Edge Detection

Goal: Detection and Localization of Image Edges.

Motivation:

e Significant, often sharp, contrast variations in imagesediby
illumination, surface markings (albedo), and surface lauies.
These are useful for scene interpretation.

e Edgels (edge elements): significant local variations in image
brightness, characterized by the positignand the orientatiofi
of the brightness variation. (Usuallymod 7 is sufficient.)

pixels —

J %
Y =
)_(’p | “edgel”

3 (edge element)

e Edges: sequence of edgels forming smooth curves

Two Problems:

1. estimating edgels
2. grouping edgels into edges

Readings: Chapter 8 of the text.
Matlab Tutorials: cannyTutorial.m
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1D Ideal Step Edges
Assume an ideal step edge corrupted by additive Gaussiga:noi
I(z) =S(x) +n(zx) .

Let the signalS have a step edge of height at locationzx,, and
let the noise at each pixel be Gaussian, independent anticalkn
distributed (lID).

X Zo

Gaussian |1D Noise;

1 2/ 2
n(z) ~ N(0,02) , n(n;0,0%) = e/
@)~ N0 L palni0,}) = ——
Expectation:

mean: En|] = /npn(n) dn =0

variance: fn? = /n2 pu(n) dn = o2

|ndependence:
0 Whenx1 7é X9

Efn() n(xs)] = { :

o. otherwise

Remark: Violations of the main assumptions, i.e., the idedl step
edge and additive Gaussian noise, are commonplace.
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Optimal Linear Filter

What is the optimal linear filter for the detection and lozation of a
step edge in an image?

Assume a linear filter, with impulse responge):

r(@) = flz)«1(z) = f(z)*S(@) + f(z)*n(z)
= rglr) 4+ r(z)

So the response is the sum of responses to the signal andisiee no

The mean and variance of the response to ngise),

ra(®) = f: f(=k)n(z + k),
whereK is the radius of f]:I:(;:( support, are easily shown to be
Efru(x)] = Y f(—k)En(z+k)] = 0
Elr,(v)] = EZ:EZ:J“(—Z) f(=k)Eln(z+k)n(z+1)] = on > (k)

k

The respons&gnal-to-Noise Ratio (SN R) at the step location, is:

|(f * 5)(xo)|
o0/ 2 fA(F)

SNR =

Next, consider criteria for optimal detection and locdiiaa ...
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Criteria for Optimal Filters

Criterion 1: Good Detection. Choose the filter to maximize the the
SNR of the response at the edge location, subject to conistreit
the responses to constant sigals are zero.

For a filter with a support radius df pixels, the optimal filter is a
matched filter, i.e., a difference of square box functions:

A

f@)

5V

~K K

Response to ideal step:

‘ B /\

l ite) X

Explanation:

Assume, with out loss of generality that f%(z) = 1, and to ensure
zero DC response,_ f(x) = 0.

Then, to maximize th& N R, we simply maximize the inner product

of S(z) and the impulse response, reflected and centered at the step
edge location, i.e.f(zy — x).
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Criteria for Optimal Filters (cont)

Criterion 2:  Good Localization. Let {z}}-, be the local maxima
in response magnitude(z)|. Choose the filter to minimze the root
mean squared error between tinee edge location and theclosest
peakin |r|; i.e., minmize

1

LOC =
v/ Elming 27 — 2/*]

Caveat: for an optimal filter this does not mean that the closest peak
should be the most significant peak, or even readily idebtéia

Result: Maximizing the productSNR - LOC, over all filters with
support radiuds< produces the same matched filter already found by
maximizingS N R alone.

f@)

Y
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Criteria for Optimal Filters (cont)

Criterion 3: Sparse Peaks. Maximize SNR - LOC, subject to the
constraint that peaks im(z)| be as far apart, on average, as a manu-
ally selected constant,Peak:

El |}, — «}|] = aPeak

Whenz Peak is small, f(x) is similar to the matched filter above.
But for x Peak larger (e.g.xPeak ~ K /2) then the optimal filter is
well approximated by a derivative of a Gaussian:

dG(x; 0,) —r I dG(xz; o)) L2
~ = or . with —| = 2
f(z) T 2770?6 , with F T iwe
2_2
we ™ ar/2|
/\T;‘;G(:c;m
Conclusion:

Sparsity of edge detector responses is a critical desigerierj en-
couraging a smooth envelope, and thereby less power at hegh f
guencies. The lower the frequency of the pass-band, theepire
response peaks.

There is a one parameter family of optimal filters, varyinth@width
of filter support,o,.. Detection SN R) improves and localization
(LOC) degrades as, increases.
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Multiscale Edge Features

Multiple scales are also important to consider becausergatidges
occur at multiple scales:

1) Objects and their parts occur at multiple scales:

2) Cast shadows cause edges to occur at many scales:

3) Objects may project into the image at different scales:
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2D Edge Detection

The corresponding 2D edge detector is based on the magwitdide
directional derivative of the image in the direction norraethe edge.

Let the unit normal to the edge orientationibe= (cos 6, sin6).

The directional derivative of a 2D isotropic Gaussiai(X; 0°) =
e G N

¢~ 27  is given by

2o
9,

_ S N
8nG( 0?) = VG ¢%) -1

= cos0G.(%; 0°) + sinfG,(X; o°)

where G, = % and G, = %ﬁ.

The direction of steepest ascent/descent at each pixalas @y the
direction of the image gradient:

R(X) = VG(X 02) * I(X)
The unit edge normal is therefore given by
R(x)

RTE

Edge Detection: Search for maxima in the directional image deriva-
tive in the directiomi(X).
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2D Edge Detection (cont)

Search for local maxima of gradient magnitusier) = |R(X)], in
the direction normal to local edg®,X), suppressing all responses
except for local maxima (called non-maximum suppression).

In practice, the search for local maxima 8fx) takes place on the
discrete sampling grid. Givex,, with normaln,, compareS(x;) to
nearby pixels closest to the direction ©h,, e.g., pixels ak + q,
whereq, is ; ( /S)no rounded to the nearest integer.

The dotted (red) circle depicts poinss——r /8)n0 Normal directions
between (blue) radial lines all map to the same neighbost of
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Canny Edge Detection
Algorithm:
1. Convolve with gradient filters (at multiple scales)

R(X) = (R,(X), R,(X)) = VG(X; 0°) * I(X).

2. Compute response magnitudgx) = \/Rg(i’) + R2(X) .
3. Compute local edge orientation (represented by unit afrm

L (R.(X), Ry(X))/S(X) if S(X) > threshold
n(x) = { .
0 otherwise

4. Peak detection (non-maximum suppression along edgeatorm

5. Non-maximum suppression through scale, and hystelasisi-
olding along edges (see Canny (1986) for details).

Implementation Remarks:

Separability: Partial derivatives of an isotropic Gaussian:
6% %) = — L6l 0?) Glys o).

ox o

Filter Support: In practice, it's good to sample the impulse response
so that the support radids > 30,.. Common values fok are 7, 9,
and 11 (i.e., fow ~ 1,4/3, and5/3).
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Filtering with Derivatives of Gaussians

Imaget hr ee. pgm Gaussian Blur = 1.0
Gradient inx Gradient iny
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Canny Edgel Measurement

Gradient Strength Gradient Orientations
¥

Edgel Overlay

Colour gives gradient direction (red)*; blue —90°; green —270°)
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Gaussian Pyramid Filtering (Subsamplex 2)

Blurred and Down-Sampled(?) Gaussian Blur = 1.0

373

Gradient Magnitude (deg?2) Gradient Orientations
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Gaussian Pyramid Filtering (Subsamplex 4)

Blurred and Down-Sampledk{) Gaussian Blur = 1.0

=373

Gradient Magnitude (deg4) Gradient Orientations
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Multiscale Canny Edgels

Imaget hr ee. pgm Edgels (x 1)

Edgels (x 2)
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Subpixel Localization

Maximal responses in the first derivative will coincide wikro-
crossings of the second derivative for a smoothed step edge:

5@ -
o@xs@ [

g @ * 5@ A

9" @) * s@) 4/

Often zero-crossings are more easily localized to subp@izeliracy
because linear models can be used to approximate (fit) respoear
the zero-crossing. The zero-crossing is easy to find frorhrikar fit.

So, given a local maxima and its normal,= (cos#f, sin#), we can
compute the"-order directional derivative in the local region:

2
% GR)*I[(X) = cos?0 Gupo(X) * [(X) +
n
2 cosBsinh Gy(X) * 1(X) + (1)
sin® 0 G, (%) x [(X) .
. 2 2 2
Note that the three filtersiZ,, = 55, G,, = 55, and G,, = 55

can be applied to the image independeni of
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Steerable Filters

The first- and second-order Gaussian derivatives used iCamay edge detector are orientation-
tuned band-pass filters. Such filters will, in general, poeda better signal to noise ratio than
isotropic band-pass filters when applied to 1D structuke @dges).

Original Laplacian Directional derivative

When using orientation-tuned filters, especially in thetegnof an image transform/representation,
one can ask how many orientation-tuned filters are neededagwer is that, if we have a complete
basis for the filters, then we should be able to represeneponse of any orientation-tuned filter in
terms of the basis filters. Such basis filters are often calleerable filters [Freeman and Adelson,
1991], and the gradient of an isotropic Gaussian is an exampl

Let f(z,y) be the impulse response for a filter tuned to orientation 0.
Let f*(z,y) be a rotated version gf(z, y) to orientationo.
Let { /% (x, y)},=1.p be a basis foff (z, y) under rotation, i.e.

Za] ) O (z,y)

Here,a;(«) are called steering (interpolating) functions.

Distributivity of convolution over addition then yields:
i y) < Iz, y) = (Zag ) [ (x, y)) «I(z, y)
= Zay (fP(x, y) * I(z, y))

i.e. convolve basis functions, then synthesize orientést flutput

2503: Edge Detection Notes: 17



Steerable Filters — Directional Derivatives

Consider the directional first derivative of a Gaussig, y) = e (" 1v°)/2,
The first derivatives in the horizontal and vertical direns:

gl‘(xv y) = - 6—(1’2+y2)/2 ) gy(x, y) = =y 6—(x2+y2)/2

General derivative in directiofi= (s1, s2) = (cos(), sin(#))

gs(z,y) = (s1, 82) - (92(,9), 9y(x,9))

So output of filter tuned to orientatighis given by

gs(x,y) * I(x,y) = (819 +529y) * [(x,y) = (51, 82) (gu* I, gy* 1)

Explanation: In polar coordinates, the horizontal Gaussian derivasve i
gu(r,0) = —re 7% cos(6)

which is a polar separable productwk(f) and—r e~"*/2 In polar coordinates it is easy to see that
a rotation byr /2 is given by

go(r,0 —m/2) = —re "/ cos(0 — /2)
= —re " ?sin(6)
= gy(r,0)
And in general;, a rotation b, i.e., to directiors’ = (cos(fy), sin(6y))
gu(r,0 —6y) = e "/ cos(0 — 6y)
= —re "% [cos(0) cos(fy) + sin(6) sin(6p)]
= cos(by) g, + sin(6y) gy

The same ideas also work with higher-order derivativesaisdgde polynomial functions, and polar
separable functions having a limited numbers of angulajueacy components. For example,

d? 2

o,
gt = D P

k=0

2—k 8zg(x, y)
Y 3xk ay2—k :

This is precisely the form of the second directional deieagiven in Eqn (1), for directios.
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Steerable Pyramid

A Steerable pyramid is much like the Laplacian pyramid, pktieat each band-pass level is further
decomposed into a set of oriented filters (a steerable basis)

Zone Plate

Spectral
bands

7

--

The pass-bands of the different channels in a steerablengyi@e shown in the top-left. One par-
ticular pass-band for a real-valued steerable filter isatediby the two shaded regions. Below the
rows of images show the responses of the different ori@matined filters at each scale when ap-
plied to the zone plate (top-right). The filter correspogdia the shaded pass-band in the top-left
has its response shown in the left-most image in the secand ro
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Steerable Pyramid (cont)

Analysis / Synthesis diagram for steerable pyramid:

I[n] Hiw) ' ~H,(w)-RI[n]
T Lyw) T By(w) - ~ By(w) [T Lo(VV)J
— Bi(w) ~ Bi(w) [
—Bs(w) > Bo(w) [
— B(w) B, (w)
= Liw) {24 1 2t HL,w) [~

The corresponding amplitude spectra for the different nknare shown below. The channels
denotes); are spectra resulting from the cascadd.@fndB;.

2 2 2
L H L
) 0y Ly,
2 2
- 2 0 2 2 0 2
2 - R R
’ . 012. 022- 032-
0 0 0 0
2 2 2 2
2 0 2 2 0 2 2 0 2 2 0 2
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Edge-Based Image Editing

Existing edge detectors are sufficient for a wide variety mflea-
tions, such as image editing, tracking, and simple recanit

[from Elder and Goldberg (2001)]

Approach:

1. Edgels represented by location, orientation, blur s@ala reli-
able scale for detection), and asymptotic brightness oh side.

2. Edgels are grouped into curves (i.e., maximum likelihcoes
joining two edge segments specified by a user.)

3. Curves are then manipulated (i.e., deleted, moved, axdigtc).

4. The image is reconstructed (i.e., solve Laplace’s eguajiven
asymptotic brightness as boundary conditions).
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Empirical Edge Detection

The four rows below show images, edges marked manually, YCann
edges, and edges found from an empirical statistical approg
Konishi et al (2003). (We still have a way to go.)

Row 2 — human; Row 3 — Canny; Row 4 — Konishi et al
[from Konishi, Yuille, Coughlin and Zhu (2003)]

Context and Salience: Structure in the neighbourhood of an edgel
is critical in determining the salience of the edgel, andghmuping
of edgels to form edges.

Other features: Technigues exist for detecting other features such as
bars and corners. Some of these will be discussed later icoilrse.
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Boundaries versus Edges

An alternative goal is to detect (salient) region boundainstead of
brightness edges.

For example, at a pixel, decide if the neighbourhood is bisected by
a region boundary (at some orientatthand scaler)

From http://www.cs.berkeley.edfdwlkes/project/boundary

The Canny edge operator determines edgeélé, o) based essentially
on the difference of mean brightness in these two half disks.

We could also try using other sources of information, suctessire
or contours (see Martin et al, 2004).
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Boundary Probability

Martin et al (2004) trained boundary detectors using gradief

brightness, colour, and texture.

_Canny

Human
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