
Indexing Methods for Efficient

Parsing with Typed Feature

Structure Grammars

Cosmin Munteanu

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Department of Computer Science

University of Toronto

Copyright c© 2004 by Cosmin Munteanu

mcosmin@cs.toronto.edu

Abstract

A major obstacle in developing efficient parsers for unification-based

grammars is the slow parsing time caused by the complex and large structure

used to represent grammatical categories. With the broadening coverage

of such grammars, their size and complexity increases, creating the need

for improved parsing techniques. Although several statistical optimizations

exist today that exhibit significant improvements in parsing times, they

rely on data collected during a training phase. This thesis presents a

theoretical investigation of indexing based on static analysis of feature

structure grammar rules, a method that has received little attention in the

last few years in computational linguistics. This non-statistical approach has

the advantage of not requiring training phases, although it is consistent with

further statistical optimizations.

iii

Contents

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Contributions . 3

1.4 Structure of the Thesis . 4

2 Typed Feature Structures 7

2.1 Type Hierarchies . 8

2.2 Typed Feature Structure Definition 9

2.2.1 Example . 11

2.3 Typed Feature Structures Operations 12

2.3.1 Subsumption . 12

2.3.2 Unification . 14

2.3.3 Descriptions and Most General Satisfiers 16

2.4 Extensions . 17

v

2.4.1 Appropriateness . 17

2.4.2 Well-Typed Feature Structures 18

2.4.3 Statically Typable Signatures 19

2.4.4 Structure Sharing . 20

2.5 Typed Feature Structure Cuts 22

3 Unification-Based Grammars 25

3.1 Head-Driven Phrase Structure Grammars 27

3.1.1 Principles of HPSG . 27

3.1.2 The HPSG Formalism 28

3.2 Implementation Aspects . 31

3.2.1 Compiling Grammar Rules 31

3.2.2 Variables in TFS Representations 34

3.2.3 TFS Grammar Rules 38

3.2.4 Encoding of TFSs . 40

4 Indexing for TFSG Parsing 45

4.1 Chart Parsing with Typed Feature Structure Grammars . . . 46

4.1.1 Parsing with Typed Feature Structures 46

4.1.2 Bottom-Up Parsing . 47

4.1.3 EFD Parsing . 48

4.1.4 Parsing as Unification of MRSs 50

4.2 The Typed Feature Structure Indexing Problem 52

4.2.1 Difficulties for TFSG Indexing 52

4.2.2 Indexing Timeline . 53

4.3 Indexed Chart Parsing . 54

4.3.1 General Indexing Strategy 55

4.3.2 Using the Index . 56

4.3.3 An Example . 56

4.4 Previous Approaches to Indexing and Filtering TFSGs 58

4.4.1 HPSG Parsing with CFG Filtering 58

4.4.2 Quick Check . 59

4.4.3 Rule Filtering . 61

4.5 A Discussion About Optimization Approaches 62

4.5.1 Indexing vs. Filtering 63

4.5.2 Statistical vs. Non-Statistical Methods 64

5 Indexing for Non-Parsing Applications 67

5.1 Indexing For Other TFS Applications 67

5.1.1 An Indexing Scheme for TFS Retrieval 68

5.1.2 Automaton-based Indexing for Lexical Generation . . . 68

5.2 General Term Indexing . 69

5.2.1 Attribute-Based Indexing 70

5.2.2 Set-Based Indexing . 70

5.2.3 Tree-Based Indexing 71

5.3 Indexing in Database Systems 72

6 TFSG Indexing through Static Analysis 75

6.1 Positional Indexing . 76

6.1.1 Building the Index . 76

6.1.2 Using the Index . 78

6.2 Path Indexing . 78

6.2.1 Static Analysis of Grammar Rules 79

6.2.2 Building the Path Index 93

6.2.3 Key Extraction in Path Indexing 94

6.2.4 Using the Path Index 95

7 Experimental Evaluation 97

7.1 Resources . 97

7.2 Prolog Data Structure . 99

7.3 Experiments . 102

7.3.1 Evaluation using the unconstrained MERGE 102

7.3.2 Evaluation using the constrained MERGE 104

7.3.3 Comparison between statistical and non-statistical

optimizations . 106

7.4 Evaluation on Other UBGs . 111

7.4.1 The Alvey Grammar 111

7.4.2 Penn Treebank CFG 113

8 Conclusions and Future Work 119

8.1 Conclusions . 119

8.2 Future Work . 120

Bibliography 123

List of Figures

2.1 A simple type hierarchy. 12

2.2 A simple typed feature structure, represented as an AVM. . . 12

2.3 A simple typed feature structure, represented as a directed

graph. 13

2.4 A subsumption example. 14

2.5 Structure sharing in a graph representation of a TFS. 20

2.6 Structure sharing in an AVM representation of a TFS. 21

2.7 The unification between a TFS and a cut TFS. 23

3.1 A Simple HPSG . 30

3.2 A phrase rule in ALE. 33

3.3 Structure sharing between two typed feature structures

(“external sharing”). 36

3.4 Structure sharing between two typed feature structures, after

unification. 37

3.5 A phrase rule seen as a MRS. 41

4.1 A simple example of indexed chart parsing. 57

4.2 Quick check vectors . 61

ix

6.1 Static Cut – An Example. 82

6.2 An example of the applicability of Proposition 6.3. 87

6.3 An example of Proposition 6.3 limitation to |[x̂]./ ∩ M̂ | = 1. . 87

6.4 An example of nodes in Case C of the proof for Proposition 6.6. 92

7.1 The encoding of TFSs as Prolog terms 100

7.2 The encoding of the TFS for the word mary as Prolog terms . 101

7.3 Parsing times for EFD, EFD with positional indexing,

and EFD with path indexing applied to the unconstrained

MERGE grammar. 103

7.4 Parsing times for EFD, EFD with positional indexing, and

EFD with path indexing applied to the constrained MERGE

grammar. 105

7.5 Parsing times for EFD and EFD with quick-check applied to

the unconstrained MERGE grammar. The sentence numbers

are the same as those used in Figure 7.3. 108

7.6 Parsing times for EFD and EFD with quick-check applied to

the constrained MERGE grammar. The sentence numbers are

the same as those used in Figure 7.4. 109

7.7 Parsing times for EFD and EFD-indexing applied to the Alvey

grammar. 112

7.8 Parsing times for EFD and EFD-indexing applied to CFGs

with atomic categories. 116

List of Tables

7.1 The number of successful and failed unifications for the

non-indexed and indexed parsers over the unconstrained

MERGE grammar. 104

7.2 The number of successful and failed unifications for the

non-indexed and indexed parsers over the constrained

MERGE grammar. 106

7.3 The set-up times for non-statistically indexed parsers and

statistically optimized parsers for MERGE gramamr. 107

7.4 The number of successful and failed unifications for the

non-indexed, path-indexed, and quick-check parsers over the

unconstrained MERGE grammar. 110

7.5 Successful unification rate for the non-indexed CFG parser. . . 114

7.6 The grammars extracted from the Wall Street Journal

directories of the PTB II. 115

xi

Chapter 1

Introduction

1.1 Overview

Developing efficient parsers is one of the long-standing goals of research in

natural language processing. A particular area of grammar development

in strong need of improvements in parsing times is that of typed feature

structure grammars (TFSGs). With respect to parsing times, much simpler

grammar formalisms such as context-free grammars (CFGs) also face the

problem of slow parsing time when the size of the grammar increases

significantly. While TFSGs are small compared to large-scale CFGs (in

terms of the number of rules), the problematic parsing times are generated

by the complex structure required to represent the categories in the grammar

rules. For example, in HPSGs [Pollard and Sag, 1994] covering the English

language, one category could incorporate thousands of feature values (while

in CFGs, the categories are atomic).

For TFSG chart parsers, one of the most time-consuming operations is

1

2 CHAPTER 1. INTRODUCTION

the retrieval of categories from the chart. This is a look-up process: the

retrieved category should match a daughter description from the grammar.

The size of the typed feature structures [Carpenter, 1992], combined with

their complex structure, results in slow unification (matching) times, which

leads to slow parsing times. Therefore, while retrieving categories from the

chart, failing unifications should be avoided. Using indexing methods to

search for categories in the chart is also motivated by the successful use of

indexing in the retrieval/updating process in databases1.

1.2 Motivation

Most of the research aimed at improving the times of the retrieval component

of parsing uses statistical methods that require training. During grammar

development, the time spent for the entire edit-test-debug cycle is important.

Therefore, a method that requires considerable time for gathering statistical

data by parsing a training corpus could burden the development process.

Indexing methods that are time efficient for the entire grammar development

cycle are a necessary alternative.

Current techniques (such as the “quick-check”, [Malouf et al., 2000])

reduce the parsing times by filtering out unnecessary unifications based

on statistically derived filters. Widely used in databases [Elmasri and

Navathe, 2000] and automated reasoning [Ramakrishnan et al., 2001],

1Indexing is one of the most popular research topics in databases. Presentations of

existing indexing methods can be found in the vast database literature, from introductory

textbooks ([Elmasri and Navathe, 2000]) to advanced research topics ([Bertino et al., 1997;

Manolopoulos et al., 1999]).

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

1.3. CONTRIBUTIONS 3

indexing presents the advantage of a more principled, yet flexible, approach.

Compared to simple filtering, an indexing structure allows for searches

based on multiple criteria. It also provides support for efficiently processing

complex queries that are not limited to membership checking [Manolopoulos

et al., 1999], such as range queries (only when the index is organized as a

tree, not as a hash). The flexibility is reflected in the ease of adapting an

existing parser to different grammars: an indexed parser needs only changes

in the search criteria (a process that can be entirely automated), while a

statistically optimized parser needs re-training.

1.3 Contributions

Indexing as a solution to improving parsing times for typed feature structure

grammars is a research topic that has received little attention (and no direct

attention for parsing) in the last few years in computational linguistics. This

thesis is an argument in favour of the worthiness of deeper research in this

area. The following contributions of this thesis prove the viability of such an

argument:

Overview of existing work. A review of the existing research on

improving the retrieval component of TFSG parsing is conducted. The

extensive investigation of literature on this topic identifies the strengths

and weaknesses of existing methods; it reveals the lack of an approach

to indexing, as well as of a thorough analysis of the grammar rules in

TFS-based parsers that can lead to the development of more efficient

parsers.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4 CHAPTER 1. INTRODUCTION

Theoretical investigations. A formalization of the static analysis of

grammar rules for parsing is presented. A non-statistical approach to

indexing TFS-based parsers is developed based on the static analysis.

This approach does not preclude further statistical optimizations.

Preliminary evaluation. The proposed indexing methods are integrated

in a Prolog-implemented parser. A preliminary evaluation is conducted

using a typed feature structure grammar.

1.4 Structure of the Thesis

The rest of this thesis is structured as follows:

Chapter 2: Typed Feature Structures presents a short introduction to

typed feature logic. The main notations and definitions are outlined,

while several useful extensions are introduced.

Chapter 3: Unification-Based Grammars an important grammatical

formalism, Head-driven Phrase Structure Grammars, belonging

to the class of unification-based grammars is presented here.

Implementational aspects particular to Typed Feature Structure

Grammars are also outlined. A new classification of the instances of

variables used in TFSGs is introduced.

Chapter 4: Indexing for TFSG Parsing presents the general problem

of parsing with TFSGs, the motivation and details of indexing the

chart for such grammars. A general indexing strategy suitable for

chart-based parsers is introduced. The chapter concludes with a

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

1.4. STRUCTURE OF THE THESIS 5

review of existing techniques that are similar to the proposed indexing

method, discussing about the differences between filtering (as done by

the existing methods) and indexing, as well as between statistical and

non-statistical approaches, are discussed.

Chapter 5: Indexing for Non-Parsing Applications investigates the

current indexing research in related areas, such as information retrieval

and lexicon indexing for generation. An overview of indexing for

automated reasoning and databases is also presented.

Chapter 6: TFSG Indexing through Static Analysis is the core

chapter of this thesis. It introduces a simple indexing method

(positional indexing), followed by the presentation of the theoretical

foundations for our static analysis of grammar rules. A complete

indexing strategy based on the static analysis is then introduced. The

chapter concludes with the presentation of a practical indexing scheme

(path indexing) derived from the static analysis.

Chapter 7: Experimental Evaluation presents a preliminary evaluation

of the indexing methods proposed in this thesis using a wide-coverage

TFSG, followed by an investigation of the applicability of the proposed

indexing methods to non-TFS grammar formalisms.

Chapter 8: Conclusions and Future Work outlines the main

achievements and proposes directions for future work.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6 CHAPTER 1. INTRODUCTION

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 2

Typed Feature Structures

Typed feature structures (TFS) are widely used in natural language

processing and computational linguistics to enrich syntactic categories. They

are very similar to frames from knowledge representation systems or records

from various programming languages like C.

The motivation for employing TFSs in areas of computational linguistics

such as grammar development can easily be observed through the following

example [Allen, 1994]: in order to correctly parse the English phrase “a man”

with context-free grammars (CFGs), the general rule

NP → ART N

is not sufficient (allowing for parses of the incorrect phrase “a men”). Instead,

two rules:

NP-sg → ART-sg N-sg

NP-pl → ART-pl N-pl

are needed to capture the correct number agreement. Moreover, additional

information would increase the size of the grammar. Feature structures

7

8 CHAPTER 2. TYPED FEATURE STRUCTURES

represents a solution by embedding this kind of information inside more

complex categories:

 np

NUMBER : N


 →


 art

NUMBER : N





 n

NUMBER : N




Sections 2.1 to 2.4 of this chapter will present a formal description of

typed feature structures, following the formalism and notation of [Carpenter,

1992]. The reader familiar with this formalism is invited to move directly

to the last section (2.5) of this chapter, where a useful addition to feature

structure operations, the feature structure cut, is introduced.

2.1 Type Hierarchies

While feature structures are used to organize knowledge, types present “an

additional dimension along which to classify or organize knowledge” [Penn,

2000]. In connection to feature structures, types can be seen as organizing

feature structures into classes [Carpenter, 1992].

Types are organized into partially ordered sets, called type hierarchies.

A complete definition of type hierarchies is given in [Carpenter, 1992] and

[Penn, 2000]; in this section, only the definitions and theorems relevant to

this thesis are presented.

Definition 2.1. A partial order on a set P is a relation ≤ ⊆ P × P , such

that ∀x, y, z ∈ P :

• x ≤ x (reflexivity),

• if x ≤ y and y ≤ x, then x = y (anti-symmetry),

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.2. TYPED FEATURE STRUCTURE DEFINITION 9

• if x ≤ y and y ≤ z, then x ≤ z (transitivity).

Definition 2.2. Given a partially ordered set 〈P,≤〉, the set of upper bounds

of a subset S ⊆ P is the set Su = {y ∈ P |∀x ∈ S, x ≤ y}.

Definition 2.3. A partially ordered set 〈P,≤〉 is bounded complete iff, ∀S ⊆

P such that Su 6= ∅, Su has a least element, called the least upper bound, or

join, of S, written
∨
S.

Definition 2.4. A type hierarchy is a non-empty, countable, bounded

complete, partially ordered set.

For the particular case of interest to typed feature structures, three points

must be noted. First, the order relation between types is subtyping (v),

therefore a type hierarchy will be denoted as 〈Type,v〉. Second, the least

upper bound of a set S (
∨
S) is written

⊔
S (when S consists of only two

elements x and y,
⊔
S = xt y – x and y are said to unify, and t is the type

unification operation). Finally, there is a special least element for non-empty

bounded complete partial orders of types: ⊥ (“bottom” – the least type,

or the most general type, which is more general than all other types in the

hierarchy).

2.2 Typed Feature Structure Definition

For a given type hierarchy 〈Type,v〉, and a finite set of features Feat, a

typed feature structure can be defined as a rooted graph, where arcs are

labeled with feature names and nodes are being labeled with types (feature

values) [Carpenter, 1992; Penn, 2000]:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

10 CHAPTER 2. TYPED FEATURE STRUCTURES

Definition 2.5. A typed feature structure over Type and Feat is a tuple

F = 〈Q, q, θ, δ〉 where:

• Q is a finite set of nodes,

• q ∈ Q is the root node,

• θ : Q→ Type is a total node typing function,

• δ : Feat×Q→ Q is a partial feature value function

such that ∀q ∈ Q, ∃ a finite sequence of features f1, . . . , fn ∈ Feat that

connects q to q with δ: q = δ(fn, . . . δ(f2, δ(f1, q))).

The feature value function can be extended to paths. A path is a sequence

of features [Carpenter, 1992; Penn, 2000], and the feature value function δ

applied to a path π and a node q gives the node reached by following π from

q.

Definition 2.6. Given the set of all features Feat, a path is a finite sequence

of features, π ∈ Feat∗.

The set of all paths will be referred to as Path.

Definition 2.7. Given a typed feature structure F = 〈Q, q, θ, δ〉, its (partial)

path value function is δ′ : Feat∗ ×Q→ Q such that:

• δ′(ε, q) = q,

• δ′(fπ, q) = δ′(π, δ(f, q)).

Definition 2.8. Given a typed feature structure F = 〈Q, q, θ, δ〉, if δ(π, q) ↓,

then the restriction of F to π is F@π = 〈Q′, q′, θ′, δ′〉 where:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.2. TYPED FEATURE STRUCTURE DEFINITION 11

• q′ = δ(π, q),

• Q′ = {δ(π′, q′)|π′ ∈ Path},

• δ′(f, q) = δ(f, q) if q ∈ Q′,

• θ′(q) = θ(q) if q ∈ Q′.

Definition 2.9. In a typed feature structure with the root q and the feature

value function δ, the node x is the ancestor of a node x′ iff ∃π, π′ ∈ Path

such that δ(π, q) = x and δ(π′, x) = x′.

2.2.1 Example

A simple type hierarchy, with types needed to define the agent and the

object of the action “throwing”, is presented in Figure 2.1. A typed feature

structure, describing a particular instance of the action “throwing”, in which

the agent (“thrower”) is of type index, third person, masculine, and

singular, and the object (“thrown”) is of the same type, has the same

person and number, but different gender, is presented in Figure 2.2. The

types (feature values) are written in boldface lowercase, while the features

(THROWER, THROWN, PERSON, NUMBER, GENDER) are in regular

uppercase letters. The representation used in Figure 2.2 is known as an

attribute-value matrix (AVM), but typed feature structures can also be

represented as labeled directed graphs, as in Figure 2.3.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

12 CHAPTER 2. TYPED FEATURE STRUCTURES

singular plural first second third

num persthrowing gend

masculine feminine neuter

index

Figure 2.1: A simple type hierarchy.

NUMBER:
PERSON:

GENDER: masculine

third
singular

NUMBER:
PERSON:

GENDER:

third

neuter
singular

throwing
THROWER: index

THROWN: index

Figure 2.2: A simple typed feature structure, represented as an AVM.

2.3 Typed Feature Structures Operations

Several operations with typed feature structures can be defined. Three of

them are of interest for the work presented in this thesis: subsumption,

unification, and most general satisfier.

2.3.1 Subsumption

Typed feature structure subsumption is an extension of the order relation

between types. It defines a relation between feature structures that express

the fact that one feature structure is more informative than the other.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.3. TYPED FEATURE STRUCTURES OPERATIONS 13

q
1

q
2

q

q
4

q
5

q
3

q
6

q
7

q
8

throwing

index

index

NUMBER:

NUMBER:

TH
RO

W
ER

TH
RO

W
N

PERSON

GENDER:

GENDER:

PERSON

third

singular

masculine

third

singular

neuter

Figure 2.3: A simple typed feature structure, represented as a directed graph.

Formally, this is again defined in [Carpenter, 1992]:

Definition 2.10. For a type hierarchy 〈Type,v〉 and a finite set of features

Feat, a feature structure F = 〈Q, q, θ, δ〉 subsumes a feature structure F ′ =

〈Q′, q′, θ′, δ′〉, F v F ′, iff there is a morphism h : Q→ Q′ such that:

• h(q) = q′,

• ∀q ∈ Q, θ(q) v θ′(h(q)),

• ∀f ∈ Feat,∀q ∈ Q, such that δ(f, q) is defined, h(δ(f, q)) = δ ′(f, h(q)).

Figure 2.4 illustrates an example of a subsumption relation between two

feature structures [Carpenter, 1992], given a type hierarchy. An interesting

observation is that, computationally, subsumption checking is not expensive,

being computed in linear time of the size of the feature structure.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

14 CHAPTER 2. TYPED FEATURE STRUCTURES

singular plural first second third

num perssign

word phrase

agr




sign

AGR:


 agr

PERS: first





 v




phrase

AGR:




agr

PERS: first

NUM: singular







Figure 2.4: A subsumption example.

2.3.2 Unification

The unification of two typed feature structures is an operation that produces

a feature structure that is their least upper bound, with respect to the

subsumption ordering. Unification fails when the two feature structures

provide inconsistent information.

Intuitively, unification is accomplished by first unifying the types of the

root nodes of the two feature structures, and replacing them with the result of

the type unification. By recursion, nodes that are values of identical features

are then unified, and replaced with the result of the unification. Failure

occurs when an inconsistency between nodes occurs (i.e., when two types

can not unify).

In order to formally describe unification, the notion of alphabetic variants

must be defined:

Definition 2.11. Two feature structures are alphabetic variants, F ∼ F ′, if

F v F ′ and F ′ v F .

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.3. TYPED FEATURE STRUCTURES OPERATIONS 15

Based on the definition of alphabetic variants, as well as on the properties

of equivalence relations (transitive, reflexive, and symmetric), equivalence

classes over a set X ([x]≡ = {y ∈ X|y ≡ x}), and the quotient set of a set X

modulo ≡ (X/≡ = {[x]≡|x ∈ X}), Carpenter [1992] defines feature structure

unification as:

Definition 2.12. Suppose F, F ′ are feature structures such that F ∼

〈Q, q, θ, δ〉, F ′ ∼ 〈Q′, q′, θ′, δ′〉, and Q ∩ Q′ = ∅. The equivalence relation

./ on Q ∪Q′ is defined as:

• q ./ q′,

• if δ(f, q) and δ′(f, q′) are defined, and q ./ q′, then δ(f, q) ./ δ′(f, q′).

The unification of F and F ′ is then defined as:

F t F ′ = 〈(Q ∪Q′)/./, [q]./, θ
./, δ./〉

where

θ./([q]./) =
⊔
{(θ ∪ θ′)(q′)|q′ ./ q}

and

δ./(f, [q]./) =




[(δ ∪ δ′)(f, q)] ./, if (δ ∪ δ′)(f, q) is defined

undefined, otherwise

if all the joins in the definition of θ./ exist. F t F ′ is undefined otherwise.

Computationally, unification has a complexity of the order of O(ack−1(n)·

n), where n is the size of the feature structure and ack is the Ackermann’s

function. However, as it will be shown in Section 2.4.2, the extensions needed

in many applications increase the cost of the unification.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

16 CHAPTER 2. TYPED FEATURE STRUCTURES

2.3.3 Descriptions and Most General Satisfiers

Descriptions are used to logically describe specific feature structures. While

AVMs can be used to graphically describe feature structures, descriptions can

be seen as a “way to talk about feature structures” [Carpenter, 1992] through

the use of a logical language. This section provides a short summary of the

complete presentations of descriptions and satisfiability found in [Carpenter,

1992] and [Penn, 2000].

Definition 2.13. The set of descriptions, over a set of types Type, set of

variables Vars, and set of features Feat, is the least set Desc such that:

• σ ∈ Desc, for all σ ∈ Type,

• x ∈ Desc, ∀x ∈ V ars,

• π : φ ∈ Desc, for all paths π ∈ Feat∗ and φ ∈ Desc,

• π
.
= π′ ∈ Desc, if π, π′ ∈ Desc,

• φ ∧ ψ ∈ Desc, if φ ∈ Desc and ψ ∈ Desc.

Definition 2.14. The satisfaction relation |= between feature structures and

descriptions is the least relation such that:

• F |= σ if σ ∈ Type and σ v θ(q),

• F |= π : φ if F@π |= φ,

• F |= π
.
= π′ if δ(π, q) = δ(π′, overlineq),

• F |= φ ∧ ψ if F |= φ and F |= ψ,

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.4. EXTENSIONS 17

While in [Carpenter, 1992] disjunctions are used in the description

language, in this thesis, the description language has no disjunction defined.

One can consider a disjunction in a description as specifying two distinct

descriptions.

Every satisfiable description is logically satisfied by a most general feature

structure. This most general feature structure of a description φ is called

MGSat(φ), and MGSat(φ) v F , for every F that satisfies φ. The Most

General Satisfier provides a way of mapping a description to a feature

structure.

2.4 Extensions

Several extensions can be defined to augment the simple typed feature

structure formalism presented so far. Without these extensions, typed feature

structures can have features with arbitrary values [Carpenter, 1992]; defining

several restrictions can enhance the logical control over non-determinism.

2.4.1 Appropriateness

Actual systems using type feature structures, such as ALE [Carpenter and

Penn, 2001], require a strict specification of the possible types a feature value

can have and of the possible types a feature can be defined on. This strict

specification is known as an appropriateness specification. Appropriateness

was first proposed by Pollard and Sag [1987] in order to differentiate

between cases where there is a lack of information about the value of a

feature, and cases where that feature is irrelevant. The formal definition of

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

18 CHAPTER 2. TYPED FEATURE STRUCTURES

appropriateness is given in [Carpenter, 1992]:

Definition 2.15. An appropriateness specification over the type hierarchy

〈Type,v〉 and features Feat is a partial function Approp : Feat × Type →

Type such that:

• ∀F ∈ Feat, ∃ a most general type Intro(F) for which

Approp(F, Intro(F)) is defined (feature introduction),

• if Approp(F, σ) is defined and σ v τ , then Approp(F, τ) is also defined

and Approp(F, σ) v Approp(F, τ) (upward closure).

The appropriateness specification cannot be treated independently of the

type hierarchy, and their specification together is known as the type signature

[Penn, 2000]:

Definition 2.16. A type signature is a structure 〈Type,v, F eat, Approp〉,

where 〈Type,v〉 is a type hierarchy, Feat is a finite set of features, and

Approp is an appropriateness specification.

2.4.2 Well-Typed Feature Structures

Appropriateness itself does not specify how type and feature restrictions are

interpreted. There are several choices of interpreting the appropriateness

specification, ranging from very relaxed to more severe constraints placed on

types and feature values.

In a basic interpretation, the appropriateness specification can be seen

as a restriction on which features a type can bear, i.e., which labels are

permitted for the arcs emanating from a node [Penn, 2000]. A much stronger

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.4. EXTENSIONS 19

restriction (well-typedness) places constraints on the type of value those

features can have [Carpenter, 1992]:

Definition 2.17. A feature structure F = 〈Q, q, θ, δ〉 is well-typed iff ∀q ∈

Q, if δ(f, q) is defined, Approp(f, θ(q)) is defined, and Approp(f, θ(q)) v

θ(δ(f, q)).

Well-typedness does not impose any restrictions on the existence of

features. However, in TFS applications, such as ALE [Carpenter and

Penn, 2001], it is practical to require that all features are defined (given

values) for nodes for which they are appropriate. This condition, named

total well-typedness, also includes the restrictions imposed by well-typedness

[Carpenter, 1992]:

Definition 2.18. A feature structure F = 〈Q, q, θ, δ〉 is totally well-typed

iff it is well-typed and ∀q ∈ Q if Approp(f, θ(q)) is defined, then δ(f, q) is

defined.

Imposing total well-typedness creates a distinction between absent

information and irrelevant information inside a feature structure [Penn,

2000]. The work presented in this thesis is based on the assumption of totally

well-typedness.

2.4.3 Statically Typable Signatures

An important aspect with respect to the implementation of typed feature

structures is the static typing of type systems. A type system is static if all

type inference and checking can be performed at compile-time [Carpenter,

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

20 CHAPTER 2. TYPED FEATURE STRUCTURES

1992]. The advantage of static typing resides in the increased efficiency of

feature structure implementation, an advantage also seen in programming

languages, where the most efficient languages, like C, require static typing of

their type systems.

For typed feature structures, static typing is ensured when unification of

well-typed feature structures results in a well-typed feature structure.

2.4.4 Structure Sharing

q
1

q
2

q

q
3

q
7

q
4

q
6

q
5

throwing

index

index

TH
RO

W
ER

TH
RO

W
N

PERSON

GENDER:

third

neuter

masculine

third

GENDER:

PERSON

singular

NUM
BER:

NUM
BER:

Figure 2.5: Structure sharing in a graph representation of a TFS.

From the long list of possible extensions to the basic formalism of typed

feature structures, one of practical importance will be described before

concluding this chapter. As seen in the example presented in Figure 2.3,

both feature THROWER and feature THROWN have as value a feature

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.4. EXTENSIONS 21

NUMBER:
PERSON:

GENDER: masculine

third
[0]singular

NUMBER:
PERSON:

GENDER:

third

neuter
[0]

throwing
THROWER: index

THROWN: index

Figure 2.6: Structure sharing in an AVM representation of a TFS.

structure of type index, which bear the feature NUMBER having as value the

same type singular. Structure sharing avoids duplicating such information,

by keeping a single instance of the node labeled with the type singular.

Figure 2.5 shows this feature structure with the node singular shared,

while in Figure 2.6, the AVM representation is shown (where the sharing

is indicated by the tag [0]).

Structure sharing could lead to cyclic structures (cycles in the graph

representing a feature structure), when a node has a substructure that

incorporates that node. An example of such a cycle can be found in the

feature structure representation for “every book” (adapted from [Pollard and

Sag, 1994, p.50, p.361]):

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

22 CHAPTER 2. TYPED FEATURE STRUCTURES




SPR:




PHON: every

SYNSEM:




[2]

LOC:


 CAT:


 HEAD:


 det

SPEC: [1]
















HEAD:




PHON: book

SYNSEM:


 [1]

LOC:
[
CAT:

[
SPR: [2]

]]









.

2.5 Typed Feature Structure Cuts

In certain applications (as it will be the case for the indexing methods

introduced in Chapter 6), it is useful to treat a subset of the nodes in a

TFS in a similar manner as TFSs. In this thesis, the concept of TFS cuts is

introduced in order to provide a TFS-like treatment to subset of nodes.

Definition 2.19. A cut of a typed feature structure F = 〈Q, q, θ, δ〉 is a tuple

Fs = 〈Q′, Q′, θ, δ〉 where:

• Q′ ⊆ Q (Q′ 6= ∅), a finite set of nodes,

• Q′ = {〈x,Π(x)〉|x ∈ Q′ and ∃y ∈ Q\Q′,∃f.δ(f, y) = x}, where Π(x) =

{π|δ(π, q) = x}, the set of pseudo-roots of F s.

The definition for the unification of typed feature structures can now be

extended to allow for the unification of a typed feature structure with a cut

of a typed feature structure. An example of a unification between a TFS and

a cut is presented in Figure 2.7.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

2.5. TYPED FEATURE STRUCTURE CUTS 23

Definition 2.20. Suppose F,G are typed feature structures such that F ∼

〈QF , qF , θ, δ〉, G ∼ 〈Q
′
G, qG

′, θ′, δ′〉, QF ∩QG = ∅, and F
s ∼ 〈Q′F , Q

′
F , θ, δ〉 is

a cut of F. The equivalence relation IJ on Q′F ∪ QG is defined as the least

equivalence relation such that:

1) if 〈qF ,Π(qF)〉 ∈ Q′F and qG ∈ QG, then qF IJ qG iff ∃π ∈ Π(qF) such

that δ′(π, qG) = qG,

2) if δ(f, qF) ↓ and δ
′(f, qG) ↓, and qF IJ qG, then δ(f, qF) IJ δ′(f, qG).

2 3

1

4

5 6 7

F1

3 4

7

F1

8

109 11

12 13 14

F2

f:

f:
j:

h:

g:g:

8

11

14

4 109

12 13

f: g:
3

7

F2 F1

f:

f:
i:

g:
h:

j:

j:

h: j:

g:

f:
h:g: g:

j:

Figure 2.7: The unification between a TFS and a cut TFS.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

24 CHAPTER 2. TYPED FEATURE STRUCTURES

Proposition 2.1. Suppose F,G are typed feature structures such that F ∼

〈QF , qF , θ, δ〉, G ∼ 〈Q′G, qG
′, θ′, δ′〉, QF ∩ QG = ∅, Fs ∼ 〈Q′F , Q

′
F , θ, δ〉

is a cut of F, ./ is the equivalence relation between F and G (from the

unification definition), and IJ is the equivalence relation between F s and

G (from Definition 2.20). If x ∈ Q′F , y ∈ QG, then x IJ y ⇔ x ./ y.

Proof. (By induction on least distance from a pseudo-root to a node x ∈ Q′F)

Part 1: x IJ y=>x ./ y.

Base case: 〈x,Π〉 ∈ Q′F .

Since x IJ y, ∃π ∈ Π such that δ′(π, qG) = y. By definition of s,

δ(π, qF) = x; and by definition of ./, qF ./ qG. Thus, according to

the definition extending δ to paths, and according to the Condition

2 from the definition of ./: δ(π, qF) ./ δ
′(π, qG). Therefore, x ./ y.

Induction: Suppose x′ ∈ Q′F and y
′ ∈ QG such that x

′
IJ y′ and

x′ ./ y′. According to Condition 2 in Definition 2.20, if ∃x =

δ(f, x′) and ∃y = δ(f, y′), then x IJ y. However, x′ ./ y′, and

according to the definition of ./, if δ(f, x′) ↓ and δ(f, y′) ↓, then

δ(f, x′) ./ δ(f, y′). Therefore, x ./ y.

Part 2: x IJ y<=x ./ y. Similarly to x IJ y=>x ./ y.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 3

Unification-Based Grammars

Typed Feature Structures can be employed in various areas of

Computational Linguistics, or Natural Language Processing, such as parsing,

question-answering, information retrieval, etc. Since the focus of this thesis is

on parsing with Typed Feature Structures, this chapter begins with a short

overview of HPSG, a representative unification-based grammar formalism

using typed feature structures. HPSG is also the formalism of the grammar

used in the experimental evaluation in Chapter 7 (although the indexing

methods introduced in this thesis are not limited to parsing with HPSG).

After introducing the HPSG formalism, this chapter concludes with an

extensive presentation of various implementational aspects of Typed Feature

Structure Grammars, presentation that also introduces a new classification

of the instances of variables used in TFSGs.

Unification-based grammars (UBGs), as suggested by their name, are

grammar formalisms where unification is the only information-combining

operation [Shieber, 1986]. More specifically, entities are represented by

25

26 CHAPTER 3. UNIFICATION-BASED GRAMMARS

feature structures, and UBGs allow information carried by such entities to

be combined only through unification.

Some particular properties differentiate UBGs from simpler formalisms,

such as CFGs. According to [Shieber, 1986], UBGs are:

Inductive: the associations between entities and strings can be defined

recursively.

Declarative: the grammar formalism specifies what associations between

entities and strings are allowed, without necessarily specifying how the

associations are built.

Complex-feature-based: entities are expressed as feature-value

associations in a well-defined and structured domain.

In the following section, the HPSG formalism is introduced. It is not

the purpose of this work to extensively present unification-based formalisms;

wide-coverage surveys of UBGs can be found in [Shieber, 1986] and [Brown

and Miller, 1996].

This chapter also introduces a new classification of the instances of

variables used in descriptions, based on what type of structure sharing they

create. The use of variables to share structure is a powerful characteristic of

TFSGs.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.1. HEAD-DRIVEN PHRASE STRUCTURE GRAMMARS 27

3.1 Head-Driven Phrase Structure

Grammars

Head-Driven Phrase Structure Grammars (HPSGs) were first introduced

in [Pollard and Sag, 1987], while the complete theoretical framework was

published later in [Pollard and Sag, 1994]. The HPSG formalism was

designed as a refinement of Generalized Phrase Structure Grammar, and

similarly to GPSG, describes a linguistic theory [Shieber, 1986].

3.1.1 Principles of HPSG

There are several reasons for the continually increasing popularity of HPSG.

Cooper [1996] notes that even if HPSG – as linguistic formalism – is a

combination of various theories, it offers a rigorous framework for grammar

development through its foundation on unification of feature structures.

Shieber [1986] mentions the support for subcategorization and semantic

representation as important qualities of HPSGs. Furthermore, Uszkoreit

[1996] lists key components of the HPSG formalism that explain the impact

it had on grammar development, such as:

• its foundation on typed feature logic,

• using the same formalism for universal and particular generalizations,

• allowing for language-specific analyses, that are less natural described

in other formalisms (e.g. parasitic gaps, clitics in French, phrase

structure in German, etc.)

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

28 CHAPTER 3. UNIFICATION-BASED GRAMMARS

The Head-Driven component of the HPSG name reveals one of the

underlying principles of this formalism. The most important element

of a phrase is its lexical head [Pollard and Sag, 1994]. The lexical

head incorporates both syntactic information (such as part of speech and

dependency relations with other constituents) and semantic information.

Lexical entities, in general, are information-rich structures, with feature

values from the type signature (an inheritance hierarchy, as introduced

in Chapter 2). This lexical-centered organization of HPSG eliminate

redundancies, therefore the amount and complexity of phrasal rules is greatly

reduced [Cooper, 1996].

3.1.2 The HPSG Formalism

Formally, HPSG is organized as a set of grammar principles, rules, and

lexical descriptions [Cooper, 1996]. Each constituent is described by a

typed feature structure, as in the examples presented in Chapter 2. HPSG

is a refinement of the GPSG formalism, and from a linguistic perspective

it shares similar principles [Meurers, 2002]: lexical entries, lexical rules,

Immediate Dominance (ID) rules (specifying a dominance relation between

categories, without imposing an order of categories), Linear Precedence (LP)

rules (defining and order relation between some daughters in a rule; these,

together with ID rules, are the grammar rules), and grammatical principles.

To an extent, a HPSG can be viewed as a feature structure that must satisfy

a description of the form:

P1 ∧ · · · ∧ Pk ∧ (R1 ∨ · · · ∨Rm ∨ L1 ∨ · · · ∨ Ln)

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.1. HEAD-DRIVEN PHRASE STRUCTURE GRAMMARS 29

where P1 . . . Pk are grammatical principles, R1 . . . Rm are grammar rules, and

L1 . . . Ln are lexical entries.

One of the major differences between HPSG and formalisms such as

CFG is the underlying mathematical structure [Pollard, 1997]: the CFG

formalism is based on sequences of phrase-markers (trees where nodes are

labeled with categories), while HPSG is based on feature structures (which

represent linguistic entities in graphs where arcs are labeled with feature

names and nodes with types of linguistic objects). The relation between

entities in HPSG is formulated as well-formedness constraints on typed

feature structures. Another major difference between HPSG and CFG-like

formalisms is that HPSGs are considered to be nonderivational, meaning

there are no transformations or destructive operations to derive one structure

from another[Pollard, 1997].

Figure 3.1 presents a simple example [Matheson, 1997] of a HPSG. The

type hierarchy contains three basic types (sign, cat, and head), where head

has two subtypes (noun and verb). Appropriateness is specified through

declarations like CAT:cat together with the type sign. It is said that sign

introduces the feature CAT, meaning sign is the least type for which the

feature CAT is appropriate. This declaration also specifies that possible values

for CAT have to be of type cat1 or one of its subtypes.

Lexical entries are specified using the descriptions presented in

Section 2.3.3. For example, the lexical head of “snored” is verb, and the

subject of “snored” is a noun. Although the description for “Mary” might

1There is a distinction between upper and lower case. It is common to HPSG to have

features and feature values bearing the same name.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

30 CHAPTER 3. UNIFICATION-BASED GRAMMARS

HEAD:
SUBJ:

head
head

catCAT:
head

noun verb

sign cat

mary −→ CAT : HEAD : noun

snored −→ CAT : (HEAD : verb ∧ SUBJ : noun)

(CAT : HEAD : verb) ==>

(sign ∧ CAT : HEAD : HeadV ar), (sign ∧ CAT : SUBJ : HeadV ar)

Figure 3.1: A Simple HPSG

suggest that it only specifies a noun, total well-typedness guarantees the

presence of all appropriate features:

mary −→




sign

CAT:




cat

HEAD: noun

SUBJ: head






.

This simple grammar also contains a rule implementing the subject-head

schema. Similar to the lexical entry for “Mary”, the descriptions in rules

are specified only at features having values different than ones inferable from

appropriateness. The rule states that the mother has a verb as its head

(meaning the head of the phrase is a verb), while the first daughter (the

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 31

subject) has the same value for its feature head as the second daughter (the

head) has for its subj feature. This is achieved through the use of the variable

HeadVar, which creates structure sharing between the most general satisfiers

of the two daughters.

HPSG is a complex formalism, under constant improvement through

various extensions. It is outside the scope of this work to present an

in-depth overview of HPSG. More formal details can be found in [Pollard

and Sag, 1987; 1994] or [Cooper, 1996]. A concise introduction can

be found in [Pollard, 1997]. Information about current research trends

and HPSG developments is maintained on several HPSG-related web

servers: http://www.sfs.uni-tuebingen.de/hpsg/, http://hpsg.stanford.edu/,

http://www.ling.ohio-state.edu/research/hpsg/, etc.

3.2 Implementation Aspects

This section focuses on two aspects related to the implementation of UBGs

(exemplified through HPSGs). The first aspect is the transition from a formal

specification of the grammar rules to a computer-usable form. The second

aspect is a narrowing of the first one to the specific details of representing

TFSs.

3.2.1 Compiling Grammar Rules

As mentioned in Section 2.3.3, the constraints reflected in a TFS can be

expressed through descriptions. Without getting into explicit details about

various description languages, this section presents the rationale behind

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

32 CHAPTER 3. UNIFICATION-BASED GRAMMARS

the transformation of grammar rules into a representation usable in a

programming environment (specifically, in Prolog). For this, the Attribute

Logic Engine (ALE) will be used as the example parsing system.

ALE [Carpenter and Penn, 2001] is a phrase structure parsing system,

supporting various formalisms, such as HPSG. Its grammar handling

mechanism is built on foundations of the Prolog built-in DCG system,

with the important difference of using descriptions of TFSs for representing

categories, instead of Prolog terms.

There are two main components in the grammar handling mechanism:

the lexicon and the grammar rules. The lexicon consists of lexical entries

and lexical rules. Lexical rules are used to express the redundancies among

lexical entries.

Of interest to the work presented in this thesis are the grammar rules.

An example of a phrase rule in ALE is given in Figure 3.2.

Using the descriptions presented in Figure 3.2 in an implementation

would not be practical (not only for efficiency reasons, but also because

types can be promoted, and Prolog variables, once instantiated, cannot be

changed). Therefore, the grammar is first compiled into an internal, efficient,

representation. The choice for the internal representation of each category

in the grammar depends on the programming language that is chosen for the

implementation. For the particular case of Prolog, the next section presents

several encodings of TFSs.

Another reason for the off-line compilation of the grammar is the

possibility of performing several optimizations. As it will be shown later in

this thesis, an analysis of grammar rules carried out at compile-time results

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 33

s_np_vp rule

(syn:s,

sem:(VPSem,

agent:NPSem))

===>

cat>

(syn:np,

agr:Agr,

sem:NPSem),

cat>

(syn:vp,

agr:Agr,

sem:VPSem).

Figure 3.2: A phrase rule in ALE. A line of the form syn:vp represents the

description of a feature named syn (syntactic category) with the value (type

restriction) vp. The above rule states that the syntactic category s can be

combined from np and vp categories if their values for the feature agr are

the same. The semantics of s is the semantics of the verb phrase, while the

role of agent is served by the semantics of the noun phrase.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

34 CHAPTER 3. UNIFICATION-BASED GRAMMARS

in a better indexing scheme, leading to faster parsing times.

3.2.2 Variables in TFS Representations

A particular point of interest with regard to the representation of grammar

rules is the use of variables. The unification and instantiation mechanisms

in Prolog allow the use of variables to represent structure shared between

daughters or between a daughter and the rule’s mother. The example from

Figure 3.2 is significant from this point of view: the features agr in the two

daughters share the same structure, indicated by the variable Agr. Similarly,

semantic information is shared between the mother and each of the two

daughters through the variables VPSem and NPSem.

The use of variables to share structure is a powerful characteristic of

TFSGs. This thesis introduces a new clasification of the instances of

variables, based on what type of structure sharing they create: internal

variables, active external variables, and inactive external variables. Over the

next chapters, the importance of these variables for indexing will be revealed.

Internal variables: the instances of these variables represent internal

structure sharing. An example of such internal sharing can be found in

the AVM from Figure 2.6 on page 21. The occurrences of the instances

of such variables are limited to a single category in the grammar.

External Variables: are instances of variables such as Agr, NPSem, and

VPSem from Figure 3.2. They are used to share structure across

categories (daughters). These instances can occur in the entire

grammar rule. It is possible for a variable instance to be used for

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 35

structure sharing both inside a category (as an internal variable) and

across categories; in this case, it is considered an external variable. For

a specific category, two kinds of external variables can be distinguished,

depending on their sharing with other categories and the parsing control

strategy:

Active External Variables: are instances of variables that are

shared between the description of a category D and descriptions of

daughters in the same rule with D that are visited before D when

the rule is extended. For example, if rules are extended from left

to right, then the Active External Variables for a daughter Di are

those variable instances shared between Di and all daughters Dj

with j < i (daughters to the left of Di). Since the evaluation

is left to right, a daughter sitting to the right of Di sharing a

variable with Di cannot have that variable instantiated before Di

(i.e., external variables get instantiated in Di because daughters

at its left were unified with edges in the chart2). For a mother, all

its External Variables are Active External Variables.

Inactive External Variables: are the External Variable instances

that are not active.

For the rest of this thesis, unless otherwise specified, a daughter’s External

Variables will refer to its Active External Variables.

A particular variable can be active for a daughter Di, but inactive for

a daughter Dj in the same rule. In Figure 3.2, Agr is an Active External

2A discussion about TFSG parsing is presented in Section 4.1.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

36 CHAPTER 3. UNIFICATION-BASED GRAMMARS

Variable in the second daughter, but it is an Inactive External Variable in

the first daughter.

When a description is mapped to a feature structure with MGSat,

External Variables correspond to structure sharing between feature

structures (“external sharing”), as exemplified in Figure 3.3.

q
1

q
3

q 0 q 4

q
5

q
6

q
2

SYN

AGR

SEM:

SYN

AGR

SEM:

Figure 3.3: Structure sharing between two typed feature structures (“external

sharing”).

It should be mentioned that by external sharing, a description’s MGSat

can “grow” nodes. For the example presented in Figure 3.2 and Figure 3.3,

if the first daughter is unified with an edge


SYN: np

AGR:


 PERS: third
NUMBER: sing





,

then the two extra nodes connected to node q2 in this daughter will also be

shared by the second daughter, as shown in Figure 3.4.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 37

q
1

q
3

q 0 q 4

q
5

q
6

q
2

q
7

q
8

SYN

AGR

SEM:

SYN

AGR

SEM:

Figure 3.4: Structure sharing between two typed feature structures, after

unification.

Structure sharing (especially external sharing) is an important aspect

of typed feature structures. Its relevance to parsing will be detailed in

Chapter 6; but before closing this section, some extra notation is provided:

Definition 3.1. If D1, . . . , Dn are daughter descriptions in a rule, then

Ext(MGSat(Di)) is the set of nodes shared between MGSat(Di) and the

daughters to its left in the same rule: Ext(MGSat(Di)) =
⋂

1≤j<i

Qj, where

Qj is MGSat(Dj)’s set of nodes.

For a mother descriptionM , Ext(MGSat(M)) is the set of nodes q ∈ QM

shared with any daughter in the same rule: Ext(MGSat(M)) =
⋂

1≤j≤n

Qj,

where n is the number of daughters in the rule, Qj is MGSat(Dj)’s set of

nodes, and QM is MGSat(M)’s set of nodes.

For the result of the unification between M and D, Ext(MGSat(M) t

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

38 CHAPTER 3. UNIFICATION-BASED GRAMMARS

MGSat(D)) = {[x]./ ∈ QMtD|∃y ∈ [x]./ such that y ∈ Ext(MGSat(M)) ∪

Ext(MGSat(D))}.

It should be mentioned that Ext(MGSat(M))∪Ext(MGSat(D)) needs

to be defined since daughters are unified during parsing with mothers inserted

as edges in the chart. It should also be noted that Ext is defined for MGSats

of daughter and mother descriptions. For the rest of the thesis, when not

specified otherwise, a daughter D (and a mother M) will denote the most

general satisfier of a daughter description (and of a mother description).

3.2.3 TFS Grammar Rules

The previous section presented instances of variables in logical descriptions

as the source for information sharing. In TFSG parser implementations

however, the structure sharing is observed at the node level. This creates

difficulties in formalizing the concept of structure sharing across most general

satisfiers of daughters in the same rule.

Wintner [1997] proposes a formal definition of phrase structure rules using

feature structures. In this formalization, a rule is regarded as a feature

structure with multiple roots, where each root corresponds to the root of the

rule’s mother and daughters. A version of the multi-rooted feature structures,

adapted to the domain of this thesis, is given here.

Before formally introducing the phrase rule definition, several supporting

definitions must be given.

Definition 3.2. A multi-rooted typed feature structure (MRS) over Type

and Feat is a tuple R = 〈Q,Q, θ, δ〉 where:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 39

• Q is a finite set of nodes,

• Q ∈ Q is an ordered sequence of roots (possibly containing duplicates),

• θ : Q→ Type is a total node typing function,

• δ : Feat×Q→ Q is a partial feature value function

such that for all q ∈ Q, there exists q ∈ Q and there exists a finite

sequence of features f1, . . . , fn ∈ Feat that connects q to q with δ: q =

δ(fn, . . . δ(f2, δ(f1, q))). The length of a MRS is the number of its roots, |Q|.

A MRS can be seen as an ordered sequence of feature structures R =

〈F1, . . . , Fn〉 with shared nodes. If qi is a root in Q, then Fi is the feature

structure induced by the i-th root of R. Fi contains all the nodes in Q that

are reachable from qi.

Definition 3.3. If R = 〈Q,Q, θ, δ〉 is a MRS, then its induced feature

structures are F1, . . . , Fn such that ∀i ∈ (1, . . . , n), Fi = 〈Qi, qi, θ, δ〉 where:

• qi is the root node at position i in Q,

• Qi is the largest set of nodes {q ∈ Q} such that ∃π.δ(π, qi) = q.

The unification of two MRSs can be defined as follows:

Definition 3.4. Suppose R and R′ are multi-rooted feature structures of

length n such that R = 〈Q,Q, θ, δ〉 and R′ = 〈Q′, Q
′
, θ′, δ′〉. The equivalence

relation ./ on Q ∪Q′ is defined as:

• qi ./ qi
′,∀i ∈ (1, . . . , n),

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

40 CHAPTER 3. UNIFICATION-BASED GRAMMARS

• if δ(f, q) and δ′(f, q′) are defined, and q ./ q′, then δ(f, q) ./ δ′(f, q′).

The unification of R and R′ is then defined as:

R tR′ = 〈(Q ∪Q′)/./, Q/./, θ
./, δ./〉

where

θ./([q]./) =
⊔
{(θ ∪ θ′)(q′)|q′ ./ q}

and

δ./(f, [q]./) =




[(δ ∪ δ′)(f, q)]./, if (δ ∪ δ′)(f, q) is defined

undefined, otherwise

if all the joins in the definition of θ./ exist. R tR′ is undefined otherwise.

A phrase structure rule can now be seen as a MRS, where each constituent

is a TFS in the MRS.

Definition 3.5. A phrase rule is a multi-rooted feature structure R =

〈F1, . . . , Fn〉 of length n > 0 with a distinguished last element. Fn is the

mother, while F1, . . . , Fn−1 are the daughters: F1, . . . , Fn−1=>Fn.

Figure 3.5 presents Wintner’s example of a TFS rule seen as a MRS

[Wintner, 1997]. The rule is written as F1, . . . , Fn−1=>Fn (being equivalent

to a derivational rule: Fn → F1, . . . , Fn−1.)

3.2.4 Encoding of TFSs

The indexing methods proposed in Chapters 4 and 6 are designed to be

implementation-independent. However, for practical reasons, and to relate

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 41




phrase

SYN: n

HEAD: [1]


head
AGR: [3]agr




CASE: nom







phrase

SYN: v

HEAD: [2]


head
AGR: [3]agr




SUBCAT: elist




=>




phrase

SYN: s

SUBJ: [1]

HEAD: [2]




q
1

q
2

q
3

q
1

q
2

q
3

q
4

q
5

q
7

q
8

q
6

phrase phrase phrase

head head

agr

nom elistn sv

SY
N:

SY
N:

SY
N:

SUBCAT:

CASE:

H
E

A
D

:

H
E

A
D

:

HEAD:

SU
B

J:

AGR:
AGR:

Figure 3.5: A phrase rule seen as a MRS.

to existing systems, the experimental evaluation is carried out using a Prolog

implementation, namely ALE[Carpenter and Penn, 2001]. For this reason3,

this section outlines existing methods for encoding (representing) typed

feature structures in Prolog.

In his work, Mellish [1988; 1991] formalized the definition of term

3The reason ALE and other similar systems are implemented in Prolog is thoroughly

explained in [Penn, 2000] and [Penn and Munteanu, 2003].

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

42 CHAPTER 3. UNIFICATION-BASED GRAMMARS

encoding as a function from a type hierarchy to a set of Prolog terms which

is [Penn, 1999a]:

• injective (one term encodes no more than one type),

• homomorphic with respect to unification (the encoding preserves the

unifications in the type hierarchy),

• zero-preserving (the encoding preserves the failure of unifications in the

type hierarchy).

Using Colmerauers’s method [Colmerauer, 1982], Mellish [Mellish, 1992]

showed that all hierarchies can be encoded in a flat-term encoding, using no

more than n+1 arguments (where n is the number of types in the hierarchy.)

TFSG signatures contain not only a type hierarchy, but also a collection

of features. A straightforward encoding would need a number of argument

positions equal to the number of features. This is not desirable, and Penn

[1999a] proposed a method for reducing the arity of terms in a flat encoding.

For this, a graph is defined as an undirected graph where vertices correspond

to features and each edge connects two features that are appropriate for a

common maximally specific type. The least number n for which the feature

graph is n-colourable is the least arity necessary for the encoded terms. This

encoding will be used in the preliminary experimental evaluation presented

in Chapter 7 (specific details will be given in Chapter 7.)

An optimized approach is taken in [Penn, 1999b], where features are

encoded based on their feature-graph colouring, but the argument position for

each feature is statistically chosen. Features that are considered to be more

likely to cause unification failures are placed in a lower argument position.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

3.2. IMPLEMENTATION ASPECTS 43

This optimized encoding forces an earlier failure when unifying two typed

feature structures, therefore saving parsing time.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

44 CHAPTER 3. UNIFICATION-BASED GRAMMARS

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 4

Indexing for TFSG Parsing

This chapter introduces a general indexing method that can be applied to

any chart-based parser. Without the loss of generality, and for preserving

consistency, the chart parsing algorithm used for illustration here is an

efficient algorithm based on EFD (Empty-First-Daughter) closure [Penn

and Munteanu, 2003], implemented in Prolog. Before giving a detailed

presentation of the proposed indexing method in Section 4.3, two additional

concepts are introduced: a connection between parsing and typed feature

structures and an indexing timeline that can be applied to any chart-based

parser. The chapter concludes with an overview of related approaches to

indexing/filtering TFSGs, accompanied by a discussion about advantages

and disadvantages of the existing and proposed methods.

45

46 CHAPTER 4. INDEXING FOR TFSG PARSING

4.1 Chart Parsing with Typed Feature

Structure Grammars

In this section, several problems related to parsing grammars based on

typed feature structures are outlined. In the first subsection, the most

well-known obstacles to efficient parsing with TFSGs are introduced, together

with details about parsing with TFSGs. The second subsection presents

a textbook parsing algorithm suitable for TFSGs, while the third section

gives an overview of an efficient parsing algorithm used as baseline for the

experimental evaluation in Chapter 7. Finally, a formal definition of the rule

completion process in TFSG chart parsing is introduced.

4.1.1 Parsing with Typed Feature Structures

Parsing with Typed Feature Structures is an issue that has raised many

concerns among researchers in Computational Linguistics. When TFSs are

used in formalisms such as HPSG, the parsing problem is generated by

two aspects [van Noord, 1997]: the complex and large structure of the

lexical entries, and the small number of grammar rules. The following

paragraphs present a motivation for the choice of bottom-up, all-paths,

parsing algorithms as suitable for TFSGs.

While the size of lexical entries in TFSGs is a concern from the

perspective of increased unification times, the grammar rules are related

directly to the parsing algorithm. As mentioned in [Oepen and Carroll,

2000], strictly top-down parsing algorithms are not suitable for TFSGs (a

complete comparison between bottom-up and top-down parsers can be found

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.1. CHART PARSING WITH TYPED FEATURE STRUCTURE
GRAMMARS 47

in [Jurafsky and Martin, 2000]).

The motivation for using bottom-up parsers for TFSGs does not lie

solely in the structure of the grammar. As van Noord [1997] observes,

a top-down parser may encounter termination problems. Using enhanced

top-down parsing techniques, such as restricted top-down predictions, avoids

the termination issues, but generally results in degraded performance.

Finally, bottom-up parsing is suitable for TFSGs due to the lexicalist

nature of such formalisms [van Noord, 1997]. Since bottom-up parses

“never suggest trees that are not at least locally grounded in the actual

input” [Jurafsky and Martin, 2000], this class of parsing algorithms seems

more adequate for a grammar formalism where the syntactic and semantic

information is heavily concentrated in the lexical entries.

Another important aspect when parsing TFSGs (and UBGs in general)

is the need for an all-paths parser. The reason behind this need is given in

[Penn and Munteanu, 2003]:

While there have been great advances in probabilistic parsing

methods in the last five years, which find one or a few most

probable parses for a string relative to some grammar, all-paths

parsing is still widely used in grammar development, and as a

means of verifying the accuracy of syntactically more precise

grammars, given a corpus or test suite.

4.1.2 Bottom-Up Parsing

Many parsing techniques are available, some of them being designed long

before TFSGs were developed. As mentioned in the previous section, one

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

48 CHAPTER 4. INDEXING FOR TFSG PARSING

of the most suitable technique for TFSGs is bottom-up parsing. Most

natural language processing or computational linguistics textbooks ([Allen,

1994], [Jurafsky and Martin, 2000], [Gazdar and Mellish, 1989], [Pereira

and Shieber, 1987]) include detailed presentations of bottom-up parsing.

Therefore, just some notational details are required here.

Bottom-up parsing can traverse the input string from right to left or from

left to right. When not specified, it will be assumed here that the traversal is

right to left (this is the approach taken in the EFD parsing method, described

in the next section.) Rules also can be processed in both directions; the

default assumption will be that the processing is left to right (as in the EFD

algorithm). Several books (such as [Allen, 1994]) use the term active arc to

denote a rule in the course of being completed; in this thesis, the term active

edge will be used. Similarly, constituents in the chart are named edges (or

passive edges) instead of (passive) arcs. The left-hand side of a rule is the

mother of the rule, while categories on the right-hand side are daughters.

The process of traversing a rule and matching its daughters with edges in

the chart is called the completion of the rule.

4.1.3 EFD Parsing

The Empty-First-Daughter (EFD) parsing method is employed to support

the indexing techniques introduced in this thesis. It is also used as the

baseline parser in comparison with the improved, indexed, parser. This

section outlines the principles of this algorithm; a detailed presentation can

be found in [Penn, 1999c] and [Penn and Munteanu, 2003]

An important issue in bottom-up parsing, when implemented in Prolog,

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.1. CHART PARSING WITH TYPED FEATURE STRUCTURE
GRAMMARS 49

is the amount of copying. In standard Prolog parsers, each time an edge

is matched with a daughter (regardless of the success of the matching

operation), the edge is copied from the assertional database onto the heap.

This copying can significantly slow down the parsing process when categories

are large (such as typed feature structures).

A first approach to solving the copying problem was Carpenter’s

algorithm, which is used in ALE [Carpenter and Penn, 2001]. The algorithm

traverses the input sentence breadth-first and from right to left. The

grammar rules are traversed depth-first, from left to right, in a failure-driven

loop. As a result, Carpenter’s algorithm does not require active edges, since

only one rule at a time is in the process of being completed. This is in

contrast to a breadth-first traversal of rules, where a record of all rules that

have matched partially with edges in the chart (but are not completed yet)

must be kept.

The EFD parsing algorithm brings further improvements to Carpenter’s

algorithm, by limiting the number of copying operations to a maximum

of two per edge. Apart from the benefit of reducing copying, the EFD

parsing algorithm offers a better support for indexing, especially for Prolog

implementations. The chart is not stored in the assertional database, but on

the heap. Thus, indexing can be applied without copying edges.

The EFD algorithm is based on the assumption that the grammar is

EFD-closed : all rules in the grammar have at least one daughter, and

the leftmost daughter of each rule is blocked from deriving an empty

category. The algorithm for transforming a phrase-structure grammar into

an EFD-closed grammar is presented in [Penn and Munteanu, 2003]. During

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

50 CHAPTER 4. INDEXING FOR TFSG PARSING

parsing, after an edge is added to the chart, a failure driven-loop visits the

rules in the grammar and selects the ones for which the first (the leftmost)

daughter unifies with the newly created edge. The chosen rule is then

extended from left to right, starting with its second daughter, by matching

the daughters with edges in the chart and empty categories.

4.1.4 Parsing as Unification of MRSs

The benefit of regarding phrase rules as MRSs is reflected in the simplicity

of defining the basic operation of parsing: rule completion. If a rule has

n daughters, and the rule is represented as an MRS R = 〈D1, . . . , Dn,M〉

(whereD1, . . . , Dn are MGSats of the rule’s daughters andM is the MGSat of

the mother), then completing the rule is achieved by obtaining the sequence

R1̂, . . . , Rn̂, where each intermediate MRS Rî represents the rule (the active

edge) after Di is unified with an edge in the chart. The following paragraphs

introduce a formal definition of the rule completion process.

Definition 4.1. If F is a typed feature structure 〈Q, q, θ, δ〉, then 〈F, i, n〉,

the expansion of F to position i in a MRS of length n, is 〈Q′, Q, θ, δ〉, where:

• Q′ = Q ∪Q′, where Q′ = {q′j|1 ≤ j ≤ n, j 6= i, θ(q′j) = ⊥},

• Q = {qj|1 ≤ j ≤ n} is an ordered set such that qj =





q, if j = i

q′j, otherwise
.

Definition 4.2. For a rule represented by a MRS R = 〈D1, . . . Dn,M〉, its

first active edge (after D1 is unified with an edge E1 from the chart) is an

MRS R1̂ = Rt〈E1, 1, n〉. Consequently, its i-th active edge (after Di, 1 < i ≤

n, is unified with an edge Ei from the chart) is an MRS Rî = Rî−1t〈Ei, i, n〉.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.1. CHART PARSING WITH TYPED FEATURE STRUCTURE
GRAMMARS 51

If R = 〈D1, . . . Dn,M〉 is an MRS representing a rule, and Rî is its

i-th active edge, then Rî can be written as 〈D1
î, . . . Dn

î,M î〉. D1
î, . . . Dn

î

represent R’s daughters (and M î its mother) after the first i daughters are

unified with edges in the chart. As underlined by Wintner [1997], the TFSs

induced by a MRS are not (necessarily) independent, due to the nodes shared

between them. The following definition introduces the relation (represented

by the mapping operator 7→) between nodes in R and Rî:

Definition 4.3. If R0̂ = R = 〈Q,Q, θ, δ〉 is a MRS of length n representing

a rule and Rî = 〈Qî, Q
î
, θ, δ〉 is its i-th active edge, then:

• ∀j ∈ (1, . . . , n), qj 7→ qj
î,

• ∀x ∈ Q, ∀xî ∈ Qî, x 7→ xî iff ∃f ∈ Feat,∃q ∈ Q,∃q î ∈ Qî.q 7→ q î, such

that δ(f, q) = x and δ(f, q î) = xî.

The mapping from nodes of Rî to nodes of R associates a node in Rî with

a set of nodes in R:

Definition 4.4. If R = 〈Q,Q, θ, δ〉, Rî = 〈Qî, Q
î
, θ, δ〉, and xî ∈ Qî, then

the set of nodes mappable to xî is [xî]−1, the largest set {x ∈ Q|x 7→ xî}.

The set of nodes mappable to a set of nodes Qî
′

⊆ Qî is [Qî
′

]−1, the largest

set {x ∈ Q|∃xî
′

∈ Qî
′

such that x 7→ xî
′

}.

An important relation between 7→ and type subsumption exists:

Proposition 4.1. If Rî = 〈Qî, Q
î
, θ, δ〉, Rĵ = 〈Qĵ, Q

ĵ
, θ, δ〉, where 0 ≤ i <

j ≤ |Q|, then ∀xî ∈ [xĵ]−1, θ(xî) v θ(xĵ).

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

52 CHAPTER 4. INDEXING FOR TFSG PARSING

Proof. It will be demonstrated first that ∀i ∈ (1, . . . , n), where n =

|Q|, if Rî−1 = 〈Qî−1, Q
î−1
, θ, δ〉 and Rî = 〈Qî, Q

î
, θ, δ〉, then ∀xî−1 ∈

[xî]−1, θ(xî−1) v θ(xî).

Rî = Rî−1 t 〈E, i, n〉 (where E is a TFS representing an edge in the

chart.) Since xî−1 7→ xî, then ∃π ∈ Path, ∃j ∈ (1, . . . , n), such that

δ(π, qj
î−1) = xî−1 and δ(π, qj

î) = xî (where qj
î−1 and qj

î are roots of Rî−1 and

Rî respectively.) Therefore, according to Definition 3.4, qj
î−1 ./ qj

î, and thus,

xî−1 ./ xî. But according to the same definition, ∀q ∈ [xî]./, θ(x
î) w θ(q).

Hence, θ(xî−1) v θ(xî).

Since both v and 7→ are transitive, the proposition holds for any Rî and

Rĵ, where 0 ≤ i < j ≤ n.

4.2 The Typed Feature Structure Indexing

Problem

4.2.1 Difficulties for TFSG Indexing

In TFSGs, unification itself is very costly. Indexing could be the key to

efficient parsing by reducing the number of unifications while retrieving

categories from the chart.

The major problem with indexing TFSGs lies in the large amount of

information stored in a TFS. This makes indexing difficult for TFSG parsers,

since the extraction of an index key from each category is not a trivial process.

Another obstacle is that at least some of the index has to be built and

maintained during parsing (unlike in databases, where the index is typically

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.2. THE TYPED FEATURE STRUCTURE INDEXING PROBLEM 53

built off-line), since not all information in a TFS is available before parsing.

All these aspects of TFSG indexing, together with similar problems and

their solutions in related areas, are presented in Section 4.4 and in Chapter 5.

4.2.2 Indexing Timeline

Indexing can be applied at several moments during parsing. While

Sections 4.4 and 4.5 presents and comments on several approaches to

indexing, this section outlines a general strategy for indexed parsing, with

respect to what actions should be taken at each stage during parsing. This

outline is also valid for other formalisms, such as CFGs, with appropriate

simplification.

Three main stages can be identified during parsing. The first stage

describes indexing actions that can be taken off-line (along with several other

actions performed during compile time, as described in Section 3.2.1). The

second and third stages refers to action performed at run time.

1) In the off-line phase, an analysis of grammar rules can be performed.

The actual content of mothers and daughters may not be accessible,

due to variables that will be instantiated during parsing. The ideal

case for indexing would be having no variables – resulting in a

CFG-like grammar, in which all indexing can be done at compile time.

However, various sources of information, such as the type signature,

appropriateness specifications, or general descriptions of mothers and

daughters, can be analyzed and an appropriate indexing scheme can be

specified. This phase of indexing may include determining:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

54 CHAPTER 4. INDEXING FOR TFSG PARSING

(a) which daughters in which rules are sure not to unify with a specific

mother, and

(b) what information can be extracted from categories during parsing

that can constitute indexing keys.

It is desirable to perform as much analysis as possible at this off-line

stage, since the cost of any action taken during run time prolongs the

parsing time.

2) During parsing, after a rule has been completed, all variables in

a mother are instantiated. This offers the possibility of further

investigating the mother’s content and extracting supplemental

information from the mother that contributes to the indexing keys.

However, the choice of such investigative actions must be carefully

studied, since it might burden the parsing process.

3) While completing a rule, for each daughter a matching edge is searched

in the chart. At this moment, the daughter’s Active External Variables

are instantiated, therefore the entire content of the daughter can be

accessed, and the information identified in stage (1b) can be extracted.

Also in this stage, the unification between daughters and edges takes

place.

4.3 Indexed Chart Parsing

In order to complete a rule, all the rules’ daughters should be found in the

chart as edges. Looking for a matching edge for a daughter is accomplished

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.3. INDEXED CHART PARSING 55

by attempting unifications (matches) with edges stored in the chart, resulting

in many failed unifications.

This section introduces a general indexing method that will be used as the

backbone of all indexing methods introduced in this thesis. Without entering

into details pertaining to a specific grammar formalisms, the mechanism for

indexing a chart parser is presented. The general method outlined here can

be applied to any chart-based parser.

4.3.1 General Indexing Strategy

The purpose of indexing is to reduce the time spent on failed attempts

when searching for an edge in the chart. Each edge (edge’s category or

description) in the chart has an associated index key which uniquely identifies

sets of categories that can potentially match that edge’s category. When

completing a rule, the chart parsing algorithm looks up edges matching a

specific daughter in the chart. Instead of visiting all edges in the chart, the

daughter’s index key selects a restricted number of edges for traversal, thus

reducing the number of unification attempts.

The passive edges added to the chart represent specializations of rules’

mothers. Each time a rule is completed, its motherM is added to the chart

according toM’s indexing scheme, i.e., the set of index keys of daughters that

are possible candidates for a successful unification with M. The indexing

scheme needs to be re-built only when the grammar rules or the signature

change.

From an implementation point of view, the index is represented as a hash,

where the hash function applied to a daughter yields the daughter’s index

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

56 CHAPTER 4. INDEXING FOR TFSG PARSING

key. Each entry in the chart has a hash associated with it. When passive

edges are added to the chart, they are inserted into one or more hash entries.

For an edge representingM, the list of hash entries where it will be added

is given byM’s indexing scheme.

4.3.2 Using the Index

Each daughter is associated with a unique index key. During parsing, a

specific daughter is searched for in the chart by visiting only the list of edges

that have the appropriate key, thus reducing the time needed for traversing

the chart. The index keys can be computed off-line (when daughters are

indexed by their position), or during parsing.

4.3.3 An Example

Figure 4.1 presents an intuitive example for a very simple context-free

grammar:

S → V P NP

V P → V NP

NP → N

NP → ART N .

For the input string “Ducks eat flies”, when looking for a matching NP

in the chart to complete a rule such as V P → V NP , the non-indexed

parser first attempts to match the daughter category NP with edges V and

N stored in the chart. Only after these attempts fail is the right match found.

The indexed parser never attempts the matches NP = N and NP = V , since

its searches will always be limited to a list containing compatible categories.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.3. INDEXED CHART PARSING 57

chart[2]chart[1]

(V,2)

0 1 2 3
Ducks eat flies

(N,3)

(V,3)

(NP,3)

chart[2]chart[1]

(V,2)

0 1 2 3
Ducks eat flies

(V,3) (NP,3)(N,3)

v np

n

Figure 4.1: A simple example of indexed chart parsing. In this example, an

entry (P, j) found in the chart location chart[i] represents an edge labeled

with the part of speech P and spanning from position i to position j in the

input string.

This example illustrates a “perfect index” (as the one described in

Section 7.4.2). In a “perfect” index, all attempted unification between a

daughter and all edges in the set selected by the daughter’s key would be

successful. Unfortunately, TFSs contain a large amount of information, not

all of which is accessible before parsing, therefore a “perfect” index is unlikely

for TFSGs. However, as it will be shown in the preliminary evaluation

presented in Chapter 7, even if not all possible failed unifications are avoided,

indexing can still improve parsing times.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

58 CHAPTER 4. INDEXING FOR TFSG PARSING

4.4 Previous Approaches to Indexing and

Filtering TFSGs

As stated in Chapter 1, the goal of the methods developed in this thesis

is to improve the parsing times for TFSGs, by means of indexing. At the

moment of writing this thesis, the available literature on this topic is rather

scarce. Most of the currently used techniques for improving TFSG parsing

times use no indexing, or employ filtering as a substitute for true indexing.

Other directions of research in this domain address other weaknesses of

TFSG parsing, such as the inefficient encoding of typed feature structures,

the parsing algorithm, or the lack of a suitable programming environment.

This section presents a short overview of efforts directed at improving TFSG

parsing times by means of filtering, which is the closest related technique to

indexing.

4.4.1 HPSG Parsing with CFG Filtering

CFG filtering for HPSG parsing was introduced by Torisawa [1995; 2000], and

it is based on the observation that many failed unifications (between edges

in the chart and daughters in the grammar rules in course of completion)

occur in partial parse trees that will later be discarded. By eliminating in

advance partial parse trees that do not contribute to the final parse tree, a

significant amount of failed unification will be avoided. This is accomplished

by analyzing parse trees for an approximate CFG extracted from the HPSG.

Several methods exist for generating CFGs from UBGs. The method

proposed in [Torisawa et al., 2000] is an improvement over previously existing

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.4. PREVIOUS APPROACHES TO INDEXING AND FILTERING
TFSGS 59

methods. The extracted CFG takes into account dependencies between rules

(by analyzing feature propagations across rules), which play an important

role in restricting the possible parse trees in an HPSG. The authors report

improvements of up to 80% for this method. However, this result was

achieved by removing features from the original grammar, making these

results less realistic. More than that, the cost of filtering the CFGs is reported

to be a major drawback of this method.

4.4.2 Quick Check

Perhaps the most well known method used in speeding up the parsing times

of TFSGs is the quick check filter. Initially mentioned in [Kiefer et al., 1999],

a detailed presentation of quick check is found in [Malouf et al., 2000].

Quick check is an empirical method that tries to reduce the burden placed

on parsing by the unification operation. Its goal is to quickly identify, before

the unification of two feature structures is attempted, whether the unification

will fail.

The unification between two typed feature structures is successful if all

the equivalent paths in the two TFSs are compatible. The compatibility is

determined by the type unification operation between feature values at the

end of these paths. Quick check relies on the empirical observation (made by

parsing a corpus of sentences) that only a small amount of paths are likely

to cause the majority of unification failures.

In order to identify the failure-causing paths, a training phase is required.

The parser records, for each failed unification between two TFSs, the path

responsible for the failure. A corpus of sentences is parsed, and a set

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

60 CHAPTER 4. INDEXING FOR TFSG PARSING

containing the paths that are most probable to cause failures is determined.

After training, when parsing sentences in the test corpus, the parser

associates each category in the grammar with a quick check vector. The

vector contains the types of the feature values extracted from the ends of the

paths selected during training. For a given grammar, a position i in a quick

check vector will always be filled with the type extracted from the same path

πi for any feature structure. Before a unification is attempted, the quick

check vectors of the two typed feature structures are matched. Only if their

values are compatible is the full unification performed.

For example, assume that after training paths F : G and H : G : I are

selected as the most probable to cause unification failure. The quick check

vector is of the form 〈v1, v2〉, where the type extracted from path F : G will

fill the value v1 and the type extracted from path H : G : I will fill the

value v2 for any feature structure. For the two feature structures presented

in Figure 4.2, their corresponding quick check vectors will be 〈t5, t5〉 for F1

and 〈⊥, t6〉 for F2. Before unifying F1 and F2, their quick check vectors are

compared. The unification is attempted only if t5 t t6 ↓.

Quick check proves to be efficient when evaluated on a large-scale TFSG

(an average improvement of 34% is reported in [Malouf et al., 2000]).

However, its success depends on the degree of similarity between the training

corpus and the test corpus. Another requirement is that only a small number

of paths should be accountable for the unification failures. It is not desirable

that the the distribution of probabilities of paths to cause a failure should

be flat.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.4. PREVIOUS APPROACHES TO INDEXING AND FILTERING
TFSGS 61

F1 =




t1

F :


 t2

G : t5




H :




t3

F : t2

G :


 t4

I : t5










F2 =




t1

F :


 t4

G : ⊥




H :




t3

G :


 t4

I : t6










F1 quick check vector : 〈t5, t5〉 F2 quick check vector : 〈⊥, t6〉

Figure 4.2: Quick check vectors

4.4.3 Rule Filtering

One of the methods that inspired the work on indexing presented in

Chapters 4 and 6 is rule filtering. Unfortunately, this method has received less

attention as an indexing technique. The only work mentioning rule filtering

is Kiefer et al. [1999].

Rule filtering has the same goal as the other methods presented in this

section: reducing the number of failed unifications. It is based on the

observation that many of these failed attempts happen during parsing while

matching daughters and edges that can be ruled out before parsing — a

daughter and a mother that do not unify before parsing will also not unify

during parsing.

In order to rule out unifications that are sure to fail, all MGSats of

daughters in the grammar are unified with all MGSats of mothers at compile

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

62 CHAPTER 4. INDEXING FOR TFSG PARSING

time. The mother-daughter pairs that failed the unification are recorded

(as a rule filtering function). During parsing, before a daughter is matched

with an edge created by a mother, the rule filtering function is consulted

for this mother-daughter pair, and the unification is not attempted if the

pair is ruled out by the rule filter. The filter is built as a table, where each

cell specify whether a particular mother and daughter can be unified. For

a corpus of English, German, and Japanese sentences from Verbmobil[Kay

et al., 1994], the authors report that up to 60% of failed unifications can

be avoided (resulting in a 45% improvement in parsing times). However, as

it will be shown in Chapter 7, the percent of failed unifications that can be

avoided by ruling out non-unifiable mother-daughter pairs before parsing can

be much smaller for different grammars.

4.5 A Discussion About Optimization

Approaches

Although there is not a significant amount of work directed at improving

parsing times by use of indexing, it will be shown in this section that indexing

has many advantages over filtering, which is the closest related technique.

Advantages and disadvantages of using several indexing or related techniques

(such as filtering) will be described, as well as a discussion about using

statistically or non-statistically improved parsers.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.5. A DISCUSSION ABOUT OPTIMIZATION APPROACHES 63

4.5.1 Indexing vs. Filtering

Most of the research conducted on improving parsing times for TFSGs is

motivated by the observation that unifying two typed feature structures is the

most time-consuming operation in the parsing process. Several approaches

were taken, such as improving the encoding of TFSs (in order to reduce their

size or to speed up the unification process), implementing abstract machines

for rule daughter matching, or filtering out unifications that are known to

fail, based on fast checks before the unification is attempted. Among these,

the last approach is closest to indexing.

In database systems, the de facto standard for retrieving entities of any

type is through indexing or hashing [Elmasri and Navathe, 2000; Bertino et

al., 1997]. Filtering is accomplished by traversing the entire database and

deciding for each entity whether it should be retrieved or not (according to a

specific criterion). By indexing, only a restricted number of entities is visited.

The different retrieval methods in indexing and filtering are a consequence

of the fundamental difference between indexing and filtering: while indexing

considers the database as a structured set, filtering assumes the database is

not structured [Belkin and Croft, 1992].

The advantage of using indexing is the support for searches based on

multiple criteria (an important aspect, as it will be shown in Section 6.2).

Using multiple criteria with filtering means testing all criteria for each entity

in the database, while in indexing, each criterion places a restriction on

the search space. Another important advantage of using indexing instead of

filtering is the support for complex queries that are not limited to membership

checking [Manolopoulos et al., 1999].

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

64 CHAPTER 4. INDEXING FOR TFSG PARSING

4.5.2 Statistical vs. Non-Statistical Methods

While previous sections presented an overview of several approaches to

improve parsing times for TFSGs, the focus of this section in particular

is on the analysis of those that use indexing or filtering. They can be divided

into two major categories: statistically-based and non-statistically-based.

Statistical methods, such as the commonly used quick-check [Malouf et

al., 2000], need a training phase in order to determine the best criteria used

to predict the unification failure. The advantage of using such methods

resides in their simplicity. Although the experimental results can often

exhibit significant improvements, the major disadvantage of this method is

the need for a training phase. If the grammar is modified often (even through

very small changes, which can occur frequently in a development process),

the time spent on training is not compensated for by the improvements in

parsing times. More than that, if the training set is not properly chosen,

the statistical filter may even fail to detect any unification failure. Another

disadvantage of methods such as quick-check, which need to determine the

failure-causing paths in the training phase, is that finding optimal paths is

exponential [Penn and Munteanu, 2003].

Non-statistical indexing or filtering methods used to improve parsing

times have received less attention in recent years. One of the very few

methods is rule filtering [Kiefer et al., 1999], a method similar to the general

indexing presented in Chapter 4. However, its authors do not exploit

the benefits of an indexing structure, nor do they present the results in

a large experimental context. As will be shown in Chapter 6, using an

indexing structure allows for implementation of various extensions, such as

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

4.5. A DISCUSSION ABOUT OPTIMIZATION APPROACHES 65

“personalized” index keys for each mother-daughter pair (leading to a larger

percentage of avoided failed unifications.)

It should be mentioned here that the non-statistical indexing methods

presented later in Chapter 6 do not preclude statistical improvements1.

Although quick-check and rule filtering demonstrate improvements on

parsing times, both methods were evaluated using parsers that are not fully

optimized from a non-statistical point of view. A complete evaluation of

such statistical methods would be more relevant if performed after all posible

non-statistical optimizations are implemented.

1However, the main advantage of using a non-statistical method is the absence of the

training phase, resulting in faster parser set-up times.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

66 CHAPTER 4. INDEXING FOR TFSG PARSING

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 5

Indexing for Non-Parsing

Applications

While Section 4.4 presented an overview of indexing/filtering methods used in

parsing applications, this chapter presents similar techniques used in other

TFS applications. Also, the current research in the area of general term

indexing is outlined. Although not directly connected to the domain of

TFSG parsing, the methods outlined in this chapter can provide a source

of knowledge in approaching the TFSG indexing problem, by identifying

differences and similarities between these domains.

5.1 Indexing For Other TFS Applications

Not only parsing with typed feature structure grammars suffers from the cost

of unification. Most TFS-based applications encounter the same obstacle to

efficiency. In this section, two indexing methods that alleviate the burden of

67

68 CHAPTER 5. INDEXING FOR NON-PARSING APPLICATIONS

unification are presented.

5.1.1 An Indexing Scheme for TFS Retrieval

Ninomiya et al. [2002] propose an indexing method for typed feature

structure retrieval engines. Given a database of TFSs, and a TFS query,

the indexed retrieval engine selects a reduced number of TFSs for unification

with the TFS query.

The index is built as a table with a row for each possible path in a TFS.

The columns represent types (feature values). Each position (cell) indicated

by a row π and column t in the table contains a list of TFSs from the database

that have a type compatible with t at the end of the path π. When a TFS

query is given, the table entry for which a path is defined in the TFS query

is selected, and the corresponding feature value is extracted from the TFS

query. If there are more than one table entries that can be selected, the

one containing the shortest list of TFSs is chosen. Only TFSs indicated by

the matching list are selected for unification with the TFS query. Although

the reported improvements in TFS retrieval times reach 37%, the costs of

building such an index table could be prohibitive for TFSG parsing.

5.1.2 Automaton-based Indexing for Lexical

Generation

An interesting indexing method is proposed in [Penn and Popescu, 1997],

employed for lexical generation (surface realization) in ALE [Carpenter and

Penn, 2001]. An automaton-based index is used to extract words from the

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

5.2. GENERAL TERM INDEXING 69

lexicon with descriptions matching a given typed feature structure.

A decision tree is built off-line, with nodes representing features and arcs

representing types. The leaves of the tree point to lexical entries. The feature

paths that are indexed are determined manually as paths that reach values

bearing a semantic content. Each time a word is searched for by a feature

structure, the indexing path is followed in the decision tree, and the reached

leaf will give the desired lexical entry. Unfortunately, this method cannot

be applied to parsing. In generation, the index can be entirely built off-line,

since all paths in the feature structures representing lexical entries are fully

accessible off-line. In parsing, it is not lexical entries that must be indexed,

but categories in the grammar.

5.2 General Term Indexing

UBGs are just one area of artificial intelligence where indexing can be

used to improve efficiency. In general, any application dealing with

large knowledge bases could benefit from indexing. Such applications

include automated reasoning systems, symbolic computing systems, or term

rewriting applications. In these applications, the knowledge bases can consist

of first-order terms, clauses, or formulae. Parsing with TFSGs can be seen

as a particular case of such applications.

Term indexing serves the purpose of rapidly retrieving candidate terms

that satisfy a specific property. Formally, the term indexing problem can

be formulated [Ramakrishnan et al., 2001] as: Given a set of indexed terms

L and a binary relation (the retrieval condition, or indexing function) over

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

70 CHAPTER 5. INDEXING FOR NON-PARSING APPLICATIONS

terms R, for a query term t determine the subset M ⊂ L such that M =

{s|R(s, t) ↓}.

The following subsections outline various term indexing methods. The

extensive presentations of term indexing found in [Ramakrishnan et al., 2001]

and [Graf, 1996] are used here as a guide.

5.2.1 Attribute-Based Indexing

Attribute-based indexing uses simple values to map features of terms into

attributes. The retrieval of terms is performed based on the relation existing

between the corresponding attributes. Even if this method is very simple to

implement, its low accuracy is a disadvantage compared to more complex

techniques.

5.2.2 Set-Based Indexing

Set-based indexing, as the name suggests, divides the set of indexed terms

into subsets, such that all terms in a subset have a common property (an

individual term can be placed in several subsets).

The most simple set-based indexing – top symbol hashing – can be found

in Prolog as first argument indexing. Clauses are indexed (hashed) using their

first argument, therefore using the first argument of a calling procedure, a

set of possible matching candidate clauses is retrieved from the assertional

database.

A more complex indexing method is path indexing. Paths leading to

symbols inside a term are grouped into sets (path lists) based on the common

properties that are shared between the paths. Paths in the query term are

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

5.2. GENERAL TERM INDEXING 71

organized into a query tree that has leaves pointing to the path lists. The

retrieval of terms is accomplished by traversing the paths in the query tree.

5.2.3 Tree-Based Indexing

Tree-based indexing organizes the terms into a single tree. Each path into the

tree represents common properties of the indexed terms, similar to decision

trees or classification trees.

The basic tree-based indexing method is discrimination tree indexing.

The tree reflects exactly the structure of terms. A more complex tree-based

method is abstraction tree indexing. The nodes are labeled with lists of

terms, in a manner that reflects the substitution of variables from a term to

another: the domain of variable substitutions in a node is the codomain of

the substitutions in a subnode (substitutions are mappings from variables to

terms).

A relatively recent tree-based method was proposed in [Graf, 1995]:

substitution tree indexing. This is an improved version of discrimination tree

and abstraction tree indexing. Each path in the tree represents a chain

of variable bindings. The retrieval of terms is based on a backtracking

mechanism similar to the one in Prolog. Substitution tree indexing exhibits

retrieval and deletion times faster than other tree-based indexing methods.

However, it has the disadvantage of slow insertion times.

Since typed feature structures can be viewed as similar to first order terms

with variables, the unification process requires a sequence of substitutions.

Substitution tree indexing could be applied to TFSGs; unfortunately,

published experimental results [Graf, 1995] indicating slow insertion times

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

72 CHAPTER 5. INDEXING FOR NON-PARSING APPLICATIONS

suggest that a method performing more efficient operations during run time

is to be preferred. Future work will investigate possible adaptations of this

technique to TFSG parsing.

5.3 Indexing in Database Systems

Although database systems are not in the scope of this thesis, many of

the techniques developed here are connected to the database area. Since

the subject of indexing in databases is very vast, just a few essential

bibliographical pointers are mentioned in this section.

Databases can store large amounts of data. Usually, each stored entity is

a complex structure, called a record (similar to a feature structure). Records

are indexed based on the values of certain fields (features). The retrieval is

usually not limited to a query where specific values are requested for a field,

but must support other types of queries (such as interval queries – where the

values should belong to a given interval). An interesting research topic in the

area of indexing are the self-adaptive indexing methods, where the indexing

can be (semi-)automatically configured. One of the first published work on

this topic is [Hammer and Chan, 1976].

Most of the available database textbooks (such as [Elmasri and Navathe,

2000]) have chapters dedicated to indexing. Recent research papers on

indexing can be found in Kluwer Academic Publishers’ series “Advances in

Database Systems”: [Bertino et al., 1997], [Manolopoulos et al., 1999], or

[Mueck and Polaschek, 1997].

A major difference between indexing in databases and indexing in a TFSG

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

5.3. INDEXING IN DATABASE SYSTEMS 73

parser should be noted. Typically, a database consists of a large collection of

objects, and the indexing scheme is designed to improve retrieval times. It

is expected that databases are persistent, with fewer deletions and insertions

than retrievals. From this point of view, parsing can be seen as managing

a volatile database, that is always empty at start-up. The ratio between

insertions and retrievals in a database application is very small (even equal

to 0 when used only to retrieve data). For indexed parsing, this ratio is

much higher and depends on the structure of grammar rules. For this reason

(similar to those discussed in Section 5.2.3), indexing methods such as B-trees

(commonly used in databases), where the retrieval can be performed in O(1)

operations, but the insertion needs O(logm(n)) operations [Ramesh et al.,

2001] (where n is the number of nodes in the B-tree and m the number of

index keys assigned to a node), are not recommended for indexed parsing.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

74 CHAPTER 5. INDEXING FOR NON-PARSING APPLICATIONS

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 6

TFSG Indexing through Static

Analysis

This chapter presents two approaches to indexing TFSG parsers. Both

methods introduced here follow the general strategy outlined in Section 4.3.1

and the indexing timeline introduced in Section 4.2.2. Both methods are

non-statistical indexing methods (the index is determined without parsing

a training corpus). The first indexing method (positional indexing) uses

daughters’ positions in grammar rules (the rule number and daughter position

in the rule) as index keys. The second method (path indexing) is built on

top of positional indexing. Its index keys are enhanced with information

extracted from mothers and daughters, information that is obtained through

static analysis of grammar rules, as will be shown in Section 6.2.1.

75

76 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

6.1 Positional Indexing

In the indexing method presented in this section the index is computed

off-line, without parsing a training corpus. The index key for each daughter

is represented by its position (rule number and daughter position in the rule,

hence the name “positional” indexing), therefore no time is spent during

parsing for computing the index keys.

A related method (rule filtering) was proposed in [Kiefer et al., 1999]

(described in Section 4.4.3). However, the authors use a filter to avoid

unsuccessful unifications. Using an index offers the advantages of a flexible,

yet organized approach: as will be shown over the next sections, the indexing

scheme developed here can be enhanced with information extracted from

further static analysis of the grammar rules, while maintaining the same

general indexing strategy.

6.1.1 Building the Index

The indexing method introduced in this section follows the general strategy

outlined in Section 4.3. Each mother is inserted as an edge in the indexed

chart only in positions specified by that mother’s indexing scheme (which

is the list of matching daughters’ index keys). When completing a rule, a

matching edge is searched for each daughter only in the chart entry labeled

with an index key compatible with that daughter’s index key.

The structure of the index can be determined at compile-time. The

first step is to create a list containing the descriptions of all rules’

mothers in the grammar. Then, for each mother description, a list

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.1. POSITIONAL INDEXING 77

L(Mother) = {(Ri, Dj)| daughters that can match Mother} is created,

where each element of the list L represents the rule number Ri and daughter

position Dj inside rule Ri (1 ≤ j ≤ arity(Ri)) of a category that can match

with Mother.

For UBGs it is not possible to determine the exact list of matches between

daughters and mothers, since there are sometimes infinitely many possible

variants of daughters in a given signature. However, it is possible to rule out

MGSats of daughters that are incompatible (with respect to unification) with

a certainMother before parsing. For the 17 mothers in the grammar used for

the experiments presented in Chapter 7, the number of matching daughters

statically determined before parsing ranges from 30 (the total number of

daughters in the grammar) to 2. This compromise pays off with its simplicity,

which is reflected in the time spent managing the index.

During run-time, each time an edge (representing a rule’s mother) is

added to the chart, its category is inserted into the corresponding hash entries

associated with the positions (Ri, Dj) from the list L(Mother) (the number

of entries whereMother is inserted is equal to the cardinality of L(Mother)).

The entry associated to the key (Ri, Dj) will contain only categories (based

on MGSat(Mother)) that can possibly unify with the daughter at position

(Ri, Dj) in the grammar.

It should be mentioned at this point that only daughters Di with i ≥ 2

are searched for in the chart (and consequently, indexed). As described in

Section 4.1.3, whenever an edge is added to the chart, all rules are visited

in a failure-driven loop. The rules of which the first (leftmost) daughter

unifies with the edge are then traversed left to right, starting with the second

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

78 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

daughter.

6.1.2 Using the Index

For TFSGs, using a positional index key for each daughter presents the

advantage of not needing an indexing (hash) function during parsing for

the TFSs themselves (a discussion of when positional indexing is not a good

solution is given in Section 7.4.2). When a rule is extended during parsing,

a matching edge for each daughter is looked up in the chart. The position of

the daughter (Ri, Dj) acts as the index key, and matching edges are searched

for only in the list indicated by the key (Ri, Dj).

6.2 Path Indexing

Path indexing is an extension of the positional indexing presented in

Section 6.1. Its functionality is related to quick check: extract a vector

of types (of feature values) from a mother (that will become and edge) and

from a daughter, and test the unification of the two vectors before attempting

to unify the edge and the daughter.

Path indexing differs from quick-check in two major aspects. First, as

mentioned in Section 4.5.2, quick check needs statistical training to decide

from which nodes to extract the quick check vectors. Path indexing identifies

these nodes by a static analysis of grammar rules, performed off-line and

with no training required. Second, path indexing is built on top of positional

indexing, therefore the vector of nodes used as a pre-test for unification can

be different for each pair of mother-daughter that can unify. This does not

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 79

appear to be the case for quick-check, as it was conceived of in [Malouf et

al., 2000].

This section will first introduce the theoretical foundations of the static

analysis used to select nodes for inclusion in the path indexing. Next, details

about path indexing will be given.

6.2.1 Static Analysis of Grammar Rules

The positional indexing introduced in Section 6.1 has the benefit of allowing

for a simple, yet efficient, implementation. Section 7.4.2 discuss the situations

when even much simpler indexing schemes are possible. However, its major

advantage is its flexibility. Since each daughter is allocated a separate entry

in the chart, further information collected about the peculiarities of each

mother-daughter pair (with respect to the unification of the respective mother

and daughter) can be integrated into the indexing scheme. This is one of the

fundamental differences between indexing and filtering, and another reason

for preferring indexing over filtering.

As indicated in the indexing timeline introduced in Section 4.2.2, three

points during parsing can be identified for indexing. In the first, a static

analysis of grammar rules can determine what information can be extracted

from categories that can be used as indexing keys. At this point, the Static

Cut will be determined for each mother and daughter that are unifiable, and

index keys will be identified through the Static Cut. During parsing, the

second point occurs at the completion of a rule. At this moment, its mother

is introduced as an edge into the chart. The Dynamic Cut is used here to

further refine the index keys. The third point (occurring when a matching

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

80 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

edge for a daughter is searched for in the chart) involves the extraction of

the daughter’s index key.

The Static Cut

The Static Cut defines nodes in a mother1 that carry no relevant information

with respect to the unification with a daughter. Intuitively, these nodes can

be “left out” while computing the unification.

Definition 6.1. For a mother M and a daughter D that are unifiable before

parsing, the static cut is defined as StaticCut(M,D) = RigidCut(M,D) ∪

V ariableCut(M,D).

The RigidCut is defined first, representing nodes that can be “left out”

because neither they, nor one of their ancestors, can have their type values

changed by means of external sharing.

Definition 6.2. RigidCut(M,D) = {x ∈ QM |{[y]./ ∈

QMtD|∃π.δ
∗
MtD(π, [y]./) = [x]./} ∩ Ext(M t D) = ∅}, where ./ is the

equivalence relation from the definition of typed feature structure unification

with respect to M tD.

The V ariableCut is now defined as nodes that are either externally

shared, or have an ancestor that is externally shared, but still can be

“left out”. The name VariableCut is inspired by the fact that variables

in descriptions are the source for external sharing between most general

satisfiers, as described in Section 3.2.2.

1Throughout this section, mother M and daughter D are TFSs and denote the MGSat

of a mother description and of a daughter description.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 81

Definition 6.3. V ariableCut(M,D) is the largest subset of {x ∈ QM} such

that:

1) x /∈ RigidCut(M,D)

2) ∀s w θ(x),∀t w θ([x]./ ∩QD).s t t ↓

Basically, definition 6.3 is saying that a node can be left out even if it is

externally shared (or has an externally shared ancestor) if all possible types

this node can have unify with all possible types its corresponding nodes

in M t D can have. The first condition can also be written as follows:

∃y ∈ Ext(M tD).∃π.δ∗MtD(π, [y]./) = [x]./.

Definition 6.4. Ms = 〈Q′, Q′, θ, δ〉 is the Statically Cut typed feature

structure (symbolized as MsD) of a mother M = 〈Q, q, θ, δ〉 with respect

to a daughter D iff Q′ = Q \ StaticCut(M,D).

It should be mentioned thatMsD is created after the motherM is created

(i.e., after the rule is completed). Only the nodes in M that are accessible

before parsing can be included in the RigidCut or in the V ariableCut.

Intuitively, the nodes in the Statically Cut typed feature structure of M

after the rule is completed (symbolized as M̂sD) are mappings of the nodes

in MsD before rule is completed.

Definition 6.5. M̂sD = 〈Q′, Q′, θ, δ〉 is the Statically Cut typed feature

structure of a mother M = 〈Q, q, θ, δ〉 with respect to a daughter D after

M ’s rule is completed iff

• M ’s rule represented as an MRS is R = 〈. . . ,M〉, andM n̂ is the mother

of the same rule after the rule is completed: Rn̂ = 〈. . . ,M n̂〉 (where n

is the length of R),

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

82 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

• Q′ is the largest set of nodes {x̂ ∈ QM n̂ |∃x ∈ ([x̂]−1 ∩ Q), x /∈

StaticCut(M,D)}.

In the above definition, the set [x̂]−1 must be intersected with Q in order

to exclude from Q′ daughters’ nodes that, by means of structure sharing, are

mapped into x̂ during parsing.

y2 y4

y5

y6

y7

y8

y1

y3

F:

J:

G:

H:

H:

G:

K:

G:

x1

x2

x3

x4

x5

x6

x7

F:

J:

G:

H:

H:

I:

G:

(x1)=t1
(y1)=t2
(y2)=t3
(x6)=t7

θ
θ

θ
θ

F:t2
G:t1
H:t6
I:t3
K:t1

t1

t5 t3
G:t5

t7

t6

t4

t2
J:t5

T

t0 t8

M D

Figure 6.1: Static Cut – An Example. The dotted lines pointing to nodes x2,

y3, and y7 represents external structure sharing (caused by active external

variables.) After the static analysis is performed, StaticCut(M,D) =

{x1, x3, x5, x6}.

Figure 6.1 presents an example of a mother M and a daughter D that

are unifiable before parsing. Nodes x1, x6, y1 and y2 have the following types

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 83

assigned initially: θ(x1) = t1, θ(x6) = t7, θ(y1) = t2, θ(y2) = t3. Type values

for the rest of the nodes are drawn from the appropriateness specifications:

θ(x2) = t2, θ(x3) = t5, θ(x4) = t1, θ(x5) = t6, θ(x7) = t3, θ(y3) = t5, θ(y4) =

t1, θ(y5) = t6, θ(y6) = t6, θ(y7) = t1, θ(y8) = t1. The following equivalence

relations exist between nodes fromM and from D: x1 ./ y1, x2 ./ y2, x3 ./ y3,

x4 ./ y4, x5 ./ y5, x6 ./ y6 x7 ./ y7.

Given the type hierarchy, the initial type assignments, the types from

appropriateness, and the equivalence relations between nodes from M and

from D, the static analysis on M and D produces StaticCut(M,D) =

{x1, x3, x5, x6}. For each node in M , the static analysis produced the results

as follows:

x1: Since there is no external structure sharing on x1 or y1, x1 ∈

RigidCut(M,D).

x2: There is external structure sharing on x2. θ(x2) = t2 (through

appropriateness specification for feature F), and θ(y2) = t3. Since

t2 has t4 as a subtype, Condition 2 of Definition 6.3 is not satisfied

(t4 t t3 ↑). Therefore, x2 /∈ V ariableCut(M,D).

x3: x3 /∈ RigidCut(M,D) since its ancestor x2 is in an external structure

sharing. However, x3 ∈ V ariableCut(M,D) since Condition 2 is

satisfied for x3 and y3 (θ(x3) = t5 and θ(y3) = t5.)

x4: Similar to x2, x4 /∈ StaticCut(M,D), with the difference that the

external sharing is on D’s side (on node y4.)

x5: Condition 2 is satisfied for x5 and y5 (θ(x5) = t6 and θ(y5) = t6), therefore

x5 ∈ V ariableCut(M,D).

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

84 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

x6: No external sharing is on x6 or y6 (or any of their ancestors), therefore

x6 ∈ RigidCut(M,D).

x7: The most interesting example is x7. Even though its ancestors have

no external sharing, its corresponding y7 (x7 ./ y7) does, by being

shared between two paths (one of them being K : G, which does not

appear in M). θ(x7) = t3 (by unifying the appropriateness for I and

G) and θ(y7) = t1. Since t5 w t1, and t5 t t3 ↑, Condition 2 fails,

and therefore, x7 /∈ StaticCut(M,D). This is indeed justified, because

θ(y8) can promote from t1 to any subtype of t1, including t5. But for t5,

appropriateness promotes the type restriction of feature G to t5, thus

promoting θ(y7) from t1 to t5, which no longer unifies with θ(x7).

Proposition 6.1. For a mother M and a daughter D, if M t D ↓ before

parsing, and M̂ and D̂ exist (after completion), then after completion:

1) M̂sD t D̂ ↓ =>M̂ t D̂ ↓,

2) M̂sD t D̂ ↑ =>M̂ t D̂ ↑.

In the above proposition, the notation D̂ symbolizes the daughter Di
î−1

in a rule Rî−1 = 〈D1
î−1, . . . , Di

î−1, . . . 〉 (i.e., the rule R = 〈D1, . . . , Di, . . . 〉

during completion, after daughters D1, . . . , Di−1 are unified with edges from

the chart.)

Proof. Follows from the proof of Proposition 6.6.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 85

The Dynamic Cut

In the following definitions, the notion of DynamicCut is introduced. This

refers to nodes in the mother M after the grammar rule is completed, and

mother M is ready to be inserted in the chart as an edge M̂ .

Definition 6.6. For a mother M and a daughter D that are unifiable before

parsing, the dynamic cut DynamicCut(M̂,D) is defined as the largest subset

of {x̂ ∈ QM̂} such that:

1) ∃x ∈ [x̂]−1, x /∈ StaticCut(M,D),

2) ∀y ∈ QD, if ∃x ∈ [x̂]
−1 . x ./ y, then ∀s w θ(x̂),∀t w θ(y), s t t ↓.

Note: If condition 2 in Definition 6.6 is not satisfied, the newly created

edge from mother M̂ may no longer unify with daughter D.

Definition 6.7. M̂sD

s = 〈Q′, Q′, θ, δ〉 is the Dynamically Cut typed feature

structure of a mother M = 〈Q, q, θ, δ〉 with respect to a daughter D iff

• M ’s rule represented as an MRS is R = 〈. . . ,M〉, and M̂ =M n̂ is the

mother of the same rule after the rule is completed: Rn̂ = 〈. . . ,M n̂〉

(where n is the length of R),

• Q′ is the largest set of nodes {x̂ ∈ (Q
M̂
\ DynamicCut(M̂,D))|∀x ∈

([x̂]−1 ∩Q), x /∈ StaticCut(M,D)}.

Before stating the main proposition about the Dynamic Cut, some

elementary propositions are necessary for establishing correctness. The

shorter notations M̂ and D̂ will be used here to symbolize Q
M̂
and QD̂,

while M and D symbolize QM and QD.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

86 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

Proposition 6.2. ∀x̂ ∈ M̂ such that x̂ /∈ M̂sD , if there exists x ∈ M such

that x 7→ x̂ and x ∈ RigidCut(M,D), then [x̂]−1 = {x}.

Proof. By Definition 6.2, there are no externally shared nodes on any path

leading to x. Therefore, all paths in M̂ leading to x̂ exists also in M and

lead to x.

Corollary 6.1. If x̂ ∈ M̂ ∪ D̂ and |[x̂]./| > 1, then [[x̂]./]
−1 ∩

RigidCut(M,D) = ∅.

Corollary 6.2. ∀x̂ ∈ M̂ such that x̂ /∈ M̂sD , if {x1, x2} ⊆ [x̂]
−1, x1 6= x2,

then x1, x2 ∈ V ariableCut(M,D).

Proposition 6.3. If x̂ ∈ M̂ and |[x̂]./ ∩ M̂ | = 1 (./ with respect to M̂ t D̂),

then ∀ŷ ∈ [x̂]./∩D̂, ∃x ∈ [x̂]
−1, ∃y ∈ [ŷ]−1 such that x ./ y (./ with respect to

M tD). Similarly, if ŷ ∈ D̂ and |[ŷ]./ ∩ D̂| = 1 (./ with respect to M̂ t D̂),

then ∀x̂ ∈ [ŷ]./ ∩ M̂ , ∃y ∈ [ŷ]−1, ∃x ∈ [x̂]−1 such that y ./ x (./ with respect

to M tD).

Proof. ∀ŷ, ŷ′ ∈ [x̂]./ ∩ D̂(ŷ 6= ŷ′), there is no path in D̂ leading to both ŷ and

ŷ′ (otherwise ŷ = ŷ′). Thus, ŷ ./ ŷ′ because of the transitivity of ./ (./ with

respect to M̂ t D̂). Therefore, since |[x̂]./ ∩ M̂ | = 1, for any ŷ ∈ [x̂]./ ∩ D̂

there is at least one path π leading to x̂ in M̂ and to ŷ in D̂. Therefore,

according to the definition of 7→, ∃x ∈ [x̂]−1, y ∈ [ŷ]−1 such that x ./ y (./

with respect to M tD).

Figure 6.2 presents an example of a situation where this Proposition holds.

As can be seen in the figure, [x̂]−1 = {x1, x2}, [ŷ]
−1 = {y1}, [ŷ

′]−1 = {y2, y3},

[x̂]./∩M̂ = {x̂}, and [x̂]./∩D̂ = {ŷ, ŷ
′}. Proposition 6.3 states that for both ŷ

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 87

and ŷ′ there is at least one node in D mappable to them which is equivalent

to at least one node in M that maps to x̂. Indeed, for ŷ it is y1 ∈ [ŷ]
−1

that is equivalent to x1 ∈ [x̂]
−1 (x1 ./ y1), and for ŷ

′ it is y2 ∈ [ŷ
′]−1 that is

equivalent to x2 ∈ [x̂]
−1 (x2 ./ y2).

x1 x2

F:
G:

H:G:

M

y1 y3y2

F:

G:

G:

H:

H:

F:

D

 x̂

F:
G:

H:
G:

M̂

 ŷ y’^

F:

G:

G: H:

H:
F:

D̂

Figure 6.2: An example of the applicability of Proposition 6.3.

It should be noted that in the above proposition, [x̂]./∩M̂ is restricted to

a single element, and thus, the proposition states the existence of y ∈ [ŷ]−1

equivalent to x ∈ [x̂]−1 and not to x ∈ [[x̂]./]
−1. Figure 6.3 presents an

example where [x̂1]./ ∩ M̂ = {x̂1, x̂2} and [x̂1]./ ∩ D̂ = {ŷ1, ŷ2, ŷ4}. x̂1 ./ ŷ4,

[ŷ4]
−1 = {y4}, and [x̂1]

−1 = {x1, x2}; however neither x1 nor x2 are equivalent

to y4.

x1 x2 x4x3

F:
G: H:

J:

M

y1 y2 y4y3

F:
G: H:

J:

D

x3^x1^

F:
G:

H:

J:

M̂

ŷ1 ŷ4ŷ2

F: H:

G:

J:

D̂

Figure 6.3: An example of Proposition 6.3 limitation to |[x̂]./ ∩ M̂ | = 1.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

88 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

Proposition 6.4. If x ∈ M,x ∈ RigidCut(M,D), y ∈ D such that x ./ y

and x 7→ x̂, y 7→ ŷ, then θ(x̂) = θ(x) and θ(ŷ) = θ(y).

Proof. By Definition 6.2, there are no externally shared nodes on any path

leading to x or y. Therefore, during parsing, no types of any of x or y’s

ancestor nodes is promoted, and thus, θ(x̂) = θ(x) and θ(ŷ) = θ(y).

Proposition 6.5. If t0, t1, . . . , tn ∈ Type such that ∀t
′
0 w t0,∀i ∈ (1, . . . , n),

t′0 t ti ↓, then ∃t w t0 such that ∀i ∈ (1, . . . , n), t w ti.

Proof. By induction on n (n ≥ 1).

Base case (n = 1): ∀t′0 w t0, t
′
0 t t1 ↓ =>t0 t t1 ↓ =>∃t w t0 such that t w t1.

Induction (n > 1): Assume the proposition holds for n − 1: ∃t′ w

t0 such that ∀i ∈ (1, . . . , n − 1), t
′ w ti. If ∀t

′
0 w t0, t

′
0 t tn ↓, then

also t′t tn ↓. Therefore, ∃t w t′ such that t w tn and thus, ∃t w t0 such

that ∀i ∈ (1, . . . , n), t w ti.

Proposition 6.6. For a mother M and a daughter D, if M t D ↓ before

parsing, and M̂ and D̂ exist (after completion), then after completion:

1) M̂sD

s t D̂ ↓ =>M̂ t D̂ ↓,

2) M̂sD

s t D̂ ↑ =>M̂ t D̂ ↑.

Proof. The first part of the proposition, if M̂sD

s t D̂ ↓, then M̂ t D̂ ↓ will be

proven by showing that ∀ẑ ∈ M̂ ∪ D̂, θ./([ẑ]./) ↓. The shorter notations M̂

and D̂ will be used here to symbolize Q
M̂
and QD̂.

Part 1 Four cases can be identified:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 89

Case A: |[ẑ]./ ∩ M̂ | = 1 and |[ẑ]./ ∩ D̂| = 1,

Case B: |[ẑ]./ ∩ M̂ | = 1 and |[ẑ]./ ∩ D̂| > 1,

Case C: |[ẑ]./ ∩ M̂ | > 1 and |[ẑ]./ ∩ D̂| = 1,

Case D: |[ẑ]./ ∩ M̂ | > 1 and |[ẑ]./ ∩ D̂| > 1,

Case E: |[ẑ]./ ∩ M̂ | = 0 or |[ẑ]./ ∩ D̂| = 0,

Both of the cases A and B can have four subcases, based on where the

node x̂ ({x̂} = [ẑ]./ ∩ M̂) belongs to:

Case i: x̂ ∈ M̂ , x̂ /∈ M̂sD , and ([[x̂]./]
−1 ∩M) ⊆ RigidCut(M,D),

Case ii: x̂ ∈ M̂ , x̂ /∈ M̂sD , and ([[x̂]./]
−1 ∩M) ⊆ V ariableCut(M,D),

Case iii: x̂ ∈ M̂ , x̂ ∈ M̂sD , x̂ /∈ M̂sD

s and x̂ ∈ DynamicCut(M̂,D),

Case iv: x̂ ∈ M̂ , x̂ ∈ M̂sD , x̂ ∈ M̂sD

s .

For cases C and D, the above subcase i is not possible (according to

Corollary 6.1), and subcases ii – iv will be treated as a single, unified, subcase

(ẑ ∈ M̂).

Case A. It will be shown that θ./([ẑ]./) ↓ by showing that θ(x̂) t θ(ŷ) ↓,

where {x̂} = [ẑ]./ ∩ M̂ and {ŷ} = [ẑ]./ ∩ D̂.

Case A.i. [x̂]−1 ⊆ RigidCut(M,D). Proposition 6.3 states that ∃x ∈

[x̂]−1,∃y ∈ [ŷ]−1 such that x ./ y. Thus, since M t D ↓, θ(x) t θ(y) ↓.

Therefore, according to Proposition 6.4, θ(x̂) t θ(ŷ) ↓.

Case A.ii. [x̂]−1 ⊆ V ariableCut(M,D). According to Proposition 6.3,

∃x ∈ [x̂]−1,∃y ∈ [ŷ]−1 such that x ./ y. But Proposition 4.1 states that

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

90 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

θ(x̂) w θ(x) and θ(ŷ) w θ(y). Therefore, according to Condition 2 of

Definition 6.3, θ(x̂) t θ(ŷ) ↓.

Case A.iii. x̂ ∈ DynamicCut(M̂,D). According to Proposition 6.3, ∃x ∈

[x̂]−1,∃y ∈ [ŷ]−1 such that x ./ y. But Proposition 4.1 states that θ(ŷ) w θ(y).

Therefore, according to Condition 2 of Definition 6.6, θ(x̂) t θ(ŷ) ↓.

Case A.iv. According to Proposition 6.3, ∃x ∈ [x̂]−1,∃y ∈ [ŷ]−1 such that

x ./ y. Since M̂sD

s tD̂ ↓ and based on Proposition 2.1 (./=IJ), θ(x̂)tθ(ŷ) ↓.

Case B. It will be shown that ∃t ∈ Type such that ∀ŷ ∈ [ẑ]./ ∩ D̂ and

for {x̂} = [ẑ]./ ∩ M̂ , t w θ(ŷ) and t w θ(x̂).

Case B.i. According to Corollary 6.1, this case is not possible.

Case B.ii. ∀ŷ ∈ [ẑ]./ ∩ D̂, ŷ ./ x̂, and according to Proposition 6.3,

∃y ∈ [ŷ]−1,∃x ∈ [x̂]−1 such that y ./ x. Thus, according to Condition 2 of

Definition 6.3, ∀s w θ(y),∀t w θ(x), stt ↓. But according to Proposition 4.1,

θ(ŷ) w θ(y) and θ(x̂) w θ(x). Therefore, ∀ŷ ∈ [ẑ]./∩D̂, ∀s w θ(ŷ), ∀t w θ(x̂),

s t t ↓, and hence, ∀ŷ ∈ [ẑ]./ ∩ D̂,∀t w θ(x̂), t t θ(ŷ) ↓. Thus, according to

Proposition 6.5, ∃t w θ(x̂),∀ŷ ∈ [ẑ]./ ∩ D̂, t w θ(ŷ).

Case B.iii. ∀ŷ ∈ [ẑ]./ ∩ D̂, ŷ ./ x̂, and according to Proposition 6.3,

∃y ∈ [ŷ]−1,∃x ∈ [x̂]−1 such that y ./ x. Thus, according to Condition 2 of

Definition 6.6, ∀s w θ(y),∀t w θ(x̂), stt ↓. But according to Proposition 4.1,

θ(ŷ) w θ(y). Therefore, ∀ŷ ∈ [ẑ]./ ∩ D̂, ∀s w θ(ŷ), ∀t w θ(x̂), s t t ↓, and

hence, ∀ŷ ∈ [ẑ]./∩D̂,∀t w θ(x̂), ttθ(ŷ) ↓. Thus, according to Proposition 6.5,

∃t w θ(x̂),∀ŷ ∈ [ẑ]./ ∩ D̂, t w θ(ŷ).

Case B.iv. Since M̂sD

s t D̂ ↓, ∃t w θ(x̂) such that ∀ŷ ∈ [ẑ]./∩ D̂, t w θ(ŷ).

Case C. It will be shown that ∃t ∈ Type such that ∀x̂ ∈ [ẑ]./, t w θ(x̂).

Case C.i. According to Corollary 6.1, this case is not possible.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 91

Cases C.ii-iv. Let {ŷ} = [ẑ]./ ∩ D̂. The set [ẑ]./ ∩ M̂ can be divided

into three subsets, similar to the subcases ii-iv : a set Siv = {x̂ ∈ [ẑ]./ ∩

M̂ |x̂ ∈ M̂sD

s }, a set Siii = {x̂ ∈ [ẑ]./ ∩ M̂ |x̂ ∈ M̂sD , x̂ /∈ M̂sD

s , and x̂ ∈

DynamicCut(M̂,D)}, and a set Sii = {x̂ ∈ [ẑ]./ ∩ M̂ |x̂ ∈ M̂, x̂ /∈

M̂sD , and ([x̂]−1 ∩M) ⊆ V ariableCut(M,D)}. It will be shown that:

1) ∃t w θ(ŷ) such that ∀x̂ ∈ Siv, t w θ(x̂),

2) ∃t′ w t such that ∀x̂ ∈ Siii, t
′ w θ(x̂),

3) ∃t′′ w t′ such that ∀x̂ ∈ Sii, t
′′ w θ(x̂).

By proving the above claims, it is demonstrated that ∃t′′ such that ∀x̂ ∈ [ẑ]./,

t′′ w θ(x̂). An example of nodes in Case C is presented in Figure 6.4.

1) Since Siv ⊆ M̂sD

s and since M̂sD

s t D̂ ↓,

∃t w θ(ŷ) such that ∀x̂ ∈ Siv, t w θ(x̂). (*)

2) ∀x̂ ∈ Siii, x̂ ./ ŷ and therefore, according to Proposition 6.3, ∃x ∈

[x̂]−1,∃y ∈ [ŷ]−1 such that x ./ y. Thus, according to Condition 2

of Definition 6.6 and to Proposition 4.1, ∀s1 w θ(x̂),∀s2 w θ(ŷ), s1 t

s2 ↓. More than this, since t w θ(ŷ) (for the type t from (*)), ∀s1 w

θ(x̂),∀s′2 w t, s1 t s
′
2 ↓, and hence, ∀s

′
2 w t, s′2 t θ(x̂) ↓. Therefore,

according to Proposition 6.5 and to (*),

∃t′ w t w θ(ŷ) such that ∀x̂ ∈ Siii, t
′ w θ(x̂). (**)

3) ∀x̂ ∈ Sii, x̂ ./ ŷ and therefore, according to Proposition 6.3,

∃x ∈ [x̂]−1,∃y ∈ [ŷ]−1 such that x ./ y. Thus, since x ∈

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

92 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

π3π1 π2 π4

x4x3x2x1

M

π1 π2 π3 π4

y1 y2 y3 y4

D

π3π1 π2 π4

^ x1

M̂

^ x2 ^ x3 ^ x4

π1 π2 π3 π4

D̂

 ŷ

π3 π4

^ x3 ^ x4

X o
oD

X o
oM̂

T

t1 t2 t3

t0

t4 t5

Figure 6.4: An example of nodes in Case C of the proof for Proposition 6.6.

Given θ(x1) = t1, θ(x2) = t2, θ(x3) = t3, θ(x4) = t3, θ(y1) = t1, θ(y2) =

t1, θ(y2) = t1, θ(y3) = t2, θ(y4) = t3, θ(x̂1) = t4, θ(x̂2) = t2, θ(x̂3) = t3, θ(x̂4) =

t4, θ(ŷ) = t4, M̂sD

s t D̂ ↓, and also M̂ t D̂ ↓.

V ariableCut(M,D), Condition 2 of Definition 6.3 holds, and therefore,

according to Proposition 4.1, ∀s1 w θ(x̂),∀s2 w θ(ŷ), s1 t s2 ↓. More

than this, since t′ w θ(ŷ) (for the type t′ from (**)), ∀s1 w θ(x̂),∀s′2 w

t′, s1 t s
′
2 ↓, and hence, ∀s

′
2 w t′, s′2 t θ(x̂) ↓. Therefore, according to

Proposition 6.5 and to (**),

∃t′′ w t′ w t w θ(ŷ) such that ∀x̂ ∈ Sii, t
′′ w θ(x̂).

Case D. According to Corollary 6.1, Case D.i is not possible, while

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 93

Cases D.ii. – D.iv. are a generalization of cases B.ii-iv and C.ii-iv.

Case E. If |[ẑ]./ ∩ M̂ | = 0, then [ẑ]./ ⊆ D̂. Since D̂ exists, ∃t ∈ Type

such that ∀ŷ ∈ [ẑ]./, t w θ(ŷ).

If |[ẑ]./ ∩ D̂| = 0, then [ẑ]./ ⊆ M̂ and ∀x̂ ∈ [ẑ]./, ∀ŷ ∈ D̂, ¬(x̂ ./ ŷ).

Therefore, since M̂ exists, ∃t ∈ Type such that ∀x̂ ∈ [ẑ]./, t w θ(x̂).

Part 2 (M̂sD

s tD̂ ↑ =>M̂ tD̂ ↑.) If M̂sD

s tD̂ ↑, then ∃ẑ ∈ M̂sD

s ∪D̂ such

that ¬∃t ∈ Type for which ∀x̂ ∈ [ẑ]./, t w θ(x̂). Since M̂sD

s ⊆ M̂ , ∃ẑ ∈ M̂∪D̂

such that ¬∃t ∈ Type for which ∀x̂ ∈ [ẑ]./, t w θ(x̂), and therefore, M̂ t D̂ ↑.

6.2.2 Building the Path Index

The indexing scheme used here is built on the same principles as the one

described in Section 6.1, based on mother-daughter matching. The main

difference is the content of the indexing keys, which now include a third

element. This set is used in a two-layer indexing method.

In path indexing, each mother M has its indexing scheme defined as:

L(M) = {(Ri, Dj, Vi,j)}. The pair (Ri, Dj) is the positional index key and

represents the position Dj in the rule Ri of a matching daughter, while Vi,j

is a vector containing type values extracted from M . These vectors will be

referred to as path index vectors. For each pair of mother-daughter that can

unify, a different set of types is extracted. WhenM is inserted in the chart as

an edge, it is placed in the entry associated with (Ri, Dj) as in the positional

indexing method, but its vector Vi,j accompanies M in the chart.

The positional index uses the daughter’s position as the index key,

without any need for a function to compute the key during run-time. Path

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

94 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

indexing, however, uses a two-layer method. The first layer consists of the

positional key for daughters. The second layer uses types extracted from

the typed feature structure. For this, each daughter is now associated

with more than one index key. The set of a daughter’s index keys is:

L(D) = {(Ri, Dj, Vi,j)}, where Ri is the rule number of a matching mother,

Dj isD’s position, and Vi,j is the path index vector containing types extracted

from D. A daughter D has a different vector defined for each motherM that

can unify with D.

6.2.3 Key Extraction in Path Indexing

The vectors used as the second layer index should be of the same size for

each pair of matching mothers and daughters. More than that, a vector Vi

from the indexing scheme of a daughter D that matches a mother M and a

vector Vj from the indexing scheme of M associated with D should refer to

sets of equivalent nodes (through ./) in the mother and in the daughter.

The types extracted for the indexing vectors are those of nodes found

at the end of the indexing paths. An indexing path π for a mother M that

unifies with a daughter D is defined as:

Definition 6.8. If M̂sD

s = 〈Q′, Q′, θ, δ〉 is the Dynamically Cut typed feature

structure of a mother M = 〈Q, q, θ, δ〉 with respect to a daughter D for which

M t D ↓ before parsing, then π ∈ Path is an indexing path iff δ(π, q) ∈

[Q′]−1.

In the current implementation, a more efficient definition of indexing

paths is used:

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

6.2. PATH INDEXING 95

Definition 6.9. If M̂sD = 〈Q′, Q′, θ, δ〉 is the Statically Cut typed feature

structure of a mother M = 〈Q, q, θ, δ〉 with respect to a daughter D for which

M t D ↓ before parsing, then π ∈ Path is an indexing path iff δ(π, q) ∈

[Q′]−1.

The motivation for not using the DynamicCut is the high cost of

evaluating the Condition 2 of Definition 6.6, a condition that is tested during

parsing (after each edge is created). Any significant operation performed

during run-time negatively affects the efficiency of the parser. An experiment

using theDynamicCut to determine the indexing paths yielded parsing times

of more than 100% slower than those of the baseline. For the StaticCut

however, the conditions are tested off-line, with no penalty placed on parsing

times.

From an implementation point of view, in order to avoid traversing the

indexing path during run-time, the path index key contains pointers to the

types at the ends of the indexing paths of the TFSs in the chart.

6.2.4 Using the Path Index

Inserting and retrieving edges from the chart using path indexing is similar

to the general method presented in Section 6.1.2. The first layer of the index

is used to insert a mother as an edge into appropriate chart entries, according

to the positional keys for the daughters it can match. Along with the mother,

its path index key is inserted into the chart.

When searching for a matching edge for a daughter, the search is restricted

by the first indexing layer to a single entry in the chart (labeled with the

positional index key for the daughter). The second layer restricts searches

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

96 CHAPTER 6. TFSG INDEXING THROUGH STATIC ANALYSIS

to the edges that have a compatible path index vector. The compatibility

is defined as type unification: the type pointed to by the element Vi,j(n) of

an edge’s vector Vi,j should unify with the type pointed to by the element

Vi,j(n) of the path index vector Vi,j of the daughter on position Dj in a rule

Ri. Therefore, the unification between a mother and a daughter is attempted

only when both the positional index keys and the path index vectors are

compatible.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 7

Experimental Evaluation

In this chapter, a preliminary evaluation of the indexing methods presented

in Chapter 6 (positional indexing and path indexing) is conducted. Details

about the grammar used, the Prolog implementation, and the experimental

context are given.

7.1 Resources

A pre-release version of the MERGE grammar was used for evaluating the

performance of indexing. MERGE is the adaptation of the English Resource

Grammar [CSLI, 2002] for TRALE [Meurers and Penn, 2002] (a HPSG

parsing system built on top of ALE). This preliminary grammar has 13 rules

with 2 daughters each, 4 unary rules, and 136 lexical entries. The type

hierarchy contains 1157 types, with 144 introduced features.

For performance measurements, a test set containing 1970 sentences of

97

98 CHAPTER 7. EXPERIMENTAL EVALUATION

lengths between 2 and 16 words1 was used. This corpus was automatically

generated from a smaller “seed” corpus of 196 sentences. The seed sentences

consist of 98 sentences included as test sentences in this release of MERGE,

86 sentences extracted from the Wall Street Journal (Penn Tree Bank v. 2)

annotated parse trees, and 12 hand-built sentences. The sentences in the test

corpus were generated by replacing nouns in the seed sentences with noun

phrases or with words that are both noun and verb and by using the seed

sentences as subordinated clauses.

Two versions of MERGE were employed during the experimental

evaluation. The first version uses a Prolog encoding for typed feature

structures that does not support the representation of type constraints, while

the second version uses an extended encoding of Prolog terms that allows for

the representation of type constraints. Since many unification failures are

caused by the type constraints, the parsing times for the second version are

faster than for the first one, as it will be seen in the following sections.

Also, the lack of constraints in the first version causes overgeneration,

therefore more sentences are recognized as grammatically correct by the

non-constrained version (only 1112 out of the initial 1970 sentences are

considered correct by the constrained grammar).

The motivation for evaluating both an unconstrained and a constrained

version of the same grammar resides in the need for presenting the

performance of the proposed indexing methods in two extreme cases. The

unconstrained grammar serves as a larger scale grammar (where more edges

1The coverage of this version of the MERGE grammar is quite limited, therefore the

test sentences are rather short.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.2. PROLOG DATA STRUCTURE 99

are added to the chart and more unifications take place). The constrained

version is a more typical TFSG. The performance of the indexing methods

on a real large-scale TFSG is expected to be in between these two extremes.

7.2 Prolog Data Structure

Before presenting (in the following section) the experimental evaluation of

the proposed indexing methods, the data structure used to encode TFSs in

Prolog is introduced. It should be mentioned that the experiments are highly

dependent on the chosen data structure, which is unrelated to the proposed

indexing method. Therefore, details about the TFS encoding are given here,

rather than in earlier chapters.

The feature structures are encoded as Prolog terms. From the existing

methods that efficiently encode TFSs ([Mellish, 1988], [Gerdemann, 1995],

[Penn, 1999a]), an optimized encoding similar to the one presented in [Penn,

1999a] was chosen. As is shown in the aforementioned paper, if the feature

graph is N -colourable (but not (N − 1)-colourable), the least number of

argument positions in a flat encoding isN . The feature graph is an undirected

graph where each vertex represents an introduced feature, and each edge, a

pair of features that are appropriate to a common type [Penn, 1999a]. Each

position N in a term represents a feature with colour N in the feature graph.

The encoding introduced in this thesis extends the encoding from [Penn,

1999a] by allowing for the enforcement of type constraints during unification

of typed feature structures.

Figure 7.1 presents the structure used to encode TFSs as Prolog terms.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

100 CHAPTER 7. EXPERIMENTAL EVALUATION

The variable Type encodes the type of the feature structure, while each

variable Fi represents a feature value assigned to position i (coloured as i

in the feature graph). The arity of feats is constant, and is the minimum

number of coloursN . Each of feats’s arguments is either a singleton variable

(meaning that particular feature value is not defined for the current type or

is ⊥), a shared variable (representing structure sharing), or an embedded tfs

term. It is possible for a tfs term to have a variable as its second argument

(for structure sharing).

Typed feature structures: tfs(Type,Feats,TypeRef).

Features: Feats=feats(F1,...,FN).

Types (as attribute of Type): type(TypeValue,TypeRef,FeatRef).

Figure 7.1: The encoding of TFSs as Prolog terms

Types were encoded using the attributed variables library in SICStus

Prolog [SICS, 2003]. While existing systems (such as ALE[Carpenter and

Penn, 2001]) use a reference-based encoding for types, attributed variables

are more suitable for indexing. Performing de-referencing each time a type

is needed for the indexing key during parsing would result in slower parsing

time. Attributed variables offer direct access to the encoded type.

In the Prolog encoding of a TFS (tfs(Type,Feats,TypeRef))

shown in Figure 7.1, the variable Type carries the term

type(TypeValue,TypeRef,FeatRef) as an attribute. TypeValue represents

the actual type value, while FeatRef is a pointer to the features arguments

Feats in the TFS encoding tfs/3. TypeRef is a trigger variable (it has no

value associated with it) used to enforce the type constraints. It is pointed

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.2. PROLOG DATA STRUCTURE 101

to by the TypeRef variable from the tfs/3 term. Its purpose is to delay

the activation of the constraint enforcing mechanism until the unification of

all features in Feats is completed (considering that typical Prolog systems

perform the unification of arguments in a term from left to right).

HEAD:
SUBJ:

head
head

catCAT:
head

noun verb

sign cat

SUBJ

HEAD

CAT

(colour 1)

(colour 1)

(colour 2)

mary −→




sign

CAT:




cat

HEAD: noun

SUBJ: head







TFS for mary : tfs(Type1,Feats1,TypeRef1).

Type1 attribute: type(sign,TypeRef1,Feats1).

Feats1=feats(tfs(Type2,Feats2,TypeRef2),).

Type2 attribute: type(cat,TypeRef2,Feats2).

Feats2=feats(tfs(Type3,Feats3,TypeRef3),tfs(Type4,Feats4,TypeRef4)).

Type3 attribute: type(noun,TypeRef3,Feats3).

Type4 attribute: type(head,TypeRef4,Feats4).

Feats3= , Feats4= .

Figure 7.2: The encoding of the TFS for the word mary as Prolog terms

Figure 7.2 presents the Prolog encoding for a typed feature structure

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

102 CHAPTER 7. EXPERIMENTAL EVALUATION

representing the lexical entry formary, given a type hierarchy and its coloured

feature graph.

7.3 Experiments

In this section the preliminary experimental evaluations of the indexing

methods proposed in Chapter 6 are presented. All experiments were carried

out using the MERGE grammar described in Section 7.1. The performance

was timed on a Sun Workstation with 1024 MB of memory, running an

UltraSparc v.9 processor at 440 MHz with 2MB of cache. The parser was

implemented in SICStus 3.10.1 for Solaris 8.

The baseline used in these experiments was the EFD parser. As shown

in [Penn and Munteanu, 2003], a parser that reduces the copying of edges is

already faster than several other available parsers. Also, the chosen Prolog

encoding of TFSs proved to be very efficient when used in the EFD parser. All

experiments were carried out using both the unconstrained and constrained

versions of the MERGE grammar.

7.3.1 Evaluation using the unconstrained MERGE

For the unconstrained version (Figure 7.3), positional indexing outperformed

the non-indexed parser by an average of 21% (the best improvement being

44%). Although the difference at every sentence between the parsing times

for path and positional indexing is rather variable (while the difference

between parsing times for positional indexing and for non-indexed parser

is almost constant), the improvements in parsing times for path indexing

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.3. EXPERIMENTS 103

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
[l

og
(m

se
c)

]

Sentence number

Parsing times over the unconstrained version of MERGE

EFD
EFD w/ positional indexing

EFD w/ path indexing

Figure 7.3: Parsing times for EFD, EFD with positional indexing, and

EFD with path indexing applied to the unconstrained MERGE grammar.

Sentences were numbered according to the ascending order of parsing times

for path indexing.

over the non-indexed parser are better than those of positional indexing: an

average of 25%, with a maximum of 45%. However, there were no significant

variations in the improvements brought by both indexing method as the

parsing times increased.

When using the parsing times of the positional indexing parser as a

baseline, path indexing performs better than positional indexing with an

average of 5% (with a maximum of 24%). These improvements, as well

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

104 CHAPTER 7. EXPERIMENTAL EVALUATION

as both indexing methods’ improvements over the non-indexed parser, are

explained by a reduction in the number of unsuccessful unifications. Some

examples illustrating this reduction are presented in Table 7.1.

Sentence Successful Failed unifications

number unifications EFD EFD with EFD with

positional index path index

101 29 217 143 119

851 95 643 384 282

1357 355 2983 2092 1594

1816 557 8626 6475 4676

Table 7.1: The number of successful and failed unifications for the

non-indexed and indexed parsers over the unconstrained MERGE grammar,

for selected sentences where significant improvements (at least 10%) in

parsing times were recorded both between positional indexing and EFD and

between path indexing and positional indexing. The sentence numbers are

the same as those used in Figure 7.3.

7.3.2 Evaluation using the constrained MERGE

For the constrained version (Figure 7.4), positional indexing outperformed

the non-indexed parser with an average of 5% (the best improvement

being 60%). Path indexing brought no improvements relative to positional

indexing (showing the same average improvements as positional indexing,

while the best improvement being slightly better, 62%). Similarly with the

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.3. EXPERIMENTS 105

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e
[l

og
(m

se
c)

]

Sentence number

Parsing times over the constrained version of MERGE

EFD
EFD w/ positional indexing

EFD w/ path indexing

Figure 7.4: Parsing times for EFD, EFD with positional indexing, and EFD

with path indexing applied to the constrained MERGE grammar. Sentences

were numbered according to the ascending order of parsing times for path

indexing.

unconstrained MERGE, both indexing methods exhibited a rather uniform

improvement as the parsing times increased.

As can be seen in the examples2 presented in Table 7.2, although the

indexing methods avoid a significant number of failed unifications, the total

number of unifications is roughly 10 times smaller than for the unconstrained

version. This causes not only faster parsing times, but the indexed parser to

2This example is independent of the one presented in Table 7.1.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

106 CHAPTER 7. EXPERIMENTAL EVALUATION

pay a significantly higher price for managing the index.

Sentence Successful Failed unifications

number unifications EFD EFD with EFD with

positional index path index

414 18 169 143 103

681 28 127 120 103

1056 63 561 479 351

Table 7.2: The number of successful and failed unifications for the

non-indexed and indexed parsers over the constrained MERGE grammar, for

selected sentences where significant improvements (at least 3%) in parsing

times were recorded both between positional indexing and EFD and between

path indexing and positional indexing. The sentence numbers are the same

as those used in Figure 7.4.

7.3.3 Comparison between statistical and

non-statistical optimizations

It is not the purpose of this thesis to demonstrate the superiority

of non-statistical optimizations over statistical ones. Non-statistical

optimizations can be seen as a first step toward a highly efficient parser,

while statistical optimization can be applied as a second step. Future work

will investigate combinations of statistical and non-statistical methods to

improve parsing times.

One of the purposes of non-statistical indexing is to alleviate the burden of

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.3. EXPERIMENTS 107

Positional Path Quick

Indexing Indexing Check

Compiling type unification 5’6”

Compiling grammar rules 25”

Compiling positional index 2” 2” -

Compiling static cut - 1’6” -

Compiling indexing paths - 6’45” -

Run 300-sentence training - - 42’41”

Total set-up time 5’33” 13’24” 48’12”

Table 7.3: The set-up times for non-statistically indexed parsers and

statistically optimized parsers for MERGE gramamr.

training a statistically optimized parser by offering comparable improvements

in parsing times with significantly lower set-up times. Therefore, a

quick-check parser was also built and evaluated. A comparison between the

set-up times for the indexed parsers and the quick-check parser was conducted

in order to better reflect the advantage of non-statistical optimizations. The

set-up times are presented in Table 7.3. For quick-check, training times

are computed for a 300-sentence subset of the test corpus (as prescribed in

[Malouf et al., 2000]). The average parse time was 8.53 seconds per sentence,

roughly the same average as for the entire test corpus.

The advantage of faster set-up times for positional and path indexing

can be overshadowed by slower parsing times. However, as can be seen3

3In order to maintain the clarity of these graphs, quick-check parsing times are reported

separately than positional and path indexing parsing times.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

108 CHAPTER 7. EXPERIMENTAL EVALUATION

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800

T
im

e
[l

og
(m

se
c)

]

Sentence number

Parsing times over the unconstrained version of MERGE

EFD
EFD w/ quick-check

Figure 7.5: Parsing times for EFD and EFD with quick-check applied to the

unconstrained MERGE grammar. The sentence numbers are the same as

those used in Figure 7.3.

from Figure 7.5 and Figure 7.6, the average improvements brought by

quick-check are less than (for the unconstrained MERGE) or comparable

to (for the constrained MERGE) those of non-statistical indexing. For the

unconstrained MERGE, quick-check improved the non-indexed EFD parsing

times by only 6% (with a maximum of 42%), a value significantly lower

than for the positional or path indexing. For the constrained MERGE, the

average improvements of quick-check are 6% (with a maximum of 39%),

which is with only 1% better than positional or path indexing. It should

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.3. EXPERIMENTS 109

100

1000

10000

0 100 200 300 400 500 600 700 800 900 1000

T
im

e
[l

og
(m

se
c)

]

Sentence number

Parsing times over the constrained version of MERGE

EFD
EFD w/ quick-check

Figure 7.6: Parsing times for EFD and EFD with quick-check applied to the

constrained MERGE grammar. The sentence numbers are the same as those

used in Figure 7.4.

be mentioned that the quick-check evaluation presented in [Malouf et al.,

2000] uses only sentences with a length of at most 10 words, and the authors

report only a mean figure for the parsing times (while not reporting any

values for the set-up times). Also, the aforementioned paper does not specify

if the training sentences are included in the test corpus; in the quick-check

evaluation presented in this section, the test corpus contains the training

sentences, thus offering an advantage to quick-check.

Although the number of failed unifications is smaller for the quick-check

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

110 CHAPTER 7. EXPERIMENTAL EVALUATION

parser than for the path indexing parser (as shown in Table 7.4), the

average parsing times are faster for path indexing than for quick-check in

the unconstrained case. This is explained by the lower costs of managing

the path index: verifying the unification of path index vectors is faster than

verifying the unification of quick-check vectors. The cause for this difference

resides in the static nature of non-statistical indexing: the path index vector

is statically determined off-line or at compile time, and therefore the nodes

at the end of the indexing paths are reachable before parsing starts, saving

the time spent at run-time to fill the values in a template each time an edge

is added to the chart or when a daughter is searched for in the chart. With

quick-check, this is not the case – although the paths are computed off-line,

many of them may not even be defined for a given feature structure.

Sentence Successful Failed unifications

number unifications EFD EFD with EFD with

path index quick-check

101 29 217 119 26

851 95 643 282 169

1357 355 2983 1594 748

1816 557 8626 4676 1821

Table 7.4: The number of successful and failed unifications for the

non-indexed, path-indexed, and quick-check parsers over the unconstrained

MERGE grammar. The sentence numbers are the same as those used in

Figure 7.3 and in Table 7.1.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.4. EVALUATION ON OTHER UBGS 111

7.4 Evaluation on Other UBGs

In order to demonstrate the utility of indexing for UBGs, the general indexing

strategy proposed earlier in this thesis is evaluated by conducting two

more experiments. The first experiment uses Alvey, an untyped grammar

with smaller feature structures and more rules than MERGE. The second

experiment is carried out by benchmarking a set of CFGs with no typing,

but atomic categories and a very large number of rules.

7.4.1 The Alvey Grammar

The English grammar developed within the Alvey Natural Language Tools

[Grover et al., 1993] is a wide-coverage morphosyntactic and semantic

analyzer, based on a formalism similar to that of Generalized Phrase

Structure Grammar [Gazdar et al., 1985]. John Carroll’s Prolog port of

the Alvey English grammar was used for this experimental evaluation.

The indexing strategy used for Alvey has the same general structure as

that presented in Section 4.3.1: when searching for a matching edge for a

daughter in the chart, only chart entries with an index key matching that

daughter’s index key are visited. The Prolog implementation of Alvey has

feature structures encoded as terms. Since there is no typing in Alvey, and

since the feature structures are small4 (compared to MERGE), the index key

associated with each daughter and each edge is the functor of the Prolog

term encoding the category. Since the successful unifications of the functors

4For example, the lexical entry for the proper noun kim has 13 feature-value pairs in

Alvey, while in MERGE it has 206.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

112 CHAPTER 7. EXPERIMENTAL EVALUATION

3

4

6

8

10

0 5 10 15 20 25 30 35 40

T
im

e
[l

og
(s

ec
)]

Sentence number

Parsing times over Alvey grammar

EFD
EFD-index

Figure 7.7: Parsing times for EFD and EFD-indexing applied to the Alvey

grammar. Sentences were re-numbered and sorted according to the ascending

order of parsing times for EFD-indexing. Only sentences that are parsing

with EFD in more than 3 seconds are included in this figure.

do not guarantee the successful unifications of the terms, this is far from a

“perfect” indexing. Indeed, the improvements in parsing times are less than

those recorded for the MERGE grammar. However, the cost of maintaining

an indexing scheme even as simple as positional indexing would overshadow

the improvements in parsing times, due to the small category size (and

consequently, the small unification costs). There are 780 rules in Alvey,

compared to only 17 in MERGE, leading to an unmanageable number of

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.4. EVALUATION ON OTHER UBGS 113

hash entries for positional indexing.

The evaluation set consisted of all test sentences included in the Prolog

port of Alvey (182 sentences of lengths from 2 to 31 words). Even if the

indexing scheme is very simple, on average the indexed parser performs 4%

better than the non-indexed EFD parser, with a maximum improvement of

10% (Figure 7.7).

7.4.2 Penn Treebank CFG

CFGs are normally not considered UBGs, because they have atomic

categories, and the process of unifying atomic entities is merely a simple

equality check. However, as is shown in this section, indexing methods can

be successfully applied to CFGs, with the results demonstrating significant

improvement, especially for large-scale CFGs.

The index key for each daughter is the daughter’s category itself (a

category index). The indexing scheme L(Mother) contains only the

daughters that are guaranteed to match with a specificMother (thus creating

a “perfect” index). This indexing scheme is preferred to a positional index,

since it is usual for CFGs to have a large number of rules, with a significant

number of daughters. As a result, a positional index would simply need too

many index entries (a number equal to the total number of daughters in the

grammar). Using the categories as index keys limits the number of entries

to the number of different categories.

The search takes place only in the hash entry associated with that

daughter’s category. This increases to 100% the ratio of successful

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

114 CHAPTER 7. EXPERIMENTAL EVALUATION

Number Successful Failed Success

of rules unifications unifications rate (%)

124 104 1,766 5.56

736 2,904 189,528 1.51

3196 25,416 3,574,138 0.71

9008 195,382 56,998,866 0.34

14193 655,403 250,918,711 0.26

20999 1,863,523 847,204,674 0.21

Table 7.5: Successful unification rate for the non-indexed CFG parser.

unifications5, representing a significant gain in terms of parsing times.

Table 7.5 illustrates the significance of this gain by presenting the successful

unification rate for the non-indexed CFG parser.

Fifteen CFGs with atomic categories were built from the Wall Street

Journal (Penn Tree Bank v. 2) annotated parse trees, by constructing a

rule from each sub-tree of every parse tree, and removing the duplicates.

The grammars were extracted from the first ten directories of the Wall

Street Journal collection (00–09), consisting of the files wsj 0001.mrg to

wsj 0999.mrg, as shown in Table 7.6. Each of the fifteen grammars contains

rules extracted from the first N files in wsj 0001.mrg. . . wsj 0999.mrg, with

N chosen as: 5, 10, 15, 30, 50, 100, 150, 200, 250, 300, 350, 400, 500, 700,

900.

5100% represents the ratio of successful unifications in the chart, without counting

the failed unifications between index keys, when looking for the correct hash entry for a

daughter or an edge.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.4. EVALUATION ON OTHER UBGS 115

Grammar WSJ Number of Lexicon Number of

no. directories WSJ files size Rules

1 00 5 188 124

2 00 10 756 473

3 00 15 1167 736

4 00 30 2335 1369

5 00 50 5645 3196

6 00–01 100 8948 5246

7 00–01 129 11242 6853

8 00–02 200 13164 7984

9 00–02 250 14730 9008

10 00–03 300 17555 10834

11 00–03 350 18861 11750

12 00–04 400 20359 12696

13 00–05 481 20037 13159

14 00–07 700 27404 17682

15 00–09 901 32422 20999

Table 7.6: The grammars extracted from the Wall Street Journal directories

of the PTB II.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

116 CHAPTER 7. EXPERIMENTAL EVALUATION

0.01

0.1

1

10

100

1000

0 5000 10000 15000 20000

T
im

e
[l

og
(s

ec
)]

Number of rules

Average parsing times

Non-indexed EFD
Indexed EFD

Figure 7.8: Parsing times for EFD and EFD-indexing applied to CFGs with

atomic categories.

The test set contained 5 sentences of lengths between 13 and 18 words.

The sentences were chosen from the first 5 files, to ensure that they will be

parsed by every extracted grammar. Figure 7.8 shows that even for smaller

numbers of rules, the indexed parser outperforms the non-indexed version.

The improvements in parsing times for the indexed parser over those for the

non-indexed parser range from a minimum of 25% to a maximum of 62%.

All grammars with more than 3000 rules (11 out of the total 15 grammars)

exhibit improvements in parsing times of more than 50%, while only the

smallest grammar shows improvements under 30%. Although “unification”

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

7.4. EVALUATION ON OTHER UBGS 117

costs are small for atomic CFGs, using an indexing method is well justified.

The difference in improvements from Penn Tree Bank CFG to MERGE TFSG

is explained by the large branching factor of the CFG rules, by the “perfect”

index, and by the sheer size of the charts in number of edges. All of these,

as mentioned in Section 5.3, are important factors in an indexing method’s

success.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

118 CHAPTER 7. EXPERIMENTAL EVALUATION

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis presented an investigation of possible improvements in parsing

times for typed feature structure grammars by means of indexing. A review

of the existing research on improving TFSG parsing times revealed a lack

of an integrated approach to indexing, as well as of a thorough analysis of

the grammar rules in TFS-based parsers that can lead to the development of

more efficient parsers. A theoretical framework to support a static analysis

of grammar rules was set up, and an indexing strategy based on the static

analysis was proposed.

The indexing method proposed here is suitable for several classes of

unification-based grammars. The index keys are determined statically and

are based on an a priori analysis of grammar rules. A major advantage of

such indexing methods is the elimination of the lengthy training processes

needed by statistical methods. Although a non-statistical method, indexing

119

120 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

through the static analysis of grammar rules can be combined with methods

based on statistical evidence of mother-daughter unifications.

The preliminary experimental evaluation carried out over several

unification-based grammars demonstrates that indexing through static

analysis is a promising optimization for typed feature structure grammars.

The improvements in parsing time are comparable to those of statistically

optimized parsers, while their set-up time is significantly lower.

8.2 Future Work

Several research directions using this thesis as a starting point can be

identified:

Indexing Constraints. The current static analysis of grammar rules used

as a basis for indexing does not consider type constraints. Future

work will investigate an extension of the indexing method in order

to accommodate the use of type constraints, with the potential to

significantly reduce parsing times.

The Static and Dynamic Cut Definitions. The definitions for the

Static and the Dynamic Cuts are not guaranteed to be maximally

specific (although they are probably close), thus it is possible that

certain nodes are not included in the Static or Dynamic Cut, and yet

can be discarded. The inclusion of such nodes does not affect the formal

properties of the Cuts, but it might diminish the improvements brought

about by indexing. Future research will investigate various extensions

of the Cuts, in order to include all possible nodes.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

8.2. FUTURE WORK 121

The Static and Dynamic Cut Implementation. The theoretical

benefits of the Static Cut are exploited in the path indexing method.

A possible use of the Static and Dynamic Cut that will be investigated

in the future is the replacement of the normal unification between the

most general satisfiers of a mother and a daughter with the unification

of their Statically Cut most general satisfiers.

Index Implementation. In this thesis, the indexing is implemented as

a hash, a structure that is not always efficient. As mentioned in

Section 5.3, several indexing structures (such as B-trees) commonly

used in databases are not suitable for parsing. Future research will

thoroughly analyze other structures used in databases, and identify

the most appropriate one for indexed parsing.

Indexing Strategies. While the tree-based indexing (overviewed in

Section 5.2.3) has poor performance when the number of insertions

is quite large, its theoretical benefits cannot be ignored. A possible

adaptation of this technique to chart parsing will be studied.

Feature Encoding. The current method for encoding feature structures

proved its efficiency. However, further improvements will be sought

that will allow for the representation of different extensions to typed

feature structures, such as inequations.

Statistical Improvements. The purpose of this thesis was not to discredit

existing statistical methods. Future work will include the investigation

of possible improvements through an integration of statistical methods,

such as feature re-ordering or improved quick check tests.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

122 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

Experimental Evaluation. At the time of writing this thesis, the only

wide-coverage typed feature structure grammar available to the author

was the preliminary version of MERGE. In order to thoroughly evaluate

the indexing based on static analysis, a much larger experimental set

(a larger grammar and a larger test corpus containing no artificially

generated sentences) will be sought in the future.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

Bibliography

[Allen, 1994] J. Allen. Natural Language Understanding.

Benjamin/Cummings Publishing, 1994.

[Belkin and Croft, 1992] N.J. Belkin and W.B. Croft. Information filtering

and information retrieval: Two sides of the same coin? Communications

of the ACM, 35(12), 1992.

[Bertino et al., 1997] E. Bertino, B. C. Ooi, R. Sacks-Davis, K-L Tan,

J. Zobel, B. Shidlovsky, and B. Catania. Indexing Techniques for Advanced

Database Systems. Kluwer Academic Publishers, 1997.

[Brown and Miller, 1996] K. Brown and J. Miller, editors. Concise

Encyclopedia of Syntactic Theories. Pergamon – Elsevier Science, 1996.

[Carpenter and Penn, 2001] B. Carpenter and G. Penn. The Attribute Logic

Engine, 2001.

[Carpenter, 1992] B. Carpenter. The Logic of Typed Feature Structures.

Cambridge University Press, 1992.

123

124 BIBLIOGRAPHY

[Colmerauer, 1982] A. Colmerauer. Prolog and infinite trees. In K.L. Clark

and S.-A. Tirnlund, editors, Logic Prograraming, pages 231–252. Academic

Press, 1982.

[Cooper, 1996] R.P. Cooper. Head-driven phrase structure grammar. In

K. Brown and J. Miller, editors, Concise Encyclopedia of Syntactic

Theories. Pergamon – Elsevier Science, 1996.

[CSLI, 2002] CSLI. CSLI Lingo. http://lingo.stanford.edu/csli, 2002.

[Elmasri and Navathe, 2000] R. Elmasri and S. Navathe. Fundamentals of

database systems. Addison-Wesley, 2000.

[Gazdar and Mellish, 1989] G. Gazdar and C. Mellish. Natural Language

Processing in Prolog. Addison-Wesley, 1989.

[Gazdar et al., 1985] G. Gazdar, E. Klein, G. K. Pullum, and I. A. Sag.

Generalized Phrase Structure Grammar. Blackwell, 1985.

[Gerdemann, 1995] D. Gerdemann. Term encoding of typed feature

structures. In Proceedings of the Fourth International Workshop on

Parsing Technologies, 1995.

[Graf, 1995] P. Graf. Substitution tree indexing. In Proceedings of the 6th

International Conference on Rewriting Techniques and Applications, 1995.

[Graf, 1996] P. Graf. Term Indexing. Springer, 1996.

[Grover et al., 1993] C. Grover, J. Carroll, and E. Briscoe. The alvey natural

language tools grammar (4th release). Technical Report 284, Computer

Laboratory, Cambridge University, Cambridge, UK, 1993.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

BIBLIOGRAPHY 125

[Hammer and Chan, 1976] M. Hammer and A. Chan. Index selection in

a self-adaptive database management system. In Proceedings of the

1976 ACM SIGMOD International Conference on Management of Data,

Washington, D.C., U.S.A., 1976.

[Jurafsky and Martin, 2000] D.S. Jurafsky and J.H. Martin. Speech and

Language Processing. Prentice Hall, 2000.

[Kay et al., 1994] Martin Kay, Jean Mark Gawron, and Peter Norvig.

Verbmobil: A Translation System For Face-To-Face Dialog. CSLI

Publications, 1994.

[Kiefer et al., 1999] B. Kiefer, H.U. Krieger, J. Carroll, and R. Malouf. A

bag of useful techniques for efficient and robust parsing. In Proceedings of

the 37th Annual Meeting of the ACL, 1999.

[Malouf et al., 2000] R. Malouf, J. Carrol, and A. Copestake. Efficient

feature structure operations without compilation. Natural Language

Engineering, 6(1), 2000.

[Manolopoulos et al., 1999] Y. Manolopoulos, Y. Theodoridis, and V. J.

Tsotras. Advanced Database Indexing. Kluwer Academic Publishers, 1999.

[Matheson, 1997] Colin Matheson. HPSG grammars in ALE. Course

Notes, Department of Linguistics, University of Edinburgh, 1997.

http://www.ltg.hcrc.ed.ac.uk/projects/ledtools/ale-hpsg/.

[Mellish, 1988] C. Mellish. Implementing systemic classification by

unification. Computational Linguistics, 14(1), 1988.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

126 BIBLIOGRAPHY

[Mellish, 1991] C. Mellish. Graph-encodable description spaces. Technical

Report DYANA R3.2B, University of Edinburgh, 1991.

[Mellish, 1992] C. Mellish. Term-encodable description spaces. In D.R.

Brough, editor, Logic Programming – New Frontiers. Kluwer Academic

Publishers, 1992.

[Meurers and Penn, 2002] D. Meurers and G. Penn. Trale Milca

Environment v. 2.1.4. http://ling.ohio-state.edu/∼dm, 2002.

[Meurers, 2002] D. Meurers. Constraint-based grammar implementation.

Course Notes, Department of Linguistics, Ohio State University, 2002.

[Mueck and Polaschek, 1997] T.A. Mueck and M.L. Polaschek. Index Data

Structures in Object-Oriented Databases. Kluwer Academic Publishers,

1997.

[Ninomiya et al., 2002] T. Ninomiya, T. Makino, and J. Tsujii. An

indexing scheme for typed feature structures. In Proceedings of the 19th

International Conference on Computational Linguistics, 2002.

[Oepen and Carroll, 2000] S. Oepen and J. Carroll. Parser engineering and

performance profiling. Natural Language Engineering, 6(1), 2000.

[Penn and Munteanu, 2003] G. Penn and C. Munteanu. A tabulation-based

parsing method that reduces copying. In Proceedings of the 41st Annual

Meeting of the ACL, Sapporo, Japan, 2003.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

BIBLIOGRAPHY 127

[Penn and Popescu, 1997] G. Penn and O. Popescu. Head-driven generation

and indexing in ALE. In ACL Workshop on Computational Environments

for Grammar Development and Linguistic Engineering, 1997.

[Penn, 1999a] G. Penn. An optimised Prolog encoding of typed feature

structures. In Arbeitspapiere des SFB 340, number 138. 1999.

[Penn, 1999b] G. Penn. Optimising don’t-care non-determinism with

statistical information. In Arbeitspapiere des SFB 340, number 140. 1999.

[Penn, 1999c] G. Penn. A parsing algorithm to reduce copying in Prolog. In

Arbeitspapiere des SFB 340, number 137. 1999.

[Penn, 2000] G. Penn. The Algebraic Structure of Attributed Type Signatures.

PhD thesis, School of Computer Science, Carnegie Mellon University, 2000.

[Pereira and Shieber, 1987] F.C.N. Pereira and S.M. Shieber. Prolog and

Natural Language Analysis. CSLI Publications, 1987.

[Pollard and Sag, 1987] C. Pollard and I. Sag. Information-Based Syntax

and Semantics. CSLI Publications, 1987.

[Pollard and Sag, 1994] C. Pollard and I. Sag. Head-driven Phrase Structure

Grammar. The University of Chicago Press, 1994.

[Pollard, 1997] C. Pollard. Lectures on the foundations of HPSG. Course

Notes, Department of Linguistics, Ohio State University, 1997.

[Ramakrishnan et al., 2001] I.V. Ramakrishnan, R. Sekar, and A. Voronkov.

Term indexing. In Handbook of Automated Reasoning, volume II,

chapter 26. Elsevier Science, 2001.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

128 BIBLIOGRAPHY

[Ramesh et al., 2001] G. Ramesh, W. Maniatty, and M. Zaki. Indexing

and data access methods for database mining. Technical Report 01-01,

Department of Computer Science, University of Albany, Albany, N.Y.,

U.S.A., 2001.

[Shieber, 1986] S.M. Shieber. An Introduction to Unification-Based

Approaches to Grammar. CSLI Publications, 1986.

[SICS, 2003] SICS. SICStus Prolog. http://www.sics.se/sicstus, 2003.

[Torisawa and Tsujii, 1995] K. Torisawa and J. Tsujii. Compiling

HPSG-style grammar to object-oriented language. In roceedings of the

Natural Language Processing Pacific Rim Symposium, Seoul, Korea, 1995.

[Torisawa et al., 2000] K. Torisawa, K. Nishida, Y. Miyao, and J. Tsujii. An

HPSG parser with CFG filtering. Natural Language Engineering, 6(1),

2000.

[Uszkoreit, 1996] H. Uszkoreit. A note on the essence of hpsg and its rôle in

computational linguistics. http://www.coli.uni-sb.de/∼hansu/hpsg.html,

1996.

[van Noord, 1997] G. van Noord. An efficient implementation of the

head-corner parser. Computational Linguistics, 23(3), 1997.

[Wintner, 1997] S. Wintner. An Abstract Machine for Unification

Grammars. PhD thesis, Technion – Israel Institute for Technology, 1997.

Indexing Methods for Efficient Parsing with Typed Feature Structure Grammars

