
What is this Page Known for? Computing
Web Page Reputations

Alberto Mendelzon

University of Toronto

http://www.cs.toronto.edu/~mendel

Joint work with Davood Rafiei



Outline

• Scenarios and motivation

• Three definitions of rank

Page Rank

Reputation Measure

Hubs and Authorities

• The TOPIC prototype

• Future work



0,000 pages on the
ing?

eb pages. What

 tenure. I wonder

l the Linux sites?

r known/more
Scenarios

• Search engine Search-U-Matic just returned 6
query “liver disease.” Where should I start look

• We’re spending $200K/year maintaining our w
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Defining Rank

• Citation analysis: Rank(p) = number of papers t

• On the web, citation = link. Just usein-degreeof a n

graph.

Problems:

• All links are not created equal. Yahoo is much 

than my home page

• Topic independent: high rank on “Gilligan’s Isla

high rank on “brain surgery.”
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Definition 1: Page Ran

(Brin and Page 1998, Google; Geller 1978 in bib

• Problem: given pagep, compute its rank

A page isgood if lots of good pages point to it.

One level random walk model:

At each step:

• with prob d>0 jump to a random page, or

• with prob (1-d) follow a random link from the c

Page Rank of page p = probability, in the limit, of



Page Rank Equation

Computed by iterative method during crawling

• Limitation:

query andtopic-independent
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Definition 2: Reputation Meas

• Problem: Given pagep and topict, compute the r

RM(p,t)

Let I(t,p) = number of pages on topict that poin

Let Nt = number of pages on topict

RM(p,t) = I(t,p) / Nt

• Compute:

With search engine, queries “+link:p +t ” an
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Definition 3: Hubs and Autho

(Kleinberg, 1998)

• Problem: Given topic t, find pages p with high 

A page is a goodhub for t if it points to goodautho

A page is a goodauthority on t if goodhubs for t po

Algorithm  to find authorities on t:

• Issue the query “t” to a search engine

• Take the first N answers, add pages at distanc

• Compute hubs and authorities for t within this 



odel

at contains term t

rd/backward
A two-level random walk m

• with probability d>0 jump to random page th

• with probability (1-d) follow random linkforwa

from the current page, alternating directions

Pages accumulate

• forward visits

• backward visits
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p when searching

unique stationary
• A(p,t) = probability of a forward visit to page p

for term t =Authority rank of page p on term t

• H(p,t) = probability of a backward visit to page

for term t =Hub rank  of page p on term t

Theorem If d>0, the two-level random walk has 
probability distributions A(p,t) and H(p,t).
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Two Solutions

• Search engine solution: a large c
web is available. Find authoritie
each term t

• Real-time solution: approximate 
engine solution by starting with
pages and the terms that appea
iteratively expanding this set



Search Engine Solution (bottom up)
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Real-time Solution: (top down)

 of the qi’s
Set of pages:

Set of terms: all terms t that appear in p or some

p

qi



Real-time algorithm (Using the one-level model for simplicity)
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Simplification

k=1, Out(q) = constant

That is,R(p,t) ~ I(t,p) / Nt (Definition 2)
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1, Out(q) = 7.2
TOPIC (TOronto PageInflu
Computation)

• A crude approximation:

• Given page p
• Find 1,000 pages q that link to p (using Alta

• From each q “snippet,” extract all terms t

• Remove internal links and duplicate snippet

• Remove stop words and rare terms

• Apply the real-time algorithm with d = 0.10, k =



www.cs.toronto.edu/db/topic



Example

• www.macleans.ca

1.Maclean’s Magazine
2.macleans
3.Canadian Universities



Example: authorities on (+censorship +net)
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• www.eff.org
Anti-censorship, Join the Blue Ribbon, Blue R
Electronic Frontier Foundation

• www.cdt.org
Center for Democracy and Technology, Com
Decency Act, Censorship, Free Speech, Blu

• www.aclu.org
ACLU, American Civil Liberties Union, Comm
Decency Act



Example: Personal Home Pages

e
rnet History, W3C

Mining,

es/

g

nuth
• www.w3.org/People/Berners-Le
History of the Internet, Tim Berners-Lee, Inte

• www-db.stanford.edu/~ullman
Jeffrey D. Ullman, Database Systems, Data 
Programming Languages

• www.neci.nj.nec.com/homepag
giles.html

Lee Giles, Neural Networks, Machine learnin

• www-cs-faculty.stanford.edu/~k
Don Knuth, TeX Users, LaTex, Linux, CTAN



Example: Institutional Home Page

, Visualization,

g, Computer
 Artificial
• www.almaden.ibm.com:
IBM Almaden Research Center, Data Mining
ACM, guide, scanning

• www.research.microsoft.com:
Knowledge Discovery, Download, Data Minin
Vision, Language, ACM, Computer Science,



Example: Institutional Home Page
• www.neci.nj.nec.com
Watermarking

Search engines

Computer vision

Neural networks

Othello
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Example: Canadian CS Depa

www.cs.toronto.edu(8400)

Russian History, Neural, Travel, Hockey

www.cs.utoronto.ca(3644)

Search Engines, Ice Hockey, League, Neura

www.cs.ualberta.ca (10557)

University of Alberta, Virtual Reality, Langua
Artificial

www.cs.ubc.ca(17598)

Confocal, Periodic Table, Anime, Computer 

www.cs.sfu.ca(2055)

Whales, Simon Fraser University, Data Minin
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Comparing Reputation

CNN BBC ABC wire
.com

Int’l News 0.0237 0.0097 0.0003 0.00

Weather 0.0121 0.0052 0.0008 0.00

Sports 0.0070 0.0004 0 0.0

Entertainment 0.0040 0.0015 0.0013 0.

Travel 0.0030 0.0008 0.0012 0.0

Technology 0.0017 0.0006 0.00060.007

Business 0.0017 0.0006 0.00040.003



eb
Limitations

• Simplistic notion of “topic”

• Use of snippets

• Some topics are not well represented on the W

• All links are equal
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Current/Future Work

• Systematic evaluation

• Combination of link- and content-based rankin

• Applications

Reputation server

Search engine ranking
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