Applying a Naive Bayes Similarity Measure to Word Sense Disambiguation Tong Wang and Graeme Hirst University of Toronto

4. Experiments

WSD accuracy on three datasets. Our probabilistic model (blue bars) uses gloss and various additional knowledge sources to overlap with context words.

2. The (simplified) Lesk **Algorithm for WSD**^[1]

The sense whose dictionary gloss has the highest degree of overlap with the context words is chosen as the correct sense.

ter·mi·nal (n.)

1 station where transport vehicles load or unload passengers or goods. 2 electronic equipment consisting of a device providing access to a computer. (WordNet 3.1)

5. Conclusions

• Probabilistic matching significantly improves WSD accuracy over exact string matching (blue bars vs. left-most grey bars).

• Combining multiple types of lexical knowledge achieves state-of-the-art accuracy (right-most blue bars).

• Hyponyms are the most effective feature when added to gloss texts for WSD (2nd-toright-most blue bars).

[1] Adam Kilgarriff and Joseph Rosenzweig. Framework and results for English Senseval. Computers and the Humanities, 34(1-2):15–48, 2000. [2] Roberto Navigli. Word sense disambiguation: A survey. ACM Computing *Surveys*, 41(2):10:1–10:69, 2009.

Presented at The 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, MD, June 2014. UNIVERSITY OF TORONTO NSERC CRSNG Financially supported by

3. Limitations of String Matching

66 Lesk's approach is very sensitive to the exact wording of definitions, so the absence of a certain word can radically change the results. **7**^[2]

Even for the two most frequent senses of the word *terminal*, only a small number of contexts actually overlap with the corresponding glosses by exact string matching:

terminal	passenge
2,235	143 (6

We therefore propose a "softer" measure of gloss-context overlap using a Naive Bayes model:

$$p(\mathbf{f}|\mathbf{e}) = \prod_{j} p(f_{j}|\{e_{i}\}) = \prod_{j} \frac{p(\{e_{i}\}|f_{j})p(f_{j})}{p(\{e_{i}\})}$$
$$= \frac{\prod_{j} [p(f_{j})\prod_{i} p(e_{i}|f_{j})]}{\prod_{j} \prod_{i} p(e_{i})}$$
(1)

Probability estimation:

$$\begin{split} (1) &\approx \sum_{i} \log \frac{c(f_{j})}{c(\cdot)} + \sum_{i} \sum_{j} \log \frac{c(e_{i}, f_{j})}{c(f_{j})} - |\{f_{j}\}| \sum_{j} \log \frac{c(e_{i})}{c(\cdot)} \\ &= (1 - |\{e_{i}\}|) \sum_{i} \log c(f_{j}) - |\{f_{j}\}| \sum_{j} \log c(e_{i}) \\ &+ \sum_{i} \sum_{i} \log c(e_{i}, f_{j}) + |\{f_{j}\}| (|\{e_{i}\}| - 1) \log c(\cdot), \end{split}$$

where $c(\cdot)$ is the corpus size.

(Counts in the BNC)

© 201