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Abstract

This work describes ongoing data collection of
synchronized acoustic and kinematic features of
dysarthric speech. Recordings consist of electromag-
netic articulographic measurements and 3D recon-
structions from video over a variety prompts read by
individuals with cerebral palsy and matching non-
dysarthric subjects. Preliminary results show a pre-
ponderance of mispronounced plosives in dysarthric
speech, and greater articulatory variability. An ex-
periment with a standard hidden Markov model for
speech recognition resulted in 84% triphone recog-
nition accuracy for non-dysarthric speech, but only
6% accuracy for individuals with cerebral palsy.

1 Introduction

Dysarthria is a speech disorder that can severely

limit intelligibility, affecting millions worldwide.

The impairment of the facial muscles and other ar-

ticulators in dysarthria is normally symptomatic of

more general neuro-motor disabilities that can pro-

foundly restrict individuals in daily life and make

communication nearly impossible. Despite these dif-

ficulties, dysarthric speakers tend to prefer the nat-

uralness and speed of spoken expression over other

physical modes [4]. Properly engineered speech

recognition systems would potentially improve the

quality of life for these individuals, but current soft-

ware is profoundly inadequate. Our prior experi-

ments with traditional models, for example, show

word-level accuracy of less than 4.5% on severely

dysarthric speech against 84.8% on non-disabled

speech on small-vocabulary sentences [8].

There is increasing evidence that the use of artic-

ulatory parameters improves speech recognition for

non-dysarthric speakers [3]. For example, replac-

ing typical Gaussian mixture output densities in hid-

den Markov models with Bayes nets representing

the position and velocity of speech articulators has

improved accuracy over acoustic-only models [6].

Training such acoustic-articulatory relationships can

be performed with articulographic databases such as

MOCHA [9], but there is currently no correspond-

ing public database of dysarthric speech production.

The Nemours database is currently the most exten-

sive dysarthric speech database, consisting of 11

dysarthric males each uttering 74 syntactically in-

variant sentences and two additional paragraphs [7].

Despite its popularity, the Nemours database is lim-

ited in scope, and lacks physiological information.

2 Data Acquisition

The Torgo database of dysarthric speech is an on-

going project that will consist of aligned acoustic

and articulatory recordings for the purpose of learn-

ing statistical relationships between dysarthric and

non-dysarthric speech production. This database will

consist of 12 to 15 subjects with dysarthria resulting

primarily from cerebral palsy (spastic, athetoid, or

ataxic) or amyotrophic lateral sclerosis, and gender-

matched controls and is currently approximately half

complete. Each participant records 3 hours of data

split across multiple sessions in two 3D measurement

environments. The first environment uses electro-

magnetic articulography (EMA) to measure the kine-

matics of the jaw, lips, and midsagittal plane of the

tongue. Figure 1 shows an analysis window for a

segment of data in which the waveform and spec-

trogram are aligned with the (x,y,z) co-ordinates of

three points on the tongue. This system uses alternat-

ing electromagnetic fields generated by transmitter

coils attached to a cube that surrounds the speaker’s

head. The second environment uses the Ariel Perfor-

mance Analysis System (APAS) to reconstruct 3D

motion parameters from video recordings of facial

markers on the face [1].
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Figure 1: Aligned waveform, spectrogram, and

tongue a) tip, b) body, and c) dorsum displacement

during non-dysarthric /d ah g/. Displacement data

is measured in millimeters in three dimensions, and

only the y dimension is shown, for clarity.

Participants read each utterance from an LCD

monitor from a set of over 2000 stimuli. These

stimuli are grouped into smaller collections which

are internally randomized at runtime to ensure di-

rect comparability between speakers who complete

data at different rates. Single-word stimuli include

repetitions of the English digits, the international

radio alphabet, the 20 most frequent words in the

British National Corpus, and words selected by Kent

et al. to demonstrate relevant phonetic contrasts

(e.g., alveolar-palatal fricatives, front-back vowels,

stop-nasals) [5]. Single word stimuli are useful to

study variation in isolation without boundary detec-

tion. Sentence stimuli are derived from the Yorkston-

Beukelman assessment of intelligibility [10] and the

TIMIT database [11]. Additionally, each participant

is shown a small number of photographs from stan-

dardized tests of linguistic ability and asked to de-

scribe their contents in their own words. Whereas the

use of meaningful sentences in general is amenable

to syntactic and semantic processing, naturally pro-

duced speech is more likely to contain disfluencies,

and is more representative of dictation-style speech.

All data is phonetically annotated to the TIMIT

phone set [11] by a trained speech language pathol-

ogist to allow supervised frame-level training of

phone-dependent acoustic/kinematic models. Addi-

tionally, all dysarthric participants are diagnosed by

a speech-language pathologist according to the stan-

dardized Frenchay Dysarthria Assessment [2], which

evaluates the functions of the articulators (e.g., res-

piration, tongue, palate), and clinical intelligibility.

This assessment will be used to search for correla-

tions between observable accuracy in several speech

classification models and particular speech deficits

according to phonological features. For instance, the

degree of tongue disablement may be an indicator of

poorer discrimination between front-back vowels.

3 Preliminary Results

As of this writing, the Torgo database is approxi-

mately 50% complete in terms of the amount of raw

recording. It currently consists of speech and assess-

ment data from 6 dysarthric individuals and matched

controls, and is now being phonetically annotated

and cleaned of some environmental acoustic noise.

Some early observations are discussed in the follow-

ing subsections.

3.1 Analysis of speaker data

Table 1 shows the proportion of phonetic er-

rors according to manner of articulation over the

dysarthric data analyzed as of this writing. Notably,

plosives are mispronounced 16%, 20%, and 19%

of the time in word-initial, -medial, and -final po-

sitions, respectively, and substitutions in this class

are exclusively from unvoiced to voiced, especially

/t/ → /d/ and /p/ → /b/. By comparison, only 5%

of corresponding plosives are mispronounced, either

dropped in the final position or incorrectly voiced in

word-medial positions in regular speech. Also, our

dysarthric data often includes many deleted affricates

in word-final and fricatives in word-initial positions,

almost all of which are static and alveolar. This does

not occur in the corresponding non-dysarthric data.

SUB (%) DEL (%)

i m f i m f

stops 13.8 18.7 7.1 1.9 1.0 12.1

affricates 0.0 8.3 0.0 0.0 0.0 23.2

fricatives 8.5 3.1 5.3 22.0 5.5 13.2

nasals 0.0 0.0 1.5 0.0 0.0 1.5

glides 0.0 0.7 0.4 11.4 2.5 0.9

vowels 0.9 0.9 0.0 0.0 0.2 0.0

Table 1: Proportion of phone substitution (SUB)

and deletion (DEL) errors in word-initial (i), word-

medial (m), and word-final (f) positions across cate-

gories of manner for dysarthric data.

Figure 2 exemplifies some typical acoustic con-

trasts between dysarthric and non-dysarthric speech.

In particular, dysarthric speech tends to be longer and

more drawn out despite reduced breath support. On
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average, dysarthric vowels are 116.7ms while con-

trol vowels are 45.5ms. This might partially be ex-

plained by an increase of brief staccato gaps in exha-

lation during sonorants. Dysarthric vowel acoustics

are also slightly more variable, with an average vari-

ance across the first 7 mel-scaled frequency cepstral

coefficients of 12.1, against 9.8 in control data. More

severely dysarthric data tends to be more ‘guttural’,

especially for velar phones.

(a)

(b)

Figure 2: Repetitions of /iy pcl p ah/ over 1.5s by

(a) a male speaker with athetoid CP, and (b) a female

control. Dysarthric speech is notably several times

slower and more strained than regular speech.

Figure 3 shows non-rotated head-relative positions

of the left and right lip corners for a moderately

dysarthric speaker and a control speaker pronouncing

/uw/. In general, tract variable targets for dysarthric

data tend to be more variable.

There is also a reduced range of motion as

dysarthria becomes moderate or severe. During

rounding of the lips, for example, the dysarthric

speaker in Figure 3 could only reduce the spread of

his lips to 69.8mm on average, against 35.1mm for

the control speaker, despite similarly sized mouths.

3.2 Baseline speech recognition

We have compared our transcribed dysarthric and

regular speech in a baseline triphone classifier con-

sisting of standard tri-state left-right hidden Markov

models (HMMs) with continuous 16-Gaussian mix-

ture output densities decoded with the Viterbi algo-

rithm and conditioned on the triphone label. When

trained to regular speech, this model recognizes tri-

phones with 6% and 84% accuracy for our dysarthric

and control speakers, respectively.
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Figure 3: Non-rotated left and right lip corner posi-

tions on coronal plane (Z is up-down, Y is left-right)

for first 15 and 20 instances of /uw/ spoken by (a)

a male dysarthric speaker, and (b) a female control,

respectively. All points are relative to the centre of

fixed positions on the speaker’s head.

Our recent work comparing the effectiveness of

neural network and kernel-based (i.e., support-vector

machine) discriminative classifiers on phonologi-

cal features of dysarthric speech from the Nemours

database has shown a 10.9% relative error-rate reduc-

tion over traditional hidden Markov acoustic mod-

eling, and an approximately linear relationship be-

tween performance accuracy and Frenchay-based in-

telligibility levels [2]. We will be applying these

techniques to our own data in the near future.

4 Lessons learned and ongoing work

In addition to typical issues of speech data col-

lection such as the need to suppress environmental

noise, the development of the Torgo database has

incurred some additional challenges specific to the
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equipment and population. For instance, the induced

magnetic field in the EMA cube is not completely

uniform, so we take care to position the speaker

within the center of the cube in order to minimize

measurement error of recovered coil co-ordinates.

The video cameras used for 3D APAS recordings

are also somewhat sensitive to the position and fa-

cial characteristics of the speaker, so care must be

taken that all markers are visible throughout each ut-

terance. In general, APAS provides more facial mo-

tion data (e.g., the depressor anguli oris) but exclud-

ing all tongue motion.

There are also several practical challenges associ-

ated with recording individuals with cerebral palsy.

For example, individuals in metal wheelchairs must

be moved into a specially outfitted wooden chair

prior to recording so as not to interfere with the

EMA field. Decreased control of salivation and an

increased risk of a severe gag reflex among cere-

brally palsied participants can also make placing

coils on the tongue very difficult. About 12% of

EMA data from dysarthric individuals does not in-

clude all tongue coil positions. Involuntary move-

ment such as shaking or extension of the neck also

presents a problem for APAS recording, as the points

on the face become less visible on video.

Data collection is ongoing and will continue un-

til August 2009. We are currently developing

mixed acoustic-articulatory models based on dy-

namic Bayesian networks that perform phone-based

inference and classification. These temporal models

allow arbitrary conditional probabilities to be learned

between acoustics and articulatory motion and pre-

liminary results indicate relative error reduction up to

15% over regular acoustic models. We have also be-

gun to look at statistical relationships between acous-

tics and motor-function assessment, which includes

correlation coefficients of over 0.95 between vari-

ables such as F2 variability and tongue protrusion.

Work in the near future will include recovering ar-

ticulation given acoustics, which will be compared

against theoretical inference methods such as MIMI-

CRI [3].
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