1096
1097

<CN18</CN>
<CT>
Strengths and Weaknesses of the i* Framework:</CT> <ST>An Empirical Evaluation
 < ST>
<CA>Oscar Pastor, Hugo Estrada, and Alicia Martínez</CA>
<H1>18.1 Introduction</H1>
New application areas such as e-business, application service provision, and peer-to-peer computing call for very complex software systems that effectively support enterprise processes online. To build such systems, practicing software engineers are discovering the importance of using organizational modeling techniques for guiding and supporting the software production process. In this context, the i* framework (Yu, 1995) is one of the most well-founded organizational modeling techniques today. In this framework, the focus of the modeling activity is placed on (a) the representation of the social and intentional relationships among the network of actors of an enterprise, and (b) the representation of the internal behaviors needed to satisfy actor dependencies. The i* framework offers a well-founded and widely used set of concepts for describing organizational settings made up of social actors who have freedom of action, but also depend on other actors to achieve their goals.

At present, almost all the current research works in the i* framework have been oriented to extending and enriching their semantics to fit different applications and domains. In this context, the i* framework and its methodological extensions such as GRL (Liu & Yu, 2003) and Tropos (Bresciani, Perini, Giorgini, Giunchiglia, & Mylopoulos,
2004) have been used as powerful analysis techniques in a wide range of application domains: organizational modeling (Kolp, Giorgini, & Mylopoulos, 2003), object-oriented system development (Castro, Alencar, Cysneiros Filho, & Mylopoulos, 2001; Martínez, Castro, Pastor, & Estrada, 2003), software requirements elicitation (Estrada, Martínez, & Pastor, 2003; Maiden, Jones, Manning, Greenwood, & Renou, 2004), agent system development (Bastos & Castro, 2003; Bresciani et al., 2004), selection of components (Carvallo, Franch, Quer, & Rodríguez, 2004), nonfunctional requirements (Chung, Nixon, Yu, & Mylopoulos, 2000), security, trust, and privacy (Giorgini, Massacci, Mylopoulos, & Zannone, 2005; Yu & Liu, 2001), and more. In all these applications, i* concepts have been used to capture social and intentional elements of each specific domain, thereby supporting software development. However, despite well-known theoretical advantages of the i* modeling approach, there are certain issues that still need to be improved to assure their effectiveness in practice. In order to accurately evaluate the strengths and weak spots of the i* framework in real case studies, empirical evaluations of this framework must be conducted in practice. In this chapter, we present such an evaluation.

One of the main contributions of this chapter is the description of the empirical evaluation framework with real projects in a software development company that uses model-driven tools for software development. The evaluation framework has been designed keeping in mind that it is to be used within model-based software development environments. Another contribution of this work is the justification of a consensus reached in assigning certain values to the issues identified in the evaluation framework. Finally, a set of problems to be considered in the definition of future versions of i* is identified, and an approach to solving the problems is identified.
In accordance with these objectives, the chapter is structured as follows. Section 18.2 presents an overview of the i* framework. Section 18.3 presents related works. Section 18.4 describes the evaluation framework we used to assess i*. Section 18.5 presents the results of the evaluation conducted during the case studies, and identifies problems with i*. Section 18.6 presents a solution to the problems identified in section 18.5. Finally, section 18.7 concludes and briefly discusses future work.

<H1>18.2 An Overview of the i* Framework</H1>

The i* modeling framework (Yu, 1995; reprinted as chapter 2 of this book) views organizational models as networks of social actors that have freedom of action, and depend on each other to achieve their objectives and goals, carry out their tasks, and obtain needed resources.

The i* framework is made up of two models that complement each other: the Strategic Dependency model for describing the network of interdependencies among actors, as well as the Strategic Rationale model for describing and supporting the reasoning that each actor goes through concerning its dependencies on other actors. These models have been formalized using intentional concepts from artificial intelligence, such as goal, belief, ability, and commitment.

A Strategic Dependency model (SD) is a graph involving actors who have strategic dependencies among each other. A dependency describes an “agreement” (called dependum) between two actors: the depender and the dependee. The depender is the depending actor, and the dependee is the actor who is depended upon. The type of the dependency describes the nature of the agreement. Goal dependencies represent delegation of responsibility for fulfilling a goal; softgoal dependencies are similar, but their fulfillment cannot be defined precisely (e.g., because it is subjective and/or partial). Task dependencies require the dependee to perform a given activity, and resource dependencies require the dependee to provide a resource. In i* diagrams, actors are represented as circles; goals, softgoals, tasks, and resources are respectively represented as ovals, clouds, hexagons, and rectangles. Dependencies have the form depender (dependum (dependee. In the SD model, the internal goals, plans, and resources of an actor are not explicitly modeled. The focus in such models is on external relationships among actors.

The Strategic Rationale model (SR) represents through means-ends relationships how stakeholders’ goals and softgoals can actually be fulfilled through the contributions of other actors. A Strategic Rationale model is a graph with four types of nodes—goal, task, resource, and softgoal—and two types of links. Means-ends links represent alternative subgoals/tasks for fulfilling a goal/task, and decomposition links represent necessary subgoals/tasks for fulfilling a goal/task. A Strategic Rationale graph explains and accounts for each actor's dependencies on other actors.
<H1>18.3 Related Work</H1>

At present, the i* framework and its methodological derivations (GRL and Tropos) are considered among the most relevant agent-modeling techniques. In this context, several research efforts have been made to evaluate and compare them with other relevant agent-based techniques.

Shehory and Sturm (2001) propose a feature-based framework for evaluating and comparing agent-oriented methodologies. The framework examines various aspects of each methodology: concepts and properties, notations and modeling techniques, processes and pragmatics.

Sturm and Shehory (2003) used the features catalog represented in their framework to perform an empirical evaluation of the Gaia methodology (Wooldridge, Jennings, & Kinny, 2000). More recently, the same authors (Sturm & Shehory,
2004) used the proposed framework in addition to an empirical evaluation based on case studies to perform an evaluation and comparison analysis of several agent-oriented methodologies including Tropos, Gaia, Multiagent Systems Engineering (MaSE) (DeLoach, Wood, & Sparkman, 2001), and OPM/MAS (Object Process Methodology/ Multiagent Systems) (Sturm, Dori, & Shehory, 2003). The case studies employed students taking a computer science course. An important contribution of this work is the use of a framework for evaluating and comparing agent-oriented methodologies that is based on a set of predefined criteria or features.
Dam and Winikoff (2003) also performed a feature evaluation analysis of agent methodologies (MaSe, Prometheus [Padgham & Winikoff, 2002], and Tropos) using an attribute-based evaluation framework. The evaluation was carried out by comparing the strengths and weaknesses of each evaluated methodology based on the set of relevant features. In this evaluation, a set of summer students developed the same case study using different methodologies. The students then filled out a questionnaire to give feedback about their experience in understanding and using the methodologies based on the selected features. The authors of this evaluation also collected comments from authors of the methodologies, using the same questionnaire that the summer students had completed. One of the interesting elements of this work is the attempt to eliminate misconceptions by taking into account comments from the authors of each methodology.

Along similar lines, Sudeikat, Braubach, Pokahr, and Lamersdorf (2004) present an evaluation framework for the evaluation of agent-oriented methodologies that takes platform-specific criteria into account. The specific objective of this study was to determine how the methodologies under evaluation (MaSe, Tropos, and Prometheus) match up with the Jadex agent platform.

Our empirical evaluation is somewhat different from all of the aforementioned. First, our evaluation focuses on a modeling framework rather than a software development methodology. Second, the object of our study is a specific modeling framework, rather than a comparison of several. Moreover, our evaluation studies how well i* matches a specific software development context (model-based software generation) in practice, rather than analyzing i* in the abstract. Moreover, other evaluations of agent-oriented methodologies (including Tropos) involve academic case studies performed by students. This represents a major limitation of these studies (because students are novices, rather than professional analysts), and a major point of difference from our work.

There are also reported studies that use i* for some application. In most of these studies, the modelers were well-acquainted with i* concepts and their use. We have detected a scarcity of experiments in which i* is evaluated in practice by modelers who are not used to working with i* and who do not perform organizational modeling as a current task in their modeling activities. This chapter presents such a practical evaluation that fills this gap.

<H1>18.4 A Feature-Based Evaluation Framework</H1>
The empirical study of i* was based on a feature-based framework. Such a framework consists of a set of features that can be properties, qualities, attributes, or characteristics. An evaluation was conducted by evaluators who assigned a judgment (value) of how well each feature was supported by the subject of the evaluation. For our study, the features were selected on the basis of their relevance to model-driven software generation.
<H2>18.4.1 Context of the Empirical Evaluation</H2>

One of the contributions of this chapter is the use of the i* framework in real-life projects of a software development company with analysts who have no previous knowledge of i*. This is done in order to accurately detect the strengths and weaknesses of the i* framework in practice and to provide recommendations for solutions to the problems detected. In order to do this, we have conducted an empirical evaluation of i* based on industrial case studies.

The case studies were conducted in collaboration with Care Technologies (http://www.care-t.com), a software company that has adopted the OO-Method for software development. OO-Method is a model transformation method that relies on a CASE (computer-aided software engineering) tool (Pastor, Gómez, Insfrán,
 & Pelechano, 2001) to automatically generate complete information systems from object-oriented conceptual models.

The OO-Method can be viewed as a computer-aided requirements engineering (CARE) method in which the focus is on properly capturing system requirements in order to manage the complete software production process. The resulting conceptual model specifies what the system is (problem space). Then, an abstract execution model is provided to guide the representation of these requirements in a specific software development environment that is focused on how the system will be implemented (solution space).

The abstract execution model is based on the idea of transforming a set of precise conceptual modeling constructs into their associated, concrete software representations. The implementation of the corresponding set of mappings between conceptual constructs and software representations constitutes the core of a conceptual model compiler. The OO-Method approach provides a well-defined software representation of the required representations in the solution space. A concrete execution model based on a component-based architecture has been introduced to deal with the peculiarities of component-based systems. The transformation process from problem space concepts to solution space representations opens the door to the generation of executable software components in an automated way. Taken together, these software components constitute a software product that is functionally equivalent to the requirements specification collected in the conceptual modeling step. A graphical representation of the strategy of the OO-Method approach is presented in figure 18.1.

[Figure 18.1 here]
The conceptual model is divided into five system views, which include the object, dynamic, and functional models. They are supported by the navigational and presentation models, which are oriented to model human-computer interaction aspects. All the information has a formal basis provided by a formal, object-oriented specification language called OASIS (Pastor, Hayes, & Bear, 1992), from which all the conceptual constructs get their formal semantics. This specification constitutes a high-level data dictionary, which is the input for the final model transformation process that produces the software product.

The major advantage of the OO-Method is in automatically generating information systems, but there are disadvantages as well. Specifically, there are currently no mechanisms for acquiring the requirements of an information system. Accordingly, the next step in further developing the OO-Method consists of adding a new phase of organizational modeling as a starting point from which to determine the correct requirements for the information system-to-be.

In performing the empirical evaluation, our objective was to determine possible extensions to i* that would make it suitable for inclusion in the OO-Method modeling and methodological framework. The main idea of this approach is the generation of a modeling process that uses the intentional and social characteristics of the i* to generate the requirements of the information system-to-be. There are some preliminary results of this approach in Martínez et al. (2003) and Martínez, Pastor, and Estrada (2005). Consequently, the features selected for measurement in this empirical evaluation are inspired by model-driven approaches.

<H2>18.4.2 Type of Empirical Evaluation</H2>

The empirical study of i* was based on a feature-based framework. Such a framework consists of a set of features that can be properties, qualities, attributes, or characteristics. These features can describe the evaluated methodology well enough so that it can be assessed for a particular purpose (Dam & Winikoff, 2003). To evaluate a methodology using a feature-based evaluation, the evaluators assign a judgment (value) of how well each feature was supported by the subject of the evaluation.

The feature-based evaluations can be useful for assessing how much support a methodology appears to provide for a specific domain. This is done by selecting features that are relevant to the application domain of interest and evaluating the methodology against this set of relevant features. Therefore, this kind of evaluation is appropriated for the objective of our research work, because we tried to evaluate a specific set of relevant features in the context of the model-driven software generation approach of Care Technologies, rather than making an evaluation of an extensive list of features.

<H2>18.4.3 Population Background</H2>

The empirical evaluation was implemented using three real-life projects that were developed in parallel by three development teams. The composition of the development teams was as follows:

<BL>
· Team 1: Experts in requirements engineering. These analysts were experts in the use of advanced tools for generating conceptual schemas from requirements models, with a high degree of automation in the corresponding transformation process. At the beginning of the evaluation, this team had limited knowledge of i*.
· Team 2: Experts in programming. These analysts were experts in the use of the CASE tool for automatically generating information systems from conceptual models. At the beginning of the evaluation, this team had no knowledge of i*.
· Team 3: Experts in i* modeling. These analysts were experts in the use of i* for organizational modeling.</BL>
In our evaluation, which took nine months, the case studies were conducted in isolation, that is, with no exchange of information among the participant teams. This was done in order to avoid the empirical analysis being affected by the different levels of knowledge about i* by the teams involved.
<H2>18.4.4 Evaluation Design</H2>

The empirical evaluation of the i* framework was conducted in five steps:

<BL>
· The first phase of the empirical evaluation consisted of the determination of a set of relevant issues to be measured in the empirical evaluation. The relevance of the issues was given by the model-based transformational approach of the company at which the analysis was developed.

· The second step consisted of training the three teams; details about the concepts and proper use of i* were given out, using original i* sources and basic teaching support.
· The third phase of the empirical evaluation consisted of the use of the i* framework to develop the selected case studies.

· The fourth phase consisted of the evaluation of the results of each team. To accomplish this, each participating team evaluated i* for each relevant feature.
· The fifth phase consisted of analyzing the results and drawing conclusions about the strengths and weaknesses of i*. </BL>
Figure 18.2 presents a graphical representation of the strategy selected to perform the empirical evaluation.

[Figure 18.2 here]
<H2>18.4.5 The Selected Case Studies</H2>

As mentioned above, the case studies are real projects of Care Technologies. Next, we briefly describe the case studies that were analyzed.
<LL>

a) Technical meeting management. This case study implied the modeling of the processes associated with review papers for a technical meeting, as well as the processes to manage the operative aspects of the organization of the meeting.

b) Golf tournament management. This project implied the modeling of the business processes for organizing golf tournaments validated by the Spanish Golf Federation. The case study included the processes for registering golfers, creating matches, assigning controllers to specific holes of the golf course, and obtaining and publishing partial and final results for each match.

c) Car rental management. This project dealt with the modeling of the process for a car rental company in Alicante, Spain. The case study included the processes for renting cars and additional services, as well as for buying new cars for the rental company.</LL>
The goal of the development teams was to represent relevant business processes for each project, using i*. For the technical meeting management case study, the organizational environment involves a large number of interactions among participant actors, and a relatively small number of actors´ internal elements.
 For the golf tournament management case study, the organizational environment concerns a large number of actors´ internal activities and a small number of actor interactions. On the other hand, the car rental management case study involves an organizational context with a large number of actors’ internal activities and actors’ interactions. Thus, the case studies had rather different organizational characteristics and ensured that our study would not be biased
because of similarities in the case studies chosen.

<H2>18.4.6 Evaluation Framework Features</H2>

The empirical evaluation of i* was based on a set of features that have been considered highly relevant in the context of a model-based software development environment. In this specific context, the modeling primitives of a model must provide precise, bidirectional traceability with subsequent stages of the modeling process. It is important to note that the experiment was designed for practicing analysts who are used to dealing with software production concepts such as model-driven architectures, code generation, object-oriented analysis, and late (conventional) software requirements specifications, rather than analysts who are familiar with early requirements. After all, we expect that this will be the normal scenario for i* use in software production companies. Therefore the determination of relevant features for the study was perhaps the most critical step in the whole evaluation process.

In order to assure the correct selection of those criteria to be evaluated, we based our evaluation on relevant features that have been proposed in the literature to evaluate agent-oriented methodologies. Specifically, to evaluate the i* framework, we based our evaluation framework on proposals from Dam and Winikoff (2003), Padgham, Shehory, Sterling, and Sturm (2005), and Sturm and Shehory (2003) to compare agent-oriented methodologies. By including features used in three different studies, we have tried to avoid biases that arise from using a single set of features that might be well suited for i*.
The empirical evaluation considered two main aspects of the i* framework: (a) modeling language (refinement, modularity, repeatability, complexity management, expressiveness, traceability, and reusability) and (b) pragmatics of the modeling method (scalability and domain applicability). The features selected for these aspects are listed below.

<BL>
· Refinement: This feature measures the capability of the modeling method to refine a model gradually through stages until the most detailed view is reached (Bergenti, Gleizes, & Zambonelli, 2004). This is a relevant feature because it allows analysts to develop and fine-tune design artifacts at different levels of granularity during the development process (Dam & Winikoff, 2003).

· Modularity: the degree to which the modeling language offers well-defined building blocks for building the model.
 The building blocks should allow the encapsulation of internal structures of the model in a concrete modeling construct. This characteristic ensures that changes in one part of the model won’t have to be propagated to other parts.

· Repeatability: the degree to which the modeling technique generates the same output (i.e., same models), given the same problem. This is a very relevant feature in the context of model-driven approaches, in which each modeling element during a specific step of the modeling process corresponds to a modeling element in subsequent steps. Repeatability ensures that a correct result is obtained when a transformation between models is applied. We use this feature to evaluate whether we obtain the same i* model when the same domain is modeled by different modelers.

· Complexity Management: This feature measures the capability of the modeling method to provide a hierarchical structure for its models, constructs, and concepts. Model management is a fundamental problem in industrial project settings.

· Expressiveness: the degree to which the application domain is represented precisely in terms of the concepts offered by the modeling technique. More concretely, this feature measures the degree to which the modeling technique allows us to represent static, dynamic, intentional, and social elements of the application domain.

· Traceability: the capability to trace modeling elements through different stages of the modeling process. This feature is important because it allows the user to verify that all elements of one model (e.g., capturing requirements) have corresponding elements during the analysis and design stages, and vice versa. Traceability makes it possible for the analyst to move back and forth between models corresponding to different development stages (Dam & Winikoff, 2003).

· Reusability: the degree to which models can be reused. As with software code, this feature is causally related to modularity. If the modeling technique allows the definition of modules, general cases (patterns) can be defined for reuse.

· Scalability: the degree to which the modeling framework can be used to handle applications of different sizes. Scalability also measures the degree to which the inclusion of new modeling elements leaves the understandability of models (also known as extensibility) unaffected. This feature is causally related to refinement and modularity.

· Domain Applicability: the degree to which the modeling framework matches modeling requirements for a particular application domain.</BL>

This is the set of characteristics that we have selected to accomplish the evaluation tasks. It is true that, for some of the features chosen, one can evaluate i* (or any other modeling framework, for that matter) on theoretical grounds alone. However, in our study of i*, we wanted to include a practical evaluation as confirmation of any preliminary theoretical suppositions. Moreover, clearly the chosen features interact. For instance, better modularity management obviously contributes to easier complexity management. Likewise, reusability contributes to scalability. We are studying such correlations and hope to integrate them into the evaluation framework for future studies. For this work, we focus on the application of the proposed set of features in evaluating i* in practice.

<H1>18.5 The Evaluation Results</H1>
The evaluation was conducted over a nine-month period. The average sizes of the models generated by the three teams were as follows: (1) technical meeting management: 12 actors, 55 dependencies, 70 actors´ internal activities; (2) golf tournament management: 8 actors, 42 dependencies, 103 actors´ internal activities; (3) car rental management: 13 actors, 143 dependencies, 219 actors´ internal activities.

The evaluation assigned one of three possible values (Well supported, Not well supported, and Not supported) to each feature. Another output of the evaluation was a list of reasons given by the analysts for a judgment passed. In order to make the evaluation consensual, a meeting was held at the end of each case study. In these meetings, produced diagrams and personal evaluations were presented and discussed. The meetings included in-depth discussions for each feature in order to reach consensus and a final judgment.

One interesting result of the evaluation concerns the differences in the models produced by the participating teams. The members of Team 1 were experienced in requirements modeling, although not used to modeling in terms of goals, actors, and dependencies. They understood well the concepts underlying i* (after all, requirements concepts match i* modeling well), and were enthusiastic about using i* in practice. In this case, resulting models were partially compliant with i* philosophy. Moreover, the analysts of this team detected several areas in which i* lacked mechanisms to guarantee the usefulness of organizational models in generating system requirements.

 In Team 2, the analysts were used to working with class diagrams, because state and functional models were part of their ongoing modeling
 activities. In this case, i* social and intentional concepts were rather unfamiliar, and the analysts tried to use the concepts in the same way they used the concepts they were accustomed to. In this case, resultant models were less compliant with i* modeling philosophy. Moreover, these analysts had a lot to say about the lack of precise definitions for i* concepts and guidelines for generating i* models.

The analysts for Team 3 were experienced i* modelers. In this case, resulting models were completely compliant with i* modeling philosophy. However, these models were often too abstract for generating software requirements.

Table 18.1 presents a summary of the results obtained from the evaluation. The first column indicates the type of each feature, the second column lists the feature itself, and the third column indicates the judgment passed on each feature.

[Table 18.1 here]

Let us point out that one of the contributions of this empirical evaluation is the presentation of information about the reasons for the analysts to give a certain evaluation to each of the selected issues. In this section, we present the arguments to justify the consensus reached when analyzing the values assigned to each one of the issues of the evaluation framework as a result of the performed experimentation. An in-depth analysis must be done in order to determine if the results obtained from our empirical evaluation could be similar to those obtained applying the evaluation framework outside the context of a model-driven development process. At present there is no precise evidence to indicate that our result can be interpolated to other application domains.

<H2>18.5.1 Analysis of the Framework Values</H2>

Once the values for each feature were assigned by the participant teams, the next step was to understand and justify these values. To do this, an explanation for the assigned values was obtained by consensus of the participant teams. The explanation for each feature is presented below.

<NL>
1) Feature: Refinement. Evaluation: Not Well Supported
Explanation: There are two types of refinement supported by i*: (1) refinement of strategic dependency models in terms of a more detailed Strategic Rationale model, in which one can see why actors depend on each other; (2) refinement of actor goals into more concrete subgoals. However, the literature using i* includes many examples in which a rationale model is not the result of a refinement of a dependency model. This kind of refinement can be performed in the boundaries of an actor model.

These types of refinement are useful when analyzing small case studies. However, they have severe limitations when the model grows in size and complexity. The dependency model is too concrete to serve as starting point for the analysis of a large enterprise. In such cases, it may contain many actors with a large number of dependencies corresponding to different business processes, whose union constitutes a very complicated model to manage.

The current version of i* does not include modeling primitives that allow one to start the modeling process of an enterprise with abstract concepts. These concepts would allow us to incrementally add more detail —using other, more specific, modeling primitives—until we reach concrete models of business processes and their actor dependencies. There are also no concepts to structure the different functional units of a complex organization. As a consequence of this absence of high-level refinement facilities, the modeling of complex systems that involve a large number of dependencies among many different actors is problematic for i*.

2) Feature: Modularity. Evaluation: Not Supported
Explanation: Based on the empirical evaluation, it was concluded that modularity is not supported in i*. This is the case because i* doesn't have mechanisms for using building blocks that can be logically composed to represent different organizational fragments (e.g., business processes). In this context, if a new organizational process is added, this may affect all models constructed so far.

The lack of modularity mechanisms in i* can be viewed as a consequence of its focus on actor modeling rather than on business process modeling. The modeling mechanisms of i* are oriented toward the definition of the behavior of the organizational actors (to satisfy their goals and dependencies) rather than being oriented to the definition of high-level views of the organizational business processes.

Due to this the lack of modularity, Strategic Rationale models represent a monolithic view in which all elements of an enterprise are represented at the same abstraction level without considering any sort of hierarchy. Figure 18.3 shows an example for the technical meeting management case study in which the goal dependency obtain quality reviews and other dependencies associated with this goal (the task dependency send reviews on time, and the resource dependency reviews) are represented at the same abstraction level. This makes it impossible to distinguish the hierarchical level of these concepts, which are represented as dependencies in the same diagram.

[Figure 18.3 here]
3) Feature: Repeatability. Evaluation: Not Well Supported
Explanation: One of the key points for ensuring repeatability in a modeling method is the definition of a precise, formal semantics for the modeling constructs. In principle, the modeling constructs of i* have been defined using formal descriptions and metamodeling diagrams. These definitions are useful for expert analysts in early requirements. However, for those who are not experts in i*, these definitions do not provide the necessary, precise support to determine which modeling construct to use when. This problem can also be noted in the i* literature. There are several examples in which very similar settings have been modeled using different primitives.

It is also possible to find in the literature examples of dependencies that do not satisfy the basic semantics of an actor dependency (vulnerable actor, actor who decides how to fulfill the dependency, type of dependum). For example, we found cases in which the dependee of a dependency was incorrectly used as the vulnerable actor, instead of the depender. In another example, we found cases in which the dependee of a dependency was incorrectly treated as the actor who prescribes the actions to perform for a delegated task (task dependency), instead of following the guidelines of always placing the depender as the actor that prescribes a task dependency. As a consequence of these situations, it is difficult to ensure that a reasonable degree of repeatability is achievable with i*.

Figure 18.4 shows an example of these repeatability problems. In this example, taken from the golf tournament management case study, the process for “Pay for registration in tournament” was represented in two different ways by the participating analysts: either as a task dependency (on the right side of the figure), in which the focus was placed on the activity to be executed; or as a resource dependency (on the left side of the figure), in which the focus was placed on the payment, which was viewed as a concrete resource relating the actors involved.

[Figure 18.4 here]
4) Feature: Complexity Management. Evaluation: Not Well Supported
Explanation: In the current version of i*, it is possible to analyze an enterprise model using two different viewpoints: the Strategic Dependency model and the Strategic Rationale model. These viewpoints are useful for small cases, but they are not adequate for dealing with large and complex problems. There are no mechanisms for defining a high-level view of the whole process executed in the enterprise. This high-level view would be properly decomposed following a model-within-a-model strategy, in which lower-level descriptions are created separately, incorporating all relevant detail.

The limitation
s in the mechanisms that are provided for managing the system complexity make modeling in i* unnecessarily complicated. The lack of hierarchies leads to problems such as (a) it is difficult to determine where to start the analysis; (b) it is difficult to determine the elements of the model that correspond to each organizational process and/or unit. The lack of hierarchies produces models in which several business processes are represented and all mixed together in the same diagram, without any indication of the ownership of each low-level activity nor any information about the boundaries of each individual process.

Figure 18.5 shows the graphical representation of a model in which several business processes are represented and all mixed together in the same diagram, without any indication of the ownership of the low-level activity or any information about the boundaries of each individual process.

[Figure 18.5 here]
5) Feature: Expressiveness. Evaluation: Well Supported
Explanation: There was unanimous agreement among all participants in this experiment that i* indeed provides a very interesting set of conceptual primitives that make it possible to build pure organizational models on top of conventional requirements models (mostly, use case-based models). Analysts also agreed on the importance of linking early requirements and late requirements, as a way of connecting software engineering practices with organizational design tasks that are too often performed in isolation by consultants.

The i* framework was deemed adequate for capturing the relevant concepts of the enterprise, providing mechanisms for representing (a) the social structure of the enterprise, (b) the intentional aspects of the organizational actors, (c) the activities needed to satisfy the goals of the organizational actors, (d) the relevant resources in the business processes, (e) the ability to represent roles, positions, and agents to describe the organizational actors, (f) the architecture of the enterprise, and (g) the interaction between the system and external agents.

These conclusions account for the difference between i* and other modeling techniques, which are not as well equipped to represent the social and intentional reasons that underlie the operation of an enterprise. The empirical evaluation allowed us to demonstrate that building an i* organizational model is very useful for detecting the following problems:

<SL>Bottlenecks: This is the case in which an actor concentrates a large number of incoming dependencies from other organizational actors. In this case, a failure or delay in this organizational actor could cause a chain reaction in the entire enterprise. The bottleneck problem could be detected by analyzing the dependencies in which an actor plays the role of dependee in several dependency relationships. We are not aware of other modeling frameworks that account for this kind of analysis. Figure 18.6 shows a graphical representation of bottlenecks in a business process represented in the i* framework.

[Figure 18.6 here]
Vulnerabilities: One of the key advantages of i* is the explicit representation of vulnerabilities of organizational actors. In this case, if an actor participates in too many dependencies as depender, this actor could then become vulnerable if any of the dependee actors fail to deliver on their respective dependencies. Figure 18.7 shows a graphical representation of vulnerabilities in a business process represented in the i* framework.

[Figure 18.7 here]
Critical responsibilities: This is the case in which an actor concentrates many goal dependencies, which indicates that the actor has many critical responsibilities in the business process. In this case, it may be that the actor has excessive responsibilities and needs help, or at least monitoring. Figure 18.8 shows an example of this situation.</SL>
The explicit representation of these organizational situations is the basis for performing a useful business process reengineering analysis.

[Figure 18.8 here]
<NL>
6) Feature: Traceability. Evaluation: Not Well Supported
Explanation: i* provides modeling flexibility for adding elements to individual Strategic Dependency and Strategic Rationale models. This means that new dependencies can be added to a rationale model that were not previously considered in the corresponding dependency model (Figure 18.9), and vice versa. This is sometimes useful with respect to modeling flexibility. However, it is also true that this could have negative effects for model-driven approaches, in which the elements of a model must have counterparts in previous models. We conclude that i* lacks guidelines for deriving elements of rationale models from corresponding elements of dependency models.

[Figure 18.9 here]
7) Feature: Reusability. Evaluation: Not Supported
Explanation: i* does not offer clear mechanisms for properly managing reusability of parts of an organizational model. As mentioned earlier, the lack of good reusability capabilities is a consequence of the absence of mechanisms for modularization. The lack of conceptual building blocks with the required granularity makes it very complicated to reuse certain fragments of a model. Moreover, i* lacks view definition mechanisms (in the sense of database views) for selecting parts of a monolithic model that capture new viewpoints.

As a consequence of this weakness, modeling projects using i* must too often start from scratch, without taking advantage of previous projects for similar domains.

8) Feature: Scalability. Evaluation: Not Supported
Explanation: This is probably the best-known and most widely acknowledged problem of i*. There are simply no clear mechanisms for managing the scalability of strategic models in i*.

For small problems i* clearly works fine. However, when the modeling problem grows in size and complexity, the large number of elements represented in the same diagram makes their systematic use and analysis very complicated, when not completely impossible. The scalability problem is also a direct consequence of the lack of mechanisms for modularization, and the inability to put together an abstract view of the high-level business processes of an enterprise. Consequently, all modeling elements for representing the semantics of a specific business process must be placed in the same diagram. Figure 18.10 shows an example of the high number of modeling elements in a diagram for only a fragment of a business process. And this is a very small fragment of the case study.

[Figure 18.10 here]
In summary, the lack of mechanisms for managing scalability is one of the greatest problems for the real applicability of i* modeling.

9) Feature: Domain applicability. Evaluation: Well Supported
Explanation: i* has an ontology and a corresponding notation that we found well suited for organizational modeling. It is also appropriate for the analysis of late requirements. The conceptual primitives are expressive enough to be applied in different domains, and they are appropriate for expressing properties that an organizational model must include. The semantics of the social concepts could also be applied, for example, to present dependencies within and between communities of systems, or even to represent the dependencies between an information system and its stakeholders.</NL>
<H2>18.5.2 Discussion</H2>

The main conclusion of this empirical evaluation is that i* needs to be extended with mechanisms that manage granularity and refinement in models, as discussed below:

Granularity: Many of the negative results in the evaluation of i* are related to the lack of mechanisms for defining granules of information at different abstraction levels, and of composition mechanisms for composing these granules. This problem becomes evident when the modeling problem grows in size and complexity. In these cases, nonexpert i* users have difficulties with the scalability of their model. The result of this scenario is usually an overloaded monolithic model that contains all relevant details of a social and intentional setting. Any activity that tries to extend, analyze, adapt, or reuse parts of such a model is bound to be complicated and error-prone. To avoid this problem, it is necessary to provide precise conceptual constructs representing building blocks that break the monolithic structure of i* models, as well as composition mechanisms. Then, encapsulated model units could be created, analyzed, and reused in an independent way. The practical implication of the granularity solution is the introduction of viewpoints that go beyond the actor viewpoint. For example, process viewpoints could give an orthogonal view for an organizational model. Note that for this extension, no modifications are needed to the original set of i* modeling constructs.

Refinement: Apart from the definition of abstract primitives as building blocks, analysts must be provided with guidelines that allow them to structure a complete enterprise model. One way to achieve this consists of using concrete specification units to create the models, following a refinement-based approach. In this way, the modeling process starts with a high-level view of the enterprise. Then, each element of this high-level view is refined into a more concrete model. Viewpoint mechanisms are a very promising direction to help manage the complexity of modeling activities. A viewpoint on a system involves a perspective that focuses on specific concerns regarding the system while suppressing irrelevant details (Sinan, 2003). A promising strategy toward this direction would be to guide the organizational modeling process using selected viewpoints. The refinement process enables us to join the advantages of social modeling with a compositional approach to create the organizational models in an incremental way.

<H1>18.6 The Proposed Solution: The Business Service Approach</H1>
Our proposed solution for improving the i* organizational modeling process is based on the hypothesis that it is possible to focus the organizational modeling activity on the values (services) offered by the enterprise being modeled to its customers. At this modeling stage, we will call such services business services. Following this hypothesis, the proposed method provides mechanisms for guiding the organizational modeling process based on the business service viewpoint.

Using this approach, the monolithic structure of i* strategic rationale models can be broken down into several business services (figure 18.11). These business services can be used as the basic granules of information that allow us to encapsulate a set of i* business process models.

[Figure 18.11 here]

One of the practical implications of this proposal is that we change the focus of the modeling activity from the actor’s viewpoint toward the service’s viewpoint. In the current states of i* and Tropos, the modeling process starts by determining the relevant actors in the organizational setting and also by determining the goals they want to fulfill. The next step consists of determining the tasks needed to satisfy the actors´ goals. As result of this analysis of the actor’s goals, the delegations of responsibilities to other actors must also be detected. These delegations are represented using the concept of strategic dependency. As result of this modeling process based on actors, the current mechanisms for decomposition, refinement, and modularity in i* are limited only to the actors´ boundaries.

In our business service approach, the modeling process starts by considering the enterprise as a service provider and by eliciting the services that the enterprise offers to end customers. The next steps consist in determining the way in which the business services permit the satisfaction of the enterprise goals. Once the services have been elicited, we need to refine each service into the set of business processes needed to perform it. As a result of this new approach, the mechanisms for decomposition, refinement, and modularity are focused on business services.

With this proposed approach, we can take advantage of the powerful intentional and social characteristics of i* joined with a compositional modeling process, which could be more comfortable for analysts not expert in i*.

<H2>18.6.1 What Is a Business Service?</H2>
Several definitions of service have been proposed according to the application domain in which the concept is used. Most software engineers associate the concept of service with Web services or e-services. However, there is not currently a consensus about how to define either Web services or e-services.

We define a business service as a functionality that an organizational entity (an enterprise, functional area, department, or organizational actor) offers to other entities in order to fulfill its goals. To provide the functionality, the organizational unit publishes a fragment of the business process as an interface with the users of the service. The business services concept refers to the basic building blocks that act as the containers in which the internal behaviors and social relationships of a business process are encapsulated.
The idea of our approach is to introduce a precise conceptual hierarchy consisting of business services that are refined into business processes that are finally implemented in what we will call business protocols, which constitute the lowest-level i* specification. The organizational modeling process starts with the definition of a high-level view (Business Service Model) of the services offered and used by the enterprise. Then, each business service is refined into more concrete processes which are modeled and represented in a Business Process Model. Later, the semantics of the protocols and transactions of each business process is represented in a Protocol Model using the i* conceptual constructs (figure 18.12).

[Figure 18.12 here]
In this proposal, two types of business services are distinguished: exposed business services and supporting business services.

An exposed business service is a functionality that an enterprise offers to end customers. Therefore, services of this kind are requested by a number of external customers that use the service interface to interact with the service provider.

To provide this functionally, the enterprise publishes a fragment of a business process as the interface with the potential customers. The customers interact with business services in a manner prescribed by the restrictions imposed by the enterprise that offers the corresponding service or by external entities that regulate the service.

In accordance with this service classification, the organizational models that are candidates to be modeled using exposed business services are those that offers a certain fragment of the business model (functionality) to potential customers (persons or companies) for requesting and using the service. Figure 18.13 shows the example of the exposed service Walk-in rental offered by a Car Rental Company to potential Walk-in customers. We use the concept of dependency to indicate that the customers depend on the rental company to use the service for fulfilling their strategic goals. This dependency also indicates that the company offers the service to potential users.

[Figure 18.13 here]
A supporting business service is a functionality that an organizational entity (functional area, department, organizational actor) offers to internal entities of the enterprise. In this case, the supporting business service represents the means that fulfill the end (in the sense of the goal represented by the exposed business service). The supporting business services provide support to business processes or to other supporting business services. In the same way that an exposed business service can provide a supporting function to multiple external end customers, supporting services can be requested and consumed by multiple business services or business processes.

Figure 18.14 shows an example of exposed business services associated with the exposed service Walk-in rental. In this example, the organizational unit responsible for offering the service uses the services offered by other organizational units. In the example, a branch could request a car from another associated branch (of the same company) if it does not have a car available at that moment. The branch can also request an analysis of the customer to approve or deny the rental of a car.

[Figure 18.14 here]
The distinction between supporting and exposed services makes it possible to create a consistent organizational model made up of the set of business services. This allows us to encapsulate organizational behaviors in cohesive building blocks. In this model, the business services are linked with the goals of the enterprise. In this way, it is possible to make explicit how the services are used to satisfy the enterprise goals. This model, which represents an abstract view of the services offered by the enterprise, is called a Global Service Model. It can be used to create the first agreements with the enterprise stakeholders. It is also possible to provide a simplified representation of the Global Service Model, showing only the actors and services involved and hiding the goals of the organizational actors. Figure 18.15 shows the abstract representation of some exposed business services of the car rental management case study.

[Figure 18.15 here]
It is important to point out that the concept of services that we use in this chapter concerns functionalities at the organization level and interactions among organizational actors and companies, rather than functionalities offered by software systems and machine-to-machine interactions (such as Web services). In this context, business service modeling is used to accurately determine the kind of organizational
work performed by the organization, which is independent of any future, concrete implementation. An implementation might be done using Web services, but it is important to avoid the potential confusion associated with the use of the term “service.” Business services are high-level descriptions of basic, cohesive, and relevant activities of a given organization.

<H2>18.6.2 A Business Service Architecture for the i* Framework</H2>
To make the practical application of the business service orientation possible, a business service architecture must be introduced. This architecture must provide a definition and a precise alignment for the concepts used in the proposal. We have also developed a metamodel (to be published soon)
 to help understand business services and the relationships among the components of this model.

Some of the definitions of the business services architecture are adaptations of the concepts presented in the W3C description for Web services architecture (W3C Working Group, 2004). This was a conscious decision to be able to generate a definition that is compliant with the current standards for defining services.

<H3>18.6.2.1 Actors and Services</H3>
A business service should be viewed as an abstract set of functionalities that are provided by a specific actor. In this proposal, the business actor concept models an intentional organizational entity, such as a person, functional area, department, or enterprise, that uses or offers services. However, businesses are organized hierarchically, where some actors are subordinate to others. Accordingly, we introduce the concept of composite actor structure in order to represent the hierarchical relationships between the actors. The concept of composite actor involves the representation of organizational actor hierarchies, which allows us to explicitly analyze the delegation of responsibilities for properly providing a service.

One important issue in representation of actors and services is the determination of responsibilities for performing business service tasks. In this context, an actor can be responsible for the service, but this actor often does not take part in the active implementation of the service, which is delegated to other actors. Based on this knowledge, it is possible to categorize actors into three different types. We have determined two kinds of internal actors, those actors that are responsible for the business service (normally these actors are the department managers or the directors of the enterprise), and those that perform the business processes needed to implement the business service (normally these actors correspond to the intuitive notion of employees). Normally, actors of this kind do not have relationships with the final customers of the exposed business service.

External actors are those that directly interact with the customers, using the interface for offering and requesting the service (corresponding to the intuitive notion of clerks).

Figure 18.16 shows the representation of the types of actors involved in a business service. This model uses an organizational actor hierarchy, with Manager at the top and Clerk and Employee at the bottom, to represent the actors responsible for the service, the actors that perform the business processes, and the actors that interact with the customer to offer the service. The arrows in the model indicate the delegations of responsibilities based on the organizational hierarchy. The delegation rules will be explained in subsection 18.6.2.5.

[Figure 18.16 here]
<H3>18.6.2.2 Requesters and Providers</H3>

The objective of an enterprise is to offer services to customers in order to fulfill its strategic goals and to provide added value to their customers. The service provider is the person or organization that offers the business service to potential customers. The service requester is the person or organization that wants to use the service in order to fulfill its goals. According to the i* modeling approach, the requester depends on the service provider to expand its capabilities. An enterprise may both provide services to other enterprises and itself consume services from other external entities. In this sense, a service provider can also play the role of service requester in the same business configuration. Figure 18.17 shows an example of an enterprise playing the role of both requester and provider. In this example, the Car Rental Company plays the role of provider for the exposed business service internet reservation; it also plays the role of requester of the service analyze credit of customer offered by the entity Bank. It is important to point out that this kind of double role can also be found in the specification of supporting services.

[Figure 18.17 here]
<H3>18.6.2.3 Service Requesting</H3>
In order to provide the functionality associated with business services, the enterprise must offers certain fragments of its business processes as an interface with potential customers. One of the fragments that needs to be exposed is the mechanism for requesting the service.

It is necessary to point out that the services of similar contexts and domains have similar processes for requesting the service. This is because these services normally share the same regulations (of external entities) for offering the services to the customers, and also because these services share similar internal regulations and restrictions for performing their processes. The similarities in the definition of protocols make the definition of organizational patterns for the basic protocols of the enterprise in similar domains possible.

Figure 18.18 shows an example of a nontransactional process for requesting a Walk-in rental for the car rental management case study. As mentioned above, each business service is composed of several business processes represented in the business process model. Each business process is implemented through a business protocol. One of the basic protocols for the business service is the protocol for requesting the service. This protocol is represented using the i* notation.

[Figure 18.18 here]

<H3>18.6.2.4 Visibility Rules</H3>

One of the advantages of modularity is the possibility of using mechanisms for controlling visibility between the service requester and the service provider.

In this proposal, visibility rules are divided into two types: actor visibility rules and service visibility rules.
<LL>

a) Rules for service visibility. In the most general case, only exposed business services are visible to customers. In this case, the supporting services needed to perform the exposed services are not visible to customers. Only the internal actors of the organization have visibility of the supporting business services.

b) Rules for actor visibility. In almost all cases, the internal actors that perform the task
 of the business service are not visible to the customers. This is because the customers of the services usually interact with the external actors of the business service (those playing what we have called the clerk role). However, in certain cases the customer does have visibility of other internal actors of the enterprise. </LL>
Figure 18.19 presents an example of the representation of the visibility for services and actors. This figure also presents the propagation of visibility of the internal actors. It is necessary to point out that visibility is based on the composite actor structure.

[Figure 18.19 here]
<H3>18.6.2.5 Delegation Rules</H3>

Based on the hierarchical model defined in the composite actor structure, the actor responsible for a business service can delegate it to its subordinate actors based on the hierarchical model defined in the composite actor structure. In this context, only the actor responsible for a business service can delegate responsibility for performing the services or some of them (processes, tasks) to certain organizational entities (functional areas, departments, or internal actors).

The delegation of services allows us to define intentional relationships between the different entities that compose an organization in accordance with the i* proposal. The reason is that the delegation describes and identifies the situations in which the actor responsible for the business service becomes vulnerable if the delegated actor fails to perform the service. The explicit delegation of responsibilities allows us to make an analysis of business process reengineering. Figure 18.16 shows an example of the representation of the delegation of services and processes based on the composite actor structure and the organizational structure of the enterprise.

<H3>18.6.2.6 Overview of Engaging a Business Service</H3>

In practice, there are many ways to implement business services but, generally speaking, the following steps are required. (1) The service requester requests the use of the service following the established protocol. (2) The service provider analyzes whether or not the service requester fulfills the conditions for the service. (3) The service provider agrees or disagrees to provide the service. (4) The service semantics are determined by the requester and the provider actor. (5) The requester and the provider actor agree to finish the service. Figure 18.20 presents a simple representation of the pattern of steps to perform a business service.

[Figure 18.20 here]
<H2>18.6.3 Overview of the Business Service Method</H2>
Next, an overview of the method for representing the organizational context using the business service approach is presented.

The business service modeling method we proposed has two main objectives:

<NL>
1) To produce a description of the current way in which the enterprise offers and uses services in order to fulfill its current goals.

2) To produce a description of the alternative solutions to implement the business services in order to satisfy the desired goals of the enterprise.</NL>

The steps of the proposed method for representing an organizational model using the business service architecture are summarized as follows (figure 18.21).
[Figure 18.21 here]
<DIS>

1. Represent the current enterprise situation

a. Define a global service model. The objective of this phase is to define a model that represents the business services offered and used by the enterprise to fulfill its current goals.
b. Define a delegation model. Once the exposed business services have been represented in the global service model, the delegation structure for each business service must be identified and represented, using the composite actor structure.

c. Define a business process model for each business service. The objective of this phase is the identification and representation of the set of business processes that compose each one of the business services. As result of this step, a process model for each business service is generated.
d. Define a business protocol model for each business process defined in the previous steps. Once the process model has been represented at a high abstraction level, using the business process model, the behavior of each one of the processes that compose the business service must be identified and represented. As a result of this step, a protocol model for each process is generated. The proposed approach provides the necessary support for managing the complexity of the modeling activity, thus allowing the analyst to represent each fragment of a business service in isolated diagrams.

2. Analyze the future situation of the enterprise

a. Define goals to be fulfilled in the future situation of the enterprise.

b. Adapt the current enterprise model to fit the desired goals.</DIS>
The proposed method for eliciting the current situation of the enterprise joins several techniques, such as goal modeling and organizational charts modeling, in order to construct a business service model that is represented in the i* framework. In this context, the method proposes a set of steps to refine an initial global service model until a more detailed view of the business process represented in the protocol model is reached. The results of the modeling process are the input to define the future enterprise situation.

The main advantage of this proposal is that it provides a solution for the problems of refinement and granularity. It is important to point out that (as commented before) many of the negative results in the evaluation of i* are related to the lack of mechanisms for controlling the refinement and the granularity of the information represented in the organizational model.

<H1>18.7 Conclusions</H1>
The i* framework is widely used for organizational modeling. The framework focuses on strategic relationships between actors in order to capture the social and intentional context of an enterprise. The main contribution of this chapter consists of an empirical evaluation of i*, using a feature-based evaluation framework and three industrial case studies. The evaluation has demonstrated that there is a set of issues that need to be addressed by the i* modeling framework to ensure its successful application within industrial software development projects. These issues boil down to a lack of modularization mechanisms for creating and structuring organizational models.
We propose to extend i* in order to address the weaknesses reported in this chapter. Specifically, we are working on a solution for the problems of refinement, modularity, complexity management, reusability, and scalability. Our solution is founded on the concept of a business service architecture in which encapsulated organizational units can participate in actor dependency networks only through well-defined interfaces. In a different direction, we are developing a proposal to characterize i* modeling primitives based on a multidimensional framework. This makes it possible to clearly differentiate the modeling primitives of i*, so that modelers get better guidance on what primitives to use in different situations. With the proposed modifications, our intention is to overcome the current limitations that practitioners face when using i* in its current state. In fact, these modifications are intended both to solve the problems that were detected and to make the practical application of i* easier. It certainly is necessary to evaluate whether these conclusions can be generalized in practice, and this is the direction of our current empirical work.
<H1>Acknowledgments</H1>
This work has been partially supported by the MEC project with ref. TIN2004-03534, the Valencia University of Technology, Spain, Care Technologies Enterprise, Inc., and the SUPERA Program, Mexico. This is an extended and improved version of a paper that was published in Estrada, Martinez, Pastor, and Mylopoulos (2006).

<REF>
References</REF>
Bastos, L.R.D., & Castro J.F.B. (2003). Enhancing requirements to derive multi-agent architectures. In Proceedings of the 7th Workshop on Requirements Engineering [WER’04] (pp. 127–139). Tandil, Argentina: University of Buenos Aires Press.

http://www.informatik.uni-trier.de/~ley/db/conf/wer/wer2004.html.

Bergenti, F., Gleizes, M.-P., & Zambonelli, F. (2004). Methodologies and Software Engineering for Agent Systems. New York: Kluwer Academic.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004).
 Tropos: An agent-oriented software development methodology. Journal of Autonomous Agents and Multiagent Systems, 8(3), 203–236.

Carvallo, J.P., Franch, X., Quer, C., & Rodríguez, N. (2004). A framework for selecting workflow tools in the context of composite information systems. In Proceedings of the 15th International Conference on Database and Expert Systems Applications [DEXA 2004] (pp. 109–119). Los Alamitos, CA: IEEE Computer Society Press.

Castro, J.F., Alencar, F.M.R., Cysneiros Filho, G.A., & Mylopoulos J.
 (2001). Integrating organizational requirements and object oriented modeling. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering
 [RE’01] (pp. 146–153). Los Alamitos, CA: IEEE Computer Society Press.

Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in Software Engineering. Boston: Kluwer Academic.

Dam, K. (2003). Evaluating and comparing agent-oriented software engineering methodologies. Master’s thesis, RMIT University, Melbourne, Australia.

Dam, K., & Winikoff, M. (2003). Comparing agent-oriented methodologies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff (eds.), Proceeding of the 5th International Bi-Conference Workshop on Agent-Oriented Information Systems [AOIS 2003] (pp. 78–93). Lecture Notes in Artificial Intelligence 3030. Berlin: Springer.
DeLoach, S.A., Wood, M.F., & Sparkman, C.H. (2001). Multiagent Systems Engineering. International Journal of Software Engineering and Knowledge Engineering, 11(3), 231–258.
Estrada, H., Martínez, A., & Pastor, O. (2003). Goal-based business modeling oriented towards late requirements generation. In I.-Y. Song, S.W. Liddle, T. Wang Ling, and P. Scheuermann (eds.), Proceedings of the 22nd International Conference on Conceptual Modeling [ER’03] (pp. 277–290). Lecture Notes in Computer Science 2813. Berlin: Springer.

Estrada, H., Martínez-Rebollar, A.,
 Pastor, O., & Mylopoulos, J. (2006). An empirical evaluation of the i* framework in a model-based software generation environment. In E. Dubois and K. Pohl (eds.), Proceedings of the 18th International Conference on Advanced Information Systems Engineering [CAISE’06] (pp. 277–290).
 Lecture Notes in Computer Science 4001. Berlin: Springer.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modelling social and individual trust in requirements engineering methodologies. In P. Herrmann, V. Issarny, and S. Shiu (eds.), Proceedings of the 3rd International Conference on Trust Management [iTrust’05] (pp. 161–176). Lecture Notes in Computer Science 3477. Berlin: Springer.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2003). Organizational patterns for early requirements analysis. In J. Eder and M. Missikoff (eds.), Proceedings of the 15th International Conference on Advanced Information Systems Engineering [CAiSE'03] (pp. 617–632). Lecture Notes in Computer Science 2681. Berlin: Springer.

Liu, L., & Yu, E. (2003). Designing information systems in social context: A goal and scenario modelling approach. Information Systems Journal, 29(2), 87–203.

Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., & Renou, L. (2004). Model-driven requirements engineering with i*:
 Synchronising models in an air traffic management case study. In A. Persson and J. Stirna (eds.), Advanced Information Systems Engineering: Proceedings of the 16th International Conference on Advanced Information Systems Engineering [CAiSE'04] (pp. 368–383). Lecture Notes in Computer Science 3084. Berlin: Springer.

Martínez, A., Castro, J., Pastor, O., & Estrada., H. (2003). Closing the gap between organizational modeling and information system modeling. In L.E. Galvão Martins and X. Franch (eds.), Proceedings of the 6th Workshop on Requirements Engineering [WER’03] (pp. 93–108). Piracicaba, Brazil: University of Piracicaba Press. http://www.informatik.uni-trier.de/~ley/db/conf/wer/wer2003.html.
Martínez A., Pastor O., & Estrada H. (2005) A pattern language to join early and late requirements. Journal of Computer Science and Technology: Special Issue on Software Requirements Engineering, 5(2), 64–70.

Padgham, L., Shehory, O., Sterling, L., & Sturm, A. (2005). Methodologies for agent-oriented software engineering (part I and part II). Course presented at the 7th European Agent System Summer School [EASSS’05], Utrecht, Netherlands.
Padgham, L., & Winikoff, M. (2002). Prometheus: A methodology for developing intelligent agents. In M. Gini, T. Ishida, C. Castelfranchi, and W.L. Johnson (eds.), Proceedings of the First International Joint Conference on Autonomous Agents & Multiagent Systems
 (pp. 37–38). New York: ACM Press.
Pastor, O., Gómez, J., Insfrán,
 E., &. Pelechado, V. (2001). The OO-Method approach for information systems modeling: From object-oriented conceptual modeling to automated programming. Information Systems, 26(7), 507–534.
Pastor, O., Hayes, F., & Bear, S. (1992) OASIS: An object-oriented specification language. In P. Loucopoulos (ed.), Proceedings of the 4th International Conference on Advanced Information Systems Engineering [CAISE’92] (pp. 348–363). Lecture Notes in Computer Science 593. Berlin: Springer.
Shehory, O., & Sturm, A. (2001). Evaluation of modeling techniques for agent-based systems. In Proceedings of the 5th International Conference on Autonomous Agents (pp. 624–631).New York: ACM Press.
 Sinan, S.A. (2003). Understanding the Model Driven Architecture (MDA). Retrieved November 19, 2007, from Methods & Tools Web site: http://www.methodsandtools.com/archive/archive.php?id=5.
Sturm, A., Dori, D., & Shehory, O. (2003). Single-model method for specifying multi-agent systems. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multi-Agent Systems (pp. 121–128). New York: ACM Press.

Sturm, A., & Shehory, O. (2003). A framework for evaluating agent-oriented methodologies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff (eds.), Proceedings of the 5th International Bi-Conference Workshop on Agent-Oriented Information Systems. Selected and Revised Papers [AOIS’03] (pp. 94–109). Lecture Notes in Computer Science 3030. Berlin: Springer.

Sturm, A.,
& Shehory, O. (2004). A comparative evaluation of agent-oriented methodologies. In F. Bergenti, M.-P. Gleizes, and F. Zambonelli (eds.), Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook (pp. 127–152). Norwell, MA: Kluwer Academic.

Sudeikat, J., Braubach, L., Pokahr, A., & Lamersdorf, W. (2004). Evaluation of agent-oriented software methodologies: Examination of the gap between modeling and platform. In J. Odell, P. Giorgini, and J.P. Müller (eds.),

Proceedings of the 5th International Workshop on Agent-Oriented Software Engineering [AOSE’04] (pp. 126–141). Lecture Notes in Computer Science 3382. Berlin: Springer.

W3C Working Group. (2004). Web Services Architecture. Retrieved February 11, 2004, from W3C Web site: http://www.w3.org/TR/ws-arch/.
Wooldridge, M., Jennings, N., & Kinny, D. (2000). The Gaia Methodology for Agent-Oriented Analysis and Design. Journal ofA
utonomous Agents and Multi-Agent Systems, 3(3), 285–312.
Yu, E. (1995). Modelling strategic relationships for process reengineering. Doctoral dissertation, University of Toronto.

Yu, E., & Liu, L. (2001). Modelling trust for system design using the i* strategic actors framework. Proceedings of the Workshop on Deception, Fraud, and Trust in Agent Societies, Held During the Autonomous Agents Conference: Trust in Cyber-societies, Integrating the Human and Artificial Perspectives (pp. 175–194). Lecture Notes in Computer Science 2246. Berlin: Springer.

<figure captions>

Figure 18.1 The OO-Method approach for model-driven software development.

Figure 18.2 Strategy for the empirical analysis.

Figure 18.3 Representing concepts at the same abstraction level. For a key to i* diagrams, see figure A.1.

Figure 18.4 Two different representations for a single process.

Figure 18.5 Different processes in the same diagram.

Figure 18.6 Bottlenecks in a business process.

Figure 18.7 Vulnerability in a business process

Figure 18.8 Excessive responsibilities in a business process.

Figure 18.9 Problems of traceability.

Figure 18.10 Fragment of the car-renting process in the car rental management case study.

Figure 18.11 The business service strategy.

Figure 18.12 The business service proposal.

Figure 18.13 An exposed business service.

Figure 18.14 Supporting business services.

Figure 18.15 A business service configuration.

Figure 18.16 A composite actor structure for delegating services.

Figure 18.17 An actor playing the role of requester and provider.

Figure 18.18 The requesting process for a walk-in car rental.

Figure 18.19 Visibility of services and processes.

Figure 18.20 The basic pattern of the process of engaging a business service.

Figure 18.21 Overview of the business services method.

Table 18.1 Results of the empirical evaluation

	Evaluation Criteria
	Evaluated Issue
	Evaluation

	Modeling Language
	1
	refinement
	not well supported

	
	2
	modularity
	not supported

	
	3
	repeatability
	not well supported

	
	4
	complexity management
	not well supported

	
	5
	expressiveness
	well supported

	
	6
	traceability
	not well supported

	
	7
	reusability
	not supported

	Pragmatics
	8
	scalability
	Not supported

	
	9
	domain applicability
	well supported

�Old notes 1, 2 now in acknowledgments section

�Author: Should Perini follow Mylopoulos in the list of authors?

�Author: Is there a third author (D. Dori) whose name appears after Sturm?

�Author: Is the spelling Insfran correct?

�Author: Is “would not be biased” correct?

�Author: Is “building the model” correct?

�Author: Is “because…modeling” correct as edited?

�Author: Is “limitations” correct?

�Author: Is the deletion of “organizational” ok?

�Author: Can “published soon” be made more specific?

�Author: Should “task” be “tasks”?

�Author: Is this sentence correct as it stands?

�Author: Should the publisher be Springer? Or, if Kluwer is correct, should the city be Boston?

�Author: Should Perini follow Mylopoulos in the list of authors?

�Author: Should the order of authors be Castro, Mylopoulos, Alencar, Cysneiros Filho?

�Author: Is the title of RE;01 correct as edited?

�Author: Is the addition of Rebollar correct?

�Author: Should the pages be 513-527?

�Author: Is the addition of “with i*” correct?

�Author: Should the title be Proceedings of the 3rd International Workshop on Agent-Oriented Software Engineering?

�Author: Is the spelling Insfran correct?

�Author: Should D. Dori be the second author?

�Author: Should the city be Boston?

�No comment

�Author: Should the ordr of editors be Giorgini, Muller, Odell?

�Author: Is the journal title correct as edited?

�. The internal elements are those goals, plans, softgoals, and resources (represented inside an actor´s boundary) that account for the actor's behavior.

�. The internal elements are those goals, plans, softgoals, and resources (represented inside an actor´ boundary) that account for the actor's behavior.

�. Tropos (Bresciani et al., 2004) does support a process that ensures that each element of every strategic dependency model has counterparts in some Strategic Rationale model, and vice versa.

�. Tropos (Bresciani et al., 2004) does support a process that ensures that each element of every strategic dependency model has counterparts in some strategic rationale model, and vice versa.

