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Abstract

Real-word spelling correction differs from non-word spelling correction in its aims and its chal-
lenges. Here we show that the central problem in real-word spelling correction isdetection. Methods
from non-word spelling correction, which focus instead on selection among candidate corrections, do
not address detection adequately, because detection is either assumed in advance or heavily constrained.

As we demonstrate in this paper, merely discriminating between the intended word and a random
close variation of it within the context of a sentence is a task that can be performed with high accuracy
using straightforward models. Trigram models are sufficient in almost all cases. The difficulty comes
when every word in the sentence is a potential error, with a large set of possible candidate corrections.

Despite their strengths, trigram models cannot reliably find true errors without introducing many
more, at least not when used in the obvious sequential way without added structure. The detection task
exposes weakness not visible in the selection task.

1 Introduction: real-word spelling correction

The task we typically think of as spelling correction corresponds to the action we take when we are reading
and encounter a word that we do not recognise. Such a word presents an immediate, unambiguous problem.
It is possible that this is a new word that we do not know, and that is why we do not recognise it. However,
it could instead be a word we do know that has been misspelled,or spelled in a way we have not seen
before. If we decide it is indeed a misspelling, it is usuallybecause we have thought of another word that
could go in its place close enough in spelling to what was written that it is a plausible mistake. Trying to
find a replacement for an unrecognised word is the problem ofnon-word spelling correction.

In natural language processing software, except for in applications specifically designed for editing,
non-word spelling correction is usually not addressed at all1. Rather than assuming an unknown word is
an error, it is assumed to be a valid new word. That is because natural vocabularies are always unbounded,
and texts normally have many single occurrences of rare and new words, especially names. NLP systems
therefore expect to encounter words they didn’t have available in training. Of course, some of these words
may turn out to be spelling errors or variations of words thatthe system already knew about2.

The focus of this paper is what happens when we encounter a known word that is sufficiently unlikely
in its context that it is worth wondering whether the intended word was actually not the one we have
observed. This problem is calledreal-word spelling correction, or, sometimes,context-sensitive spelling
correction. Real-word spelling correction requires different methods from non-word spelling correction.

1 Information retrieval is a notable exception, as search engines usually attempt to correct both real-word and non-word
spelling errors.

2In future work, we may incorporate the decision of whether totreat such words as new, or instead correct or normalise them.
In this work, however, we do not attempt non-word spelling correction, and always treat unknown words as correct.
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1.1 Detection vs. correction

Detection, that is, realising that there has been an error, is trivial in the non-word problem. We detect a
non-word error only if the word we encounter is not in our vocabulary. In this case, we may still decide to
classify the word as a new word, and not an error. In spelling correction applications, which typically run
interactively, this decision is delegated to the user. As just discussed, other applications normally simply
assume that an unseen word is a new word type.

For the real-word case, however, detection necessarily involves having some model of what we expect
the text to be like, so that we can tell whether those expectations have been violated. We assume that we
have detected a real-word spelling error when the probability of the observed word is sufficiently low that
it undermines our confidence that the writer intended it.

This suggests an anomaly-detection approach, in which correction is attempted only if the probability
of a text falls outside of the expected variation in probability. As far as we know, that approach has not
been tried3. Instead, detection of real-word errors is a by-product of correction. Typically, there is a
subset of the vocabulary of words considered a priori to be possible candidates for correction. Whenever
one of those words is encountered, we consider correcting it, and retain the correction if it makes the text
sufficiently more probable than the original. This means that in the real-word case as typically approached,
detection itself is dependent on decisions that are ultimately part of thecorrection process.

Correction itself has two steps. First, a set of alternatives must be generated. Then one (or more)
of the alternatives must be selected. In the non-word task, alternatives are generated by searching the
dictionary for known words that are close in edit distance. Again, because non-word spelling correction has
traditionally been employed only in interactive applications specifically for aiding a writer with spelling,
selection has been left to the user.

2 Previous approaches

2.1 Generation

For real-word spelling correction, the generation task is usually construed as creatingconfusion sets — sets
of words that are often mistakenly interchanged, such as{‘to’, ‘two’, ‘too’ }. When a word is encountered
that belongs to one of the known confusion sets, all of the other members of the set are considered candidate
corrections. Most previous methods have relied on pre-defined and typically hand-crafted confusion sets.

Using pre-defined confusion sets implicitly makesselection the task of interest, casting it as a classifi-
cation problem. That has the advantage of allowing specific features to be learned for discrimination, but
it also has disadvantages. It is resource intensive: It requires either human expertise about what errors are
possible or a repository of errors and their corrections to be learned from. Moreover, it suffers from lack
of generality, both in the errors it can detect and correct, and in being language specific.

A more flexible approach to generation is to algorithmicallydefine confusion sets based on some
measureable characteristic. The use of edit distance in non-word spelling correction is an example of
this. Any property of words that allows a distance comparison to be made between words could serve.
Toutanova and Moore [2002] use a phonetic distance for non-word spelling correction. Mays et al. [1991]
use Damerau-Levenshtein edit distance (hereafterDL-distance) to generate candidate corrections for real-
word spelling errors. The work presented here is based on themethods in that paper. In particular, we
generate confusion sets in the same way.

A major advantage of constructing confusion sets algorithmically is that in principle errors can be
detected in any word. This flexibility, however, comes with more opportunity to “detect” errors where they
haven’t actually occurred.

3Our experiments with this approach forthcoming



2.2 Selection

The task of selection starts with deciding which of the alternatives best fits in the context. With pre-defined
confusion sets, supervised machine learning techniques apply. For example, Golding and Roth [1999] use
a Winnow-based algorithm to learn to discriminate among thewords in their confusion sets according to
surrounding words.

With algorithmically defined confusion sets, the space of distinctions to learn is bounded only by
the vocabulary. Contextual distinctions for essentially every word in the vocabulary are needed; at least
distinctions among all words that can ever fall within the same confusion set. Note that unlike a typical
pre-defined confusion set, algorithmic confusion sets may overlap and are not necessarily symmetric or
transitive. For example, if we take a Levenshtein edit distance of1 as a criterion for confusability, ‘as’ will
be in the confusion set derived from both ‘a’ and ‘ask’, but ‘a’ is not in the confusion set of ‘ask’.

One commonly used statistical model that represents every word in the vocabulary is the n-gram model.
We follow Mays et al. [1991] in using trigrams for selection.Another kind of word-centric statistical model
of contextual fit that could be used is the topic model. We leave this to future work.

As mentioned above, in our model of real-word spelling correction, the detection decision is folded
into the correction process. This adds two more selection constraints in addition to contextual fit. Because
correction presumes that an error has been made, we want to bebiased toward selecting the original word,
that is, not correcting at all. Moreover, we may want to distinguish among the possible selections based on
how plausible it is that each one was intended as the original. Again following Mays et al. [1991], we use
a noisy channel model to represent these multiple constraints.

2.3 The noisy channel model

To frame spelling correction as a noisy channel problem, we treat the observed sentence as a signal,S,
which has passed through a noisy channel (the typist). This channel might have introduced errors into
the sentence. Our task is to find the most likely original signal S′ (the intended sentence, generated by a
language model). The probability that the typist types a word correctly is a parameterα, which is the same
for all words.

For each word, the remaining probability mass (1 − α), the probability that the word is mistyped as
another real word, is distributed equally among all its spelling variations. This implicitly values as zero the
probability that a word was transformed by the channel into something other than a variation considered
by our model. We reconcile this by letting the probability assigned to words in our confusion sets include
the possibility that the original word was transformed intoa non-word, or a more distant variation, and
then corrected by some other process, such as editing, into our more constrained set of variations.

3 Our approach

We seek to differentiate between the ability to select corrections from a constrained set within a stable
context, and the ability to detect errors when nearly every word is a potential error. To do this we first
construct a corpus of errors out of naturally occurring textby randomly substituting words with other words
that are close in spelling. We demonstrate that if the problem is constrained to discriminating between the
original word and a single random variation of it within the context of a sentence that is otherwise assumed
to be correct, a standard trigram model performs at high accuracy.

We then construct a hidden Markov model that uses a trigram model for transition probabilities and
a noisy channel model for emission probabilities. We use theViterbi algorithm to find the most probable
sequence of word variations for each word in each sentence ofour corpus. This structure allows every
word to be a candidate for correction to any of its allowed variations even when the variations interact. The
results shown below demonstrate that many words originallyin the text are not the most probable of their
variations, when probability is given by a trigram model.



4 Evaluation

4.1 The problem of evaluating unsupervised learning

We have cast the problem of real-word spelling error detection and correction as a task involving two
independent models. We learn a model of natural language in an unsupervised fashion, in this case a word
trigram model. We also design an algorithm that uses that model to recognise a specific kind of ill-formed
text by finding similar text that fits the model better. Here weuse a noisy channel model in this role.
Evaluation of the whole task necessarily evaluates both parts.

Unsupervised models are challenging to evaluate. Smith [2012] analyses evaluation practices in NLP,
drawing distinctions between intrinsic, extrinsic, and perplexity evaluations, and introducing a perplexity-
like evaluation framework based on adversarial roles. We summarise this analysis here. Intrinsic evaluation
measures how well a model can replicate previous analyses, usually human annotations. This is ill-suited
to unsupervised learning, because it restricts learning toa pre-defined structure, and unsupervised models
often have learning the structure itself as part of their goal. Extrinsic evaluation measures performance
on a downstream task. Unfortunately, it can conflate the evaluation of a model with the evaluation of the
architecture in which it is embedded. Perplexity measures how well a model predicts subsequent text,
but it is constrained to models that assign probability and it is highly sensitive to differences that may
be unimportant in practice. For example, small differencesin smoothing approaches may result in large
differences in perplexity that would not be reflected in performance.

In the proposed framework, instead of evaluating a languagemodel directly on the probability it assigns
to test data, as in perplexity, a minimal task is proposed. That task is to discriminate between an instance of
natural text, and the same instance that has been subtly altered. We will refer to this as thebinary original
text discrimination (BOTD) task. Because this measure is dependent on the quality of the alterations, which
is in turn dependent on current models, the framework makes explicit an interdependence of measurement
between language models and problem spaces. Our evaluationfor spelling correction is interpreted with
respect to these insights.

4.2 Adversarial role evaluation

Intuitively, we might like to evaluate spelling error detection and correction extrinsically, by measuring
how well it can match corrections to textual data containingnaturally occurring misspellings. This would
require as a resource a data set that includes spelling mistakes and their corrections. Such resources are
difficult to find. Zesch [2012] uses Wikipedia revision history as a source of such corrections. Our approach
instead uses artificially created errors. An existing corpus that is assumed to contain few or no errors is
transformed by replacing some words with variations of those words.

Criticisms of this approach include lack of realism, specifically, inclusion of errors that are unrealisti-
cally easy to detect and correct (Zesch [2012]), and missingor misweighting error types that actually occur.
Artificial errors may also include those that are impossibleto correct, because they are indistinguishable
from the original in their context.

However, these potential problems are a property of the error generation algorithm, and the state-
of-the-art of language models. Errors that are easy to detect and correct are easy only insofar as we
have models that can account for them. By analogy with the adversarial framework described above,
we conceive of evaluation of spelling error detection and correction as consisting of three interdependent
roles: the transformation algorithm that creates the spelling errors, the language model that scores instances
on their well-formedness, and the spelling correction algorithm that uses the language model to propose
corrections.

Analysis of the mistakes of the model plays a central role. Transformation algorithms can be improved
by iteratively focusing on including error types that are not easily corrected by current language models.
This in turn would stimulate the development of better language models. In other words, choosing the kind
of transformations to apply to the corpus is itself a research question. We argue that using artificial errors
is a strength when it exposes errors that are easy to detect and correct.



There are other strengths of using artificial errors. Foremost, artificial errors are of unlimited supply.
Also, they can be created in any genre of text.

We make use of the BOTD task as a way to pinpoint limitations ofthe language model. Asking our
trigram model to distinguish between the original text and atransformation of that text without supplying
the added information of which text was observed, defines a ceiling for the correction algorithm when it
uses that trigram model. Failures to correct sentences withthose transformations that cannot be discrimi-
nated from the original by the trigram model in isolation reflect the limits of the selection ability of trigram
model, and not the correction technique.

Because this task singles out selection, it also effectively brings into focus the detection capability of
the corrector. The decision of which word’s correctness is in question has already been made in the BOTD
task, so no false positives can be made. Also, a word error that can be successfully recognized in the BOTD
task, but that is not correctly corrected by the corrector, was either not detected or miscorrected into yet
another word. If the BOTD task accuracy is high, then most of the cases will be of the former type.

4.3 Generating the error corpus

We contrast the method used to generate the test corpus here with two similar methods that have been used
previously.

The test set of Mays et al. [1991] was derived from a set of 100 newswire sentences, none of which
contained words outside of their 20,000 word vocabulary. Itcontained those sentences, along with every
possible one-word variation of those sentences. A variation was constrained to replacing one word in the
sentence by another word in the vocabulary of DL-distance1 from the original. The authors evaluate this
test set using the same scoring system as the BOTD task: The sentence as a whole is scored as correct
if and only if it was restored to the original. Unlike the BOTDtask, there is now a much larger set of
alternative sentences to choose among. Also, one sentence,the observed one, is privileged in that it is
given a boost (or decrement) in probability with respect to the others, to reflect the probability of noise
from the channel. Because the choice now includes the decision of which word or words to vary, detection
gains some prominence. For this reason, accuracy is no longer an appropriate measure: it conflates false
negative detections with miscorrections of the right word.

The ability to evaluate detection in this setting is still limited. Because the set contains a relatively
high rate of errors, the probability of there being an error in any given sentence we attempt to correct is
very high. Even though there are more words from which a variation is being considered, the assumption
that one of these should be changed will still usually be correct. So, an algorithm that corrects frequently
may appear to detect errors with high precision, but this maytranslate to low precision on data with more
moderate error rates. To clearly evaluate detection, the error rate must be lower. Relatedly, the constraint
of at most one erroneous word per sentence allowed an algorithmic solution that took advantage of that
constraint, and could not be applied when considering sentences with multiple errors.

The method for generating test sets reported by Hirst and St-Onge [1998], Hirst and Budanitsky [2005],
and Wilcox-O’Hearn et al. [2008] addresses the inflated error rate by creating a single copy of each sen-
tence in the source. Only some words in some of these sentences had errors applied to them. In a corpus
of 500 Wall Street Journal articles, error transformationswere applied to one in every 200 words. In the
former two studies, only non-stop words in the vocabulary were eligible for transformation. While this
method provided a more desirable error rate, it continued toconstrain the number of errors per sentence to
at most one in almost all cases. Certainly no sentences couldhave adjacent errors.

There are two differences between the method used to generate the error set here and the latter method.
First, the source text came from Wikipedia articles. This genre of text has a more varied vocabulary, and
is less consistent in style and spelling than the WSJ. This warranted some special treatment in sentence
segmentation as detailed in the documentation of the code. It also had implications for word type, as
discussed in section 8: there are spelling variations and misspellings in the corpus itself.

The second difference is that errors were inserted probabilistically. With a 1 in 200chance, every word
occurring in the text was considered for transformation. Itwas transformed if and only if it was in the



vocabulary and had at least one variation of DL-distance1 also in the vocabulary. As before, among those
variations, one was selected uniformly randomly.

4.4 Evaluation Measures

4.4.1 Precision and recall defined for detection and correction

Normally, to calculate precision and recall, we count true positives, false positives, and false negatives.
This terminology is straightforward for detection. For correction it is somewhat confusing. To illustrate,
consider the possible classes of correction represented bythe following tuples of (original, error, correc-
tion):

(x, x, x) True Negative (TN )

(x, x, y) False Positive (FP )

(x, y, x) True Positive (TP )

(x, y, y) False Negative (FN )

(x, y, z) Detection True Positive, Miscorrection (MC)

Correction precision measures the proportion of proposed corrections that were correctly corrected.
Since(x, y, z) has been corrected, but not correctly, it is a false positive. P = TP/(TP + FP ). We
interpret recall to measure the proportion of all errors that were correctly corrected. Since(x, y, z) is an
error, and it is not correctly corrected, it must be counted as part of the space of errors along with False
Negatives, even though(x, y, z) cannot itself be considered a negative (a correction was indeed proposed).
R = TP/(TP + FN +MC).

Correction accuracy is given by(TN + TP )/(TN + FP + TP + FN +MC).

5 The correction process

We specify the following components: a language model, a vocabulary, a confusion set generation algo-
rithm, and a correction algorithm that selects the best fitting variation.

5.1 Vocabulary, trigram model, and confusion set generation

For the vocabulary, we first tokenised the training set by separating at all space boundaries. Within space
boundaries, we also isolated all punctuation to single characters with the following exceptions: We fol-
lowed the convention of splitting contractions into two parts, the second of which keeps the apostrophe.
Inter-numeric commas and periods stayed token-internal. Ellipses composed of periods were kept together
as a single token. Periods were kept on abbreviations and initials, insofar as they were recognised by our
customised version of NLTK’s sentence segmenter [Bird et al., 2009]4. Digit strings were replaced with a
regularising token based on the number of digits in the string 5. We then selected all tokens occurring more
than once to form a base vocabulary.

The trigram model was made using this base vocabulary and theSRILM toolkit Stolcke [2002]. For
smoothing, we used SRILM’s implementation of the modification of Kneser-Ney discounting [Kneser and Ney,
1995] described by Chen and Goodman [1999], and the backoff method of Katz [1987]. We also used an

4 NLTK’s punkt segmenter learns to recognise abbreviations, to overcome the problem of mistakenly assuming a sentence
has ended at an abbreviation period, and proper nouns, to help identify capitalisation patterns that do not mark the beginning of
sentences. Our customisation is a combination of setting existing NLTK parameters to cope with the inherent inconsistencies in
Wikipedia’s word forms, and an added heuristic to address a specific, common error we had noticed involving mistaken splitting
of sentences between intials in names.

5 We reason that some lengths of digit string tend to occur as semantically substitutable types, such as dates, and the cent
portion of a monetary amount. However, we did not test this against other options.



unknown-word token to estimate the probability of previously unseen words, by assigning the probability
mass of any word occurring only once in the training data to this token (also implemented by SRILM).

A real-word vocabulary was then derived from the base vocabulary by excluding all tokens that con-
tained no letters, or did contain symbols other than apostrophes or periods.

We generated confusion sets by finding all tokens of DL-distance 1 from the original that occurred in
the real-word vocabulary.

5.2 Distribution of errors

In this set of experiments we consider all word variations ofDL-distance1 to be equally likely. Although
there exist models (Kernighan et al. [1990]) intended to capture the likelihood of specific letter-to-letter
errors, we do not incorporate them. Such models assume homogeneous input methods. Moreover, the
methods used to create them have limitations, and there is noconvenient way to test their applicability.
The same problem of lack of intrinsic or extrinsic evaluation resources we find in the spelling correction
task itself, also applies to the task of generating letter error models. From a pragmatic standpoint, for the
correction model to be improved by letter error rate distributions, the error set creation would also have
to reflect those distributions. However, adding more components to the current model would only obscure
the analysis of the multiple aspects of it already under consideration.

5.3 The correction algorithm

In the previous models that used this approach it was usuallyassumed that at most one error could oc-
cur in a single sentence. This enabled the strategy of simplycomparing the probability of the original
sentence with that of every sentence that could be formed by replacing one word with its spelling vari-
ations. Wilcox-O’Hearn et al. [2008] also reported some attempts to correct multiple errors by breaking
the sentences into smallerwindows, and either correcting those windows in isolation (tiling), or sliding
them across the sentence. This method still could not model errors within one window length of one
another. The current corpus generation allows multiple errors to occur in one sentence, regardless of sen-
tence length. Although this happened only 101 times out of 38,710 sentences, the possibility motivated a
dynamic programming approach to correction.

The models we used for correction are varieties of the hiddenMarkov model (HMM). The hidden
states correspond to the intended words that resulted in theobserved words. Transition probabilities are
given by a smoothed trigram model trained on the training set. Emission probabilities cover the set of
variations of the word represented by the state. The probabilities themselves incorporate a parameterβ
intended to reflect the noisy channel parameterα (the probability of no error) and are not smoothed; there
are no possibilities admitted except the variations of the observed word, as given by the variation generating
algorithm (DL-1). Then we use a Viterbi search to find the mostprobable sequence of intended words.

Comparing this with the algorithm from Mays et al. [1991], wenow have in our set of alternative
sentences every combination of every variation of each wordin the sentence. Theβ parameter serves to
bias not only the observed sentence, but every sentence to the degree that it has fewer variations from the
observed sentence. However, strongly interacting variations may overcome these biases.

6 Experiments and results

6.1 The binary original text discrimination task

As described above, we use the BOTD task to provide a ceiling for our results, and to isolate the per-
formance of the spelling corrector from the selection ability of the trigram model. On this task, for the
error corpus with an error rate of 1 in 200, the trigram model correctly chose the original sentence with
an accuracy of 0.949. This demonstrates that a trigram modelperforms selection well — only about 5%
of randomly chosen variations were scored higher than the original. Based on this result, we expect that
given correctdetection, few errors will be miscorrected.



We also generated a corpus with an error rate of 1 in 20, which we will use to demonstrate that the
relationship between propensity to correct and precision is dependent on error rate. For this corpus, the
accuracy rose to 0.964.

This difference probably comes from a higher occurrence of sentences with multiple errors; more errors
per sentence gives more chances to reject the sentence as a whole. In contrast to the 101 sentences out of
38,710 containing multiple errors that occurred with the 1 in 200 error rate, using a rate of 1 in 20 resulted
in 5,084 sentences with multiple errors.

6.2 Trigram Viterbi

In this experiment we modify a standard HMM for trigram probabilities, such that the states for position
i represent not only the intended word at positioni, but also the intended previous word. The selection
of a word variation at positioni is determined by its probability in the three trigrams it participates in:
P (wi|wi−2, wi−1), P (wi+1|wi−1, wi), andP (wi+2|wi, wi+1).

Let V ar(wi) be the set of possible intended words at positioni. Then at positioni − 1, there will be
|V ar(wi−2)|×|V ar(wi−1)| states, and at positioni, there will be|V ar(wi−1)|×|V ar(wi)| states. Transi-
tions from positioni− 1 to positioni only occur when the second word of the first matches the first word
of the second. This yields|V ar(wi−2)|×|V ar(wi−1)|×|V ar(wi)| transitions between the states ati − 1
and the states ati.

For each state at positioni, the Viterbi algorithm commits to the best incoming state from i − 1.
Because the search space is so large, we then prune the statesat positioni to thet most probable, wheret
is a tunable parameter.

This algorithm was repeated for three values each oft andβ, for the error rate of 1 in 200 (Table 1).
For the error rate of 1 in 20, we computed the results only fort = 3 (Table 2).

detection correction correction accuracy
t β P R F P R F
3

0.95 0.176 0.771 0.287 0.165 0.722 0.269 0.936
0.995 0.375 0.587 0.457 0.361 0.565 0.440 0.962
0.9995 0.611 0.412 0.492 0.600 0.404 0.483 0.981

9
0.95 0.171 0.777 0.281 0.161 0.729 0.263 0.939
0.995 0.367 0.593 0.454 0.355 0.574 0.439 0.967
0.9995 0.603 0.415 0.491 0.593 0.408 0.483 0.984

27
0.95 0.170 0.777 0.279 0.160 0.730 0.262 0.939
0.995 0.365 0.593 0.452 0.353 0.573 0.437 0.967
0.9995 0.603 0.415 0.491 0.592 0.408 0.483 0.984

Table 1: Error rate 1 in 200 (α = 0.995). t is the number of paths kept per position,β the noise probability
parameter, and P,R,F are precision, recall, and F-measure.

detection correction correction accuracy
β P R F P R F

0.95 0.690 0.771 0.728 0.649 0.726 0.685 0.941
0.995 0.868 0.614 0.719 0.836 0.591 0.692 0.936
0.9995 0.945 0.423 0.588 0.924 0.418 0.576 0.978

Table 2: Error rate 1 in 20 (α = .95); t = 3 is the number of paths kept,β the noise probability parameter,
and P,R,F are precision, recall, and F-measure.



From the tables we can see that given detection, correction accuracy is very high, as expected. Detec-
tion itself has much poorer results. To get only slightly more than three-quarters of the right words even
under consideration, we also mistakenly change more than four innocent bystanding words for every real
error we detect. On the other hand, giving the observed wordsenough benefit of the doubt to reduce the
false positives to only a little less than two for every threecorrect, reduces our recall so much that we are
detecting only half of the errors.

As we anticipated, allowing a higher error rate increased precision immensely at a given recall rate,
because the opportunity for false positives is so much less.

7 Discussion

7.1 Effects of the genre

The property of Wikipedia articles that makes it the most different from newswire is its vocabulary. We
measured this using the first 14 sections of the WSJ corpus from 1987, which collectively has a similar
number of tokens (as estimated bywc) to our Wikipedia training set. We segmented and tokenised this data
in the same way as we did our training data, and then counted the type frequencies. While the WSJ articles
contained only 44,035 distinct types, about 65 percent of those were hapax legomena. The Wikipedia
training set had 88,078 types, 51 percent of which were hapaxlegomena. Adding more WSJ articles to
double the tokens increased the type count only to 58,477, with a small increase in percent hapax legomena
to 68 percent.

The difference in type counts may be partly because Wikipedia is encyclopedic, and therefore covers
a much wider variety of topics than the Wall Street Journal. It is also probably due to the much greater
number of authors, and the concomitant lack of standards forspelling. We attribute the smaller percentage
of hapax legomena in the Wikipedia data to the fact that new ideas or even names would tend to be ex-
plained (and therefore repeated) rather than mentioned. Wealso expect Wikipedia to contain a higher rate
of non-word spelling errors.

Insofar as it is correct that the Wikipedia text contains legitimate spelling variations of the same types,
and also spelling errors, this violates the assumptions of our algorithm6. This could cause failures of the
correction algorithm.

For example, suppose there were a spelling error that occursjust a few times in the corpus. This
erroneous token will be used when generating the error corpus. It will usually be easy to correct, because
the trigram model will estimate it to have low probability. However, if it happens to occur in a similar
context to the one in which it occurred in training, and if thetarget correction word did not occur in that
same context sufficiently often, the misspelling will actually be assigned a higher probability than the
correct spelling. For example, our training text containedtwo occurrences of the misspelling ‘wast’ for
‘was’. Two occurrences was our threshold, so ‘wast’ made it into the vocabulary. One of the two contexts
was ‘... subject matter wast influenced by...’. The bigram ‘matter was’ also occurred only once. This
means that any text containing ‘matter wast influenced’ willscore a higher probability than ‘matter was
influenced’ regardless of the token before or after these three.

If a misspelling is quite common, or if it is actually a spelling variation (the distinction may be philo-
sophical), this effect would be more pronounced. The variation that is chosen will reflect the idiosyncrasies
of the contexts it appeared in in training. For instance, ‘travelling’ and ‘traveling’ occur with about the same
frequency in our training set; 45 and 43 times each. While they share some surrounding words, they also
have differences. For example, ‘travelling’ appeared as anadjective before these nouns: ‘Australians’,
‘bachelor’, ‘communities’, ‘keyboard’, ‘life’, ‘opera’,‘post’, ‘support’, and ‘way’, whereas ‘traveling’
appeared before these nouns: ‘champion’, ‘conditions’, ‘exhibition’, ‘odyssey’, ‘show’, and ‘troop’. The
prepositions following ‘travelling’ were ‘at’, ‘between’, ‘from’, ‘in’, ‘on’, ‘past’, through’, ‘to’ and ‘via’,
whereas ‘traveling’ was followed by the prepositions ‘across’, ‘back’, ‘between’, ‘by’, ‘for’, ‘in’, ‘into’,

6 This effect may be more common in Wikipedia than in newswire,but newswire is not immune to it. For example, the 1987
portion of the WSJ corpus contains two occurrences of the token ‘billlion’, and six of ‘milllion’.



‘off’, ‘on’, ‘though’, ‘to’, ‘until’, ‘with’, and ‘within’ . These differences may indicate true correlations in
style, or they may simply be artefacts.

In order to avoid detecting an error when one of these occurs,we would like to recognise them as being
of the same type, perhaps through some process akin to those used to detect near-synonymy. This would
allow an enforcement of consistency at the level of the article or corpus.

7.2 Effects of the models

As shown above, only about five percent of the transformations in our error corpus were more likely in
their contexts than the original as estimated by the trigrammodel. This means that most of the detection
errors are attributable to the corrector. We discuss these first.

Within the corrector, the variation generator has been designed to guarantee that the correct variation
is included for consideration. So the task of generating variations has been removed from evaluation. This
means recall can potentially be very high. The fall in precision at high recall reflects the rate of words that
occur in the text that are not as probable as alternatives. Even at a low rate, this can have a large effect on
precision.

Low precision may pose a usability problem, as a high rate of false positives would be expected to
undermine confidence in a spelling corrector and to be frustratingly distracting. In word prediction, on the
other hand, more options are less likely to interfere.

7.3 Results

The results were lower than expected, given the stronger results reported in Wilcox-O’Hearn et al. [2008].
We attribute the difference to the genre. Because Wikipediaarticles are explanatory, and the topics some-
times obscure, terms in an article tend to be both rare and repeated. Thus our algorithm tends to wrongly
correct rare words, such as names, repeatedly.

At lower values ofβ, false correction of names is more acute. For example, withβ = 0.995 (not
shown), the most common false positives included ‘Riddle’ being corrected to ‘Middle’, ‘Beatty’ to
‘Beauty’, and ‘Lucia’ to ‘Lucian’. Names are likely to occurmany times if they occur once, and be
mistakenly corrected every time if at all. We could teach oursystem to recognise named entities and not
correct them, but a more appropriate approach might be to adapt our probability estimates to reflect recent
words.

This latter solution might also mitigate the other common kind of false positive: words that are uncom-
mon enough that a random increased frequency in the trainingdata of one variation over another strongly
biases the estimation of their probability in unseen contexts. An example of this is ‘engines’ being cor-
rected to ‘engine’ many times in an article about jet engines, even thoughwithin the article, ‘engines’
occurred 79 times. This is related to the valid variations oftype in the ‘travelling’/‘traveling’ example,
and highlights a difficulty in distinguishing types: We expect there to be a trade-off in discovering type
variations and detecting spelling errors. Indeed, anotherkind of false positive in our list was the rejection
of spelling variations of ‘Istanbul’ and ‘Ictimai’. This problem could be solved with world knowledge, but
word type recognition would be a more elegant solution.

Finally, the correction of ‘billion’ to ‘million’ exemplifies a kind of error that would be difficult to
avoid using this method without incorporating world knowledge, and perhaps impossible even then.

False negatives, on the other hand, tended to be common words. The word ‘and’ was left unrestored
particularly often in this experiment. This may be because ‘and’ has a diffuse distribution of words it can
occur next to, making it less likely than average to occur next to any specific one.

The most common correctly corrected word was ‘the’ by far, though this may be mostly a reflection of
its being most commonly transformed, and its very high probability. We did not compare words for these
effects.

Another unexpected result was that more pruning of the HMM states did not result in unambiguously
worse results. Instead, more pruning improved precision slightly more than it degraded recall, for a net
slight improvement in F-measure. Again, this reflects the problem of too many false positives that occurs



when the number of choices is high. In the section 2, we described how systems that over-correct would be
expected to perform better on a corpus with a higher error rate. We demonstrate this by including results
on a corpus with a higher error rate (Table 2).

8 Future work

In contrast to speech recognition systems, most NLP systemsthat operate on written text take observed
words as given. For example, a typical parsing system would not propose a parse that considered the
possibility that a word of its input were a misprint, or a variation of a different word, even if there were a
word close in spelling with a much more plausible parse. If such a system addressed spelling variations at
all, it would typically be done separately from and in advance of parsing, in a pipelined fashion.

However, as our source texts have become increasingly diverse, and standardised spelling is increas-
ingly a genre-specific feature, NLP systems have more to gainfrom a flexible definition of wordtype.
That is, rather than considering every orthographically distinct word form as a separate vocabulary item, it
should be helpful to recognise that some forms are variations of the same type. This has motivated much
work in text normalisation, the task of assigning all spelling variations of a word to one standard represen-
tation. If we assume that the observable forms of different types may overlap, then text normalisation can
be considered to subsume spelling correction, because the type of an observed word is then ambiguous.

We therefore argue that modern processing of written text would benefit from integratedword (type)
recognition in analogy with speech recognition systems. That is, for text processing in which word forms
may vary (either as a result of error, or as a feature of the language), we expect that language modelling,
parsing, and other tasks that either measure text plausibility or are steps in natural language understanding
will be more efficient and accurate if the word type recognition is computed during those tasks rather than
before. The system presented here performed spelling correction by integrating word form recognition
into a trigram language model using a hidden Markov model. The same method could be used to perform
trigram modelling with implicit text normalisation.

We also propose that for both spelling correction proper, and the text normalisation problem, an adap-
tive approach that tracks corrections may help avoid pitfalls. For example, many attestations of a name or
a singular vs. plural distinction that repeatedly goes against the expectations of a model might be a good
cue to change the model, at least within a given article or defined context. Tracking corrections could also
help enforce consistency of type, such as the ‘travelling’/‘traveling’ example.

However, for any such system to do more good than harm, the problem of over-detection must first
be resolved. The problem of selecting among multiple simultaneous variations turns out to be much
harder than selecting between an original word and a single variation of it. The difficulty is a problem
in detection—the choice of which words to keep, and which to correct—as demonstrated by the high
rate of correction given detection. Although n-gram modelsare powerful statistical tools, the structure of
language that allows errors to be detected easily by speakers is not well captured by them.

If, according to a trigram probability model, 1 in 20 naturally occurring words are not the most likely
among close variations of them, then a typical correct sentence will have at least one attractive miscor-
rection. If real errors occur only, for example, 1 in 200 words, then we might expect nine false positives
for every true positive, when looking for errors aggressively. Therefore, while95% accuracy sounds high
when evaluating a language model, it is not sufficiently highto perform well when detection of sparsely
occurring errors is the task.

Because detection is the critical performance issue we encountered, we expect that future work will
have to address it. Natural language comes with a high level of built-in redundancy. A model that can more
effectively tap into this inherent structural property of language should be much more adept at detecting
real word errors.
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