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Abstract

Late talkers (LTs)—children who show a marked delay in vo-
cabulary learning—are at risk for Specific Language Impair-
ment (SLI), and much research has focused on identifying fac-
tors contributing to this phenomenon. We use a computational
model of word learning to further shed light on these factors.
In particular, we show that variations in the attentional abili-
ties of the computational learner can be used to model various
identified differences in LTs compared to normally-developing
children: delayed and slower vocabulary growth, greater diffi-
culty in novel word learning, and decreased semantic connect-
edness among learned words.

Introduction
Learning word meanings is a key component of the language
acquisition process. While most children are very efficient
word learners, some show substantial delay. Late talkers
(LTs) are children at an early stage who are on a markedly
slower path of vocabulary learning, without evidence of any
specific cognitive deficits. Although many LTs eventually
catch up to their age-matched peers, some continue on a
slower path of learning, and at some point in development are
considered as exhibiting specific language impairment (SLI)
(Thal et al., 1997; Desmarais et al., 2008).

Early identification of children at risk for SLI is very im-
portant, since early intervention is key to alleviating its ef-
fects. Because late talking can be an early sign of SLI, many
psycholinguistic studies have attempted both to understand
its properties and to identify the factors that contribute to
it. Research has shown that LTs exhibit not only a delay
in vocabulary learning, but a slower learning rate as well
(e.g., Weismer & Evans, 2002). Moreover, the vocabulary of
LTs appears to exhibit less semantic connectivity than that of
normally-developing children (Beckage et al., 2010; Sheng
& McGregor, 2010). Numerous factors may contribute to
late talking, including environmental conditions, such as the
quantity or quality of the linguistic input (Paul & Elwood,
1991; Rowe, 2008), as well as cognitive properties of the
learner, such as differences in categorization skills, working
memory, or attentional abilities (Jones & Smith, 2005; Stokes
& Klee, 2009; Rescorla & Merrin, 1998).

Computational modeling is necessary for investigating pre-
cise proposals of how such a variety of complex environmen-
tal and/or cognitive factors can interact in the process of vo-
cabulary learning. One key mechanism believed to help chil-
dren hone in on the appropriate meaning of a word (given
an infinitely large number of possibilities) is cross-situational
learning (Quine, 1960). Children gradually glean the mean-
ing of a word by attending to the common elements of the
meaning across its various usages, each occurring in a noisy

and ambiguous context. Computational models of cross-
situational learning have helped shed light on how various
factors affect the timecourse of word learning (e.g., Frank et
al., 2007; Yu & Ballard, 2008; Fazly et al., 2010b). How-
ever, to our knowledge, there are no computational models of
word learning in context demonstrating the effects of possible
factors that contribute to late talking.

We address this gap here by exploring the relation be-
tween an attentional factor and the phenomenon of late talk-
ing within a computational model of cross-situational word
learning. It has been observed that children’s joint attention
skills—which underlie their ability to focus on the intended
meaning for a word—develop over time (Mundy et al., 2007).
However, our computational model as previously formulated
(Fazly et al., 2010a) failed to capture the developmental in-
crease in ability to appropriately attend to what is being talked
about. Here, we extend the model with an attentional mecha-
nism that improves over time, and show how it can be varied
in computational experiments, corresponding to simulations
of normally-developing children and LTs. We examine the
impact of the model’s differing attentional abilities, both on
the timecourse of vocabulary acquisition, and on the prop-
erties of the learned knowledge. In comparing the different
instantiations of the model, we find that a model with weaker
attentional abilities, like LTs, shows a delayed and slower vo-
cabulary growth, as well as less semantic connectivity among
the words it has encountered. We also investigate whether the
attentional factor we explore may underlie behaviour relevant
to the observed subgroups of late talkers: those who eventu-
ally catch up, and those who are more likely to permanently
stay on a slower path of learning.

Overview of the Computational Model
Model Input and Output
The input to our word learning model consists of a sequence
of utterance–scene pairs that link an observed scene (what the
child perceives) to the utterance that describes it (what the
child hears). We represent each utterance as a set of words
(with no order information), and the corresponding scene as
a set of semantic features, e.g.:

Utterance: { anne, broke, the, box }
Scene: { PERSON, ANNE, TOUCH, CHANGE, SUDDENNESS,

DETERMINER, IS-SOLID, MADE-OF-WOOD, · · · }

Given a corpus of such utterance–scene pairs, our model
learns the meaning of each word w as a probability distribu-
tion, p(.|w), over all possible semantic features: p( f |w) is the
probability of feature f being part of the meaning of word w.
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Initially, since all features are equally likely for each word,
the model assumes a uniform distribution for p(.|w). Over
time, this probability is adjusted in response to the cross-
situational evidence in the corpus.

Learning Algorithm
Our model gradually learns the meanings of words through
a bootstrapping interaction between two types of probabilis-
tic knowledge. Given an utterance–scene input received at
time t, It=(Ut , St), the model first calculates an alignment
probability at(w| f ) for each w ∈ Ut and each f ∈ St , that cap-
tures how likely w and f are associated in It . This calculation
uses the meaning probabilities learned up to time t− 1, i.e.,
p(t−1)(f |w), as described in Step 1 below. The model then
revises the meaning of the words in Ut by incorporating evi-
dence from the alignment probabilities at , as in Step 2 below.
This process is repeated for all input pairs It , one at a time.

Step 1: Calculating the alignment probabilities. We ex-
ploit the cross-situational learning assumption that words and
features that have been associated in prior observations are
more likely to be associated in the current input pair. Since
the meaning probability, p(t−1)(f |w) (the probability of f be-
ing a meaning element of w), captures this prior strength of
association, the higher this probability, the more likely it is
that w is aligned with f in It . In other words, at(w| f ) is pro-
portional to p(t−1)(f |w). We normalize this probability over
all word–feature pairs for that feature f in the current input
in order to capture the relative strength of association of w
with f among the current possible alignments. Specifically,
we use a smoothed version of the following formula:

at(w|f ) =
p(t−1)(f |w)

∑
w′∈Ut

p(t−1)(f |w′)
(1)

Step 2: Updating the word meanings. We next need to up-
date the probabilities p(t)(f |w) based on the evidence from the
current alignment probabilities. For each w ∈ Ut and f ∈ St ,
we add the current alignment probability for w and f to the
accumulated evidence from prior co-occurrences of w and f .
We summarize this cross-situational evidence in the form of
an association score, which is updated incrementally:

assoc(t)(w, f ) = assoc(t−1)(w, f )+at(w| f ) (2)

where assoc(t−1)(w, m) is zero if w and f have not co-
occurred prior to t. The association score of w and f is basi-
cally a weighted sum of their co-occurrence counts.

The model then uses these association scores to update the
meaning of the words in the current input:

p(t)(f |w) = assoc(t)(f , w) + λ(t)

∑
fj∈M

assoc(t)(fj, w) + β×λ(t)
(3)

where M is the set of all features encountered prior to or at
time t, β is the expected number of distinct features, and λ(t)
is a smoothing factor, discussed in the next section.

Modeling Changes in Attention over Time
The model as presented above does not address the find-
ings that children’s attentional skills develop over time (e.g.,
Mundy et al., 2007). In particular, we assume that a child at
earlier stages of cross-situational learning will consider that
a word may be associated with some irrelevant semantic fea-
tures, and that gradually, she will attend more and more to
only the relevant features for the word. However, the input to
our model consists of the words of an utterance paired with
only semantic features that are relevant to those words. Thus
to reflect a less-developed attentional mechanism, our model
must be made to give some weight to unobserved word–
feature pairs.

In fact, the model does provide for such a mechanism.
The function λ(t) in Eqn. (3) determines how much of the
probability mass of p( f |w) is allocated to unseen word–
feature co-occurrences, and thus conversely, reflects the de-
gree to which the model attends to the (relevant) observed
co-occurrences. In the original model of Fazly et al. (2010a),
however, λ was a very small constant, assuming a highly
competent (and unchanging) attentional mechanism in place
even in early stages of word learning. Here we have mod-
ified the model so that λ is a function of time, in order to
simulate a learner whose ability to attend to relevant word–
feature co-occurrences improves with age. Specifically, early
on the model should give significant weight to unobserved
word–feature pairs, reflecting immature attentional skills, but
over time this weight should decrease, reflecting improved
attentional processes that can appropriately focus on the ob-
served word–feature pairs. This type of development can be
achieved by devising λ as an inverse function of time: it starts
reasonably large (allocating more probability mass to unseen
word–feature pairs), and gradually decreases (increasing the
probability mass assigned to observed pairs).

Modeling Normal and Late-talking Learners
The literature provides evidence for individual differences in
the development of the ability of a learner to respond to joint
attention (Morales et al., 2000). In particular, late-talking
children exhibit difficulty in using communicative cues and
in initiating joint attention with their partner (Paul & Shif-
fer, 1991; Rescorla & Merrin, 1998). Varying the λ function
provides a way for our model to simulate such individual dif-
ferences, by manipulating the rate of decrease in λ as a func-
tion of t. We assume that a “normal” learner’s attentional
abilities develop fairly quickly over time, modeled by a λ(t)
that decreases relatively rapidly (while still providing some
allowance for unseen word–feature pairs). In contrast, for a
late-talking learner, λ(t) should decrease less rapidly. Thus
we adopt this simple formulation:

λ(t) =
1

1+ tc , 0 < c≤ 1 (4)

where the value of c determines the rate at which λ decreases
over time, and hence determines the type of the learner.
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box: { IS-SQUARE:0.82, IS-SOLID:0.77, MADE-OF-WOOD:0.62,
SIZE:0.4, MADE-OF-CHINA:0.18, HAS-LEGS:0.13,
HAS-LEAVES:0.08, FLIES:0.03, · · · }

Figure 1: Sample sensory-motor features & their ratings for box.

Experimental Setup
Input Utterance–Scene Pairs
The training data for our model consists of a sequence of ut-
terances, each paired with a set of semantic features as the
scene representation. The utterances are extracted from the
Manchester corpus (Theakston et al., 2001, from CHILDES
MacWhinney, 2000), transcripts of conversations with 12
British children between the ages of 1;8 and 3;0. We use the
child-directed speech (CDS) only, and lemmatize the words.
The data from half of the children is used as development
data, and the rest for our final experiments.

Because a manually-annotated semantic representation is
not available for any such large corpus of CDS, we automat-
ically generate a scene representation for each utterance. To
do so, we create an input-generation lexicon which contains
the “true” meaning t(w) for each word w in our two semantic
resources.1 Each t(w) is a vector over all possible semantic
features. For adjectives and closed class words, each feature
(taken from Harm, 2002) has value 1 in t(w) if it is part of
the meaning of the word, and 0 otherwise. For nouns and
verbs, each feature (taken from Howell et al., 2005) has a
value (between 0 and 1) derived from the relevancy ratings
of 98 sensory-motor features for 352 nouns, and of 85 fea-
tures for 91 verbs; see Figure 1 for an example. We then use
t(w) to probabilistically generate the set of observed seman-
tic features for each word w in an utterance U. The scene
representation is the union of this set of features for all w in
U. For each word, we probabilistically sample the features in
proportion to their value—i.e., features rated as more relevant
to a word are more likely to appear in the scene representation
when that word is used. We take this probabilistic approach
to more realistically reflect the noise and uncertainty in the
input, as well as the uncertainty of a child in determining the
relevant meaning elements in a scene.

Evaluating the Learned Meanings
To measure how well the model has learned the meaning of
a word w, we compare its learned meaning, l(w) (a vector
corresponding to the probability distribution p(.|w)), to its
true meaning, t(w) (a vector as described above). We cal-
culate their similarity, sim(l(w), t(w)), using a simple vector
distance measure, cosine. The higher the value of sim, the
closer the learned meaning l(w) is to the true meaning t(w),
and the better the meaning of w is learned.

Model Parameters
Recall that c in Eqn. (4) determines the level of learner’s at-
tentional abilities. In our experiments, we compare three dif-

1We also add about 50 high-frequency words, mostly pronouns
and proper nouns, with simple semantic features. Utterances con-
taining words not found in either of the two resources, or our addi-
tional word list, are removed from the input.

Figure 2: Proportion of noun/verb word types learned.

ferent values for c: c = 1 yields a model, ND, correspond-
ing to a normally-developing child; c = 0.5 yields a model,
LT.5, corresponding to a late talker with less severe difficul-
ties; and c = 0.25 yields a model, LT.25, corresponding to a
late talker with more severe difficulties. (These values were
chosen based on behaviour on development data; all mod-
els with c < 1 showed some degradation in learning perfor-
mance.) We experiment with two versions of the LT settings
to explore whether we can model two different types of LTs—
those that eventually catch up to their normally-developing
peers, and those that fail to do so.

Experimental Results
As mentioned in the Introduction, several key behaviours
have been observed regarding the learning of word mean-
ings by LTs in comparison with their age-matched peers.
First, LTs have both delayed vocabulary learning and a slower
learning rate; while some LTs catch up to their peers, others
do not. Second, LTs have more difficulty in learning novel
words in an experimental setting. Third, the learned words of
LTs seem to have less strong semantic connectedness among
them. Here, we present three corresponding sets of experi-
ments demonstrating that variation in the attention parameter
in our model, reflected in the ND, LT.5, and LT.25 learners,
can lead to each of these behaviours observed in children.

Patterns of Learning in the Models
LTs have a vocabulary size substantially below typical chil-
dren at the same age. LTs not only show delayed develop-
ment, but a different rate of vocabulary learning—i.e., they do
not just start later, but learn more slowly (e.g., see Beckage
et al., 2010, Figure 2). To see whether our LT learners dif-
fer from our ND learner in a similar way, we train each
learner on 76K utterances, and look at how the proportion of
learned words, out of all words the model has been exposed
to, changes over time. We restrict our attention here to nouns
and verbs, since we believe their semantic representation is
more elaborated (and thus more realistic).

The vocabulary growth plots of the three learners, depicted
in Figure 2, show interesting differences in accord with the
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patterns seen in children. First, the two LT models not only
lag behind the ND model with respect to the onset of word
learning, but also show a different rate and pattern of vocab-
ulary learning (a very marked difference in the LT.25 case).
Whereas ND shows a sharp increase in the rate of vocabulary
learning early on — 60% of words are learned by the time the
model has received about 150 words — the two LT learners
exhibit a slower and more gradual growth rate. In addition,
the two LT models differ from each other. As is observed
in children, some learners (as with LT.5) who start off slow
catch up in vocabulary learning, while others (as with LT.25)
continue indefinitely to lag behind their age-matched peers.
This distinction is important to understand more fully, since
the latter are at risk for SLI.

Novel Word Learning Experiments
To understand how the vocabulary learning process of LTs
differs from that of typical children, psycholinguists test the
performance of the two groups in a contrived novel word
learning situation: An experimenter first introduces a novel
word and its novel referent to the child, and then examines
the child’s knowledge of the target (novel) word through ex-
plicit tests of comprehension and/or production.

Here, we simulate a simplified version of the novel word
learning experiment of Weismer and Evans (2002). First, we
train the model on some number of corpus inputs, simulating
a child’s normal word learning experience. We then intro-
duce a novel noun to the model in several teaching trials as
follows: As our novel noun, we randomly pick a noun that
has not occurred in the training utterances. To simulate use
of the novel noun in natural utterances, we add the noun to
an actual (as yet unseen) utterance from the corpus, and add
its probabilistically-generated meaning to the corresponding
scene. We train our ND and LT learners on N such teaching
utterance–scene pairs as usual.

To examine the novel word learning ability of each learner,
we repeat the above process for 106 novel nouns, for N =
3 teaching trials, and for different amounts of prior training
utterances (here, 10K, 30K, or 60K), and test as follows.

Comprehension. To test comprehension of a recently-
taught novel word, the experimenter asks the child to find the
referent of the novel word, when presented with the novel
object along with one or more familiar objects. Note that in
our computational experimental setting, the “object” corre-
sponding to a word is its true meaning, t(w) (i.e., there is no
distinction between the true meaning of a word and a referent
corresponding to that meaning). We pair each novel object
t(wN) with one familiar object t(wF), and calculate the like-
lihood of selecting each of these in response to wN as the
stimulus. Specifically, we test whether the model’s learned
representation of the meaning of the novel noun, l(wN), is
closer to the true meaning of the novel noun, t(wN), or that
of the familiar noun, t(wF). We use the Shepard-Luce rule
(Shepard, 1957; Luce, 1959), to calculate the probability of
choosing the novel object in response to the novel word in

Figure 3: Average Comp probabilities of learners over time.

this forced-choice task:

Comp(wN) = P(t(wN)|wN))

=
sim(l(wN), t(wN))

∑w′∈{wN,wF} sim(l(wN), t(w′))
(5)

To ensure that wF is familiar to the model, we select it from
nouns with a minimum frequency of 5.

Production. The production test evaluates the ability of a
learner to produce a recently-taught novel word when pre-
sented with the corresponding novel object. We calculate the
probability that a learner produces the target novel noun wN
given its true meaning t(wN), as in:

Prod(wN) = P(wN|t(wN))

=
sim(l(wN), t(wN))

∑w′∈W sim(l(w′), t(wN))
(6)

where W is the set of all words that we assume the model
could produce in response to t(wN). Here W consists of all
words with a minimum frequency of 3.2 Given the above
formulation, the production probability of a word is high if:
(i) the learned meaning of the word and its true meaning are
sufficiently similar; and (ii) this similarity is much higher than
the similarity between the target object and the learned mean-
ing of the other words.

Analysis of the Results. The Comp and Prod probabili-
ties of the three learners, averaged over the 106 novel test
words, are given in Figure 3 and Figure 4, respectively. Sim-
ilar to what Weismer and Evans (2002) reported, here we
can see that ND performs significantly better than LT.25 in
the comprehension test, at all three stages of learning (t-test:
p� 0.01). In contrast, we observe a significant difference be-
tween the comprehension performance of LT.5 and that of ND
only at early stages (after processing 10K and 30K utterances;
p < 0.01), again suggesting that LT.5 may represent a group
of learners who start off late, but eventually catch up to their

2We use the frequency of the novel word as this threshold.
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Figure 4: Average Prod probabilities of learners over time.

normal peers. In the production test, ND performs signifi-
cantly better than both LTs during all the stages of learning;
however, the difference between ND and LT0.5 is decreasing
over time.

One issue should be noted here: The production scores of
all learners decrease over time. This happens because at later
stages the learners know more words, many of which are se-
mantically related (such as cat, dog, lion, etc.). Thus, the de-
nominator in Eqn. (6) increases over time due to encountering
more words that are semantically similar to the target word
(to be produced), and this results in lower production proba-
bilities. Future work will need to consider alternative prob-
abilistic formulations of production, and explore the degree
to which our particular meaning representation contributes to
the observed effect.

Semantic Organization Experiments
Late talkers have been shown to not only learn more slowly
than their age-matched normally developing children, but
also to be learning differently (e.g., Beckage et al., 2010;
Sheng & McGregor, 2010; Jones & Smith, 2005). In partic-
ular, Beckage et al. (2010) examine the vocabulary of several
late talking and normally developing children, and show that
the learned words of late talkers are less semantically con-
nected than those of normally developing children.

Recall that in our input representation, features are gener-
ated probabilistically to reflect the noise and uncertainty in
the input and/or the uncertainty of a child’s perception of
the relevant meanings for a word. Moreover, in our model,
the weaker attentional abilities of our LT learners (especially
LT.25) requires them to observe a word–feature pair more
times in order to learn that association. This can lead to
(some) semantic features of the word being less well learned.
The more sparsely learned features may then lead to less se-
mantic connectivity among the words. Here, we compare
the “semantic organization” of nouns for our two LT learn-
ers, with those of two normally-developing learners: an age-
matched ND (trained on the same number of utterances as the
two LTs), and a vocabulary-matched (younger) ND (trained
on a proportion of these utterances to account for the age dif-

Figure 5: Semantic connectivity scores of learners over time.

ference).
For each learner, we build a semantic network as follows:

We connect each word to all other words the learner has
encountered during training, weighting each connection by
the similarity between the learned meanings of the connected
words. We expect the semantic networks of the two normal
learners (the age-matched, AM, and the vocabulary-matched,
VM) to be more connected compared to the two LT learners.
We calculate a semantic connectivity score for each learner
by comparing the connectivity of the nouns in its network to
that of nouns in a gold-standard network formed analogously
using the true meanings of words. (As in other experiments,
here we focus on nouns because of their more elaborate se-
mantic representation.) We represent the connection weights
of each noun in a network as a vector, and measure the sim-
ilarity of the noun’s connections in a learned network and in
the gold-standard network using cosine over the two corre-
sponding vectors. The average of these vector similarities
over all nouns is taken as the semantic connectivity score of
the target learned network.

Figure 5 shows the connectivity scores for the four learners
trained on different amounts of input. The results show that,
in line with the findings of Beckage et al. (2010), both AM
and VM learners have more semantic connectivity in their
learned knowledge of nouns compared to both LTs (all dif-
ferences are statistically significant; p� 0.01). Once again,
LT.5 seems to be catching up to the ND learners: The seman-
tic connectivity of LT.5 is getting closer to that of AM at the
latest stage of learning.

Conclusions
There are several possible explanations behind language de-
ficiencies in late talkers, such as inadequacies in their general
cognitive abilities (e.g., attention, categorization, and mem-
ory skills), or in the quality and quantity of their linguis-
tic input. Here, we have focused on modeling variations in
the development of attentional abilities in normal and late-
talking children. Specifically, we have incorporated an at-
tention mechanism into an existing model of learning word
meanings in context, enabling us to model both a learner’s
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cognitive development over time, as well as some individual
differences among learners in lexical development.

Results of our experiments comparing late-talking (LT) and
normally-developing (ND) learners are compatible with the
psycholinguistic findings: Compared to our ND model, the
LT model with severe difficulties (LT.25) exhibits marked de-
lay in the onset of vocabulary learning, performs significantly
worse in learning novel words, and has less strong semantic
connections among its learned words. In contrast, the LT.5
learner (with less severe difficulties) is significantly differ-
ent from ND only at earlier stages of development, reflecting
some normal degree of variation in vocabulary learning.

The model presented here has the potential for studying
many more issues pertaining to normal versus impaired lex-
ical development. One important issue that needs further in-
vestigation is the (possibly differential) effect of the linguis-
tic input on lexical development in ND and LT children. In
fact, our probabilistic input generation method enables us to
vary the input quality, possibly corresponding to the use of
social cues or some other attentional mechanism children use
to hone in on relevant word–meaning associations.

Another future direction is to further examine the effect of
semantic connectedness among words in their acquisition, in
both ND and LT children. Late talkers have been shown to
do worse in explicit word association tasks (Sheng & Mc-
Gregor, 2010), as well as in recognizing abstract categories
(e.g., Jones & Smith, 2005). By adding explicit categoriza-
tion abilities to our model (e.g., as in Alishahi & Fazly, 2010)
we can further investigate the differences of our various learn-
ers, both in capturing the semantic connections among words,
and in using these connections to bootstrap word learning.
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