
of Markov chains with the advantages of independent sampling.



2 The annealed importance sampling procedure

Suppose that we wish to find the expectation of some function of z with respect to a
distribution with probabilities or probability densities given by po(z). We have available
a sequence of other distributions, given by p1(z) up to p,(z), which we hope will assist
us in sampling from pg. For each distribution, we must be able to compute some function
f;(z) that is proportional to p;(z). We must also have some method for sampling from
Pn, preferably one that produces independent points. Finally, for each 7 from 1 to n—1,
we must be able to simulate some Markov chain transition, 7}, that leaves p; invariant.

The sequence of distributions used can be specially constructed to suit the problem,
but the following scheme may be generally useful. We fix fy to give the distribution of
interest, and fix f, to give the simple distribution we can sample from, and then let

fite) = folz)? fula)' " (3)

where 1 = 89 > 1 > ... > 3, = 0. Note that the traditional simulated annealing scheme
with f;j(z) = fo(z)% would usually be less suitable, since it usually leads to a p, for
which independent sampling is not easy. For applications in Bayesian statistics, fo would
be the unnormalized posterior distribution (product of prior density and likelihood), and
fn might be the prior density, which can often be computed in normalized form.

The Markov chain transitions are represented by functions 7)(z,z’) giving the prob-
ability or probability density of moving to z’ when the current state is z. It will not
be necessary to actually compute 7;(z,z’), only to generate an 2’ from a given z using
T;. These transitions may be constructed in any of the usual ways (eg, Metropolis or
Gibbs sampling updates), and may involve several scans or other iterations. For the
annealed importance sampling scheme to be valid, each 7; must leave the corresponding
p; invariant, but it is not necessarily essential that each 7 produce an ergodic Markov
chain (though this would usually be desirable).

Annealed importance sampling produces a sample of points, (1), ... 2 and cor-

N)

responding weights, w®, ..., w®™). An estimate for the expectation of some function,

a(z), can then be found as in equation (2). To generate each point, 2, and associated
weight, w9, we first generate a sequence of points, Z,_1, ..., Zg, as follows:

Generate z,_1 from p,.

Generate z,,_o from z,_1 using T,,_1.

Generate z1 from x4 using T5.

Generate zg from z; using 77.

We then let () = zg, and set

o) = Inm1(@no1) faa(@n-2) - fil21) fo(2o) %)
fn(mn—l) fn—l(ﬂﬁn—z) f2(0€1) f1($0)

To avoid overflow problems, it may be best to do the computations in terms of log(w(i)).



To see that annealed importance sampling is valid, we can consider an extended state
space, with points (zg,...,z,-1). We identify z¢ with the original state, so that any
function of the original state can be considered a function of the extended state, by just
looking at only this component. We define the distribution for (zq,...,z,-1) by the
following function proportional to the joint probability or probability density:

flzo,...,2pq) = fo(fﬁo)fl(fﬁoa 1) Tz(fUl, zg) - Tno1(Zp—2, Tn_1) (6)

Here, fj is the reversal of the transition defined by 7). That is,

Ti(w, ') = T 0)pi(a') [ pi(z) = Ti(' ) fi(a") ] fi(x) (7)

The invariance of p; with respect to 7T); ensures that these are valid transition probabili-
ties, for which [ T;(z,2')dz’ = 1. This in turn guarantees that the marginal distribution
for z¢ in (6) is the same as the original distribution of interest (since the joint probability
there is the product of this marginal probability for zg and the conditional probabilities
for each of the later components given the earlier components).

For use below, we apply equation (7) to rewrite the function f as follows:

fl(xo) T fn—l(‘rn—Z) i~
n— = T , 71—7’“_ 2y T
f($07 5 L 1) fO(xO) fl(ibo) 1(370 zrl) fn_l(xn_Q) 1($ 2, 1) (8)
fo(o) Fae2(2no2)
= T e S I (Tt Tr—2) fra—1 (T
fi(zo) 1{21,20) fr-1(2n-2) 1{zn-1,@n2) fum1(@n-1) (9)
We now look at the joint distribution for (zg,...,%,—1) defined by the annealed im-

portance sampling procedure (4). It is proportional to the following function:
9(xos s Tn1) = ful@n-1) Ta1(Tn—1, Tp2) - Ta(2z2,21) To(z1,20)  (10)

We regard this as an importance sampler for the distribution (6) on the extended state
space. The appropriate importance weights are found using equations (1), (9), and (10).
Dropping the superscript (z) on the right side to simplify notation, they are:

,w(z') _ f(‘rOV--yxn—l) _ fo(éfo) fl(‘rl) fn—2(‘5€n—2) fn—l(fﬁn—l)
!](iﬁo, .. -,fﬁn—l) f1($0) f2($1) fn—l(fﬁn—z) fn(‘rn—l)

These weights are the same as those of equation (5), showing that the annealed impor-

(11)

tance sampling procedure is valid.

The above procedure produces a sample of single independent points z(9) for use in
estimating expectations as in equation (2). In practice, better estimates will often be
obtained if we use each such point as the initial state for a Markov chain that leaves pg
invariant, which we simulate for some pre-determined number of iterations. We can use
all the states from this simulation when estimating the expectation of a(z), all with the
same importance weight, w(). The validity of this procedure can be seen by including
the extra states in a further extended state space, with conditional distributions given
by the reversed Markov chain transitions, and noting that the expectation of the average
of a(z) over these states is the same as the expectation of a(z) with respect to po.



Annealed importance sampling also provides an estimate of the ratio of the normal-
izing constants for fy and f,. Such normalizing constants are important in statistical
physics and for statistical problems such as Bayesian model comparison. The normal-
izing constant for f, as defined by equation (6), is the same as that for fy, and the
normalizing constant for ¢ in equation (10) is the same as that for f,. The average of
the importance weights, 5" w() /N, converges to the ratio of these normalizing constants,
7o/ %y, where Zg = [fo(z)dz and Z,, = [f.(z)dz. In a Bayesian application where f,
is the normalized prior and fy the unnormalized posterior, Z, will be one, and this ratio
will be the marginal likelihood of the model.

The data collected during annealed importance sampling runs from p,, down to pg can
also be used to estimate expectations with respect to any of the intermediate distribu-
tions, p; for 0 < 7 < n. One simply uses the states, z;, found after application of 7;_;
in (4), with weights found by omitting the factors in equation (5) that pertain to later
states. Similarly, one can estimate the ratio of the normalizing constants for f; and f,
by averaging these weights.

Finally, although we would usually prefer to start annealing runs with a distribution
pn from which we can generate independent points, annealed importance sampling is
still valid even if the points z,,_, generated at the start of each run are not independent.
In particular, these points could be generated using a Markov chain that samples from
pn. The annealed importance sampling estimates will still converge to the correct values,
provided the Markov chain used to sample from p, is ergodic.

3 Accuracy of importance sampling estimates

Before discussing annealed importance sampling further, it is necessary to consider the
accuracy of importance sampling estimates in general. These results will also be needed
for the demonstration of Section 5.

For reference, here again is the importance sampling estimate, a, for F¢[a], based on
points z2(9) drawn independently from the density proportional to g(z):

N N N N
o = Yulaa®) /Y ul = N w0a?) /N e (12)
=1 i=1 =1

=1 1=
where w() = f(2()) / g(2()) are the importance weights.

The accuracy of this importance sampling estimator is discussed by Geweke (1989).
An estimator of the same form is also used with regenerative Markov chain methods
(Mykland, Tierney, and Yu 1995; Ripley 1987), where the weights are the lengths of
tours between regeneration points.

In determining the accuracy of this estimator, we can assume without loss of generality
that the normalizing constant for g is such that £, ['w(i)] = 1, since multiplying all the w(?)
by a constant has no effect on @. We can also assume that Ef[a] = E,[w®a(z())] = 0,
since adding a constant to a(z) simply shifts @ by that amount, without changing its
variance. For large N, the numerator and denominator on the right side of equation (12)



will converge to their expectations, which on these assumptions gives

a = (E[w(i)a(m(i))]—l—el) / (E[w(i)]—}—eQ) =

€1
1+€2

= 61—€1€2+"' (13)

where e; and e are the differences of the averages from their expectations. When N is
large, we can discard all but the first term, e;. We can judge the accuracy of a by its
variance (assuming this is finite), which we can approximate as

Varg(a) ~ Varg(e;) = N_lEg[('w(i)a(:U(i))Q] (14)

We now return to an actual situation, in which E,[w(] may not be one, and E{[a]
may not be zero, by modifying equation (14) suitably:

2

Var(a) & N7 [ () (a(e) - By(0))] / B[] (15)
Geweke (1989) estimates this from the same data used to compute a, as follows:
— N : : 2 N o2
Var@) = Y (0 (a(z)—a))" / [ 3w (16)
=1 =1

This is equivalent to the estimate discussed by Ripley (1987, Section 6.4) in the context of
regenerative simulation. When N is small, Ripley recommends using a jacknife estimate
instead.

When w(® and a(m(i)) are independent under ¢, equation (15) simplifies to

Var,(a)

X

N7 B (w2 £, [(a(e®) - Es(0)Y] [ E[oD]" a7
= N7 [ 14 Vary [0 ] By (w)] | Varg[a(z)] (18)

The last step above uses the following;:

Varg[a(zD)] = By [(a(2®) = Bg(a)?] = B, [0l (a(a® = E5(a))?] [ E,[w] (19)

= E,|(a(+) - Eg(a))?] (20)

Equation (18) shows that when w() and a(z()) are independent, the cost of using
points drawn from g(z) rather than f(z) is given by one plus the variance of the
normalized importance weights. We can estimate this using the sample variance of
'wy(f) = w( / N5 %), This gives us a rough indication of the factor by which the
sample size is effectively reduced, without reference to any particular function whose ex-
pectation is to be estimated. Note that in many applications the expectations of several
functions will be estimated from the same sample of (.

The variance of the wf) is also intuitively attractive as an indicator of how accurate
our estimates will be, since when it is large, the few points with the largest importance
weights will dominate the estimates. It would be imprudent to trust an estimate when
the adjusted sample size, N /(1 + Var(‘wy))), is very small, even if equation (16) gives



a small estimate for the variance of the estimator. One should note, however, that it
is possible for the sample variance of the 'w,(j) to be small even when the estimates are
wildly inaccurate, since this sample variance could be a very bad estimate of the true
variance of the normalized importance weights. This could happen, for example, if an

important mode of f is almost never seen when sampling from g¢.

Finally, if the (9 are not independently drawn from g¢, but are instead generated by
a Markov chain sampler, assessing the accuracy of the estimates will be more difficult,
as it will depend both on the variance of the normalized importance weights and on the
autocorrelations produced by the Markov chain used. This is one reason for preferring
a p, from which we can generate points independently at the start of each annealed
importance sampling run.

4 Efficiency of annealed importance sampling

The efficiency of annealed importance sampling depends on the normalized importance
weights, w(i)/Eg[w(i)], not having too large a variance. There are several sources of
variability in the importance weights. First, different annealing runs may end up in
different modes, which will be assigned different weights. The variation in weights due
to this will be large if some important modes are found only rarely. There is no general
guarantee that this will not happen, and if it does, one can only hope to find a more
effective scheme for defining the annealing distributions, or use a radically different
Markov chain that eliminates the isolated modes altogether.

High variability in the importance weights can also result from using transitions for
each of these distributions that do not bring the distribution close to equilibrium. The
extreme case of this is when all the 7; do nothing, in which case annealed importance
sampling reduces to simple importance sampling based on p,,, which will be very inef-
ficient if p,, is not close to pg. Variability from this source can reduced by increasing
the number of iterations of the basic Markov chain update used. For example, if each
T; consists of K Metropolis updates, the variance of the importance weights might be
reduced by increasing K, so that 7T’ brings the state closer to its equilibrium distribution,
p; (at least within a local mode).

Variability in the importance weights can also come from using a finite number of
distributions to interpolate between pg and p,, We can analyse how this affects the
variance of the w(?) when the sequence of distributions used comes from a smoothly-
varying one-parameter family, as in equation (3). For this analysis, we will assume
that each 7T; produces a state drawn from p;, independent of the previous state. This
assumption is of course unrealistic, especially when there are isolated modes, but the
purpose here is to understand effects unrelated to Markov chain convergence.

It is convenient to look at log(w(?)) rather than w(®) itself. As discussed in Section 3,
we can measure the inefficiency of estimation by one plus the variance of the normalized

importance weights. Using the fact that F[Y?] = exp(qu + ¢*0%/2) when Y = exp(X)

2

and X is Gaussian with mean y and variance o2, we see that if the log(w(?)) are Gaussian



with mean y and variance o2, the sample size will be effectively reduced by the factor

o | = R T = e )
From equation (5),
log(w?) = Z [log(fi-1(25-1)) — log(fi(zi-1))] (22)
If the distributions used are as defined by equation (3),
tog(w z (851 = 5) [108(fo(z 1)) ~ log( Fu(a;-1)] (23)

If we further assume that the ; are equally spaced (between 0 and 1), we have

Zn: [log(fo(z-1)) — log(fa(w;-1))] (24)

=1

3|

log(w'

Under the assumption that 77 produces a state drawn independently from p;, and pro-
vided that log(fo(z;-1)) — log(fn(z;-1)) has finite variance (when z;_; is drawn from
p;), the Central Limit Theorem can be applied to conclude that log('w(i)) will have an
approximately Gaussian distribution for large n (keeping fy and f,, fixed as n increases).
The variance of log(w(i)) will asymptotically have the form o2 /n, for some constant o2,
and one plus the variance of the normalized weights will have the form exp(c?/n). If
we assume that each transition, 7}, takes a fixed amount of time (regardless of n), the
time required to produce an estimate of a given degree of accuracy will be proportional
to nexp(o3/n), which is minimized when n = ¢, at which point the variance of the
normalized importance weights will be e—1.

The same behaviour will occur when the 3; are not equally spaced, as long as they
are chosen by a scheme that leads to 3,1 — ; going down approximately in inverse
proportion to n. Over a range of 3 values for which p; is close to Gaussian, and po(z)
is approximately constant in regions of high density under p;, an argument similar to
that used for tempered transitions (Neal 1996, Section 4.2) shows that the best scheme
uses a uniform spacing for log(3;) (ie, a geometric spacing of the 3; themselves). The
results above also hold more generally for annealing schemes that are based on families
of distributions for which the density at a given z varies smoothly with a parameter
analogous to f.

We can get some idea of how the efficiency of annealed importance sampling will be
affected by the dimensionality of the problem by supposing that under each p;, the K
components of z are independent and identically distributed. Assuming as above that
each T; produces an independent state drawn from p;, the quantities log( fo(z;—1)) —
log(fn(z;—1)) will be composed of K identically distributed independent terms. The
variance of each such quantity will increase in proportion to K, as will the variance
of log(‘w(i)), which will asymptotically have the form Ko2/n. The optimal choice of n



will be K2, which makes the variance of the normalized importance weights e—1, as
above. Assuming that behaviour is similar for more interesting distributions, where the
components are not independent, this analysis shows that increasing the dimensionality
of the problem will slow down annealed importance sampling. However, this linear
slowdown is much less severe than that for simple importance sampling, whose efficiency
goes down exponentially with K.

The above analysis assumes that each 7 generates a state nearly independent of the
previous state, which would presumably require many Metropolis or Gibbs sampling
iterations. It is probably better in practice, however, to use transitions that do not come
close to producing an independent state, and hence take much less time, while increasing
the number of interpolating distributions to produce the same total computation time.
The states generated would still come from close to their equilibrium distributions, since
these distributions will change less from one annealing step to the next, and the increased
number of distributions may help to reduce the variance of the importance weights,
though perhaps not as much as in the above analysis, since the terms in equation (24)
will no longer be independent.

We therefore see that the variance of the importance weights can be reduced as needed
by increasing the number of distributions used in the annealing scheme, provided that
the transitions for each distribution are good enough at establishing equilibrium. When
there are isolated modes, the latter provision will not be true in a global sense, but
transitions that sample well within a local mode can be used. Whether the performance
of annealed importance sampling is adequate will then depend on whether the annealing
heuristic is in fact capable of finding all the modes of the distribution. In the absence of
any theoretical information pointing to where the modes are located, reliance on some
such heuristic is inevitable.

5 Demonstrations on simple distributions

To illustrate the behaviour of annealed importance sampling, I will show how it works
on a simple distribution with a single mode, using Markov chain transitions that sample
well for all intermediate distributions, and on a distribution with two modes, which are
isolated with respect to the Markov chain transitions for the distribution of interest.
Both distributions are over RS.

In the unimodal distribution, the six components of the state, 1 to xg, are independent
under pg, with the distribution for each being Gaussian with mean 1 and standard
deviation 0.1. This distribution was defined by fo(z) = (1/2)>; (z;—1)%/0.1%, whose
normalizing constant is (270.12)%/2 = 0.000248. A sequence of annealing distributions
was defined according to the scheme of equation (3). Under the distribution chosen
for p,, the components were independent, each being (Gaussian with mean zero and
standard deviation 1. The function f, used to define this distribution was chosen to be
the corresponding Gaussian probability density, which was normalized. We can therefore
estimate the normalizing constant for fy by the average of the importance weights.

To use annealed importance sampling, we must choose a sequence of 3; that define

10



the intermediate distributions. Both the number and the spacing of the 3; must be
appropriate for the problem. As mentioned in the previous section, for a Gaussian pog,
and a diffuse p,,, we expect that a geometric spacing will be appropriate for the 3; that
are not too far from one. I spaced the 3; near zero arithmetically. In detail, for the first
test, I used 40 3; spaced uniformly from 0 to 0.1, followed by 160 3; spaced geometrically
from 0.1 to 1, for a total of 200 distributions. In later tests, annealing sequences with
twice as many and half as many distributions were also used, spaced according to the
same scheme.

We must also define Markov chain transitions, 77}, for each of these distributions. In
general, one might use different schemes for different distributions, but in these tests,
I used Metropolis updates with the same proposal distributions for all 7; (the transi-
tion probabilities themselves were of course different for each 7}, since the Metropolis
acceptance criterion changes). In detail, I used sequences of three Metropolis updates,
with Gaussian proposal distributions centred on the current state having covariances
of 0.0521, 0.15%1, and 0.5?1. Used together, these three proposal distributions lead to
adequate mixing for all of the intermediate distributions. For the first test, this sequence
of three updates was repeated 10 times to give each 7}; in one later test, it was repeated
only 5 times.

For each test, 1000 annealing runs were done. In the first test, 200 states were produced
in each run, as a result of applying each 7 in succession, starting from a point generated
independently from pggp. I saved only every twentieth state, however, after applying
Tig0, T160, €tc. down to Ty. Note that Ty was applied at the end of each run in these
tests, even though this is not required (this occurs naturally with the program used).
Only the state after applying Ty was used for the estimates, even though it is valid to
use the state after 77 as well.

Figure 1 shows the results of this first test. The upper graphs show how the variance
of the log of the importance weights increases during the course of a run. (Importance
weights before the run is over are defined as in equation (5), but with the factors for
the later distributions omitted.) When, as here, the transitions for all distributions are
expected to mix well, the best strategy for minimizing the variance of the final weights
is to space the 3; so that the variance of the log weights increases by an equal amount in
each annealing step. The plot in the upper right shows that the spacing chosen for this
test is close to optimal. The variance of the final normalized importance weights was
1.12. According to the analysis of Section 4, the number of intermediate distributions
used here is thus slightly greater than the optimal number, for which the variance of the
normalized weights would be e—1.

The lower two graphs in Figure 1 show the distribution of the value of the first com-
ponent of the state (z1) in this test. As seen in the lower left, this distribution narrows
to the distribution under pg as  approaches one. The plot in the lower right shows the
values of the first component and of the importance weights for the states at the ends of
the runs. In this case, the values and the weights appear to be independent.

The estimate for the expectation of the first component of the state in this first test is
1.0064, with standard error 0.0050, as estimated using equation (16). This is compatible
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Figure 1: Results of the first test on the unimodal distribution. Upper left: the logs of
the importance weights at ten values of 3, for each of the 1000 runs. Upper right: the
variance of the log weights as a function of the index of 5. Lower left: the distribution
of the first component of the state at ten 8 values. Lower right: the joint distribution of
the first component and the importance weight at the ends of the runs. Random jitter
was added to the § values in the plots on the left to improve the presentation.
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Figure 2: Results of the first test on the distribution with two modes. The four plots

here correspond to those in Figure 1.
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with the true value of one. In this case, the error estimate from equation (16) is close
what one would arrive at from the estimated standard deviation of 0.10038 and the
adjusted sample size of N /(14 Var(w.)) = 1000/ (1+1.12) = 472, as expected when
the values and the weights are independent. The average of the importance weights for
this test was 0.000236, with standard error 0.000008 (estimated simply from the sample
variance of the weights divided by N); this is compatible with the true normalizing
constant of 0.000248.

Two tests were done in which each run used half as much computer time as in the
first test. In one of these, the annealing sequence was identical to the first test, but the
number of repetitions of the three Metropolis updates in each 7); was reduced from 10
to 5. This increased the variance of the normalized importance weights to 2.18, with
a corresponding increase in the standard errors of the estimates. In the other test, the
number of distributions in the annealing sequence was cut in half (spaced according to
the same scheme as before), while the number of Metropolis repetitions was kept at 10.
This increased the variance of the normalized importance weights to 2.72. As expected,
spreading a given number of updates over many intermediate distributions appears to
be better than using many updates to try to produce nearly independent points at each
of fewer stages.

The final test on this unimodal distribution used twice as many intermediate distri-
butions, spaced according to the same scheme as before. This reduced the variance of
the normalized importance weights to 0.461, with a corresponding reduction in standard
errors, but the benefit in this case was not worth the factor of two increase in computer
time. However, this test does confirm that when each 7’; mixes well, the variance of the
importance weights can be reduced as desired by spacing the 3; more closely.

Tests were also done on a distribution with two modes, which was a mixture of two
Gaussians, under each of which the six components were independent, with the same
means and standard deviations. One of these Gaussians, with mixing proportion 1/3,
had means of 1 and standard deviations of 0.1, the same as the distribution used in the
unimodal tests. The other Gaussian, with mixing proportion 2/3, had means of —1 and
standard deviations of 0.05. This mixture distribution was defined by the following fo:

6

1 (25— 1) 1 Ss (254 1)
fo(z) = exp [—5 ; 01z + 128 exp ~3 ; 0082 (25)
The normalizing constant for this fy is 3(270.1%)%/2 = 0.000744. The means of the

components with respect to this pg are —1/3.

The same f, as before was used for these tests (independent standard Gaussian dis-
tributions for each component, normalized). The same transitions based on Metropolis
updates were used as well, along with the same scheme for spacing the ;. For the
first test, the number of distributions used was 200, as in the first test on the unimodal
distribution.

The results are shown in Figure 2. As seen in the lower left of the figure, the distri-
butions for 8 near zero cover both modes, but as [ is increased, the two modes become
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separated. The Metropolis updates are not able to move between these modes when
[ is near one, even when using the larger proposals with standard deviation 0.5, since
the probability of proposing a movement to the other mode simultaneously for all six
components is very small. Both modes are seen when annealing, but the mode at —1
is seen only rarely — 27 times in the 1000 runs — despite the fact that it has twice
the probability of the other mode under the final distribution at 3 = 1. An unweighted
average over the final states of the annealing runs would therefore give very inaccurate
results.

The plot in the lower right of the figure shows how the importance weights compensate
for this unrepresentative sampling. The runs that ended in the rarely-sampled mode
received much higher weights than those ending in the well-sampled mode. The estimate
for the expectation of the first component from these runs was —0.363, with an estimated
standard error of 0.107 (from equation (16)), which is compatible with the true value of
—1/3. This standard error estimate is less than one might expect from the estimated
standard deviation of 0.92 and the adjusted sample size of N /(14 Var(w,)), which
was 35.0. The difference arises because the values and the importance weights are not
independent in this case.

The average of the importance weights in these runs was 0.000766, with an estimated
standard error of 0.000127, which is compatible with the true value of 0.000744 for the
normalizing constant of fp.

We therefore see that annealed importance sampling produces valid estimates for this
example. However, the procedure is less efficient than we might hope, because so few
runs end in the mode at —1. Another symptom of the problem is that the variance
of the normalized importance weights in this test was 25.6 — quite high compared to
the variance of 1.12 seen in the similar test on the unimodal distribution. We can see
how this comes about from the upper plots in Figure 2. For small values of 3, these
plots are quite similar to those in Figure 1, presumably because the mode at —1 has
almost no influence for these distributions. However, this mode becomes important as
approaches one, producing a high variance for the weights at the end.

One might hope to reduce the variance of the importance weights by increasing the
number of intermediate distributions (ie, by spacing the §; more closely). I ran tests
with twice as many distributions, and with four times as many distributions, in both
cases using the same number of Metropolis updates for each distribution as before. The
results differed little from those in the first test. The variance of the importance weights
for runs ending within each mode was reduced, but the difference in importance weights
between modes was not reduced, and the number of runs ending in the mode at —1 did
not increase. There was therefore little difference in the standard errors for the estimates.

For this example, the annealing heuristic used was only marginally adequate. One
could expect to obtain better results only by finding a better initial distribution, p,, or
a better scheme for interpolating from p,, to pg than that of equation (3). This example
also illustrates the dangers of uncritical reliance on empirical estimates of accuracy. If
only 100 runs had been done, the probability that none of the runs would have found
the mode at —1 would have been around 0.07. This result can be simulated using the
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first 100 runs that ended in the mode at +1 from the 1000 runs of the actual test. Based
on these 100 runs, the estimate for the expectation of the first component is 0.992, with
an estimated standard error 0.017, and the estimate for the normalizing constant of fy is
0.000228, with an estimated standard error of 0.000020. Both estimates differ from the
true values by many times the estimated standard error. Such unrecognized inaccuracies
are of course also possible with any other importance sampling or Markov chain method,
whenever theoretically-derived guarantees of accuracy are not available.

6 Relationship to tempered transitions

Several ways of modifying the simulated annealing procedure in order to produce asymp-
totically correct estimates have been developed in the past, including simulated tem-
pering (Marinari and Parisi 1992; Geyer and Thompson 1995) and Metropolis coupled
Markov chains (Geyer 1991). The method of tempered transitions (Neal 1996) is closely
related to the annealed importance method of this paper.

The tempered transition method samples from a distribution of interest, pg, using a
Markov chain whose transitions are defined in terms of an elaborate proposal procedure,
involving a sequence of other distributions, p; to p,. The proposed state is found by
simulating a sequence of base transitions, T to Tn, which leave invariant the distributions
p1 to py, followed by a second sequence of base transitions, 7}, to Ty, which leave p,, to
p1 invariant, and which are the reversals of the corresponding Tj with respect to the p;.
The decision whether to accept or reject the final state is based on a product of ratios of
probabilities under the various distributions; if the proposed state is rejected, the new
state is the same as the old state.

In detail, such a tempered transition operates as follows, starting from state Zq:

Generate &1 from Zq using 77.

Generate &5 from Z; using T5.

Generate z,, from &,_1 usin Tn
1 g (26)

Generate i,_y from z,, using T),.

Generate i1 from %, using T5.

Generate g from #; using Ty.
The state Zg is then accepted as the next state of the Markov chain with probability

min |1, P1(o) Pn(#n-1) .pn—l(in—l) ___po(fo)

po(Z0)  Pa-1(Fn-1) Pu(Fa-1)  p1(0)

(27)

The second half of the tempered transition procedure (26) is identical to the annealed
importance sampling procedure (4), provided that T, in fact generates a point from p,
that is independent of z,,. We can also recognize that the annealed importance sampling
weight given by equation (5) is essentially the same as the second half of the product
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defining the tempered transition acceptance probability (27). Due to these similarities,
the characteristics of annealed importance sampling will be quite similar to those of
the corresponding tempered transitions. In particular, the comparison by Neal (1996)
of tempered transitions with simulated tempering is relevant to annealed importance
sampling as well.

The major difference between annealed importance sampling and tempered transitions
is that each tempered transition requires twice as much computation as the corresponding
annealing run, since a tempered transition involves an “upward” sequence of transitions,
from p; to p,, as well as the “downward” sequence, from p,, to pq, that is present in both
methods. This is a reason to prefer annealed importance sampling when it is easy to
generate independent points from the distribution p,. When this is not easy, tempered
transitions might be preferred, though annealed importance sampling could still be used
in conjunction with a Markov chain sampler that produces dependent points from p,.
With tempered transitions, there is also the possibility of using more than one sequence of
annealing distributions (with the sequence chosen randomly for each tempered transition,
or in some fixed order). Potentially, this could lead to good sampling even when neither
annealing sequence would be adequate by itself. There appears to be no way of employing
multiple annealing sequences with annealed importance sampling without adding an
equivalent of the “upward” sequence present in tempered transitions.

When tempered transitions are used, the idea behind annealed importance sampling
can be applied in order to estimate ratios of normalizing constants, which were previously
unavailable when using tempered transitions. To see how to do this, note that the first
half of a tempered transition (up to the generation of &,_; from Z,,_ using Tn_l) is the
same as an annealed importance sampling run, but with the sequence of distributions
reversed (po and p, exchange roles, the first state of the run is the current state, o,
which comes from pg, and in general, z; of (4) corresponds to &,_1_; of (26)). The
importance weights for this backwards annealed importance sampling are

a0 — N1 @) fao1(Ea-z) fal@n1)
fo(2o) fi(#1)  fa—2(@n-2) fu—1(dn-1)

The average of these weights for all tempered transitions (both accepted and rejected)

(28)

will converge to [ f.(z)dz / [ fo(z)dz, the ratio of normalizing constants for f,, and fq.

A similar estimate can be found by imagining the reversal of the Markov chain defined
by the tempered transitions. In this chain, the states are visited in the reverse order, the
accepted transitions of the original chain become accepted transitions in the reversed
chain (but with the reversed sequence of states), and the rejected transitions of the
original chain remain unchanged. An importance sampling estimate for the ratio of
normalizing constants for f, and fy can be obtained using this reversed chain, in the
same manner as above. The importance weights for the accepted transitions are as
follows, in terms of the original chain:

a0 = fi(do) fa(Z1) fom1(En—2) faldn-1)
fo(@o) fi(21)  fa—2(Fn-2) fa-1(En-1)

The importance weights for the rejected transitions are the same as in equation (28).

(29)

These two estimates can be averaged, producing an estimate that uses the states at both
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the beginning and the end of the accepted transitions, plus the states at the beginning
of the rejected transitions, with double weight.

An estimate for the ratio of the normalizing constant for f; to that for fy can be
found in similar fashion for any of the intermediate distributions, by simply averaging the
weights obtained by truncating the products in equations (28) and (29) at the appropriate
point. These weights can also be used to estimate expectations of functions with respect
to these intermediate distributions. Note that error assessment for all these importance
sampling estimates will have to take into account both the variance of the importance
weights and the autocorrelations produced by the Markov chain based on the tempered
transitions.

7 Relationship to sequential importance sampling

A variant of sequential importance sampling recently developed by MacEachern, Clyde,
and Liu (1998) can be viewed as an instance of annealed importance sampling, in which
the sequence of distributions is obtained by looking at successively more data points.

This method (which MacEachern, et al call Sequential Importance Sampler S4) ap-
plies to a model for the joint distribution of observable variables z4, ..., z, along with
associated latent variables s, ..., s, (which have a finite range). We are able to compute
these joint probabilities, as well as the marginal probabilities for the zj together with
the sp over any subset of the indexes. We wish to estimate expectations with respect
to the conditional distribution of s1,..., s, given known values for z1,...,z,. We could
apply Gibbs sampling to this problem, but it is possible that it will be slow to converge,
due to isolated modes.

The method of MacEachern, et al can be viewed as annealed importance sampling with
a sequence of distributions, pg to p,, in which p; is related to the distribution conditional
on n—j of the observed variables; pg is then the distribution of interest, conditional on
all of z1,...,2,. In detail, these distributions have probabilities proportional to the
following f;:

(81,00, 8,)

n
= P(S1y.c38n—ijs T1y.vny Tpej) H P(sk | 1,0, Tk, S15- - 8k—1) (30)
k=n—j+1

We can apply annealed importance sampling with this sequence of distributions, using
transitions defined as follows. T begins with some number of Gibbs sampling updates for
51 to 8,_;, based only on P(sy,...,8,—; | z1,...,2,—;). We can ignore s,,_;1; to s, here
because we can generate values for them afterward from their conditional distribution
(under f;) given sy to s,_;, independently of their previous values. This is done by
forward simulation based on their conditional probabilities. (Actually, there is no need
to generate values for sp with & > n—j41, since these values have no effect on the
subsequent computations anyway.) This is easily seen to be equivalent to the sampling
done in procedure S4 of MacEachern, et al.
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The importance weights of equation (5) are products of factors of the following form:

fj—1(817"'73n)
fj(517"'78n)
_ P(Sl,...,Sn_]‘+1, $1,...,$n_]'+1) (31)
P(s1,.0 0y 8n—jy 1y ooy @ney) P(Sp—jp1 | T1, oo Tpejg1s S15v vy Spej)
- P(Sn—j—}-la Tp—j41 | TiyeeeyTp—jy S15-- '75n—j) (32)
P(Sn—j-}-l | L1y Tn—j4+1, 817"'7Sn—j)
= P(Zp_j41 | T15 o Tnej, S15- s Snj) (33)

The product of these factors produces the same weights as used by MacEachern, et al.

Sequential Importance Sampler S4 of MacFachern, et al is thus equivalent to annealed
importance sampling with the annealing distributions defined by equation (30). Unlike
the family of distributions given by equation (3), these distributions form a fixed, dis-
crete family. Consequently, the variance of the importance weights cannot be decreased
by increasing the number of distributions. This could sometimes make the method too
inefficient for practical use. However, it is possible that the sequence of distributions
defined by equation (30) could be extended to a continuous family by partially condi-
tioning on the zj in some way (eg, by adjusting the variance in a Gaussian likelihood).
Other forms of annealed importance sampling (eg, based on the family of equation (3))
could also be applied to this problem.

8 Discussion

Annealed importance sampling is potentially useful as a way of dealing with isolated
modes, as a means of calculating ratios of normalizing constants, and as a general Monte
Carlo method that combines independent sampling with the adaptivity of Markov chain
methods. The idea of annealed importance sampling can also be applied in conjunction
with tempered transitions; the latter method may indeed be best viewed as a variation
on annealed importance sampling that is useful when it is hard to generate independent
points from p,.

Handling isolated modes was the original motivation for annealing, and has been the
primary motivation for developing methods related to annealing that produce asymp-
totically correct results. Annealed importance sampling is another such method, whose
characteristics are similar to those of tempered transitions. As I have discussed (Neal
1996), which of these methods is best may depend on whether the sequence of annealing
distributions is “deceptive” in certain ways. It is therefore not possible to say that an-
nealed importance sampling will always be better than other methods such as simulated
tempering, but it is probably the most easily implemented of these methods.

Annealing methods are closely related to methods for estimating ratios of normalizing
constants based on simulations from many distributions, many of which are discussed
by Gelman and Meng (1998). It is therefore not surprising that the methods of simu-
lated tempering (Marinari and Parisi 1992; Geyer and Thompson 1995) and Metropolis
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coupled Markov chains (Geyer 1991) easily yield estimates for ratios of normalizing con-
stants as a byproduct. Tempered transitions were previously seen as being deficient in
this respect (Neal 1996), but we now see that such estimates can in fact be obtained by us-
ing annealed importance sampling estimators in conjunction with tempered transitions.
One can also estimate expectations with respect to all the intermediate distributions in
this way (as is also possible with simulated tempering and Metropolis coupled Markov
chains).

Ratios of normalizing constants can also be obtained when using annealed importance
sampling itself, which from this perspective can be seen as a form of thermodynamic
integration (see Gelman and Meng 1998). One might expect a thermodynamic integra-
tion estimate based on a finite number of points to suffer from systematic error, but the
results of this paper show that the annealed importance sampling estimate for the ratio
of normalizing constants is in fact unbiased, and will converge to the correct value as
the number of annealing runs increases. (Note that in this procedure one averages the
estimates from multiple runs for the ratio of normalizing constants, not for the log of
this ratio, as might seem more natural from the point of view of statistical physics.)

Unlike simulated tempering and the related method of umbrella sampling (Torrie and
Valleau 1977), no preliminary estimates for ratios of normalizing constants are required
when using annealed importance sampling. Metropolis coupled Markov chains share this
advantage, but have the disadvantage that they require storage for states from all the
intermediate distributions. Annealed importance sampling (or, in some circumstances,
tempered transitions) may therefore be the most convenient general method for estimat-
ing normalizing constants.

In addition to these particular uses, annealed importance sampling may sometimes be
attractive because it combines independent sampling with the ability of a Markov chain
sampler to adapt to the characteristics of the distribution. Evans (1991) has also devised
an adaptive importance sampling method that makes use of a sequence of intermediate
distributions, similar to that used for annealing. His method requires that a class of
tractable importance sampling densities be defined that contains a density appropriate
for each of the distributions in this sequence. Annealed importance sampling instead
uses a sampling distribution that is implicitly defined by the operation of the Markov
chain transitions, whose density is generally not tractable to compute, making its use for
simple importance sampling infeasible. From this perspective, the idea behind annealed
importance sampling is that one can nevertheless find appropriate importance weights
for use with this sampling distribution by looking at ratios of densities along the sequence
of intermediate distributions.

One annoyance with Markov chain Monte Carlo is the need to estimate autocorrelations
in order to assess the accuracy of the estimates obtained. Provided the points from p,
used to start the annealing runs are generated independently, there is no need to do
this with annealed importance sampling. Instead, one must estimate the variance of the
normalized importance weights. This may perhaps be easier, though nightmare scenarios
in which drastically wrong results are obtained without there there being any indication
of a problem are possible when using methods of either sort. For annealed importance
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sampling, this can occur when the distribution of the importance weights has a heavy
upward tail that is not apparent from the data collected.

Another annoyance with Markov chain Monte Carlo is the need to decide how much
of a tun to discard as “burn-in” — ie, as not coming from close to the equilibrium
distribution. If only one, long run is simulated, the exact amount discarded as burn-
in may not be crucial, but if several shorter runs are done instead, as is desirable in
order to diagnose possible non-convergence, the decision may be harder. Discarding too
little will lead to biased estimates; discarding too much will waste data. With annealed
importance sampling, one must make an analogous decision of how much computation
time to spend on the annealing runs themselves, which determine the importance weights,
and how much to spend on simulating a chain that samples from pg starting from the
final state from the annealing run (as is usually desirable, see Section 2). However,
this decision affects only the variance of the estimates — the results are asymptotically
correct regardless of how close the final state is to equilibrium.

Regenerative methods (Mykland, Tierney, and Yu 1995) also eliminate the problems
of dealing with sequential dependence (and also replace them with possible problems due
to heavy-tailed distributions). To use regenerative methods, an appropriate “splitting”
scheme must be devised for the Markov chain sampler. For high-dimensional problems,
this may be harder than defining an appropriate sequence of intermediate distributions
for use with annealed importance sampling.

As discussed in Section 4, the time required for annealed importance sampling can
be expected to increase in direct proportion to the dimensionality of the problem (in
addition to any increase due to the Markov chain samplers used being slower in higher
dimensions). One must also consider the human and computer time required to select an
appropriate sequence of intermediate distributions, along with appropriate Markov chain
transitions for each. For these reasons, annealed importance sampling will probably be
most useful when it allows one to find needed ratios of normalizing constants, or serves
to avoid problems with isolated modes. One should note, however, that the potential
for problems with multiple modes exists whenever there is no theoretical guarantee that
the distribution is unimodal.
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