PAGE
1039

<CN>17</CN>
<CT>A Reference Model for i*</CT>
<CA>Carlos Cares, Xavier Franch, Enric Mayol, and Carme Quer</CA>
<H1>17.1 Introduction</H1>
In recent years, the construction of agent-oriented models has become common practice in fields such as agent-oriented software engineering, requirements engineering, and organizational process modeling (Iglesias, Garijo, & González, 2000;
 Wooldridge & Ciancarini, 2001; Yuhong, Maamar, & Weiming, 2001). There are several proposed languages for the construction of agent-oriented models, the i* framework being one of the most widespread.

The i* framework was developed in the first half of the 1990s (Yu, 1993, 1995 [reprinted as chapter 2 of this book]; Yu & Mylopoulos, 1994). It allows for the clear and simple statement of actors, their goals, and the dependencies among them. It includes a graphical notation aimed at providing a unified and intuitive vision of the environment being modeled. Moreover, the i* framework provides interactive support for an argumentative style of reasoning about actors and their dependencies. After its formulation, i* became increasingly popular and widely used by several communities. Some resources give evidence of this use, such as the official i* Web site, (http://www.cs.toronto.edu/km/istar/), and the recently created wiki-based collaborative site (http://istar.rwth-aachen.de/tiki-index.php).

A characteristic that is soon discovered when someone starts to use i* is that there is not a single definition of the language. If we take Yu’s Ph.D. thesis as a reference manual (see chapter 2), we find that other authors, even those researchers involved with i* from the very beginning, use the language in slightly different forms. Diversity of definitions aligns with the fact that, due to its nature and objectives, i* is more descriptive than prescriptive and, as Yu says, “The i* framework is aimed at modelling strategic relationships and reasoning. Such knowledge is not expected to be complete” (1995, p. 41). Most of the time the differences are not important, but they make the task of the novice to this language more difficult. Some of the questions that this novice may have are Is the diversity intentional or not? If I assume it is, how much impact does it have on my mental i* model? How does it relate to the concepts and properties I assume?
A second observation is that research groups that use i* also tend to evolve it slightly to adapt it to their particular context. We may find proposals that add new constructs, that consider different properties of existing constructs, that restrict the use of some elements of the language, and so on. Once again, this situation is not intrinsically pernicious because it concurs with the intentional looseness of the language, but it gives rise to some questions: Do I have the right to propose my own customization to i*? What is allowed and what is not? How can I express my particular changes to make utterly clear my intention?
Considering both observations altogether, one may conclude that, although valid, the proliferation of variants and customizations of i* may make the novice (and sometimes also the expert) insecure about his/her understanding of the language and the rights he/she has when using the language (Estrada, Martínez, Pastor, & Mylopoulos, 2006). On the other hand, proliferation may also hamper the exchange of knowledge in the interested community.

To deal with this situation, we may analyze the four options that Garlan, Monroe, and Wile (1997) identified for coping with language heterogeneity:

<NL>
1. Pick one. Let the community, marketplace, or whatever decide on which language, or version of language, is predominant.
2. Design a “union” language. Design a language that incorporates all the features of all of the languages, and thereby allow users to express anything that they could have expressed in the original (versions of) languages.
3. Design an “intersection” language. Pick a least common denominator language that includes the aspects that are common to all the analyzed proposals.
4. Give up. Admit that language diversity is simply too complex to manage for any reason (too many proposals, very different goals, etc.), and do not try to propose a coordinated solution.</NL>
We think that, for the time being, the first option is not possible because variations, minor or more important, keep appearing in i*-based approaches. On the other hand, similarities are so substantial that the fourth option should also be rejected. Therefore, we think that the right choice is providing a framework that can be used as a reference model for the most widespread existing and forthcoming variants, dialects, and even particular constructs for the i* language. Providing such a reference model is the goal of this chapter.

To build the reference model, in section 17.2 we analyze mainly the three most consolidated lines of evolution of i*: Yu’s proposal (1995, 1997), the Goal-oriented Requirement Language (GRL, 2000), and several language variations formulated in the framework of the TROPOS methodology, for instance, the proposals of Castro, Kolp, and Mylopoulos (2001), Sannicolò, Perini, and Giunchiglia (2002), Bresciani and Donzelli (2003), Mouratidis and Giorgini (2004), and Susi, Perini, and Mylopoulos
 (2005). We define the reference model by means of a UML class diagram (Rumbaugh, Jacobson, & Booch, 2004) with OCL (Object Constraint Language) constraints, together with a lexicon of terms, in section 17.3. From the two remaining candidate options, we have finally chosen the third one (intersection-based approach) as the baseline, but not strictly, as we report in section 17.3. In section 17.4, we tailor the reference model to adapt it to the analyzed sources. We carry out this tailoring by applying refactoring operations on it, similar to those defined in Sunyé, Pollet, Le Traon, and Jézéquel (2001). Therefore, we explicitly express the relationship among particular i* versions and the reference model. We go further in this direction by analyzing other proposals found in the i*-related literature that put forth minor variations and extensions of i*.

This chapter focuses specifically on the language constructs and their underlying concepts. Therefore methodological and application issues are not our focus; they are mentioned just occasionally, to justify some particular point or to provide a context for a concrete construct. Also, it is not our intention to provide a standard definition for i*, but only a reference model over which i* researchers may state their particular understanding of classical i* constructs and also may define new constructs for their particular purposes.

<H1>17.2 Analysis of Current i* Proposals</H1>
In this section, we present the evolution of i* from the early 1990s up to 2005. We first present the three above-mentioned main lines of research of i* and identify some works that influenced this evolution. Next, we analyze the introduced approaches using some structural criteria. We summarize the similarities and differences between the approaches in two tables.

<H2>17.2.1 Historical Evolution of i*</H2>
To carry out this analysis, we combined our initial knowledge about the appropriate sources with a systematic literature review. This review was built upon the main computer science libraries—the ACM digital library, IEEE Xplore, and the ISI Web of Knowledge as general repositories—as well as publishers such as Springer Link and Elsevier, and the integrated search engines DBLP (DataBase systems and Logic Programming) and BibFinder. Sources were ranked using the electronic resources Google Scholar and Citeseer for paper citations, and the Journal Citation Report (JCR) for journals. We complemented this information with our knowledge about prestigious journals not in the JCR (a notable absence at this time is the journal Requirements Engineering) and proceedings of conferences and workshops specific to agent orientation (AMAS, AOIS, AOSE, CEEMAS) or, more generally, of requirements engineering and knowledge engineering (RE, CAiSE, REFSQ, WER, ER, SEKE). Needless to say, we have visited the Web sites of the i* project at Toronto (http://www.cs.toronto.edu/km/istar/) and the Tropos project at Trento (http://trinity.dit.unitn.it/~tropos/), and of universities and research groups related to i* to locate the most recent information available from the research groups themselves. Last but not least, the human factor (collaborations, meetings, workshop and conference attendance, personal communications, etc.) has helped us to gain insights into the views and expectations that researchers have on the language. This has also been an important source for locating further works not found during the literature review (technical reports, publications in unusual forums, etc.).

The literature review has been especially cumbersome but, without any doubt, crucial for the purposes of the chapter, because even for the same variant we found slight variations that had to be fully understood before building the reference model. We have detected two particular situations that we have tracked carefully: (1) silences and ambiguities, according to Meyer’s (1985) definition, meaning that the semantics of some construct has not been detailed, and must be inferred from the examples that illustrate the documents (and this is not always possible); (2) contradictions, either because two documents state contradictory things in reference to a particular construct, or because some example does not follow the stated semantics.

The main conclusion of our research is that there has been, and continues to be, wide and diverse scientific development around i* topics. This fact becomes clear when looking at figure 17.1, even taking into account that we have just considered the milestones of the three main lines of evolution without being exhaustive. The main proposals appeared in the context of agent-oriented software engineering and requirements engineering. We have analyzed them looking for the evolution of the concepts used and constructors in the modeling languages; the arrows in figure 17.1 illustrate the influences from one to another. Transparent ovals stand for proposals that are in the mainstream of the evolution of i*, and gray ovals identify other proposals that have played an important role in this evolution. The thick lines that frame transparent ovals
 identify the three milestones that characterize each of the considered lines of evolution: Yu’s Ph.D. thesis (Yu, 1995), the first widespread Tropos proposal (Castro et al., 2001) and the GRL language (GRL, 2000)
. We will use these documents as representatives of their category in the rest of the section.

[figure 17.1 here]
In the field of goal- and agent-oriented modeling languages, we may cite KAOS (Dardenne, Fickas, & van Lamsweerde, 1991, 1993)
 as a proposal that includes several concepts that also appear in i*. It includes the concepts of system goal, goal reduction (which is later called goal decomposition), and the notion of linking a goal to agents, which have the responsibility to accomplish the goal. In addition, in 1992 we find the basis of the NFR Framework (Mylopoulos, Chung, & Nixon, 1992); in fact, this article is frequently referenced as the NFR Framework proposal. It proposes the concept of nonfunctional requirement as a system goal that should be satisfied. Also in this proposal there appear the concepts of dependency link between goals and a type of link called justification-for-selection, which later became the contribution to softgoal link.

Then, Yu (1993) formulated a simple but relevant change in the point of view of the modeling: conversely to KAOS, in which agents are associated with goals, in Yu goals and tasks are linked to agents, forming dependencies between system agents; thus the point of view is agent-oriented and social-oriented (or context-oriented), because the dependencies between agents show. Also in this proposal the agents are extended to roles and positions. Yu also identifies many conceptual contributions about agents from the artificial intelligence discipline.

In Yu and Mylopoulos (1994), almost all the elements of i* are referenced; in fact they say, “We propose a model that aims to capture the motivations, intents, and rationales that underlie a software process” (p. 159). We find dependencies in the form depender-dependum-dependee, and intentional elements such as resources, tasks, goals, and softgoals, and the contribution to softgoal and actor subtypes are formulated. Furthermore, an actor metamodel formulated in Telos is provided.

As the culmination of this initial stage of development, the i* framework is proposed in Yu (1995). The rest of the elements are added to the language; notably, two different types of models (SD and SR) are distinguished. In that document goal and softgoal decompositions using means-end relationships are also proposed, as is task decomposition using the task decomposition relationship. Moreover, a comprehensive collection of examples is provided.

<H2>17.2.2 The Seminal i* Proposal</H2>
The i* framework proposes the use of two models, each corresponding to a different abstraction level: the Strategic Dependency (SD) model represents the intentional level, and the Strategic Rationale (SR) model represents the rationale level. An SD diagram consists of a set of nodes that represent actors and a set of dependencies that represent the relationships among them, expressing that an actor (depender) depends on some other actor (dependee) in order to obtain some objective (dependum). The dependum is an intentional element that can be a resource, task, goal, or softgoal. It is also possible to define the importance (strength) of the dependency for each of the involved actors, using three categories: open, committed, and critical.

An SR diagram allows the intentional elements to be visualized within the boundary of an actor in order to refine the SD diagram with reasoning capabilities. The dependencies of the SD diagram are linked to intentional elements inside the actor boundary. The elements inside the SR diagram are decomposed to two types of links:

<BL>
· Means-end links establish that one or more intentional elements are the means that contribute to the achievement of an end. The “end” can be a goal, task, resource, or softgoal, whereas the “means” is usually a task. The means-end link is an OR relationship when there are many means that indicate different ways to obtain the end. In means-end links with a softgoal as end, it is possible to specify whether the contribution of the means toward the end is negative or positive.

· Task-decomposition links state the decomposition of a task into different intentional elements. It is an AND relationship when a task is decomposed into more than one intentional element. It is also possible to define constraints to refine this relationship. The importance of the intentional element in the accomplishment of the task can also be marked in the same way as in the dependencies of an SD diagram.</BL>
The graphical notation is shown in figure 17.2, using an example about academic tutoring of students. On the right-hand side are the SR diagram of a tutor and the hierarchical relationships among the internal intentional elements. On the left-hand side are the SD dependencies between a student and a tutor.

[figure 17.2 here]
Actors can be specialized into agents, roles, and positions. A position covers a role. Agents represent particular instances of people, machines, or software within the organization, and they occupy positions (and as a consequence, they play the roles covered by these positions) or are instances of other agents. The actors can be decomposed and specialized into other actors, using the is-part-of and is-a relationships.
SR diagrams have additional elements for reasoning, such as routines, rules, and beliefs. A routine represents one particular course of action (one alternative) to attain the actor’s goal among all alternatives. Rules and beliefs can be considered as conditions that have to be fulfilled to apply routines. However, it is not clear whether these concepts are modeled in the language or are part of its reasoning abilities with no explicit modeling.

In figure 17.3 we show the conceptual model expressed in UML corresponding to the i* language according to Yu (1995) (OCL constraints are not included). It integrates most of the concepts described, except those related to the additional reasoning elements in SR diagrams. New concepts that are useful for modeling are a superclass Node, to give names to all the actors and intentional elements that appear in a model; the class Dependable Node, which models the model elements for which it is possible to define dependencies, that is, actors and intentional elements of the SR diagram; the rootOf association role, which represents the root of an SR decomposition inside an actor; the MeansEnd Contribution class, which differentiates means-end links that involve softgoals from other links.

[figure 17.3 here]
<H2>17.2.3 The Goal-oriented Requirement Language (GRL)</H2>
The Goal-oriented Requirement Language (GRL, 2000a)
 is a language used in agent- and goal-oriented modeling, and in reasoning with nonfunctional requirements. It can be considered as an extension of i* using constructs coming from the NFR framework for specifying nonfunctional requirements (Chung, Nixon, Yu, & Mylopoulos, 2000), although in fact the language is explicitly redefined using a complete syntactical definition. GRL is a part of URN (User Requirements Notation) (Amyot & Mussbacher, 2002) that has been proposed as the standard of ITU-T (ITU-T, 2003).

GRL distinguishes three main conceptual categories (as i* does): intentional elements, intentional links, and actors. The main differences with respect to i* are the following: specializations of actors are not defined; GRL offers constructors for enabling relationships with external elements; GRL has additional elements of argumentation and/or contextualization, such as beliefs, correlations, and contribution types, as well as new evaluation labels for specifying satisfaction states (satisficed, weakly satisficed, denied, weakly denied), thus extending the types and qualification ranges of the intentional links of i*. Although i* link names are kept, their semantics change slightly.

<H2>17.2.4 The Tropos Methodology and Its i*-Associated Variations</H2>
Tropos (Bresciani, Perini, Giorgini, Giunchiglia, & Mylopoulos
2004; Castro et al., 2001; Giunchiglia, Mylopoulos, & Perini, 2003; Sannicolò et al., 2002) is an agent-oriented software methodology that has been considered one of the most relevant proposals in the field; in fact, it is frequently cited by the research community (Dam & Winikoff, 2004;
 Juan, Sterling, & Winikoff, 2003; Sudeikat, Braubach, Pokahr, & Lamersdorf, 2005).
 With respect to the language, we may distinguish two main streams: Tropos as proposed by Castro et al. (2001) considers Yu’s i* as the underlying language, and Tropos as proposed by Sannicolò et al. (2002) explicitly provides a user guide defining the language and has been recently described using a metamodel (Susi et al., 2005; chapter 11 of this book). Even for Castro et al., the use of i* does not adhere strictly to Yu’s specification. For instance, they allow grouping of actors inside the boundaries of other actors and softgoal decomposition relationships. In figure 17.4 we reproduce a reduced version of these uses (Castro et al., 2001).

[figure 17.4 here]
In addition to these two main streams in Tropos, there are also some variations suited for purposes that are enumerated in the reminder of this subsection.

<H3>17.2.4.1 REF</H3>
In its first proposal (Donzelli & Setola, 2002), REF is a variant of the Tropos notation without types of actors (i.e., there are neither roles nor positions nor agents) and allows direct connections from intentional elements to actors as dependencies (possibly without dependers). In softgoal decomposition, there are OR and AND decompositions (instead of the contribution relationship) and the same constructors are used for task decomposition. A relevant new language element is the constraint constructor, which allows representing contextual restrictions; hence, it is an additional element under which a softgoal can be decomposed.

In Bresciani and Donzelli (2003) and Donzelli and Bresciani (2004), two new intermediate constructors are proposed: H (hurt) and S (sharing) connections. H connections represent relationships between conflictive softgoals and S connections allow representing common elements in the decomposition of connected softgoals. It is assumed that both types of constructs are used during model development, and should disappear in the final model. Figure 17.5 illustrates AND decompositions, labeled A, and S and H connections. The example has been adapted from Donzelli and Bresciani (2004).

[figure 17.5 here]
<H3>17.2.4.2 Secure Tropos</H3>
Secure Tropos (Mouratidis, Giorgini, Manson, & Philp, 2002; Mouratidis, Giorgini, & Manson, 2003; chapter 10 of this book) is a Tropos extension for security purposes. The proposal adds constraints (represented by a cloud symbol) between dependums and actors, representing a security constraint from an actor to an intentional element; for instance, to prevent access to personal information Furthermore, it is possible to have a decomposition of these constraints labeled as subconstraints. Secure intentional elements, such as secure tasks, are identified with an S enclosed in parentheses. There is a new element called threat, which represents circumstances with the potential to cause loss or problems. In figure 17.6 we show a simplified adaptation of the original examples; there are threats constructs, reresented using pentagon shapes (left), a constraint over a dependency (center), and a constraint decomposition (right).

[figure 17.6 here]
Recently, an extension for Secure Tropos has been proposed by means of a process for selecting architectural styles using weights of contributions with the probability to satisfy a softgoal (Mouratidis & Giorgini, 2004). They also propose a pattern-based approach to transform security requirements into a design solution, and they generate security attack scenarios, using two special types of contribution links (represented with segmented lines), labeled attack and help, among actors, resources, and task elements.

<H3>17.2.4.3 Security-Aware Tropos</H3>
There is another security-related Tropos variant proposal, named Security-Aware Tropos (Giorgini, Massacci, Mylopoulos, & Zannone, 2004a, 2004b), also named Secure Tropos (Giorgini, Massacci, Mylopoulos, & Zannone, 2005). (Do not confuse this approach with the approach discussed in the previous subsection.) One of the differences from Tropos is the concept of service, which is a generic concept referring to a task, a resource, or a goal. Security-Aware Tropos introduces four new dependencies:

<NL>
1. Ownership (between an actor and a service). An ownership dependency represents that an actor is the legitimate owner of a service, using an O label.

2. Offer (between an agent and a service). The agent allows access to a specific service. It uses an S label.

3. Trust (among two actors and one service). It represents a social relationship in which an actor believes that another actor does not misuse the provided service. It uses a T label.

4. Delegation (among two actors and one service). It represents a formal delegation of a goal or the permission to access a resource or to execute a task. It uses the P label (from permission) or the G label (when there is a delegation of type Grant).</NL>
 With these four new dependencies, the proposal focuses on the conceptual refinement of delegation and trust relationships. The refinement of a delegation proceeds by distinguishing between at-most and at-least delegations. At-most delegation means that the permission is given but there is not a commitment to accomplish with the delegated service.
 In the at-least delegation, there is an obligation to accomplish with the service. These concepts have no counterpart in the language.

This conceptual and notational proposal is supplemented with a logical formalization that allows capturing organizational-oriented security and trust requirements. In figure 17.7 we show the use and notation of some of the constructs, adapting the example given by Giorgini et al. (2004b).

[figure 17.7 here]
<H3>17.2.4.4 Formal Tropos</H3>
Formal Tropos (FT) (Fuxman, Pistore, Mylopoulos, & Traverso, 2001) was designed to complement i* models with a formal description of their temporal aspects. With FT it is possible to answer questions about valid operational scenarios, goal accomplishment, and feasibility of the temporal synchronizations among actors. To attain this ability, i* models should include prior-to links among tasks (drawn with a double arrowhead in the middle of the link) for expressing execution ordering. A second new construct offered by FT is cardinality (written in UML-like style) in means-end links. Both of them are illustrated in figure 17.8, which is adapted from Fuxman, Liu, Mylopoulos, Pistore, Roveri, and Traverso (2004).

[figure 17.8 here]
An FT specification is a textual description using the elements of the language like constructors and its own temporal logic for the dynamic sentences. This logic has special constructors to express special situations such as “in the next state reached by the model,” “always in the future,” “always in the past,” and others. In Fuxman, Liu, Pistore, Roveri, and Mylopoulos (2003) and Fuxman et al. (2004) a set of translation guidelines to formulate an FT specification from an i* model is presented, and some empirical results using a software tool are shown as well. A detailed description of the FT grammar is available in Fuxman, Kazhamiakin, Pistore, and Roveri (2003).

<H2>17.2.5 Summary of Other Proposals</H2>
There are many other proposals that use i* with little variations. We mention three of them here.

In the context of the CREWS project, and more specifically the CREWS-SAVRE method for the analysis of sociotechnical system requirements, Sutcliffe and Minocha (1999) propose some extensions to i* that are of use in their analysis (which does not have a corresponding graphical construct):

<BL>
· Responsibility link. Relates an actor to a goal or task. It means that the actor has the duty of carrying out this goal or task.

· Authority link. Relates two actors with each other. It means that a dominant actor has authority over the behavior of another, subordinated actor.

· Accountability link. Relates two actors and a goal or task. It means that an actor assesses or examines the goal or task account from another actor.

· Capability link. Relates an actor and a task. It means that the actor has the knowledge and abilities to carry out the task. </BL

A second proposal (Liaskos, Lapouchnian, Wang, Yu, & Easterbrook, 2005) is aimed at improving configuration practices from the point of view of goal-oriented requirements engineering. It uses i* diagrams assessing the defined softgoals by using numerical functions as labels in the softgoal contributions. There are also parameterized constraints that are represented with boxes. In figure 17.9 we show an adapted diagram that illustrates this idea.

[figure 17.9 here]
Finally, in Grau et al. (2005) an iterative methodology, RiSD, is proposed to build i* dependency models. Due to its iterative nature, actors and dependencies are obtained stepwise, and to keep track of where these new elements stem from, an intermediate construct named supports is introduced. Also, the methodology forces the statement of the goal of an actor when this actor is included in the model. In figure 17.10 we show a portion of an extended example first included in Grau et al. (2005).

[figure 17.10 here]
<H2>17.2.6 Analysis of i* Variants</H2>
Now that we have completed the review of i*-based proposals, in this subsection we provide two tables that aim at synthesizing these proposals, identifying how they define, redefine, or modify i* constructs. As may have become clear from the review, some of the analyzed proposals are not language-centered, or at least the language is not their main focus; instead, they are methodological proposals that, in order to carry out their own objectives, suggest the use of some i* variation. In some cases these language suggestions are very comprehensive and include metamodels or syntactical specifications that allow deducing the complete set of language constructs. However, there are cases in which only a short definition of the constructs is given, and sometimes we have even identified some language definition or redefinition only for the use of the language in the case studies of the research proposals.

Table 17.1 provides a comprehensive enumeration of the use of i* constructs. There is one column for each proposal, with the rightmost column covering the three variants mentioned in subsection 17.2.5. Language constructs are listed by row and grouped according to conceptual categories such as actors, intentional elements, and actor relationships. This categorization is inspired by the i* conceptual model presented in figure 17.3,
and will also be used when formulating the reference model in section 17.3. Whenever necessary, property values of relationships are also listed by row.

On other hand, we have grouped the language constructs in some conceptual categories that form the first row. In a second row, we show the name of the language construct and, whenever necessary, we use a third row when there are property values of relationships.

As a result, each cell of the table corresponds to the coverage of a specific i* language construct or property (row) in a particular i* variation (column). We use the following symbols:

<notation>
· means that the language construct has been defined or redefined in the given proposal. A redefinition means that the construct has a semantic variation. This is the case for many constructs in the seminal i* proposal.

· means that the language construct is explicitly used or considered without variations from some base proposal (i*, Tropos, or GRL). In the case of GRL and Tropos, this symbol means that the construct is kept with the same semantics as in i*. Examples are the notion of actor and the four main types of intentional elements, defined in Yu (1995) and preserved as-is in the remaining proposals.

· means that the language construct is explicitly removed from the proposal, generally for simplification purposes. In some cases, when we have available a complete definition, it has been possible to deduce that a specific language construct has not been included; for example, the use of the agent, role, and position constructs in GRL.

C
means that the concept has been referenced, but there is not a specific language construct that implements it. It is necessary to note that there are many conceptual definitions in each i* variation, but we have considered only those that have become a language construct at some time. This happens, for instance, with the belief construct, which is part of the language only in GRL, but previously was defined as part of the seminal i* conceptual framework.
An empty cell means that in the given i* variation, it has not been possible to discern if the language construct has been included in any form. This means than there is no explicit adoption, modification, or discard of the corresponding construct.</notation>
In the rightmost column of table 17.1 we have included the three i* variations presented in subsection 17.2.5: the Sutcliffe and Minocha (1999) proposal, identified with an S; the Liaskos et al. (2005) approach, identified with an L; and the Grau et al. (2005) methodological proposal, identified with a G. Due to the overloading of the column, we show only the new language proposals.

[table 17.1 here]

The chronological arrangement of the columns of the table also allows inferring some additional information about language evolution. In this way, we may observe that some language constructs (and of course their underlying concepts), such as actor, goal, softgoal, task, resource, and dependency, have been proposed from the very beginning and are common to all the variants, so they can be considered mature elements whose semantics should be preserved in future variants, unless a very strong reason exists for not doing so. The other way round, it is clear that specification of dependency types (ownership, trust, etc.) is a topic where there is not yet an academic consensus. The same is true of the proposals that include constraint or contextual information to restrict some intentional operations (constraint, restrict, contextual).

A point that is worth paying more attention to is that of the links among intentional elements. We can observe that the three main types of links—means-end, decomposition, and contribution—have been defined and redefined in the main i* stream lines. More precisely, they differ in the lexicon used; the intentional elements allowed as source and destination of the relationships; the combination of the elements that take part in the contribution; and the expressive power of the types of contributions. Although these changes seem not to have a great impact on the language, in fact they may provoke some semantic misunderstandings and misuses, as shown by Webster, Amaral, and Cysneiros (2005).

In table 17.2 we show these dissimilarities. We have split Tropos into two, because in the original work of Castro et al. (2001) some minor variations in the use of i* are observed but not explicitly defined (which means that we have filled this column by interpreting the examples that appear in this proposal). On the other hand, in the Tropos User Guide (Sannicolò et al., 2002), there are explicit differences concerning these relationships. For each of the three main variants compared, we show what the constructor is named, the valid combinations of intentional elements according to their type, and the way of combining the elements that take part in the constructor (AND, OR, or none). For the valid combinations, we use the symbol (to separate the two types of elements that may be connected by the link. In the case of means-end links, the left-hand side of the arrow represents the means and the right-hand side represents the end. In decomposition links, the left-hand side represents the basic elements of the decomposition and the right-hand side the compound element. In the contribution links, the left-hand side is the contributor’s part and the right-hand side is for the contributed element (contributee).

[table 17.2 here]
<H1>17.3 A Reference Model</H1>

In the introduction, we stated our approach to dealing with the diversity and heterogeneity of i* variants: to propose a reference model following an intersection-based approach and considering the three main streams of i*. The goal of such a model is to serve as a common framework not only for these variants, but also for other existing proposals and for those that may appear in the future. Having carried out a thorough analysis of the three main i* streams and some other variants, we are able to formulate the model, and that is the goal of this section.

When starting to build the reference model, we found that adopting a strict intersection-based strategy may not be convenient, because there are concepts not common to the three main variants but that we consider worth including (e.g., because we foresee that they may be used in future variants). As a result, the strategy that we use to build the reference model is composed of the following five rules:

<NL>
R1. All the common concepts and properties have been included.

R2. Concepts that are not common but whose use can be envisaged for the future have been included.

R3. When contradictions among sources were found, we tried to reconcile them, and the result has been included; if reconciliation was not possible, we have included in the model the most general concept that does not induce contradictions.

R4. Ambiguities and silences (according to Meyer’s definition) in the original sources have been solved in the most conservative way.

R5. Constructs or properties defined with a very particular objective have not been included.</NL>
The reference model takes the form of a UML class diagram (Rumbaugh et al., 2004; figure 17.11) with some constraints expressed in the OCL language (Object Management Group, 2003; figure 17.12). Class diagrams, as a kind of conceptual data model, have been used in other proposals that have been an additional (and very valuable) source of information for our work. For instance, not restricted to i*, we may find in Bauer and Odell (2005) and Odell, Van Dyke Parunak, and Bauer (2000, 2001) an approach that extends UML to model agent-oriented concepts. A relevant generalization effort is presented by Bernon, Cossentino, Gleizes, Turci, and Zambonelli (2005) and Cossentino, Bernon, and Pavón (2005) in which multiagent systems methodologies are studied and a general metamodel is proposed. Specifically for i*, Yu (1995) provides a Telos conceptual model to define the main concepts and constructors of the language; however, it is recognized as a partial model and therefore does not include all the aspects of i* (e.g., the instance and is-part-of relationships). A very comprehensive Tropos metamodel is provided by Sannicolò et al. (2002), but this metamodel is more concept-oriented than language-oriented. For instance, T-L Formula and Constrainable Entity, among others, appear and, on the contrary, some language elements are omitted (e.g., actor specializations). A new version of this metamodel has recently appeared (Susi et al., 2005). Also in the context of Tropos, Castro, Silva, and Mylopoulos
 (2003) focus on the modeling of organizational architectures, but again not specifically on language constructs. In these i*-related cases, the models are restricted to a specific i* language variant, whereas our aim is to define a reference model that allows defining the semantics of any i* variant by determining its differences with respect to this model. This makes it easier to understand new proposed concepts, to extrapolate proposals and models from one variant to another, to evaluate how different a variant is from the core of i*, and the like.

[figure 17.11 here]

[figure 17.12 here]
The UML class diagram resembles the model given in figure 17.3 by Yu (1995), and therefore it aligns with the categorization proposed in table 17.1. Our approach is more language-oriented than semantic-oriented, which means that the focus is on the valid structures of the language more than on capturing conceptual relations of the world to be represented. For example, we are not modeling the difference between instances (such as agents) and universals (such as roles) when we say that an actor is specialized into agents, roles, and positions; we are just saying that the language allows these three kinds of actors.

The model backbone Node—Dependable Node—Intentional Element— Dependum—Internal Element has been preserved (rule R1) with some minor renamings to avoid committing too much to Yu’s vocabulary (1995). Labels from Node act as identifiers in Actors (OCL restriction 1 in figure 17.12) and Dependums (OCL 2), but not in Internal Element, although they do consider boundaries of actors (OCL 3). At this high level of abstraction in the reference model, we have included a class External Element as defined in GRL, because we think that the ability to link elements from an i* model to elements in other models is a great help for traceability and, more specifically, for supporting the transition from the strategic perspective exhibited by i* to more operative levels (rule R2).

The four main types of intentional elements have been kept (rule R1), leaving out the belief type, because although the concept is introduced in all of the three main variants, only GRL includes a construct for it (rule R5). Dependencies are defined in the same way in each of the three variants, and so we define them again as a ternary relationship (rule R1), ensuring that at least one of the ends is an actor (OCL 4) and that depender and dependee are different (OCL 5). But we do not include the strength concept because it appears only in Yu (1995), whereas Tropos does not mention this notion (rule R4). We have included a derived attribute because very often the consulted documents talk about type of dependency when referring to type of dependum (OCL 6).

We distinguish the usual three types of actors (agent, position, and role) and their associations, even the derived one between Agent and Role (OCL 7), but not the Instance relationship because it appears only in Yu (1995) (rule 5), although the definition of GRL does not include them. Concerning this last point, we may in fact find at least two uses of GRL that contradict actor’s definition: an example that appears in GRL (2000b, p. 19) and the GRL constructs provided by the OME tool (http://www.cs.toronto.edu/km/ome/). Because these contradictions in fact align with the other variants, we have considered them as significant (rule R3). We also include the is-part-of and is-a relationships, although once more GRL does not include them. We think that they are of interest in the general case (rule R2). OCL constraints for avoiding cycles (OCL 8), ensuring that relationships are among actors of the same type (OCL 9), and avoiding conflicting is-a and is-part-of relationships (OCL 10) are included. Finally, as one could expect from the analysis performed in section 17.2, links among intentional elements are the most difficult to reconcile, given the great variety that we find. We have distinguished three types of links: means-end, decomposition, and contribution. Although i* seems to have only the first two of them, our analysis in subsection 17.2.6 shows that a means-end link with a softgoal as end can be assimilated to a contribution link; in fact, it is explicitly said that “Links involves [sic] softgoals require an extra attribute to indicate the type of contribution” (Yu, 1995, p. 34). Concerning types of contribution, we deal with diversity by applying rule R3 and keeping only the two most general types of contribution, positive (+) and negative ((). Links cannot induce cycles (OCL 11).

Particular constructs proposed in other i* variants have not been included in the reference model (rule R5).

Table 17.3 complements the reference model with the definition of the main concepts represented in the UML conceptual model presented in figure 17.11. Therefore, it may be used to fully understand the model. The vocabulary is based on definitions and descriptions of the same concepts given by Yu (1995), GRL (2000b), and Sannicolò et al. (2002).

[table 17.3 here]

 <H1>17.4 Deriving Conceptual Models of Variants from the Reference Model by Refactoring</H1>
The reference model presented in section 17.3 reconciles the three main streams of i* using a nonstrict intersection-based approach. We may use it as the starting point for obtaining conceptual models for these and other i* variants. We focus on the differences of the constructs of a particular variant with respect to the reference model: which constructs are added, removed, renamed, or modified in some other way.

We propose to describe these differences by means of operations that make transformations on conceptual models, in a way similar to that done in refactoring (Sunyé et al., 2001). Therefore, to know the differences between a variant of i* and the reference model, it is necessary to determine the operations needed to obtain the conceptual model of the variant from the reference conceptual model.

[table 17.4 here]
Table 17.4 summarizes the operations applied when refactoring the reference model to obtain the three main variants: seminal i*, GRL, and Tropos, as in Castro, Kolp, and Mylopoulos (2001), according to the information given in tables 17.1 and 17.2. Some comments follow:

<BL>
· Seminal i*. We introduce the concept of strength that appears both in dependencies and in task decompositions. We eliminate the concept of external element. We introduce the concept of instance of agents with an OCL constraint stating that an agent cannot occupy a position and be an instance at the same time. We restrict actors to having at most one root. The rest of the changes, except for a pair of minor renamings, involve links between intentional elements: two additional types of contributions are added (sub and sup), and the permitted types of intentional elements are stated according to table 17.2, by means of OCL constraints. As result of this refactoring process, we may check that we obtain the conceptual model shown in figure 17.3.

· GRL. Due to the richness of contribution and correlation values, more refactoring operations are needed. Additions and renamings are used to conform the enumeration types ContributionType, CorrelationType, and SoftgoalPropertiesType; also, the belief intentional type is added, but not allowed to be a dependum type (new OCL constraint). For recording the properties of softgoals, a subclass for this particular type of intentional element is added with the corresponding attribute. The most significant change with respect to the reference model is that the concept of contribution affects both intentional elements and links (renamed relationships in GRL), and to model this fact we have added a new superclass for these two existing classes, the ContributionRelsElements, which defines both ends of the reference model’s association Contribution, which is therefore moved to this new context and renamed RelationshipContribution. At the same time, we add another type of link as a subclass for correlations with the corresponding attribute. Last, we also add several OCL constraints to ensure that links are applied to the types of intentional elements that GRL requires. Figure 17.13 shows an excerpt of the resulting model, focusing on relationships and contributions.

· Tropos. Some minor refactoring operations are included as well as the usual OCL constraints for allowed intentional types for links.</BL>
[figure 17.13 here]
For the rest of the variants, we focus on REF, Formal Tropos, and RiSD. REF is an example of language that requires several refactoring operations due to the definition of several new constructs. We obtain the following operations:

<BL>
· Additions. add Subclass(SoftgoalConnection, Link), add Enumeration(ConnectionType, Hurt, Sharing), add Attribute(SoftgoalConnection, type, ConnectionType), add EnumeratedValues(IntentionalType, constraint).

· Removals. Remove Class(External Element), remove Subclass(Role), remove Subclass(Position), remove Subclass(Agent), remove Class(Is-a), remove Class(Contribution), remove Class(Means-end), remove Role(Dependency, dependee).
 As usual, we assume that removing a class also removes the associations in which it participates.
· New OCL constraints. context Dependum inv dependumTypes: self.type <> constraint; context Decomposition inv decompositionRels: self.head.type <> constraint</BL>.
In contrast, Formal Tropos, despite its powerful reasoning mechanisms, requires only a pair of simple refactoring operations: add BinaryAssociation(priorTo, Task, pred, 0..1, Task, succ, 0..1) and add
 Attribute(MeansEnd, cardinality, TupleType(lower: Integer, upper: Integer)
(assuming that the n cardinality is represented by +maxint). Similarly, a methodology such as RiSD requires only minor changes oriented to supporting understanding of the model and the process of building it: add BinaryAssociation(supports, Actor, supported, *, Actor, supporting, *), add BinaryAssociation(supports, Dependency, supported, *, Dependency, supporting, *), change Multiplicity(Actor, InternalElement, rootOf, 1),
 and adding two OCL constraints to avoid cycles in supports.

<H1>17.5 Conclusions</H1>
In this chapter, we have carried out a thorough analysis of different i* variants, notably the three main streams of i*: seminal i*, GRL, and Tropos. From the classification of the language constructs found in those variants, we have formulated a reference model for i* and, starting from it, we have shown its use for deriving conceptual models for the variants. We think that the contributions of our work are the following::

<BL>
· To provide a general view of the evolution of i*, making explicit the relationships among different variants and the main contributions of each of those variants concerning language constructs.

· To provide a general view of the differences and the similarities among i* approaches, considering especially the maturity of some language constructs, which appear in many of the proposals; the coincidence of new constructs appearing in different proposals, even with different shapes (e.g., constraint); and the specialization in particular fields or issues of some of these proposals (e.g., security, traceability) .

· To reconcile these different existing views to form a reference model that accommodates all of them.

· To derive a rigorous definition of the particular analyzed variants from the reference model. This process can also be viewed as a validation of our reference model. As a result, we have a unified view of the different variants and gain a precise insight into the particularities of each approach.

· To provide a reference framework for future variations of the language.</BL>
In fact, some i* variants also propose a metamodel to describe the semantics of their i* language. For example, Yu (1995) proposes schemas describing the SD and SR diagrams using the Telos modeling language (Mylopoulos, Borgida, Jarke, & Koubarakis, 1990). The Tropos language also proposes a Tropos metamodel using UML (Susi et al., 2005). However, these metamodels are specific to each particular variant, and their purpose is mainly to model and describe their i* language elements. We do not propose any new variant of the i* language, because we propose a framework that can be used as reference model for the existing and forthcoming variants of the i* language.

Another possible approach could have been to provide semantics for the different i* variants with respect to some reference ontology, as done, for instance, in Opdahl and Henderson-Sellers (2002) for UML, and then to harmonize their different modeling constructs. A first step in this direction has been made by Henderson-Sellers, Numi-Tran, and Debenham (2005) for the case of goals and tasks in agent-oriented methodologies. Generalizing this analysis to all the various i* constructs is beyond the scope of this chapter.

Our future work includes both theoretical and practical work. On the theoretical side, we will continue to work on formalizing ongoing i* variations under this common conceptual framework. As an example of this ongoing work, we have recently proposed a notion of inheritance in i* (Clotet, Franch, López, Marco, Seyff, & Grünbacher, 2007). As a practical application, we have started a collaboration with Fondazione Bruno Kessler-irst in order to develop a markup language for representing and sharing i* diagrams among members of the i* community. The use of the i* reference model has to play a crucial role in order for us to reach our iStarML proposal.

<H1>Acknowledgments</H1>

We would like to thank all the members of the GESSI group at the UPC for their collaboration in earlier stages of the work. This research has been partially supported by the Spanish MEC project TIN2004-07461-C02-01.

<REF>References
Amyot, D., & Mussbacher, G. (2002). URN: Towards a new standard for the visual description of requirements. In E. Sherratt (ed.), Proceedings of the 3rd International Workshop on Telecommunications and Beyond: The Broader Applicability of SDL and MSC [SAM 2002] (pp. 21–37). Lecture Notes in Computer Science 2599. Berlin: Springer.

Bauer, B., & Odell, J. (2005). UML 2.0 and agents: How to build agent-based systems with the new UML standard. Engineering Applications of Artificial Intelligence, 18 (2), 141–157.

Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., & Zambonelli, F. (2005). A study of some multi-agent meta-models. In J. Odell, P. Giorgini, and J.P. Müller (eds.), Proceedings of the 5th International Workshop on Agent-Oriented Software Engineering [AOSE’04] (pp. 62–77). Lecture Notes in Computer Science 3382. Berlin: Springer.

Bresciani, P., & Donzelli, P. (2003). REF: A practical agent-based requirement engineering framework. In M.A. Jeusfeld and O. Pastor (eds.), Conceptual Modeling for Novel Application Domains: Proceedings of ER 2003 Workshops (pp. 217–228). Lecture Notes in Computer Science 2814. Berlin: Springer.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos J.
 (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.

Buhr, R.J.A., & Casselman, R.S. (1995).
 Use Case Maps for Object-Oriented Systems. Upper Saddle River, NJ: Prentice-Hall.
Castro, J., Kolp, M., & Mylopoulos, J. (2001). A requirements-driven development methodology. In K.R. Dittrich, A. Geppert, and M.C. Norrie (eds.), Proceedings of the 13th International Conference on Advanced Information Systems Engineering [CAiSE’01] (pp. 108–123). Lecture Notes in Computer Science 2068. Berlin: Springer.
Castro, J., Silva, C.T.L.L., & Mylopoulos, J.
(2003). Modeling organizational architectural styles in UML. In Proceedings of the 15th International Conference on Advanced Information Systems Engineering [CAiSE’03] (pp. 111–126). Lecture Notes in Computer Science 2681. Berlin: Springer.

Clotet, R., Franch, X., López, L., Marco, J., Seyff, N., & Grünbacher, P. (2007). The meaning of inheritance in i*. In B. Pernici and J. Atle Gulla (eds.), Proceedings of Workshops and Doctoral Consortium of CAiSE’07, vol. 2, Proceedings of the 17th International Workshop on Agent-Oriented Information Systems Engineering [AOIS’07] (pp. 651–666). Trondheim, Norway: Tapir Academic Press.

Cossentino, M., Bernon, C., & Pavón, J. (2005). Modelling and Meta-modelling Issues in Agent-Oriented Software Engineering: The Agentlink AOSE TFG Approach. Technical Report AgentLink III. Ljubljana, Slovenia: The AgentLink AOSE Technical Forum Group. http://www.pa.icar.cnr.it/cossentino/al3tf2/docs/aosetfg_report.pdf.
Chung, L., Nixon, B.A., Yu, E., & Mylopoulos, J. (2000). Non-functional Requirements in Software Engineering. Boston: Kluwer Academic.

Dam, K.H., & Winikoff, M. (2004).
 Comparing agent-oriented methodologies. In P. Giorgini, B. Henderson-Sellers, and M. Winikoff (eds.), Proceedings of the 5th International Bi-Conference Workshop on Agent-Oriented Information Systems [AOIS 2003] (pp. 78–93). Lecture Notes in Computer Science 3030. Berlin: Springer.
Dardenne, A., Fickas, S., & van Lamswerde, A. (1991). Goal-directed concept acquisition in requirements elicitation. In Proceedings of the 6th International Workshop on Software Specification and Design (pp. 14–21). Los Alamitos, CA: IEEE Computer Society Press.

Dardenne, A., Fickas, S., & van Lamswerde, A.
 (1993). Goal-directed requirements acquisition. Science of Computer Programming, 20(1–2), 3–50.

Donzelli, P., & Bresciani, P. (2004). Improving requirements engineering by quality modeling: A quality-based requirements engineering framework. Journal of Research and Practice in Information Technology, 36(4), 277–294.

Donzelli, P., & Setola, R. (2002). Handling the knowledge acquired during the requirements engineering process: A case study. In Proceedings of the 14th Software Engineering and Knowledge Engineering Conference [SEKE'02] (pp. 673–679). New York: ACM Press.

Estrada, H., Martínez, A., Pastor, O., & Mylopoulos, J. (2006). An experimental evaluation of the i* framework in a model-based software generation environment. In E. Dubois and K. Pohl (eds.), Proceedings of the 18th International Conference on Advanced Information Systems Engineering [CAiSE’06] (pp. 513–527). Lecture Notes in Computer Science 4001. Berlin: Springer.
Fuxman, A., Kazhamiakin, R., Pistore, M., & Roveri, M. (2003). Formal Tropos: Language and Semantics. Technical Report. Trento, Italy: University of Trento. http://dit.unitn.it/~ft/papers/ftsem03.pdf.
Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., & Traverso, P. (2004). Specifying and analyzing early requirements in Tropos. Requirements Engineering Journal, 9(2), 132–150.
Fuxman, A., Liu, L., Pistore, M., Rovere, M., and Mylopoulos, J. (2003). Specifying and analyzing early requirements: Some experimental results. In Proceedings of the 11th IEEE International Requirements Engineering Conference [RE’03] (pp. 105–114). Los Alamitos, CA: IEEE Computer Society Press.

Fuxman, A.,
Pistore, M., Mylopoulos, J., & Traverso, P. (2001). Model checking early requirements specifications in Tropos. In Proceedings of the 5th IEEE International Symposium on Requirements Engineering (pp. 174–181). Los Alamitos, CA: IEEE Computer Society Press.

Garlan, D., Monroe, R., & Wile, D. (1997). ACME: An architecture description interchange language. In J.H. Johnson (ed.), Proceedings of the 1997 Conference of the Centre for Advanced Studies on Collaborative Research (pp. 7–21). Boston: IBM Press.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004a). Filling the gap between requirements engineering and public key/trust management infrastructures. In S.K. Katsikas, S. Gritzalis, and J. Lopez (eds.), Public Key Infrastructure
 (pp. 98–111). Lecture Notes in Computer Science 3093. Berlin: Springer.
Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2004b). Requirements engineering meets trust management: Model, methodology, and reasoning. In C. Jensen, S. Poslad, and T. Dimitrakos (eds.), Trust Management (pp. 176–190). Lecture Notes in Computer Science 2995. Berlin: Springer.
Giorgini, P., Massacci, F., Mylopoulos, J., & Zannone, N. (2005). Modeling security requirements through ownership, permission and delegation. In Proceedings of the 13th IEEE International Requirements Engineering Conference [RE’05] (pp. 167–176). Los Alamitos, CA: IEEE Computer Society Press.

Giunchiglia, F., Mylopoulos, J., & Perini, A. (2003). The Tropos software development methodology: Processes, models and diagrams. In P. Giorgini, J.P. Müller, and J. Odell (eds.),
 Proceedings of the 3rd International Workshop on Agent-Oriented Software Engineering [AOSE 2002] (pp. 162–173). Lecture notes in Computer Science 2585. Berlin: Springer.

Grau, G., Franch, X., Mayol, E. Ayala, C.P., Cares, C., Haya, M., Navarrete, F.J., Botella, P., & Quer, C. (2005). RiSD: A methodology for building i* strategic dependency models. In W.C. Chu. N.J. Juzgado and W.E. Wong (eds.), Proceedings of the 17th International Conference on Software Engineering and Knowledge Engineering [SEKE'05] (pp. 259–266). http://www.sigmod.org/dblp/db/conf/seke/seke2005.html.
GRL. (2000a). GRL: Goal-oriented requirement language. Retrieved June 5, 2007, from University of Toronto, Department of Computer Science: http://www.cs.toronto.edu/km/GRL/.
GRL. (2000b). GRL Ontology. Retrieved June 5, 2007, from University of Toronto, Computer Science Department, http://www.cs.toronto.edu/km/GRL/.
Henderson-Sellers, B., Numi-Tran, Q.-N., & Debenham, J. (2005). An etymological and metamodel-based evaluation of the terms “goals” and “tasks” in agent-oriented methodologies. Journal of Object Technology, 4(2), 131–150.

Iglesias, C.A., Garijo, M., & González, J.C. (2000).
 A survey of agent-oriented methodologies. In J.P. Müller, M.P. Singh, and A.S. Rao (eds.), Proceedings of the 5th International Workshop on Intelligent Agents: Agent Theories, Architectures, and Languages [ATAL'98] (pp. 317–330). Lecture Notes in Computer Science 1555. Berlin: Springer.

ITU-T (International Telecommunication Union, Telecommunication Standardization Sector). (2003). Recommendation Z.150: User Requirements Notation (URN). Language requirements and framework. Retrieved June 5, 2007, from http://www.itu.int/rec/
recommendation.asp?type=folders&lang=e&parent=T-REC-Z.150.
Juan, T., Sterling, L., & Winikoff, M. (2003). Assembling agent oriented software engineering methodologies from features. In F. Giunchiglia, J. Odell, and G. Weiss (eds.), Proceedings of the 3rd International Workshop on Agent-Oriented Software Engineering [AOSE 2002] (pp. 198–209). Lecture Notes in Computer Science 2585. Berlin: Springer.

Liaskos, S., Lapouchnian, A., Wang, Y., Yu, Y., & Easterbrook, S. (2005). Configuring common personal software: A requirements-driven approach. In Proceedings of the 13th IEEE International Requirements Engineering Conference [RE'05] (pp. 9–18). Los Alamitos, CA: IEEE Computer Society Press.

Meyer, B. (1985). On formalism in specifications. IEEE Software, 2(1), 6–26.

Mouratidis, H., & Giorgini, P. (2004). Enhancing Secure Tropos to effectively deal with security requirements in the development of multiagent systems. In M. Barley, F. Massacci, H. Mouratidis, and P. Scerri (eds.), Proceedings of the First International Workshop on Safety and Security in Multiagent Systems [SASEMAS 2004] (pp. 57–61).
 http://www.cs.auckland.ac.nz/research/safeagent/2004/
SASEMAS2004Proceedings.pdf.
Mouratidis, H., Giorgini, P., & Manson, G. (2003). Modelling secure multiagent systems. In Proceedings of the 2nd International Joint Conference on Autonomous Agents and Multiagent Systems [AAMAS'03] (pp. 859–866). New York: ACM Press.

Mouratidis, H., Giorgini, P., Manson, G., & Philp, I. (2002). A natural extension of Tropos methodology for modelling security. In J. Debenham, B. Henderson-Sellers, N. Jennings, and J. Odell (eds.), Proceedings of the Agent Oriented Methodologies Workshop [OOPSLA 2002]. http://www.open.org.au/Conferences/oopsla2002/accept.html.
Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems, 8(4), 325–362.
Mylopulos J., Chung, L., & Nixon, B. (1992). Representing and using non-functional requirements: A process-oriented approach. IEEE Transactions on Software Engineering, 18(6), 483–497.

Object Management Group. (2003). UML 2.0 OCL specification. Retrieved June 5, 2007, from: http://www.omg.org/docs/ptc/03-10-14.pdf.
Odell, J., van Dyke Parunak, H., & Bauer, B. (2000). Extending UML for agents. In G. Wagner, Y. Lespérance, and E. Yu (eds.), Proceedings of the Agent-Oriented Information System Workshop [AOIS 2000] (pp. 3–17). Berlin: iCue.

Odell, J., van Dyke Parunak, H., & Bauer, B. (2001). Representing agent interaction protocols in UML. In P. Ciancarini and M. Wooldridge (eds.), Proceedings of the First International Workshop on Agent-Oriented Software Engineering [AOSE 2000] (pp. 121–140). Lecture Notes in Computer Science 1957. Berlin: Springer.
Opdahl, A.L., & Henderson-Sellers, B. (2002). Ontological evaluation of the UML using the Bunge-Wand-Weber Model. Software and Systems Modelling, 1(1), 43–67.

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). Unified Modeling Language Reference Manual. 2nd ed. Boston: Addison-Wesley.

Sannicolò, F., Perini, A., & Giunchiglia, F. (2002). The Tropos Modelling Language. A User Guide. Technical Report DIT-02-061. Retrieved June 5, 2007, from University of Trento, http://eprints.biblio.unitn.it/archive/00000208/.
Sudeikat, J., Braubach, L., Pokahr, A., & Lamersdorf, W. (2005).
 Evaluation of agent–oriented software methodologies: Examination of the gap between modeling and platform. In J. Odell, P. Giorgini, and J.P. Müller
(eds.), Proceedings of the 5th International Workshop on Agent-Oriented Software Engineering [AOSE 2004] (pp. 126–141). Lecture Notes in Computer Science 3382. Berlin: Springer.
Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel, J.-M. (2001). Refactoring UML models. In M. Gogolla and C. Kobryn (eds.), Proceedings of the 4th International Conference on the Unified Modeling Language: Modeling Languages, Concepts, and Tools (pp. 134–148). Lecture Notes in Computer Science 2185. Berlin: Springer.
Susi, A., Perini, A., Mylopoulos, J., & Giorgini, P. (2005). The Tropos metamodel and its use. Informatica, 29(4), 401–408.

Sutcliffe, A., & Minocha, S. (1999). Linking business modelling to socio-technical system design. In M. Jarke and A. Oberweis (eds.), Proceedings of the 11th International Conference on Advanced Information Systems Engineering [CAiSE'99] (pp. 73​–87). Lecture Notes in Computer Science 1626. Berlin: Springer.
Webster, I., Amaral, J., & Cysneiros, L.M. (2005). A survey of good practices and misuses for modelling with i* framework. In Proceedings of the 8th Workshop on Requirements Engineering [WER’05] (pp. 148–160). http://gnomo.fe.up.pt/~wer2005/programme.php.
Wooldridge, M., & Ciancarini, P. (2001). Agent-oriented software engineering: The state of the art. In P. Ciancarini and M.J. Wooldridge (eds.), Proceedings of the First International Workshop on Agent-Oriented Software Engineering [AOSE 2000] (pp. 1–28). Lecture Notes in Computer Science 1957. Berlin: Springer.

Yu, E. (1993). Modeling organizations for information systems requirements engineering. In Proceedings of the First IEEE International Symposium on Requirements Engineering (pp. 34–41). Los Alamitos, CA: IEEE Computer Society Press.

Yu, E. (1995). Modelling strategic relationships for process reengineering. Ph.D. thesis, University of Toronto.
Yu, E. (1997). Towards modelling and reasoning support for early-phase requirements engineering. In Proceedings of the 3rd IEEE International Symposium on Requirements Engineering [RE’07] (pp. 226–235). Los Alamitos, CA: IEEE Computer Society Press.

Yu, E., & Mylopoulos, J. (1994). Understanding “why” in software process modelling, analysis, and design. In Proceedings of the 16th International Conference on Software Engineering [ICSE’94] (pp. 159–168). Los Alamitos, CA: IEEE Computer Society Press.

Yuhong, Y., Maamar, Z., & Weiming, S. (2001). Integration of workflow and agent technology for business process management. In W. Shen, Z. Lin, J.-P. Barthès, and M. Kamel (eds.), Proceedings of the 6th International Conference on Computer Supported Cooperative Work in Design (pp. 420–426). Ottawa, Canada: NRC Research Press.
<figure captions>

Figure 17.1 Historical perspective on i*.

Figure 17.2 An i* model for an academic tutoring system. For a key to i* diagrams, see figure A.1.

Figure 17.3 UML conceptual model for the i* framework according to Yu (1995).

Figure 17.4 Extracts from original Tropos diagrams.

Figure 17.5 Extracts from an REF diagram with H and S connections and constraints.

Figure 17.6 Extracts from Secure Tropos diagrams.

Figure 17.7 Extracts from Security-Aware Tropos diagrams.

Figure 17.8 Extract from a Formal Tropos diagram with prior-to relationships and cardinalities.

Figure 17.9 Constraints and numerical contribution functions from Liaskos et al. (2005).

Figure 17.10 Use of the supports construct in Grau et al. (2005).

Figure 17.11 i* reference model: Class diagram.

Figure 17.12 i* reference model: OCL constraints.

Figure 17.13 Conceptual model for GRL after refactoring the reference model: Excerpt.
Table 17.1 Summary of the use of i* constructs in the examined i* variants

	
	
	
	i* 1995
	GRL
	Tropos
	REF
	Secure Tropos
	Formal Tropos
	Security-Aware Tropos
	Other Variations

	Actors
	
	
	
	
	
	
	
	

	
	Actor
	
	
	
	
	
	
	
	

	
	Agent
	
	
	
	
	
	
	
	

	
	Role
	
	
	
	
	
	
	
	

	
	Position
	
	
	
	
	
	
	
	

	Intentional Elements
	
	
	
	
	
	
	
	

	
	Goal
	
	
	
	
	
	
	
	

	
	Softgoal
	
	
	
	
	
	
	
	

	
	Task
	
	
	
	
	
	
	
	

	
	Resource
	
	
	
	
	
	
	
	

	
	Belief
	C
	
	C
	
	C
	
	
	

	Actor Relationships
	
	
	
	
	
	
	
	

	
	Is_a
	
	
	
	
	
	
	
	

	
	Is_part_of
	
	
	
	
	
	
	
	

	
	Instance
	
	
	
	
	
	
	
	

	
	Occupies
	
	
	
	
	
	
	
	

	
	Covers
	
	
	
	
	
	
	
	

	
	Play
	
	
	
	
	
	
	
	

	
	Help | support
	
	
	
	
	
	
	
	 /G

	Links
	
	
	
	
	
	
	
	

	
	Decomposition
	
	
	
	
	
	
	
	

	
	Means-end
	
	
	
	
	
	
	
	

	
	Contribution
	
	
	
	
	
	
	
	 /L

	
	Correlation
	
	
	
	
	
	
	
	

	
	Sequence
	
	
	
	
	
	
	
	

	
	Hurt/sharing
	
	
	
	
	
	
	
	

	
	Help | support
	
	
	
	
	
	
	
	 /G

	Dependencies
	
	
	
	
	
	
	
	

	
	Dependency
	
	
	
	
	
	
	
	 /S

	
	Ownership
	
	
	
	
	
	
	
	 /S

	
	Boundary
	
	
	
	
	
	
	
	

	
	Trust
	
	
	
	
	
	
	
	

	
	Delegation
	C
	
	
	
	
	
	
	

	
	Responsibility
	
	
	
	
	
	
	
	 /S

	
	Offer
	
	
	
	
	
	
	
	

	
	Monitor/accountability
	
	
	
	
	
	
	
	 /S

	
	Restrict
	
	
	
	C
	
	
	
	

	Dependency Properties
	
	
	
	
	
	
	
	

	
	Strength
	
	
	
	
	
	
	
	

	
	
	Open/commitment/critical
	
	
	
	
	
	
	
	

	
	
	Capability
	C
	
	
	
	C
	
	
	 /S

	Link Properties
	
	
	
	
	
	
	
	

	
	Means-end
	
	
	
	
	
	
	
	

	
	
	Cardinality / 0,1,n,*,..
	
	
	
	
	
	
	
	

	
	Contribution
	
	
	
	
	
	
	
	

	
	
	+ , - , sub , sup | +,-,++,--
	
	
	
	
	
	
	
	

	
	
	And, or, make, break, help, hurt, some+, some-, equal, unknown
	
	
	
	
	
	
	
	

	
	
	Numerical values
	
	
	
	
	
	
	
	 /L

	
	Correlation
	
	
	
	
	
	
	
	

	
	
	Break, hurt,sSome-, some+, help, make, equal, unknown
	
	
	
	
	
	
	
	

	
	Task decomposition strength
	
	
	
	
	
	
	
	

	
	
	Open/commitment/critical
	
	
	
	
	
	
	
	

	Evaluation Scenarios
	
	
	
	
	
	
	
	

	
	Softgoal properties
	
	
	
	
	
	
	
	

	
	
	Satisfied, weakly satisfied, denied, weakly denied, undecided
	
	
	
	
	
	
	
	

	
	Alternative process
	
	
	
	
	
	
	
	

	
	Attack
	
	
	
	
	
	
	
	

	
	Threat
	
	
	
	
	
	
	
	

	Others Elements
	
	
	
	
	
	
	
	

	
	Constraint
	
	
	
	
	
	C
	
	

	
	Constraint decomposition
	
	
	
	
	
	C
	
	

	
	External element
	
	
	
	
	
	
	
	

Table 17.2 Comparative analysis of the relationships among intentional elements in i*
	
	Yu’s i*
	GRL
	Tropos’01
	Tropos’02

	Means-end
	Name
	means-end
	means-end
	means-end
	means-end

	
	Connected elements
	G (G

T (G | S | R | T
	T (G | T | R
	G | T (T

T (G
	G | S | R | T (G | S

R | T (T

	
	Operation
	OR
	OR
	OR
	AND

	Decom-position
	Name
	task-decomposition
	decomposition
	decomposition
	AND/OR decomposition

	
	Connected elements
	G | S | R | T (T
	G | S | R | T (T | G
	G | S | T (G | S | T

	G | S (G | S

	
	Operation
	AND
	AND
	AND
	AND | OR

	Contribution
	Name
	means-end
	correlation, contribution
	contribution
	contribution

	
	Connected elements
	S | T (S
	correlation:

 S | T (S
contribution:

 S | T | L (S | B | L
	S | T (S
	G | S | R | T (G | S

	
	Operation
	does not exist
	contribution:

AND, OR

correlation:

does not exist
	does not exist
	does not exist

	
	Attributes
	+, - , sup , sub
	make, break, help, hurt, some+, some-, equal, unknown
	++, +, -, --
	++, +, -, --

	
	
	 G

S

T
	goal

softgoal

task

	R

B

L
	resource

belief

link (decomposition, contribution, means-end, or correlation)

Table 17.3 Lexicon of reference model terms

	Concept
	Definition

	Actor
	Active entity that carries out actions to attain goals by exercising its know-how
It can depend on other actors to attain these goals

	
	Role
	Abstract characterization of the behavior of a social actor within some specialized context or domain of endeavor

	
	Agent
	Actor with concrete, physical manifestations

	
	Position
	Set of roles typically played by one agent

	
	Occupies
	An agent may occupy a position

	
	Covers
	A position covers all roles that compose it

	
	Plays
	An agent plays a role if it occupies a position covering this role

	Dependable Node
	Node that may participate as depender or dependee in some dependency

	Dependency
	Relationship stating that a dependable node (depender) depends on another dependable node (dependee) for something (dependum) that is essential to the depender to attain a goal

	
	Depender
	Dependable node that depends on others to attain a goal

	
	Dependee
	Dependable node that some others depend upon to attain their goals

	
	Dependum
	Reason or agreement why a dependee depends on a depender

	External Element
	Nonintentional element modeled in other languages that can be useful to complement an agent-oriented specification

	Intentional Element
	Represents the “intentional aspects” associated with any actor: motivations, intents, and rationales behind its actions

	
	Goal
	Specifies a condition or state in the world that an actor would like to achieve without specifying how to achieve it

	
	Task
	Specifies a particular way of attaining a goal

	
	Resource
	Specifies the availability of some (physical or informational) entity or even the finished product of some action, process, or task

	
	Softgoal
	Specifies a condition or state in the world that an actor would like to achieve, but whose achievement cannot be defined a priori as true or false, because it is subject to interpretation and/or negotiation

	Internal Element
	Intentional element used to model how an actor attains its main goals. The set of all internal elements of an actor determines the actor’s boundary, and the main goals of an actor correspond to its roots

	Link
	Relationship between two internal elements (head and tail) used to model how an actor attains its main goals

	
	Means-End
	Indicates that a means (tail) may attain the end (head)

	
	Decomposition
	Indicates that a head is decomposed into subcomponents (tail)

	
	Contribution
	Indicates that a tail can contribute positively (+) or negatively (-) to the attainment of a head, without ensuring its attainment

	Node
	The generalization of dependable nodes and intentional elements

	Relationship
	Establishes that one actor (from) is related to another (to)

	
	Is-part-of
	A relationship stating that an actor is an aggregation of other actors

	
	Is-a
	A relationship stating that an actor is a specialization of other actors

Table 17.4 Refactoring operations applied to the reference model to obtain the three main i* variants

	
	i*
	GRL
	Tropos (Castro et al., 2001)

	Addition
	· addEnumeration(StrengthType, Open, Commited, Critical)
· addEnumeratedValues (ContributionType, sub, sup)
· addAttribute(Dependency, depender_strength, StrengthType)

· addAttribute(Dependency, dependee_strength, StrengthType)

· addAttribute(Decomposition, strength, StrengthType)

· addBinaryAssociation(Instance, Agent, ins-of, 0..1, Agent, ins-from, *)

	· addEnumeratedValues(ContributionType, Break, Some-, Unknown, Equal, Some+, Make, And, Or)

· addEnumeratedValues(IntentionalType, belief)

· addEnumeration(CorrelationType, Break, Hurt, Some-,
 Some+, Help, Make, Equal)

· addEnumeration(SoftgoalPropertyType, Satisficed, Weakly Satisficed, Denied, Weakly Denied, Undecided)
· addSuperclass(ContributionRelsElements,
 IntentionalElement, Link)
· moveAssociationClass(Contribution,

 ContributionRelsElements, contributee, *,

 ContributionRelsElements, contributor, *)
· addSubclass(Correlation, Link)
· addAttribute(Correlation, type, CorrelationType)
· addSubclass(Softgoal, Intentional Element)
· addAttribute(Softgoal, satisfaction, SoftgoalProperiesType)
	· addEnumeratedValues(contributionType,

 ++, - -)

	Removal
	· removeClass(External Element) and its associations
	· removeSubclass(Role) and its associations

· removeSubclass(Position) and its associations

· removeSubclass(Agent) and its associations

· removeClass(Relationship) from Actor and its subclasses
	· removeClass(External Element) and its associations

	Change
	· changeMultiplicity(Actor, Internal Element, rootOf, 0..1)
	
	

	Renaming
	· renameClass(Dependum, SD-Dependum)
· renameClass(Internal Element, SR-Element)
· renameClass(Contribution, Means-EndContribution)
· renameClass(Decomposition, TaskDecomposition)
	· renameEnumeratedValue(+, Help)

· renameEnumeratedValue(-, Hurt)

· renameClass(Link, Relationship)
· renameAssociationClass(Contribution,
 RelationshipContribution)
· renameAssociation(BelongsTo,, Owns)
	· renameClass(is-part-of, decomposes)
· renameClass(Internal Element, RationalElement)

	New OCL Constraints
	application of addConstraint for the following:

· context MeansEnd inv means-endLinks:

 ((self..tail.type = task) or

 (self..head.type = goal and

 self..tail.type = goal))

· context TaskDecomposition

 inv taskDecompositionLinks:

 self.head.type = task

· context MeansEndContribution

 inv contributionLinks:

 ((self.head.type = softgoal) and

 (self.tail.type = softgoal or

 self..tail.type = task))

· context Agent inv InstancesAgent :

 self.instance-of -> isEmpty() or

 self.instance-from ->isEmpty()
	application of addConstraint for the following:

· context Dependum inv dependumTypes :

 self.type <> belief

· context MeansEnd inv means-endRelationships

 ((self..tail.type = task) and

 (self.head.type = goal or

 self..head.type = task or self.head.type = resource))

· context Decomposition inv decompositionRels:

 ((self.head.type = goal or self.head.type = task) and

 (self.tail.type <> belief))

· context LinkContribution inv contributionLinks:

 not(self.contributor.OCLIsTypeOf(IntentionalElement)

 and

 self.contributee.OCLIsTypeOf(IntentionalElement))

· context Correlation inv correlationRelationships:

 (self.head.type = softgoal) and

 (self.tail.type = softgoal or self..tail.type = task)
	application of addConstraint for the following:

· context Means-End inv means-endLinks:

 (self.tail.type= task) or

 (self.head.type=goal and (self.tail.type=goal) or

 (self.head.type=task and self.tail.type=goal))

· context Decomposition inv decompositionLinks:

 ((self.head.type=goal or self.head.type=task or

 self.head.type=softgoal) and

 (self.tail.type=goal or self.tail.type=task or

 self.tail.type=softgoal))

· context Contribution inv contributionLinks:

 ((self.head.type=softgoal) and

 (self.tail.type=softgoal or self.tail.type=task))

�Author: Should the year be 1999?

�Author: Should the fourth author be P. Giorgini? See the References

�Author: Is “that frame” OK? See the figure.

�Author: Are you citing GRL 2000a or 2000b?

�Should van Lamsweerde precede Fickas in either or both of the works cited?

�Author: Is 2000a correct?

�Author: Should Perini follow Mylopoulos in the list of authors?

�Author: Should the year be 2003?

�Author: Should the year be 2004?

�Author: In this sentence and the next, please clarify “with…service.” Would it be correct to delete “with”?

�Author: Should the figure number be 17.13?

�Author: Please clarify the description. The reference to rows, in particular, is not clear.

�Author: Should Silva precede Castro in the list of authors?

�Author: In this list item, is it correct to insert a space after “add”?

�Author: In this list item is it correct to insert a space after “remove”?

�Author: Is it correct to insert a space after “add”?

�Author: Is only a single parenthesis after “Integer” correct?

�Author: Is it correct to insert a space after “add” and “change”?

�Author: Should Perini follow Mylopoulos in the list of authors?

�Author: Should the year be 1996?

�AUTHOR: Should Silva precede Castro in the list of authors?

�Author: Should the year be 2003?

�Author: Should Fickas follow van Lamsweerde in the list of authors?

�Author: Should the pages be 169-183?

�Author: Should the book title be either Proceedings of Euro PKI’04 or Proceedings of the First European PKI Workshop: Research and Applications?

�Author: Should the editors be Giunchiglia, Odell, and G. Weiss?

�Author: Should the year be 1999?

�Author: Should the pages be 58-72?

�Author: Should the city be Reading, MA?

�Author: Should the year be 2004?

�Author: Should Odell follow Muller in the list of editors?

