Data (and Links) on the Web

Alberto Mendelzon University of Toronto

http://www.cs.toronto.edu/~mendel

Joint work with Gus Arocena, Attila Barta, George Mihaila, Tova Milo, Davood Rafiei

Outline

•Data on the Web

semistructured data: data models, query languages

- •What about links?
- •Two link-centric projects

WebSQL/WebOQL : unstructured/semistructured data + links TOPIC: exploiting links to evaluate page reputations

•Future Work

Data on the Web

Abiteboul, Buneman, Suciu, 2000.

Excellent survey of semistructured data

Semistructured Data

"Self-Describing":	XML
"Schemaless":	HTML
90's:	Data on the Web, where is the schema?
70's,80's:	Data and structure (schema) in DBMS
60's:	Data in files, structure in application programs

Example: an XML document

```
<north-america>
<states>
  <state id = "s1">
     <sname California </sname>
     <capital idref="c1">
     <governor> Gray Davis </governor>
  </state>
</states>
<provinces>
  <province id = "p1">
     <pname> Ontario </pname>
     <capital idref "c2">
     <premier> Mike Harris </premier></premier>
  </province>
```

</provinces>

XML Document (cont.)

```
<cities>
<city id = "c1">
<cname> Sacramento </cname>
<state-of idref = "s1">
</city>
```

```
<city id = "c2">
<cname> Toronto </cname>
<pop> 2.5M </pop>
<province-of idref = "p1">
</city>
```

</cities>

... </north-america>

Graph Representation

State of the Art

Data Models

Pioneering work: OEM, LORE/LOREL, UnQL Data models for XML:XML Schema, DOM, RDF

Query Languages

SS QL's: LOREL, UnQL, ... XML QL's: XML-QL, XSLT, XQL

What about the links?

Entry for *link* in index of DOTW book:

- pp. 45-46: XLink and XPointer
- pp. 189: "If Web data follows the same patterns as Web documents, then we should expect links to become prevalent."

The Web is not just semistructured data: it's autonomous distributed pieces of unstructured, semistructured, and structured data, interconnected by links

Some link-aware projects

- •Strudel (AT&T)
- •Tiramisu (Washington)
- •Araneus (Rome)
- AutoWeb(Milan)
- •SQUEAL (MIT)
- •COIR (NEC)
- •FLORID (Freiburg)
- •WebSQL/WebOQL (Toronto)

WebSQL: Unstructured data + links

- •Integrate *Browsing* & *Searching*
- •Data Model;

Document (URL, title, type, length, text, modif) *Anchor* (base, label, href)

Query Language: SQL + regexpsSemantics:

• Materialize a fragment of the database

• Compute the answer on this fragment

Search Automation

• Find documents about Toronto that reside in servers in Canada

SELECT d.url,d.title FROM Document d SUCH THAT d MENTIONS "Toronto" WHERE d.url CONTAINS ".ca\$"

• Find documents about WebSQL that point to U of T

DEFINE INDEX "HotBot";

Search and Navigation

• Documents about "excursions" near WWW9 home page

SELECT d.url, d.title FROM Document d SUCH THAT "www9.org" (->| ->-> | ->->) d WHERE d.text CONTAINS "excursions"

Path Regular Expressions

•Alphabet (Link types)

- #> interior link: same document
- -> local link: same server
- => global link: different server
- = null path

•Regexps Over Link Types

> | => path of length one, either local or global
>* local path of any length
=>->* idem, but in other servers
(->|=>)* the reachable portion of the Web

User-Defined Link Types

DEFINE LINK [next] AS label CONTAINS "Next";

SELECT d.url
FROM Document d
SUCH THAT "http://the.starting.document" [next]* d,
WHERE d.title CONTAINS "Canada";

Example applications

•Indexing an On-line Manual

Indexing Publication List

Index of Online Publications

•Need pairs <URL of .ps, Metadata>

Internet

Alberto Mendelzon and Tova Milo, Formal Models of the Web, to appear in Proc. PODS'97, Tucson, May 1997.

Gustavo Arocena, Alberto Mendelzon, George Mihaila, Applications of a Web Query Language, to appear in Proc.6th Int'l. WWW Conf., Santa Clara, April 1997.

Alberto Mendelzon, George Mihaila, Tova Milo, Querying the World Wide Web, in Proc. PDIS'96, Miami, December 1996.

SELECT a.href, a.label
FROM Anchor a
SUCH THAT base = "http://www.cs.utoronto.ca/~mendel/papers.html"

A (partial) list of publications

- S. Abiteboul, S. Cluet, T. Milo, <u>A Database Interface for Files</u> <u>Update</u>. Proc. ACM SIGMOD Int. Conf. on Management of E 1995 San Jose, May 1995.
- Y. Afek and G. Stupp, <u>Synchronization power depends on the</u> register size. In *Proc. of the 34th Ann. IEEE Symp. on Foundations of Computer Science*, pages 196–205, November 1993.
- Y. Afek and G. Stupp, <u>Delimiting the power of bounded size</u> synchronization objects. In *Proc. of the 13th Ann. ACM Symp Principles of Distributed Computing*, pages 42–51, August 19
- Y. Afek, D. Dauber, and D. Touitou, <u>Wait-free Made Fast.</u> In

DEFINE CONTEXT BEGIN = $\langle LI \rangle$, **END** = $\langle LI \rangle$;

SELECT e.href, e.context FROM Anchor e SUCH THAT

base = "http://www.math.tau.ac.il/~milo/dept/papers.html"
WHERE e.href CONTAINS ".ps"

Adding Structure to Unstructured Data (140K) Peter Buneman, Susan Davidson, Mary Fernanciez and Dan Suciu Technical Report MS-CIS-96-21, CIS Department, University of Pennsylvania. See here for the abstract.

A Query Language and Optimization Techniques for Unstructured Data (144K) Peter Buneman, Susan Davidson, Gerd Hillebrand and Dan Suclu Technical Report MS-CIS-96-09, CIS Department, University of Pennsylvania. An extended abstract of this work appears in SIGMOD Proceedings, 1996. See here for the abstract.

A Query Language for Multidimensional Arrays: Design, Implementation, and Optimization Techniques (87K) Leonid Libkin, Rona Machlin and Limsoon Wong SIGMOD Proceedings, 1996. See <u>here</u> for the abstract.

DEFINE LINK [here] AS label CONTAINS "here" SELECT e.url, d.text FROM Document d SUCH THAT

"http://www.cis.upenn.edu/~db/langs/allpapers.html" [here] d, d [here] e;

Programmatic Interface

```
public static void main(String args[]) {
  String query = "SELECT x.url, x.title, x.length, x.date "+
   " FROM Document x SUCH THAT x MENTIONS\"Java\";";
  try{
     WebSQLServer eng = new WebSQLServer(query, new Mon());
     for (Enumeration e = eng.elements();
e.hasMoreElements(); ) {
        Vector tuple = (Vector) e.nextElement();
        for (int i = 0; i < eng.tupleSize; i++) {</pre>
           System.out.print(tuple.elementAt(i));
           System.out.print(" ");
        System.out.println();
   }catch(Exception e){System.out.println("Couldn't create
server.");}
```

WebOQL: semistructured data + links

- •WebSQL: Web as graph of atomic objects
- •WebOQL: Web as graph of structured objects
- •Query:
 - the Web
 - •a single page
 - a set of related pages

•Restructure:

- HTML to HTML
- •HTML to databases
- Databases to HTML

City Overview

- One of the most attractive aspects of our city is the variety of cultural activities. You can purchase tickets for several theatres from Theatres Online.
- All the hotels on the Web provide discounts to cyber-clients !
- If you are interested in live sports, then you must visit Sports Zone . You can also buy tickets from them.

Data Model

Records as Labels on Arcs

Internal and External Arcs

Tree operators

Webs

Query: list elements containing "ticket"

CNN Home page

Click Here	IS Open at Pobble Broch. Here by Hole coverage of Ana Up-ta-the-Mar	in teacherboards and Marel	Video en Demand Syrian President Hafez Assad dies before regaining Golan Heights
	Search		Play video
CNN.com	CNN.com =	[Find	Watch more CNN VIDEO
CNN Ster 📨	myCNN Video Audio Headline N	ews Brief Free E-ma	il Feedback
MAINPAGE +	June 13, 2000 Updated 1 suotobo internet time	1:52 a.m. EDT, 15	552 GMT, @ 703
WORLD U.S. WEATHER BUSINESS SPORTS		FEATURES: Pearl Jam's 'Binaural' return	Track Tiger at CNNSI.com's U.S.
TECHNOLOGY	North Korean leader Kim Jong II		Open Coverage!

Extracting CNN's Headlines

Restructuring the Result into HTML

Generating a new Web

Table = [previous query]

select [y'] as y.Text
from x in Table'!!!, y in x

creates one page for each Section, with the Section name as URL

Easy to do in WebOQL

Extract all headings

Extract all images

Linearize page hierarchy

Flatten hierarchy into table

Create Web views

Extract pictures of faculty

SCAN

"http://www.cs.toronto.edu/DCS/People/Faculty/index.html" USING

ANY

<BODY>

MANY


```
{<LI> <A HREF = MemberPage> MemberName </A> </LI>}
</UL>
```

</BODY>

AND

MemberPage

USING

```
...<IMG SRC = Jpg ".jpg$">
```

GIVING

<HTML>

```
<TABLE>
```

```
{<TR>
```

```
<TD> text(MemberName) </TD>
```

```
<TD> <IMG SRC = Jpg> </TD>
```

</TR>}

</TABLE>

</HTML>

Generated WebOQL

```
[Taq:"html"/
  [Taq:"table"/
    select [Tag:"tr"/
             [Taq:"td"/[Text:MemberName.text]] +
             [Taq:"td"/[Src:Jpq.src, Taq:"imq"]]
    from V___ is "http://www/DCS/People/Faculty/index.html",
         V 0 in V !' via [Tag = "ul"] until true,
         V 1 in V 0',
         MemberName is V 1'&,
         MemberPage is MemberName,
         V 2 in browse(MemberPage.url)
             via ^{*}[Src \sim ".jpq$" and Taq = "imq"],
         Jpq is V 2&
    where V__!.Tag = "body" and V_1.Tag = "li" and
MemberName.Tag =
"a″
];
```

<!-- Generated by WebOQL 1.0 --> <html> T.S. Abdelrahman, MSc, PhD SRC="http://www.cs.toronto.edu/gifs/Faculty/ R.M. Baecker, MSc, PhD A. Bonner, MSc, PhD (Erin) ...

System Architecture

Computing Page Reputations

(Rafiei and Mendelzon, WWW9)

- Search engine Search-U-Matic just returned 60,000 pages on the query "liver disease." Where should I start looking?
- We're spending \$200K/year maintaining our web pages. What do people think of them?
- Prof. X, an expert on Icelandic sagas, is up for tenure. I wonder how well known her research is on the Web.
- How is our Internet country music radio station doing, compared to the other 200 out there?

Idea:

• analyze links to find pages that are better/better known/more authoritative than others *on some topics*

Page Rank

(Brin and Page 1998, Google; Geller 1978 in bibliometrics)

A page is good if lots of good pages point to it.

One level random walk model:

At each step:

• with prob p>0 jump to a random page, or

• with prob (1-p) follow a random link from the current page

Page Rank of page p = probability, in the limit, of hitting page p

Page Rank is query- and topic- independent

Hubs and Authorities

(Kleinberg, 1998)

Given a set of pages relevant to topic t:

A page is a good hub for t if it points to good authorities on t

A page is a good authority on t if good hubs for t point to it

Algorithm to find authorities on t:

- Issue the query t to a search engine
- Take the first N answers, add pages at distance 1
- Compute authorities for t within this set

A two-level random walk model

- •A transition is either:
 - with probability d>0 jump to a random page that contains term

t, or

- with probability (1-d) follow a random link from the current page
- •Alternate between:
 - make a transition out of the current page into p (forward visit to p)
 - make a transition out of a page q that points to the current page (backward visit to q)

- A(p,t) = probability of a forward visit to page p when searching for term t = Authority rank of page p on term t
- H(p,t) = probability of a backward visit to page p when searching for term t = Hub rank of page p on term t

Theorem If d>0, the two-level random walk has unique stationary probability distributions A(p,t) and H(p,t).

(Does this model Kleinberg's algorithm?

No: See Lempel and Moran, WWW9.)

Inverting H&A computation

Two Solutions

•*Search engine solution*: a large crawl of the web is available. Find authorities on t for each term t

•*Real-time solution*: approximate the search engine solution by starting with some set of pages and the terms that appear in them, and iteratively expanding this set

Search Engine Solution (bottom up)

For every page p and term t

$$A(p, t) = H(p, t) = \frac{1}{2N_t}, \text{ if t appears in p}$$
$$A(p, t) = H(p, t) = 0 \text{ otherwise.}$$

While changes occur

$$A(p,t) = (1-d) \sum_{q \to p} \frac{H(q,t)}{Out(q)} + \begin{cases} \frac{d}{2N_t} & \text{if t appears in page p;} \\ 0 \end{cases}$$

$$H(p,t) = (1-d) \sum_{q \to p} \frac{A(q,t)}{In(q)} + \begin{cases} \frac{d}{2N_t} & \text{if t appears in page p} \\ 0 \end{cases}$$

Real-time Solution: (top down)

Set of pages:

Set of terms: all terms t that appear in p or some of the qi's

Real-time algorithm (Using the one-level model for simplicity)

$$R(p, t) = \frac{d}{N_t}$$

For $i = 1, 2, ..., k$

For each path $q_1 \rightarrow q_2 \rightarrow \ldots \rightarrow q_i \rightarrow p$,

For each term t in page q_1

$$R(p,t) = R(p,t) + \left(\frac{(1-d)^{i}}{\prod_{j=1}^{i} Out(q_{i})}\right) \frac{d}{N_{t}}$$

TOPIC: A crude approximation

•Given page p

- Find 500 pages q that link to p (using Altavista)
- From each q "snippet," extract all terms t
- Remove internal links and duplicate snippets
- Remove stop words and rare terms
- Apply the real-time algorithm with d = 0.10, k = 1, Out(q) = 7.2

www.cs.toronto.edu/db/topic

	He
UNIVERSITY OF TORONTO Department of Computer Science	8
TOPIC	
Maximum number of pages to download: 1000	-
URL:http://www.javasoft.com	
Submit Ouerv	

Example

•www.mcleans.ca

1.Maclean's Magazine2.macleans3.Canadian Universities

Example: authorities on (+censorship +net)

•www.eff.org

Anti-censorship, Join the Blue Ribbon, Blue Ribbon Campaign, Electronic Frontier Foundation

•www.cdt.org

Center for Democracy and Technology, Communications Decency Act, Censorship, Free Speech, Blue Ribbon

•www.aclu.org

ACLU, American Civil Liberties Union, Communications Decency Act **Example: Personal Home Pages**

•www.w3.org/People/Berners-Lee

History of the Internet, Tim Berners-Lee, Internet History, W3C

•www-db.stanford.edu/~ullman

Jeffrey D. Ullman, Database Systems, Data Mining, Programming Languages

•www.neci.nj.nec.com/homepages/ giles.html

Lee Giles, Neural Networks, Machine learning

Example: Institutional Home Page

www.cs.toronto.edu

- Russian History
- Computer Vision
- University of Toronto
- Hockey

Example: Institutional Home Page

•www.neci.nj.nec.com

Watermarking

Search engines

Computer vision

Neural networks

Othello

Example: Institutional Home Page

•www.wins.uva.nl (Univ. of Amsterdam, Faculty of Sciences)

Solaris 2 FAQ Wiskunde Frank Zappa

Limitations

- •Topics vs. terms
- •Search engines provide non-random samples
- •All links are equal

•Some topics not well-represented on the Web

Current and Future Work

- •Improving the real-time algorithm
- Implementing the search-engine algorithm: collaboration with search-engine company snapshot from Internet Archive
 Competitive ranking
- Reputation and communities

Summary

- •Unstructured data + links: *WebSQL*
- •Semistructured data + links: *WebOQL*
- •Exploiting links for reputation ranking: *TOPIC*