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Abstract

Real-word spelling correction differs from non-word spell correction in its aims and its chal-
lenges. Here we show that the central problem in real-woetlisg correction isdetection. Methods
from non-word spelling correction, which focus instead elestion among candidate corrections, do
not address detection adequately, because detectiohés aitsumed in advance or heavily constrained.

As we demonstrate in this paper, merely discriminating betwthe intended word and a random
close variation of it within the context of a sentence is & that can be performed with high accuracy
using straightforward models. Trigram models are sufficie@lmost all cases. The difficulty comes
when every word in the sentence is a potential error, witligelaet of possible candidate corrections.

Despite their strengths, trigram models cannot reliablg fine errors without introducing many
more, at least not when used in the obvious sequential wanpultadded structure. The detection task
exposes weakness not visible in the selection task.

1 Introduction: real-word spelling correction

The task we typically think of as spelling correction copasds to the action we take when we are reading
and encounter a word that we do not recognise. Such a woremisasn immediate, unambiguous problem.
It is possible that this is a new word that we do not know, awad ithwhy we do not recognise it. However,
it could instead be a word we do know that has been misspallespelled in a way we have not seen
before. If we decide it is indeed a misspelling, it is ususlcause we have thought of another word that
could go in its place close enough in spelling to what wastemithat it is a plausible mistake. Trying to
find a replacement for an unrecognised word is the problenomfvord spelling correction.

In natural language processing software, except for iniegdns specifically designed for editing,
non-word spelling correction is usually not addressed i3t &ather than assuming an unknown word is
an error, it is assumed to be a valid new word. That is becaatsgat vocabularies are always unbounded,
and texts normally have many single occurrences of rare endwords, especially names. NLP systems
therefore expect to encounter words they didn’t have asailan training. Of course, some of these words
may turn out to be spelling errors or variations of words thatsystem already knew ab@lit

The focus of this paper is what happens when we encountervarkword that is sufficiently unlikely
in its context that it is worth wondering whether the intethdeord was actually not the one we have
observed. This problem is calledal-word spelling correction, or, sometimesgontext-sensitive spelling
correction. Real-word spelling correction requires different meth&®m non-word spelling correction.

1 Information retrieval is a notable exception, as searctinesgusually attempt to correct both real-word and non-word
spelling errors.

2n future work, we may incorporate the decision of whethergat such words as new, or instead correct or normalise.them
In this work, however, we do not attempt non-word spellingection, and always treat unknown words as correct.
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1.1 Detection vs. correction

Detection, that is, realising that there has been an esdrivial in the non-word problem. We detect a
non-word error only if the word we encounter is not in our dmdary. In this case, we may still decide to
classify the word as a new word, and not an error. In spellorgection applications, which typically run
interactively, this decision is delegated to the user. As gliscussed, other applications normally simply
assume that an unseen word is a new word type.

For the real-word case, however, detection necessarighies having some model of what we expect
the text to be like, so that we can tell whether those expecmhave been violated. We assume that we
have detected a real-word spelling error when the proltaloifithe observed word is sufficiently low that
it undermines our confidence that the writer intended it.

This suggests an anomaly-detection approach, in whickeckon is attempted only if the probability
of a text falls outside of the expected variation in prolighilAs far as we know, that approach has not
been triedd. Instead, detection of real-word errors is a by-product afection. Typically, there is a
subset of the vocabulary of words considered a priori to tssipte candidates for correction. Whenever
one of those words is encountered, we consider correctiagdt retain the correction if it makes the text
sufficiently more probable than the original. This meansiththe real-word case as typically approached,
detection itself is dependent on decisions that are uldipgttart of thecorrection process.

Correction itself has two steps. First, a set of alternatiust be generated. Then one (or more)
of the alternatives must be selected. In the non-word tdsdgnatives are generated by searching the
dictionary for known words that are close in edit distancgaif, because non-word spelling correction has
traditionally been employed only in interactive applicat specifically for aiding a writer with spelling,
selection has been left to the user.

2 Previous approaches

2.1 Generation

For real-word spelling correction, the generation tasksisally construed as creatiegnfusion sets— sets

of words that are often mistakenly interchanged, sucfita§ ‘two’, ‘too’ }. When a word is encountered
that belongs to one of the known confusion sets, all of therattembers of the set are considered candidate
corrections. Most previous methods have relied on pre-eé@famd typically hand-crafted confusion sets.

Using pre-defined confusion sets implicitly malsekection the task of interest, casting it as a classifi-
cation problem. That has the advantage of allowing spe@htufes to be learned for discrimination, but
it also has disadvantages. It is resource intensive: ltireg@ither human expertise about what errors are
possible or a repository of errors and their correctionsetdelarned from. Moreover, it suffers from lack
of generality, both in the errors it can detect and correwd, ia being language specific.

A more flexible approach to generation is to algorithmicalfine confusion sets based on some
measureable characteristic. The use of edit distance inmood spelling correction is an example of
this. Any property of words that allows a distance comparismbe made between words could serve.
Toutanova and Moare [2002] use a phonetic distance for nomghspelling correction._Mays etlal. [1991]
use Damerau-Levenshtein edit distance (here8ftedistance) to generate candidate corrections for real-
word spelling errors. The work presented here is based omtthods in that paper. In particular, we
generate confusion sets in the same way.

A major advantage of constructing confusion sets algoiithily is that in principle errors can be
detected in any word. This flexibility, however, comes witbrmopportunity to “detect” errors where they
haven’t actually occurred.

30ur experiments with this approach forthcoming



2.2 Selection

The task of selection starts with deciding which of the aliives best fits in the context. With pre-defined
confusion sets, supervised machine learning techniquay. &or example, Golding and Roth [1999] use
a Winnow-based algorithm to learn to discriminate amongwhgeds in their confusion sets according to
surrounding words.

With algorithmically defined confusion sets, the space afidictions to learn is bounded only by
the vocabulary. Contextual distinctions for essentiallgrg word in the vocabulary are needed; at least
distinctions among all words that can ever fall within thensaconfusion set. Note that unlike a typical
pre-defined confusion set, algorithmic confusion sets magylap and are not necessarily symmetric or
transitive. For example, if we take a Levenshtein edit disteof1 as a criterion for confusability, ‘as’ will
be in the confusion set derived from both ‘a’ and ‘ask’, butsanot in the confusion set of ‘ask’.

One commonly used statistical model that represents eveny iv the vocabulary is the n-gram model.
We follow|Mays et al.l[1991] in using trigrams for selectiddnother kind of word-centric statistical model
of contextual fit that could be used is the topic model. Weddhis to future work.

As mentioned above, in our model of real-word spelling attiom, the detection decision is folded
into the correction process. This adds two more selectiostcaints in addition to contextual fit. Because
correction presumes that an error has been made, we wanbiadel toward selecting the original word,
that is, not correcting at all. Moreover, we may want to digtiish among the possible selections based on
how plausible it is that each one was intended as the origigin following Mays et al.[[1991], we use
a noisy channel model to represent these multiple consdrain

2.3 The noisy channel model

To frame spelling correction as a noisy channel problem, reat the observed sentence as a sigfal,
which has passed through a noisy channel (the typist). Thasrmel might have introduced errors into
the sentence. Our task is to find the most likely original aig#i (the intended sentence, generated by a
language model). The probability that the typist types adnarrrectly is a parameter, which is the same
for all words.

For each word, the remaining probability ma$s— «), the probability that the word is mistyped as
another real word, is distributed equally among all its lspgariations. This implicitly values as zero the
probability that a word was transformed by the channel istmething other than a variation considered
by our model. We reconcile this by letting the probabilitgigaed to words in our confusion sets include
the possibility that the original word was transformed iatmon-word, or a more distant variation, and
then corrected by some other process, such as editing, imtmore constrained set of variations.

3 Our approach

We seek to differentiate between the ability to select atimas from a constrained set within a stable
context, and the ability to detect errors when nearly evesydws a potential error. To do this we first
construct a corpus of errors out of naturally occurring lsxtandomly substituting words with other words
that are close in spelling. We demonstrate that if the probteconstrained to discriminating between the
original word and a single random variation of it within trentext of a sentence that is otherwise assumed
to be correct, a standard trigram model performs at highracgu

We then construct a hidden Markov model that uses a trigramteifor transition probabilities and
a noisy channel model for emission probabilities. We usé/terbi algorithm to find the most probable
sequence of word variations for each word in each sentenceroforpus. This structure allows every
word to be a candidate for correction to any of its allowedataims even when the variations interact. The
results shown below demonstrate that many words origitialtite text are not the most probable of their
variations, when probability is given by a trigram model.



4 Evaluation

4.1 The problem of evaluating unsupervised learning

We have cast the problem of real-word spelling error dedacéind correction as a task involving two
independent models. We learn a model of natural language imsupervised fashion, in this case a word
trigram model. We also design an algorithm that uses thaefhtodecognise a specific kind of ill-formed
text by finding similar text that fits the model better. Here wge a noisy channel model in this role.
Evaluation of the whole task necessarily evaluates botts.par

Unsupervised models are challenging to evaluate. SmithZ{P@nalyses evaluation practices in NLP,
drawing distinctions between intrinsic, extrinsic, andgbexity evaluations, and introducing a perplexity-
like evaluation framework based on adversarial roles. Wasarise this analysis here. Intrinsic evaluation
measures how well a model can replicate previous analysas)ly human annotations. This is ill-suited
to unsupervised learning, because it restricts learnirmgpe-defined structure, and unsupervised models
often have learning the structure itself as part of theil.g&trinsic evaluation measures performance
on a downstream task. Unfortunately, it can conflate theuati@in of a model with the evaluation of the
architecture in which it is embedded. Perplexity measums Wwell a model predicts subsequent text,
but it is constrained to models that assign probability d@rid highly sensitive to differences that may
be unimportant in practice. For example, small differericesmoothing approaches may result in large
differences in perplexity that would not be reflected in parfance.

In the proposed framework, instead of evaluating a langoaage! directly on the probability it assigns
to test data, as in perplexity, a minimal task is proposeat Tdsk is to discriminate between an instance of
natural text, and the same instance that has been subtigalé/e will refer to this as theinary original
text discrimination (BOTD) task. Because this measure is dependent on theygoftite alterations, which
is in turn dependent on current models, the framework makg&ceé an interdependence of measurement
between language models and problem spaces. Our evaldatispelling correction is interpreted with
respect to these insights.

4.2 Adversarial role evaluation

Intuitively, we might like to evaluate spelling error deiea and correction extrinsically, by measuring
how well it can match corrections to textual data contaimaturally occurring misspellings. This would
require as a resource a data set that includes spellingk®aésend their corrections. Such resources are
difficult to find.[Zeschl[2012] uses Wikipedia revision histas a source of such corrections. Our approach
instead uses artificially created errors. An existing cerfiat is assumed to contain few or no errors is
transformed by replacing some words with variations of ¢hesrds.

Criticisms of this approach include lack of realism, speaify, inclusion of errors that are unrealisti-
cally easy to detect and correct (Zesch [2012]), and missimgisweighting error types that actually occur.
Artificial errors may also include those that are imposstbleorrect, because they are indistinguishable
from the original in their context.

However, these potential problems are a property of ther greaeration algorithm, and the state-
of-the-art of language models. Errors that are easy to detat correct are easy only insofar as we
have models that can account for them. By analogy with theadvial framework described above,
we conceive of evaluation of spelling error detection andemtion as consisting of three interdependent
roles: the transformation algorithm that creates the isygedirrors, the language model that scores instances
on their well-formedness, and the spelling correction illym that uses the language model to propose
corrections.

Analysis of the mistakes of the model plays a central rolan$formation algorithms can be improved
by iteratively focusing on including error types that are easily corrected by current language models.
This in turn would stimulate the development of better laggimodels. In other words, choosing the kind
of transformations to apply to the corpus is itself a redegreestion. We argue that using artificial errors
is a strength when it exposes errors that are easy to decoarect.



There are other strengths of using artificial errors. Fogpantificial errors are of unlimited supply.
Also, they can be created in any genre of text.

We make use of the BOTD task as a way to pinpoint limitationtheflanguage model. Asking our
trigram model to distinguish between the original text anchasformation of that text without supplying
the added information of which text was observed, defineslagdor the correction algorithm when it
uses that trigram model. Failures to correct sentencesthite transformations that cannot be discrimi-
nated from the original by the trigram model in isolationeeflthe limits of the selection ability of trigram
model, and not the correction technique.

Because this task singles out selection, it also effegtisgehgs into focus the detection capability of
the corrector. The decision of which word’s correctness iuestion has already been made in the BOTD
task, so no false positives can be made. Also, a word errbcéimebe successfully recognized in the BOTD
task, but that is not correctly corrected by the correct@s wither not detected or miscorrected into yet
another word. If the BOTD task accuracy is high, then moshefdases will be of the former type.

4.3 Generating the error corpus

We contrast the method used to generate the test corpus hkteve similar methods that have been used
previously.

The test set af Mays et al. [1991] was derived from a set of l8swire sentences, none of which
contained words outside of their 20,000 word vocabulargotitained those sentences, along with every
possible one-word variation of those sentences. A variatias constrained to replacing one word in the
sentence by another word in the vocabulary of DL-distanfrem the original. The authors evaluate this
test set using the same scoring system as the BOTD task: Titense as a whole is scored as correct
if and only if it was restored to the original. Unlike the BOTBsk, there is now a much larger set of
alternative sentences to choose among. Also, one sentirecepserved one, is privileged in that it is
given a boost (or decrement) in probability with respecthi| others, to reflect the probability of noise
from the channel. Because the choice now includes the daaiwhich word or words to vary, detection
gains some prominence. For this reason, accuracy is nord@mgappropriate measure: it conflates false
negative detections with miscorrections of the right word.

The ability to evaluate detection in this setting is stithited. Because the set contains a relatively
high rate of errors, the probability of there being an erroaiy given sentence we attempt to correct is
very high. Even though there are more words from which a tiaridas being considered, the assumption
that one of these should be changed will still usually beemirrSo, an algorithm that corrects frequently
may appear to detect errors with high precision, but this tremslate to low precision on data with more
moderate error rates. To clearly evaluate detection, ttoe exte must be lower. Relatedly, the constraint
of at most one erroneous word per sentence allowed an dgucitsolution that took advantage of that
constraint, and could not be applied when considering seatewith multiple errors.

The method for generating test sets reported by Hirst ar@rfgt: [1998], Hirst and Budanitsky [2005],
and Wilcox-O’Hearn et al/ [2008] addresses the inflatedreate by creating a single copy of each sen-
tence in the source. Only some words in some of these sestbaceerrors applied to them. In a corpus
of 500 Wall Street Journal articles, error transformatiaese applied to one in every 200 words. In the
former two studies, only non-stop words in the vocabularyeaadigible for transformation. While this
method provided a more desirable error rate, it continueabtstrain the number of errors per sentence to
at most one in almost all cases. Certainly no sentences baubeladjacent errors.

There are two differences between the method used to gertheagrror set here and the latter method.
First, the source text came from Wikipedia articles. Thisrgeof text has a more varied vocabulary, and
is less consistent in style and spelling than the WSJ. Thisanted some special treatment in sentence
segmentation as detailed in the documentation of the codalsd had implications for word type, as
discussed in section 8: there are spelling variations asdperllings in the corpus itself.

The second difference is that errors were inserted prdbatillly. With a 1 in 200chance, every word
occurring in the text was considered for transformationwas transformed if and only if it was in the



vocabulary and had at least one variation of DL-distahaéso in the vocabulary. As before, among those
variations, one was selected uniformly randomly.

4.4 Evaluation Measures
4.4.1 Precision and recall defined for detection and corre@in

Normally, to calculate precision and recall, we count trosifives, false positives, and false negatives.
This terminology is straightforward for detection. For remtion it is somewhat confusing. To illustrate,
consider the possible classes of correction representdaelipllowing tuples of (original, error, correc-
tion):

(x,z,x) True Negative ['N)

(z,z,y) False Positive {' P)

(z,y,z) True Positive T P)

(z,y,y) False Negative{' N)

(z,y, z) Detection True Positive, Miscorrectiod/C)

Correction precision measures the proportion of proposecections that were correctly corrected.
Since(z,y, z) has been corrected, but not correctly, it is a false positke= TP/(TP + FP). We
interpret recall to measure the proportion of all errorg there correctly corrected. Sinde, y, z) is an
error, and it is not correctly corrected, it must be counteghart of the space of errors along with False
Negatives, even though, y, z) cannot itself be considered a negative (a correction waseithgroposed).
R=TP/(TP+ FN + MC).

Correction accuracy is given ff'N + TP)/(TN + FP+ TP + FN + MC).

5 The correction process

We specify the following components: a language model, abolary, a confusion set generation algo-
rithm, and a correction algorithm that selects the bestdjttiariation.

5.1 Vocabulary, trigram model, and confusion set generatio

For the vocabulary, we first tokenised the training set byasgg at all space boundaries. Within space
boundaries, we also isolated all punctuation to singleattars with the following exceptions: We fol-
lowed the convention of splitting contractions into twotsathe second of which keeps the apostrophe.
Inter-numeric commas and periods stayed token-interrkighsEs composed of periods were kept together
as a single token. Periods were kept on abbreviations atialsninsofar as they were recognised by our
customised version of NLTK’s sentence segmenter [Bird.eQ@DQE. Digit strings were replaced with a
regularising token based on the number of digits in the@lﬁ.iNVe then selected all tokens occurring more
than once to form a base vocabulary.

The trigram model was made using this base vocabulary an8RieM toolkit |Stolcke [2002]. For
smoothing, we used SRILM'’s implementation of the modifimaibf Kneser-Ney discounting [Kneser and Ney,
1995] described by Chen and Goodman [1999], and the baclatfiod of Katz|[1987]. We also used an

4 NLTK’s punkt segmenter learns to recognise abbreviations, to overchenprbblem of mistakenly assuming a sentence
has ended at an abbreviation period, and proper nouns, gddegitify capitalisation patterns that do not mark the betyig of
sentences. Our customisation is a combination of settirgdieg NLTK parameters to cope with the inherent inconsistes in
Wikipedia’s word forms, and an added heuristic to addregzeaific, common error we had noticed involving mistakentspg
of sentences between intials in names.

5 We reason that some lengths of digit string tend to occur amstcally substitutable types, such as dates, and the cent
portion of a monetary amount. However, we did not test thirag other options.



unknown-word token to estimate the probability of previgusiseen words, by assigning the probability
mass of any word occurring only once in the training data i@tthken (also implemented by SRILM).

A real-word vocabulary was then derived from the base vocabulary bydiag all tokens that con-
tained no letters, or did contain symbols other than appbk#se or periods.

We generated confusion sets by finding all tokens of DL-distal from the original that occurred in
the real-word vocabulary.

5.2 Distribution of errors

In this set of experiments we consider all word variation®bfdistancel to be equally likely. Although
there exist models_(Kernighan et al. [1990]) intended tawapthe likelihood of specific letter-to-letter
errors, we do not incorporate them. Such models assume twraogs input methods. Moreover, the
methods used to create them have limitations, and there t®meenient way to test their applicability.
The same problem of lack of intrinsic or extrinsic evaluatresources we find in the spelling correction
task itself, also applies to the task of generating lettesranodels. From a pragmatic standpoint, for the
correction model to be improved by letter error rate distiitns, the error set creation would also have
to reflect those distributions. However, adding more coneptsto the current model would only obscure
the analysis of the multiple aspects of it already under icenation.

5.3 The correction algorithm

In the previous models that used this approach it was usaaymed that at most one error could oc-
cur in a single sentence. This enabled the strategy of simqiyparing the probability of the original
sentence with that of every sentence that could be formeabiaging one word with its spelling vari-
ations.| Wilcox-O’Hearn et al. [2008] also reported someratits to correct multiple errors by breaking
the sentences into smallaindows, and either correcting those windows in isolation (tilingy sliding
them across the sentence. This method still could not madetsewithin one window length of one
another. The current corpus generation allows multiplersrio occur in one sentence, regardless of sen
tence length. Although this happened only 101 times out gf BBsentences, the possibility motivated a
dynamic programming approach to correction.

The models we used for correction are varieties of the hiddarkov model HMM). The hidden
states correspond to the intended words that resulted inkiberved words. Transition probabilities are
given by a smoothed trigram model trained on the training &hission probabilities cover the set of
variations of the word represented by the state. The prbtiebithemselves incorporate a parameter
intended to reflect the noisy channel parametéthe probability of no error) and are not smoothed; there
are no possibilities admitted except the variations of theeoved word, as given by the variation generating
algorithm (DL-1). Then we use a Viterbi search to find the nppebable sequence of intended words.

Comparing this with the algorithm from_Mays et al. [1991], wew have in our set of alternative
sentences every combination of every variation of each wotle sentence. Thg parameter serves to
bias not only the observed sentence, but every sentence tietree that it has fewer variations from the
observed sentence. However, strongly interacting variatmay overcome these biases.

6 Experiments and results

6.1 The binary original text discrimination task

As described above, we use the BOTD task to provide a ceitingdir results, and to isolate the per-
formance of the spelling corrector from the selection abitif the trigram model. On this task, for the
error corpus with an error rate of 1 in 200, the trigram modgtectly chose the original sentence with
an accuracy of 0.949. This demonstrates that a trigram npmté&rms selection well — only about 5%
of randomly chosen variations were scored higher than tiggnat. Based on this result, we expect that
given correctetection, few errors will be miscorrected.



We also generated a corpus with an error rate of 1 in 20, whielwill use to demonstrate that the
relationship between propensity to correct and precisiotlependent on error rate. For this corpus, the
accuracy rose to 0.964.

This difference probably comes from a higher occurrencewnfences with multiple errors; more errors
per sentence gives more chances to reject the sentence adea Whcontrast to the 101 sentences out of
38,710 containing multiple errors that occurred with tha 200 error rate, using a rate of 1 in 20 resulted
in 5,084 sentences with multiple errors.

6.2 Trigram Viterbi

In this experiment we modify a standard HMM for trigram prblliies, such that the states for position
1 represent not only the intended word at positipfut also the intended previous word. The selection
of a word variation at position is determined by its probability in the three trigrams ittfpates in:
P(wi\wi_g, wi_l), P(wi+1 ]wi_l, wi), andP(ng\wi, wi-l—l)-

Let Var(w;) be the set of possible intended words at positiohen at position — 1, there will be
|Var(w;—2)|x|Var(w;—1)| states, and at positiah there will be|Var(w;_1)|x|Var(w;)| states. Transi-
tions from positiori — 1 to position: only occur when the second word of the first matches the firstiwo
of the second. This yieldd ar(w;—o)|x|Var(w;—1)|x|Var(w;)| transitions between the statesiat 1
and the states at

For each state at positioi) the Viterbi algorithm commits to the best incoming stateniri — 1.
Because the search space is so large, we then prune theastptesition: to thet most probable, where
is a tunable parameter.

This algorithm was repeated for three values eachasfd 3, for the error rate of 1 in 200 (Table 1).
For the error rate of 1 in 20, we computed the results only fer3 (Table 2).

detection correction correction accuracy

t B P R F P R F

0.95 0.176 0.771 0.287 0.165 0.722 0.269 0.936

0.995 0.375 0.587 0.457 0.361 0.565 0.440 0.962

0.9995 0.611 0.412 0.492 0.600 0.404 0.483 0.981
9

0.95 0.171 0.777 0.281 0.161 0.729 0.263 0.939

0.995 0.367 0.593 0.454 0.355 0.574 0.439 0.967

0.9995 0.603 0.415 0.491 0.593 0.408 0.483 0.984
27

0.95 0.170 0.777 0.279 0.160 0.730 0.262 0.939

0.995 0.365 0.593 0.452 0.353 0.573 0.437 0.967

0.9995 0.603 0.415 0.491 0.592 0.408 0.483 0.984

Table 1: Error rate 1 in 200 = 0.995). ¢ is the number of paths kept per positighthe noise probability
parameter, and P,R,F are precision, recall, and F-measure.

detection correction correction accuracy
B P R F P R F
0.95 0.690 0.771 0.728 0.649 0.726 0.685 0.941
0.995 0.868 0.614 0.719 0.836 0.591 0.692 0.936
0.9995 0.945 0.423 0.588 0.924 0.418 0.576 0.978

Table 2: Error rate 1 in 20n(= .95); t = 3 is the number of paths kept,the noise probability parameter,
and P,R,F are precision, recall, and F-measure.



From the tables we can see that given detection, correctiomracy is very high, as expected. Detec-
tion itself has much poorer results. To get only slightly mtitan three-quarters of the right words even
under consideration, we also mistakenly change more thamifoocent bystanding words for every real
error we detect. On the other hand, giving the observed wemdsigh benefit of the doubt to reduce the
false positives to only a little less than two for every theeerect, reduces our recall so much that we are
detecting only half of the errors.

As we anticipated, allowing a higher error rate increaseztipion immensely at a given recall rate,
because the opportunity for false positives is so much less.

7 Discussion

7.1 Effects of the genre

The property of Wikipedia articles that makes it the mosfedént from newswire is its vocabulary. We
measured this using the first 14 sections of the WSJ corpus @87, which collectively has a similar
number of tokens (as estimatedg) to our Wikipedia training set. We segmented and tokenissdiata

in the same way as we did our training data, and then coung=iyple frequencies. While the WSJ articles
contained only 44,035 distinct types, about 65 percent a§ghwere hapax legomena. The Wikipedia
training set had 88,078 types, 51 percent of which were h&gggomena. Adding more WSJ articles to
double the tokens increased the type count only to 58,4, ,axsmall increase in percent hapax legomena
to 68 percent.

The difference in type counts may be partly because Wikgedencyclopedic, and therefore covers
a much wider variety of topics than the Wall Street Journals hlso probably due to the much greater
number of authors, and the concomitant lack of standardspielting. We attribute the smaller percentage
of hapax legomena in the Wikipedia data to the fact that neasdr even names would tend to be ex-
plained (and therefore repeated) rather than mentionedal$deexpect Wikipedia to contain a higher rate
of non-word spelling errors.

Insofar as it is correct that the Wikipedia text containstietate spelling variations of the same types,
and also spelling errors, this violates the assumptionwohtgorithrﬁ. This could cause failures of the
correction algorithm.

For example, suppose there were a spelling error that ogesrsa few times in the corpus. This
erroneous token will be used when generating the error sorpwill usually be easy to correct, because
the trigram model will estimate it to have low probability.oever, if it happens to occur in a similar
context to the one in which it occurred in training, and if taeget correction word did not occur in that
same context sufficiently often, the misspelling will adiyidbe assigned a higher probability than the
correct spelling. For example, our training text contaimed occurrences of the misspelling ‘wast’ for
‘was’. Two occurrences was our threshold, so ‘wast’ madstit the vocabulary. One of the two contexts
was ‘... subject matter wast influenced by.... The bigranatter was’ also occurred only once. This
means that any text containing ‘matter wast influenced’ ggthre a higher probability than ‘matter was
influenced’ regardless of the token before or after theseethr

If a misspelling is quite common, or if it is actually a spegjivariation (the distinction may be philo-
sophical), this effect would be more pronounced. The Janahat is chosen will reflect the idiosyncrasies
of the contexts it appeared in in training. For instancey@tling’ and ‘traveling’ occur with about the same
frequency in our training set; 45 and 43 times each. Whilg #eare some surrounding words, they also
have differences. For example, ‘travelling’ appeared asdjactive before these nouns: ‘Australians’,
‘bachelor’, ‘communities’, ‘keyboard’, ‘life’, ‘opera’,post’, ‘support’, and ‘way’, whereas ‘traveling’
appeared before these nouns: ‘champion’, ‘conditionhifgition’, ‘odyssey’, ‘show’, and ‘troop’. The
prepositions following ‘travelling’ were ‘at’, ‘between‘from’, ‘in’, ‘on’, ‘past’, through’, ‘to’ and ‘via’,
whereas ‘traveling’ was followed by the prepositions ‘a&s'o ‘back’, ‘between’, ‘by’, ‘for’, ‘in’, ‘into’,

® This effect may be more common in Wikipedia than in newswbte,newswire is not immune to it. For example, the 1987
portion of the WSJ corpus contains two occurrences of thertdkilllion’, and six of ‘milllion’.



‘off’, ‘on’, ‘though’, ‘to’, ‘until’, ‘with’, and ‘within’ . These differences may indicate true correlations in
style, or they may simply be artefacts.

In order to avoid detecting an error when one of these ocawgrsyould like to recognise them as being
of the same type, perhaps through some process akin to tsedga detect near-synonymy. This would
allow an enforcement of consistency at the level of thelartic corpus.

7.2 Effects of the models

As shown above, only about five percent of the transformatiarour error corpus were more likely in
their contexts than the original as estimated by the trignamalel. This means that most of the detection
errors are attributable to the corrector. We discuss theste fi

Within the corrector, the variation generator has beengdesi to guarantee that the correct variation
is included for consideration. So the task of generatingatians has been removed from evaluation. This
means recall can potentially be very high. The fall in priecisat high recall reflects the rate of words that
occur in the text that are not as probable as alternativesn Bt/a low rate, this can have a large effect on
precision.

Low precision may pose a usability problem, as a high ratealsief positives would be expected to
undermine confidence in a spelling corrector and to be fitisggly distracting. In word prediction, on the
other hand, more options are less likely to interfere.

7.3 Results

The results were lower than expected, given the strongettsagported in Wilcox-O’Hearn et al. [2008].
We attribute the difference to the genre. Because Wikipadiales are explanatory, and the topics some-
times obscure, terms in an article tend to be both rare arehted. Thus our algorithm tends to wrongly
correct rare words, such as names, repeatedly.

At lower values ofg3, false correction of names is more acute. For example, @ith 0.995 (not
shown), the most common false positives included ‘Riddleinh corrected to ‘Middle’, ‘Beatty’ to
‘Beauty’, and ‘Lucia’ to ‘Lucian’. Names are likely to occumany times if they occur once, and be
mistakenly corrected every time if at all. We could teach system to recognise named entities and not
correct them, but a more appropriate approach might be ot ada probability estimates to reflect recent
words.

This latter solution might also mitigate the other commandkof false positive: words that are uncom-
mon enough that a random increased frequency in the trad@teyof one variation over another strongly
biases the estimation of their probability in unseen cdsteAn example of this is ‘engines’ being cor-
rected to ‘engine’ many times in an article about jet engiree®n thoughwithin the article, ‘engines’
occurred 79 times. This is related to the valid variationgypk in the ‘travelling’/'traveling’ example,
and highlights a difficulty in distinguishing types: We egp¢here to be a trade-off in discovering type
variations and detecting spelling errors. Indeed, andtmet of false positive in our list was the rejection
of spelling variations of ‘Istanbul’ and ‘Ictimai’. This pblem could be solved with world knowledge, but
word type recognition would be a more elegant solution.

Finally, the correction of ‘billion’ to ‘million’ exemplifes a kind of error that would be difficult to
avoid using this method without incorporating world knogde, and perhaps impossible even then.

False negatives, on the other hand, tended to be common .wbhésword ‘and’ was left unrestored
particularly often in this experiment. This may be becawas®l’ has a diffuse distribution of words it can
occur next to, making it less likely than average to occut teany specific one.

The most common correctly corrected word was ‘the’ by fasutfh this may be mostly a reflection of
its being most commonly transformed, and its very high pbiltg We did not compare words for these
effects.

Another unexpected result was that more pruning of the HMaestdid not result in unambiguously
worse results. Instead, more pruning improved precisimhtyy more than it degraded recall, for a net
slightimprovement in F-measure. Again, this reflects the problem of too marsefglositives that occurs



when the number of choices is high. In the section 2, we desgifow systems that over-correct would be
expected to perform better on a corpus with a higher errer Mdte demonstrate this by including results
on a corpus with a higher error rate (Table 2).

8 Future work

In contrast to speech recognition systems, most NLP systieatperate on written text take observed
words as given. For example, a typical parsing system woatdoropose a parse that considered the
possibility that a word of its input were a misprint, or a aidn of a different word, even if there were a
word close in spelling with a much more plausible parse. ¢thsa system addressed spelling variations at
all, it would typically be done separately from and in advao€ parsing, in a pipelined fashion.

However, as our source texts have become increasinglysdivand standardised spelling is increas-
ingly a genre-specific feature, NLP systems have more to fgain a flexible definition of wordype.
That is, rather than considering every orthographicalbfinct word form as a separate vocabulary item, it
should be helpful to recognise that some forms are varigtidrthe same type. This has motivated much
work in text normalisation, the task of assigning all spelling variations of a word te standard represen-
tation. If we assume that the observable forms of differgpé$ may overlap, then text normalisation can
be considered to subsume spelling correction, becausggaef an observed word is then ambiguous.

We therefore argue that modern processing of written textldvbenefit from integratedord (type)
recognition in analogy with speech recognition systems. That is, farpescessing in which word forms
may vary (either as a result of error, or as a feature of thguage), we expect that language modelling,
parsing, and other tasks that either measure text plaitygibilare steps in natural language understanding
will be more efficient and accurate if the word type recogmitis computed during those tasks rather than
before. The system presented here performed spellingatiomeby integrating word form recognition
into a trigram language model using a hidden Markov modeé §dme method could be used to perform
trigram modelling with implicit text normalisation.

We also propose that for both spelling correction proped, the text normalisation problem, an adap-
tive approach that tracks corrections may help avoid fgtfdfor example, many attestations of a name or
a singular vs. plural distinction that repeatedly goesrajdhe expectations of a model might be a good
cue to change the model, at least within a given article onddftontext. Tracking corrections could also
help enforce consistency of type, such as the ‘travellimgi/eling’ example.

However, for any such system to do more good than harm, tHggamoof over-detection must first
be resolved. The problem of selecting among multiple siamglous variations turns out to be much
harder than selecting between an original word and a sirgfliation of it. The difficulty is a problem
in detection—the choice of which words to keep, and which doect—as demonstrated by the high
rate of correction given detection. Although n-gram modeés powerful statistical tools, the structure of
language that allows errors to be detected easily by speakaot well captured by them.

If, according to a trigram probability model, 1 in 20 natlyaccurring words are not the most likely
among close variations of them, then a typical correct seetavill have at least one attractive miscor-
rection. If real errors occur only, for example, 1 in 200 wsyrthen we might expect nine false positives
for every true positive, when looking for errors aggredsiv&herefore, whiled95% accuracy sounds high
when evaluating a language model, it is not sufficiently Higiperform well when detection of sparsely
occurring errors is the task.

Because detection is the critical performance issue wewsered, we expect that future work will
have to address it. Natural language comes with a high Ié\lilt-in redundancy. A model that can more
effectively tap into this inherent structural property ahguage should be much more adept at detecting
real word errors.
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