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Abstract

Acoustic modeling of dysarthric speech is
complicated by its increased intra- and inter-

Pre-existing models from the non-dysarthric

We use the annotated Nemours database [1].

" bl h . : Kar— | | | , , , , population may best suit dysarthric speakers with
speaker variability. The accurdcies or speaker ® This contains 11 dysarthric male speakers, each nigher intelligibility.
dependent and speaker-adaptive models are producing 74 nonsense sentences of the form - o | 2aah 9 14
compared for this task, with the latter prevailing The (N,) is (V)ing the (N,). ¢ e;cre:oets\lljvésdi)url?optocr)tbszgvea\e;ecr}ea;? seflpae.ri[ogi,ty of
across varying levels of speaker intelligibility. @ Target words were randomly selected without >, 50 —————— SD models for severely dysarthric speakers.
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_ . : S)al{ar;ige(re]t to plra?cve;dfngr?rsl:? \f‘sitcipnh(;nenc © ® In contrast, we measure only slight SD gains

/_h Inthoduction \ 9+ P ’ ! 9. § 45 t ol as the number of Gaussians increases.
® One non-dysarthric speaker repeated each < - o M
o - o |l et

Dysarthria is a set of neuromuscular motor sentence in the database. 40 I S * 1 e Phonemic substitution is the most common

disorders that limit speech intelligibility. ® Speakers are grouped according to recognition e . S phenomenon across all speakers, especially

Dysarthric speakers often prefer spoken expression rate with baseline acoustic models trained on 35 T Base ——f— /ng/ = [n/ (125), /t/ = [uw/ (87), [ey/ = [ih/ (84)

ovgr othectl‘ physical means to increase naturalness spoken Wall Street Journal (WS)) transcripts [2]. De/?)%erl]%tévnet IIIII o Deletions mostly involve dropped consonants

and speed. Severe Moderate Mild Non-dysarthric 30 | | | | | | /b/ (118), /s/ (111), /w/ (60), /f/ (55), /I/ (48)

Automatic SpEECh recognition (ASR) ic essentially (4 speakers) (4 speakers) (3 speakers) (1 speaker) 2 4 6 8 10 12 14 16

There is not enough data to represent intra-

. . e . . — : Number of Gaussians
inaccessible for individuals with dysarthria. . | | | W speaker variation. What are the alternatives?

Moderately dysarthric speakers
We compare the following types of acoustic model: 0% 10% 30% 60% 84.8% 30 | . . . . .

o
Speaker-dependent (SD): Trained solely to & Subjective sentence-level human intelligibility / 2 | ‘_ // UIREEIRVV Ok

an individual. scores are similarly distributed.
We are designing a generic classifier framework
that includes neural networks and support vectors.

\

Speaker-adaptive (SA): Initialized by

models trained on a larger population, )
later adjusted to a single user. T Experiments will explore alternatives to GMM
Model and Training Mechanism = S o
SD models tend to become more accurate as user— / = = 9 <c):(3 emission probabilities (e.g., Bayes nets).
specific training increases, but are initially less /Both the SD and SA models are continuous 3- steh 0 Data collection combines acoustics and kinetics
accurate than SA models. triphone Hidden Markov Models (HMMs) decoded using electromagnetic midsagittal articulography.
by the Viterbi algorithm. . . .
Y J 5 | ] This will incorporate physical models into ASR
Emission probabilities b; are Gaussian mixture Ada'gf}f;g ' and contain more linguistically varied texts
2. Previous Work models (GMMs), with K Gaussians NVx. ) | | | | Dependent ¥ amzn?_ble to syntactic and semantic language
K 2 4 6 8 10 12 14 16 modeiing.
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