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Semantic distancdas a measure of how close or distant in meaning two units afdage are.

A large number of important natural language problems,uiiclg machine translation and
word sense disambiguation, can be viewed as semantic déespaoblems. The two dominant
approaches to estimating semantic distance ar®\itrelNet-based semantic measureand
the corpus-based distributional measures|In this thesis, | compare them, both qualitatively
and quantitatively, and identify the limitations of each.

This thesis argues that estimating semantic distance éneslly a property of concepts
(rather than words) and that two concepts are semantidalbe d¢f they occur in similar con-
texts. Instead of identifying the co-occurrence (distiidmal) profiles ofwords(distributional
hypothesig, | argue thadistributional profiles of concepts (DPCs)can be used to infer the
semantic properties of concepts and indeed to estimatengienadéstance more accurately. |
propose a new hybrid approach to calculating semanticrdistéhat combines corpus statis-
tics and a published thesauridgcquarie Thesaurys The algorithm determines estimates of
the DPCs using the categories in the thesaurus as very aoamsepts and, notably, without
requiring any sense-annotated data. Even though the usdyadilmout 1000 concepts to repre-
sent the vocabulary of a language seems drastic, | shownhatethod achieves results better
than the state-of-the-art in a number of natural languagjesta

| show howcross-lingual DPCscan be created by combining text in one language with



a thesaurus from another. Using these cross-lingual DPE€s;am solve problems in one,
possibly resource-poor, language using a knowledge sdroweanother, possibly resource-
rich, language. | show that the approach is also useful ksttsat inherently involve two or
more languages, such as machine translation and multdirigxt summarization.

The proposed approach is computationally inexpensivgntastimate both semantic re-
latedness and semantic similarity, and it can be applietl pags of speech. Extensive exper-
iments on ranking word pairs as per semantic distance wead-spelling correction, solving
Reader’s Digesword choice problems, determining word sense dominance] sense dis-
ambiguation, and word translation show that the new apprizanarkedly superior to previous

ones.
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Chapter 1

Semantic Distance

1.1 Introduction

Semantic distanceis a measure of how close or distant two units of languagei@arerms

of their meaning. The units of language may be words, phrassgences, paragraphs, or
documents. The two noumsnceandchoreographyfor example, are closer in meaning than
the two nounglownandbridge and so are said to be semantically closer. Units of language
especially words, may have more than one possible meaniageter, their context may be
used to determine the intended senses. For exarsialecan mean botlTELESTIAL BODY
andCELEBRITY; however,starin the sentence below refers onlyd@LESTIAL BODY and is

much closer tsunthan tofamous
(1) Stars are powered by nuclear fusion.

Thus, semantic distance between words in context is in fectliistance between word senses
or concepts. | use the termgrd senseandconceptsnterchangeably here, although later on
| will make a distinction. Figure 1.1 depicts that the cortsegf DANCE andCHOREOGRAPHY

are closer in meaning than the conceptsiocbwN andBRIDGE. Throughout the thesis, exam-
ple words will be written in italics (as in the example semabove), whereas example senses

or concepts will be written in all capitals (as in Figure 1.1)
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ila

CHOREOGRAPHY

BRIDGE

Figure 1.1: Semantic distance between example concepts.

Humans consider two concepts to be semantically closenétisea sharing of some mean-
ing. Specifically, two concepts are semantically close ér¢his alexical semantic relation
between the concepts. Putting it differently, the reasogy tlo concepts are considered se-
mantically close can be attributed to a lexical semantiatieh that binds them. According to
Cruse (1986), a lexical semantic relation is the relatiambenlexical units—a surface form
along with a sense. As he points out, the number of semartdiiaes that bind concepts is in-
numerable but certain relations, such as hyponymy, mergngnmtonymy, and troponymy, are
more systematic and have enjoyed more attention in theibtigs community. However, as
Morris and Hirst (2004) point out these relations are farmuinbered by others which they call
non-classical relations Here are a few of the kinds of non-classical relations tHeseoved:
positive qualities§RILLIANT, KIND), concepts pertaining to a concegtND, CHIVALROUS,
FORMAL pertaining totGENTLEMANLY ), and commonly co-occurring words (locations such as

HOMELESS SHELTER problem—solution pairs such a®MELESS DRUNK).
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(O not semantically related and not semntically similar
S semantically related but not semantically similar
£ semantically related and semantically similar
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Figure 1.2: A Venn diagram of word pairs in semantic distaspace.

1.1.1 Semantic relatedness and semantic similarity

Semantic distance is of two kindsemantic similarity andsemantic relatedness The for-
mer is a subset of the latter (Figure 1.2), but the two may leel isterchangeably in certain
contexts, making it even more important to be aware of thistirgttion. Two concepts are
considered to be semantically similar if there is a hyponyhypernymy), antonymy, or tro-
ponymy relation between them. Two concepts are considerieel semantically related if there
is any lexical semantic relation between them—classicaborclassical.

Semantically similar concepts tend to share a number of comproperties. For example,
consideraPPLES and BANANAS. They are both hyponyms &fRuUIT. They are both edible,
they grow on trees, they have seeds, etc. Therexwel ES and BANANAS are considered
to be semantically similar. Another example of a semanyicgimilar pair isDboCcTOR and
SURGEON The concept of ®@0CTORIis a hypernym oBURGEON Therefore, they share the
properties associated withbeDCTOR

On the other hand, semantically related concepts may n& meany properties in com-
mon, but have at least one classical or non-classical lesatation between them which lends
them the property of being semantically close. For exanma&R andkNOB are semantically
related as one is the meronym (is part) of another. The cope#s,DOCTORandSURGEON

are semantically related (as well as being semanticallylai)ras one is the hyponym of the
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other. Example pairs considered semantically related duh-classical relations include
SURGEON-SCALPEL andTREE-SHADE. Note that semantic similarity entails semantic relat-

edness (Figure 1.3 (a)) but the converse need not be truar¢-ig3 (b)).

1.1.2 Can humans estimate semantic distance?

Many will agree that humans are adept at estimating semdistiance, but consider the fol-
lowing questions. How strongly will two people agree/dissgon distance estimates? Will
the agreement vary over different sets of concepts? In oudsnis there a clear distinction be-
tween related and unrelated concepts or are concept-pagadsacross the whole range from
synonymous to unrelated? Some of the earliest work thahbdgianswer these questions is
by Rubenstein and Goodenough (1965a). They conducteditpiamet experiments with hu-
man subjects (51 in all) who were asked to rate 65 English wais on a scale from 0.0 to
4.0 as per their semantic distance. The word pairs chosgedainom almost synonymous
to unrelated. However, they were all noun pairs and thosenwtbee semantically close were
semantically similar; the dataset did not contain word p#iat are semantically related but
not semantically similar (word pairs pertaining to &eegion of Figure 1.2). The subjects re-
peated the annotation after two weeks and the new distahoesvaad a Pearson’s correlation
of 0.85 with the old ones. Miller and Charles (1991) also eaarted a similar study on 30 word
pairs taken from the Rubenstein-Goodenough pairs. Thesaations had a high correlation
(r = 0.97) with the mean annotations of Rubenstein and Goodendigfibé). Resnik (1999)
repeated these experiments and found the inter-annoEe@aentr) to be 0.90.

Resnik and Diab (2000) conducted annotations of 48 verls aid found inter-annotator
agreementr() to be 0.76 (when the verbs were presented without contagitPa/9 (when pre-
sented in context). Gurevych (2005) and Zesch et al. (2083kgd native German speakers
to mark two different sets of German word pairs with distanakies. Set 1 was a German
translation of the Rubenstein and Goodenough (1965a) etatéishad 65 noun—noun word

pairs. Set 2 was a larger dataset containing 350 word paiderap of nouns, verbs, and
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J ,k"
& @
DOCTOR SURGEON

semantic similarity

DOCTOR SURGEON
semantic relatedness

(a) Concept pair that is semantically related and semadlytgianilar.

SURGEON SCALPEL
semantic relatedness

SURGEON SCALPEL
semantic similarity

(b) Concept pair that is semantically related but not seroalht similar.

Figure 1.3: Examples
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Table 1.1: Different datasets that are manually annotaidddistance values. Pearson’s cor-

relation was used to determine inter-annotator agreernfasttdolumn).

Dataset Year Language #pairs PoS  #subjects Agreement
Rubenstein and Goodenough 1965  English 65 N 51 -
Miller and Charles 1991  English 30 N - .90
Resnik and Diab 2000 English 27 \% - .76 and .79
Gurevych 2005 German 65 N 24 .81
Zesch and Gurevych 2006 German 350 N,V,A 8 .69

adjectives. The semantically close word pairs in the 65eveat were mostly synonyms or hy-
pernyms (hyponyms) of each other, whereas those in the 860-set had both classical and
non-classical relations with each other. Details of themmantic distance benchmarksre
summarized in Table 1.1. Inter-subject agreements (ldstrooin Table 1.1) are indicative of
the degree of ease in annotating the datasets. The highnagméand correlation values sug-
gest that humans are quite good and consistent at estinsgingntic distance of noun-pairs;
however, annotating verbs and adjectives and a combinatiparts of speech is harder. This
also means that estimating semantic relatedness is h&waleestimating semantic similarity.
It should be noted here that even though the annotators wesemqted with word-pairs and not
concept-pairs, it is reasonable to assume that they wergtated as per their closest senses.
For example, given the noun pdaankandinterest most if not all will identify it as semanti-
cally related even though both words have more than one semsmany of the sense—sense
combinations are unrelated (for example, HIRER BANK sense obankand thesPECIAL
ATTENTION sense ofnteres).

Apart from proving that humans can indeed estimate semdistiance, these datasets act
as “gold standards” to evaluate automatic distance mesasti@vever, lack of large amounts
of data from human subject experimentation limits the bality of this mode of evaluation.
Therefore automatic distance measures are also evalugatidebip usefulness in natural lan-

guage tasks such as those described in the next section.
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1.1.3 Pervasiveness of semantic distance in natural langge processing

A large number of problems in natural language processiegraessence semantic-distance
problems. Machine translation systems must choose a ateorshypothesis in the target lan-
guage that is semantically closest, if not identical, togbarce language text. Paraphrases
are pieces of text that can be used more or less interchaygeabcan be identified by their
property of being semantically close. The same is true,italbe lesser extent, for a phrase
that entails another. Information retrieval involves thkestion of documents closest in content
to the query terms. Query-based summarization requiresngrother things, choosing those
sentences to be part of the summary that are closest to tig dd@cument clustering is the
grouping of semantically close pieces of text. Discovemwayd senses from their usage in-
volves grouping the usages so that those in the same grogpraantically close to each other
whereas those in different groups are distant—each suclpgepresents a sense of the target.
Word sense disambiguation is the identification of the sefts®st to a particular instance of
the target word. Identifying idioms and specific idiomatgages of multiword expressions
involves determining whether a usage (or a set of usagebaiXpression is semantically dis-
tant from the usages of its components—if they are moreristiaen the probability that the
expression is used in a non-literal sense is higher. Read-spelling errors can be detected by
identifying words that are semantically distant from tleaintext and the existence of a spelling
variant that is close (Hirst and Budanitsky, 2005). Word ptetion and prediction algorithms
rank those candidate words higher that are semanticakbgedmthe preceding context.

Thus, semantic distance plays a key role in natural langpagegessing. As measures of
semantic distance between concepts can be extended tétatalthe distance between larger
units of language, such as phrases and documents, undingtamd improving these mea-
sures will have a significant and wide-ranging impact (sddela.2 for some recent applica-
tions). In this thesis, | will identify some of the key dravdia and limitations of state-of-
the-art distance measures, and propose a new class of reg#sairnot only overcomes those

problems but also lends itself for use in more tasks throtgubstantially new capabilities.
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Table 1.2: Natural language tasks that have been attemjitteche@asures of semantic distance.
Natural Language Task Approaches that use semantic distamc

Cognates (identifying) Kondrak (2001)
Coreference resolution Ponzetto and Strube (2006)
Document clustering Wang and Hodges (2006)
Information extraction Hassan et al. (2006); StevensonGneegnwood (2005)
Information retrieval Varelas et al. (2005)
Multiword expressions Baldwin et al. (2003); Cook et al.qzp
(identifying)
Paraphrasing and Schilder and Thomson Mclnnnes (2006);
textual entailment Ferrandez et al. (2006); Zanzotto andditti (2006)
Question answering Lamijiri et al. (2007)

Real-word spelling error Hirst and Budanitsky (2005); Motmad and Hirst (2006b)
detection

Relation extraction Chen et al. (2005)

Semantic similarity of texts Corley and Mihalcea (2005)

Speech recognition Inkpen and Desilets (2005)

Subjectivity (determining)  Wiebe and Mihalcea (2006)

Summarization Gurevych and Strube (2004); Zhu and Penrb}200
Li et al. (2006)

Textual inference Haghighi et al. (2005); Raina et al. (2005

Word prediction Pucher (2006)

Word sense disambiguation Banerjee and Pedersen (2008gathy (2006);
Mohammad et al. (2007b); Patwardhan et al. (2007)
Word-sense discovery Ferret (2004)
Word-sense dominance McCarthy et al. (2004b); MohammadHanstl (2006a)
(determining)
Word translation* Mohammad et al. (2007b)

* Word translation refers to determining the translatiomaeford using its context.



CHAPTER 1. SEMANTIC DISTANCE 9

1.1.4 Can machines estimate semantic distance?

Two classes of methods have been used in automaticallyieieg semantic distanc&nowledge-
rich measures of concept-distancesuch as those of Jiang and Conrath (1997), Leacock
and Chodorow (1998), and Resnik (1995), rely on the streabdfia knowledge source, such
as WordNet, to determine the distance between two concefitsed in it> Distributional
measures of word-distance (knowledge-lean measuresuch as cosine arm-skew diver-
gence (Lee, 2001), rely on thistributional hypothesis which states that two words tend
to be semantically close if they occur in similar contextstffy 1957). These measures rely
simply on text and can give the distance between any two wbeat®ccur at least a few times.
The various WordNet-based measures have been widely dt(@ieanitsky and Hirst,
2006; Patwardhan et al., 2003). Even though individuatiigtional measures are being used
more and more, the study of distributional measures on th@eylespecially when work on
this thesis commenced, received much less attedtion.Chapter 2, | summarize various
knowledge-rich approaches to semantic distance and pras#stailed analysis of the distri-

butional measures.

1.2 Why the need for a better approach

Distributional word-distance and WordNet-based concigtiance measures each have certain
uniquely attractive features: WordNet-based measuresajaitalize on the manual encoding
of lexical semantic relations, while distributional apacbes are widely applicable because
they need only raw raw text (and maybe some shallow syntpoticessing). Unfortunately,

these advantages come at a cost. | now flesh out the limisatibimoth kinds of measures.

1The nodes in WordNet (synsets) represent concepts and beggsen nodes represent semantic relations
such as hyponymy and meronymy.
2See Curran (2004) and Weeds et al. (2004) for other work tirapares various distributional measures.
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1.2.1 Limitations common to both WordNet-based concept-ditance and

corpus-based word-distance measures
1.2.1.1 Computational complexity and storage requiremerst

As applications for linguistic distance become more sdplated and demanding, it becomes
attractive to pre-compute and store the distance valuegeketall possible pairs of words or
senses. However both WordNet-based and distributionatunes have large space require-
ments to do this, requiring matrices of sikex N, whereN is very large. In case of distri-
butional measures\l is the size of the vocabulary (at least 100,000 for most laggs). In
case of WordNet-based measuridsis the number of senses (81,000 just for nouns). Given
that the above matrices tend to be spsel that computational capabilities are continuing to
improve, the above limitation may not seem hugely problénhut as we see more and more
natural language applications in embedded systems andi@ddlevices, such as cell phones,

iPods, and medical equipment, memory and computationaépbecome serious constraints.

1.2.1.2 Reluctance to cross the language barrier

Both WordNet-based and distributional distance measuaes largely been used in a mono-
lingual framework. Even though semantic distance seem®lob promise in tasks, such as
machine translation and multi-lingual text summarizatibat inherently involve two or more

languages, automatic measures of semantic distance hale baen applied to these tasks.
With the development of the EuroWordNet, involving intemroected networks of seven differ-
ent languages, it is possible that we shall see more cnogadl work using WordNet-based
measures in the future. However, such an interconnecteerietill be very hard to create

for more different language pairs such as English and Chine&nglish and Arabic.

3Even though, WordNet-based and distributional measuxesrgin-zero similarity and relatedness values to
a large number of term pairs (concept pairs and word paiat)eg below a suitable threshold can be reset to 0.
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1.2.2 Further limitations of WordNet-based concept-distace measures
1.2.2.1 Lack of high-quality WordNet-like knowledge soures

Ontologies, WordNets, and semantic networks are avaifabpla few languages such as En-
glish, German, and Hindi. Creating them requires humanréxped it is time intensive. Thus,
for most languages, we cannot use WordNet-based measomgly siue to the lack of a Word-
Net in that language. Further, even if created, updatingrdalegy is again expensive and
there is usually a lag between the current state of langusggeldcomprehension and the se-
mantic network representing it. Further, the complexityhofman languages makes creation
of even a near-perfect semantic network of its concepts ssipte. Thus in many ways the
ontology-based measures are only as good as the networkkioh thiey are based.

On the other hand, distributional measures require only tearge corpora, billions of
words in size, may now be collected by a simple web crawlergé.a&orpora of more-formal
writing are also available (for example, téll Street Journabr theAmerican Printing House

for the Blind (APHB)corpus). This makes distributional measures very attracti

1.2.2.2 Poor estimation of semantic relatedness

As Morris and Hirst (2004) pointed out, a large number of @pi@airs, such aSTRAWBERRY-
CREAM andDOCTOR-SCALPEL, have a non-classical relation between themMRAWBERRIES
are usually eaten wittREAM and aDOCTOR uses asCALPEL to make an incision). These
words are not semantically similar, but rather semanticallated. An ontology- or WordNet-
based measure will correctly identify the amount of sencanielatedness only if such relations
are explicitly coded into the knowledge source. Furtheeg, riiost accurate WordNet-based
measures rely only on its extensive is-a hierarchy. Thisemahse networks of other lexical-
relations such as meronymy are much less developed. Fuittearetworks for different parts
of speech are not well connected. All this means that, whitgdNet-based measures ac-

curately estimate semantic similarity between nounsy #simation of semantic relatedness
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especially in pairs other than noun—noun is at best poor anwdrae non-existent. On the other
hand, distributional measures can be used to determinesbothntic relatedness and semantic

similarity (see Section 2.3.1 for more details).

1.2.2.3 Inability to cater to specific domains

Given a concept pair, measures that rely only on WordNet antext, such as Rada et al.
(1989), give just one distance value. However, two concejatg be very close in a certain
domain but not so much in another. For examplsceandTIME are close in the domain of
guantum mechanics but not so much in most others. Ontolbgies been made for specific
domains, which may be used to determine semantic similgpiegific to these domains. How-
ever, the number of such ontologies is very limited. Somenhefrhore successful WordNet-
based measures, such as Jiang and Conrath (1997), thahrelyt@s well, do indeed capture
domain-specificity to some extent, but the distance valvestll largely shaped by the un-
derlying network, which is not domain-specific. On the othand, distributional measures
rely primarily (if not completely) on text and large amoufscorpora specific to particular

domains can easily be collected.

1.2.3 Further limitations of corpus-based word-distance rrasures
1.2.3.1 Conflation of word senses

The distributional hypothesis Firth (1957) states thatdsdhat occur in similar contexts tend
to be semantically close. But when words have more than amsesé is not at all clear what
semantic distance between them actually means. Furtherdiiveach of its senses is likely
to co-occur with different sets of words. For examgdankin the FINANCIAL INSTITUTION
sense is likely to co-occur witinterest, money, accountsd so on, whereas tiReVER BANK
sense might have words such rager, erosion,andsilt around it. Since words that occur

together in text tend to refer to senses that are closestamimgto one another, in most natural
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language applications, what is needed is the distance batihe closest senses of the two
target words. However, because distributional measureslate distance from occurrences
of the target word in all its occurrences and hence all itsegnthey fail to get the desired
result. Also note that the dimensionality reduction ininéte latent semantic analysis (LSA),
a special kind of distributional measure, has the effect akimg the predominant senses of
the words more dominant while de-emphasizing the otheresentherefore, an LSA-based
approach will also conflate information from the differeahses, and even more emphasis will
be placed on the predominant senses. Given the semantizah/target nounslay andactor,

for example, a distributional measure will give a score thabme sort of a dominance-based
average of the distances between their senses. Theplayhas the predominant sense of
CHILDREN’S RECREATION(and notbRAMA), so a distributional measure will tend to give the
target pair a large (and thus erroneous) distance scoredlNéttbased measures do not suffer

from this problem as they give distance between conceptsyowls.

1.2.3.2 Lack of explicitly-encoded world knowledge and dat sparseness

It is becoming increasingly clear that more-accurate tegian be achieved in a large number
of natural language tasks, including the estimation of sgimaistance, by combining corpus
statistics with a knowledge source, such as a dictionabljshed thesaurus, or WordNet. This
is because such knowledge sources capture semantic irifomadéout concepts and, to some
extent, world knowledge. For example, WordNet, as disaieselier, has an extensive is-a
hierarchy. If it lists one concept, sayeEBMAN SHEPHERDas a hyponym of another, sapg,
then we can be sure that the two are semantically close. Onttteg hand, distributional
measures do not have access to such explicitly encodednafmm. Further, unless the corpus
used by a distributional measure has sufficient instanc@&:eiMAN SHEPHERD andDOG, it
will be unable to deem them semantically close. Since Ziafi¢ seems to hold even for the
largest of corpora, there will always be words that occurfévotimes to accurately determine

their distributional distance from others.
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1.3 A new approach:

Distributional measures of concept-distance

In this thesis, | propose a new hybrid approach that comkaniesowledge source with text
to measure semantic distance. The new measures have thHediasts of both semantic and
distributional measures and some additional advantageskhs They address, with varying

degrees of success, the limitations of earlier approaches.

1.3.1 The argument:

Distributional profiles of concepts for measuring semantiaistance

The central argument of this thesis is that semantic distaessentially a property of con-
cepts (rather than of words) and that two concepts are saraytlose if they occur in similar
contexts. This is similar to the distributional hypothestgept that the target is a word sense
or concept (rather than a word). The set of contexts of a qurean be represented by what
| will call the distributional profile of the concept (DP of the conceptor simplyDPC). The
distributional profile of a concept is the set of words thacour with it in text, along with
their strength of the co-occurrence association—a numatiee indicating how much more
than random chance a word tends to co-occur with a concepé(dstails in Chapter 3). Thus,
the semantic distance between two concepts can be deterinynealculating the distance
between the respectihi2PCs. The argument proposed here reduces to the distributignal h
pothesis when we consider words with just one sense or mgaHdimwever, the words people

use most tend to be highly ambiguous.

It is a perverse feature of human languages that the wordsmsst frequently

tend to be the most polysemantic.

— George A. Miller ("Ambiguous Wordslmpacts MagazineMay 2001)
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While the distributional hypothesis clumps all occurrenoéa word into one bag (Figure 1.4),

| propose profiling the different senses separately (Figus¢ The motivation is that a word
when used in different senses tends to keep different coyphat is, it co-occurs with a
different sets of words. By profiling the contexts of diffetsenses separately, we will be able
to infer the semantic properties of the different sensesiraeed estimate semantic distance
more accurately.

The creation of DPCs requires: (1) a concept inventory thest &ll the concepts and words
that refer to them, and (2) counts of how often a concept @Hscwith a word in text. We
use the categories in tiacquarie Thesaurys812 in all, as very coarse-grained word senses
or concepts (Figure 1.6). This is a departure from the northéncomputational linguistics
community where the use of WordNet or another similarly fiyneined sense inventory is more
common. However, this very aspect of fine-grainedness has Wwelely criticized for some
time now (Agirre and Lopez de Lacalle Lekuona (2003) andiois therein), and is one of

the reasons this work uses a published thesaurus; SecB@hgtesents further motivation.

Since words may be used in more than one sense and can refdfieterd concepts in
different contexts, a direct approach to determining thecept—word co-occurrence counts
requires sense-annotated text. However, manual annotatiedious, expensive, and not easily
scalable. This brings us to the following questions: (1) @&ndetermine accurate estimates
of concept—word co-occurrence counts, and thereby daterBiPCs, without the use of sense-
annotated data? and (2) Can these estimates of DPCs be uséer temantic properties of
concepts, and indeed accurately measure semantic di8taihcethesis claims that the answers
to both of these questions are affirmative—an even strorigien than the one made earlier in
this section. In Chapter 3, | propose a bootstrapping andegardisambiguation algorithm to
create (estimates of) distributional profiles of concepthout the use of any human-annotated
data. In Chapter 4, | show how DPCs can be created in a crogsdi framework. Chapters

3 through 7 describe experiments in various natural languasks that were attempted using
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Figure 1.4: Example distributional profile (DP) of the waitdr. A solid arrow indicates strong

co-occurrence association whereas a dotted arrow indieateak co-occurrence association.
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Figure 1.5: Example distributional profiles of two sensestaf.



CHAPTER 1. SEMANTIC DISTANCE 17

THE 302. FURNITURE 369. HONESTY
MACQUARIE furniture honesty
THESAURUS chair incorruptness

stool integrity
bench plain dealing
couch probity

cot scrupulosity
table sincerity

AUSTRALIA’S NATIONAL THESAURUS

Figure 1.6: TheMacquarie Thesauruand fragments of its content.

these DPCs (Section 1.3.3 gives a brief outline) and whosdtsevalidate the claims made

above.

1.3.2 A suitable knowledge source and concept inventory

Knowledge sources, such as dictionaries, thesauri, andngts, capture semantic informa-
tion about concepts and, to some extent, world knowledge.afproach proposed here does
not require a complex array of concepts interconnected tmagséc relations as in WordNet.
Nor does it require glosses that tend to be somewhat sulgeantid rigid. Instead, it requires
only that the knowledge source provide a list of all the cgteén a language (or a subset of
the language) and a set of words and/or multiword expressipresenting each concept. |
use the categories in tiMacquarie Thesauruas senses. Most published thesauri divide the
vocabulary into about 1000 categories, which can be coreidas the basic concepts repre-
sented by the language. The words listed under each catglpsis/the meaning of the concept.
The concepts (categories) roughly correspond to very eegnaned word senses (Yarowsky,
1992).

Published thesauri are available in a number of languagiesugh, admittedly many lan-
guages may not have comprehensive and high-quality onesouRmes that are not thesauri,

per se, may also be used in place of a published thesaurus. Léata and Keller (2007)
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for a simplified version of our word sense dominance systemh@mmad and Hirst, 2006a)
that uses WordNet instead of a thesaurus.) More importaasly will describe in the next
subsection, my approach can determine semantic distamceirpossibly resource-poor, lan-
guage using a thesaurus from another, possibly resowlicéanguage, thereby eliminating the
knowledge-source bottleneck.

As applications for linguistic distance become more sdpiated and demanding, it be-
comes attractive to pre-compute and store the distancevdletween all possible pairs of
words or senses. But both corpus-based word-distance amdN&bbased sense-distance
measures have large space requirements, needing matrgiee N x N, whereN is the size
of the vocabulary (perhaps 100,000 for most languages)kicaise of distributional measures
and the number of senses (75,000 just for nouns in WordNéteioase of semantic measures.
The use of categories in a thesaurus as concepts meansishepphoach requires a concept—
concept distance matrix of size only about 1600000—much smaller than (about 0.01% the
size of) the matrix required by traditional semantic andritigtional measures. This makes
the approach scalable to large amounts of text. Working &latively smaller number of di-
mensions (1000 concepts), as suggested above, means thatare hand there will be a loss
of information (in this case, a loss of distinction betweeamsynonyms) and yet on the other
hand there is more information to accurately determine séimeistance between the coarse
concepts. As | will show, through various experiments tiglmut this thesis, in a number of
natural language applications, using semantic distanweciee these very coarse senses is just
as useful if not more so. Further, | believe, this distanq@agch provides a powerful starting
point to build on top of it a system that differentiates nsganonyms.

In this thesis, | go further and use the idea of a very coarssesgventory to develop a
framework for distributional measures of concept-distatiat can more naturally and more
accurately be used in place of semantic measures of worés#msn distributional measures

of word-distance.
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1.3.3 Applications in measuring semantic distance

In Chapters 3 and 4, | will show how, using the DPCs, tradalafhistributional measures, such
as cosine and-skew divergence, can be used to measure the distance Ibetomeepts (rather
than words). | will show that when applied even to domainegahnoun conceptsn the tasks

of ranking word pairs in order of their semantic distance, correcting real-word spelling
errors, andsolvingReader’s Digestvord choice problems the newly proposed distributional
concept-distance measures outperform traditional wgstiidce measures and are as accurate
as, if not better than, the semantic measures.

Modeling co-occurrence distributions of concepts and waitbws this approach (unlike
the traditional semantic and distributional measures)ttiengpt in an unsupervised manner
tasks that traditionally require sense-annotated dat&hlpter 5, | will show how distribu-
tional profiles of concepts can be usediiermine word sense dominance-the proportion
of the occurrences of a target word used in a particular sebgeboth explicit and implicit
word sense disambiguatioord sense disambiguationas mentioned earlier, is the identifi-
cation of the sense closest to the context of a particulawroerce of the target word. Chapter
6 describes how the DPCs can be used to creatmanpervisetaive Bayes word sense clas-
sifier. This system patrticipated in SemEval-07’s Engliskital Sample Space coarse-grained
word sense disambiguation task and was only about one gagsepoint below the best unsu-
pervised system.

Knowledge-rich measures of concept-distance and distoial measures of word-distance
are largely monolingual, that is, they are used to quanigiatice between concepts or words
in the same language. Further, the use of semantic measuestirhate distance in one lan-
guage requires a knowledge source in that (same) languagtrtuhately, most languages

do not have knowledge sources such as WordNet. Even though lmaguages, as pointed

4As mentioned earlier, the performance of semantic meassisignificantly worse for concept pairs other
than noun—noun.

SSemEval-07 is a workshop of ACL-07, where systems competarious semantic analysis tasks on newly
compiled/created test data.
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out in the previous section, have a published thesaurllanstny more do not. In Chapter 4,
| will show how text in one language can be combined with a Kedge source in another,
using a bilingual lexicon and the bootstrapping/concegaimibiguation algorithm, to create
cross-lingual distributional profiles of concepts

These cross-lingual DPCs model co-occurrence distribatad concepts, as per a knowl-
edge source in one language, with words from another largyuigey can be used to obtain
state-of-the-art accuracies @stimating semantic distance in a resource-poor languagest
ing a knowledge source from a resource-rich oneln Chapter 4, | will show how German—
English DPCs can be created by combining a German corpusawiinglish thesaurus using
a German—English bilingual lexicon. A comparison of thiprach with strictly monolingual
approaches that use GermaNet reveals that the crossdliagpioach performs just as well,
if not better, thereby proving the worth of the approach toglaages that lack a GermaNet,
WordNet, or other such knowledge source.

Cross-lingual semantic distance and cross-lingual DP€sakso useful in tasks that in-
herently involve two or more languages. In Chapter 7, | wilbw how they can helma-
chine translation—choosing a translation hypothesis in the target langubgei$ semanti-
cally closest, if not identical, to the source language. t€ke implementation of a DPC-based
unsupervised naive Bayes classifier placed first amongnalipervised systems taking part
in SemEval-07’s Multilingual Chinese—English Lexical SaenTask, where suitable English
translations of given target Chinese words in context weleetidentified.

Together these results provide unequivocal and substamitience for the claim that esti-
mates of distributional profiles of concepts, created withibe use of any manually-annotated
data, can be used to infer semantic properties of a concegtinaleed accurately measure

semantic distance.



Chapter 2

State-of-the-art in estimating semantic

distance

2.1 Knowledge sources

Automatic measures of semantic distance rely on one or moog/ledge sources, such as
text, dictionaries, thesauri, and WordNet. Those that satyply on text and give distance
betweernwords such as the distributional measures, are referredko@sledge-leanwhereas
others, such as the WordNet-based measures that give aidb@tweerconceptsare called
knowledge-rich. Measures of concept-distance require both a concepttiomethat lists all
the concepts in a language and a lexicon that lists all thelsvtirat refer to them. WordNet
acts as both the concept inventory and the lexicon for thedWet-based measures, while the

Macquarie Thesauruglays those roles in the approach | propose.

2.1.1 Text

Words that occur within a certain window of a target word aaibed theco-occurrencesof
the word. The window size may be a few words on either sidectimplete sentence, the

paragraph or the entire document. Consider the sentenoe:bel

21
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Nobody can cast apelllike Hermione

If we consider the window size to be the complete senteneagellco-occurs witmobody,
can, cast, a, likeandHermione The co-occurring words are also said to constitutectirgext
of the target word.

The target word may have more than one meaning, but when nsedentence it almost
always refers to just one of these senses or concepts. Trugjards that co-occur with the
target word can also be said to co-occur with its intendedeseAlthoughspellcan meam
PERIOD OF TIME in the example above it is used in theCANTATION OR CHARM sense. We
can therefore also say thabbody, can, cast, a, likendHermioneco-occur with the concept
of INCANTATION OR CHARM. Co-occurring words have long been used to determine sé&nant
properties of the target word. In this thesis, the words¢babccur with a concept will be used

to determine its semantic distance from other concepts.

Measures of Association

Some words co-occur with the target (word or concept) justi@ance, whereas others tend
to co-occur more often than chance. For examptdodyis expected to co-occur witspell
(or INCANTATION OR CHARM) more or less by chance; howeveastis expected to co-occur
with the same target much more often than chance. The strémg@ssociation between the
target and a co-occurring word, the more informative thecadrring word is. The hypothesis
is that the more two concepts are semantically related, thee rthey will be talked about
together. Therefore, if inferences are to be made abouatgettfrom its co-occurring words,
then more weight is given to information provided by strange-occurrences. The weight
is proportional to thestrength of association which quantifies how strong the co-occurrence

is. It can be calculated by applying a suitable statistichsas pointwise mutual information
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(PMI), to acontingency tableof the target (word or concept) and the co-occurring wavd

t -t

W | Nwt Ny
W | Ny N

A contingency table shows the number of times two eventsrdogether (), the number of
times one occurs while the other does mot @ndn,,-), and the number of times neither occurs
(n—-). Strength of association values are calculated from ebsidrequenciesn(y;, N—t, Ny,
andn_-), marginal frequenciesif = Nut + Nw—; N—x = N—t +N——; Ny = Nyt +N—¢; andn,—, =
nw— + N--), and the sample sizéN(= nyt + N—¢ + Nw- + n--). It should be noted here that
when counting co-occurrence frequencies to populate thergency table, one may choose
whether or not to incorporate the order of the co-occurrargns. For exampley,: may be
chosen to be the number of timasco-occurs witht: (1) such thatw is followed byt; or
(2) irrespective of whethaw follows t or the other way round. Both ways of determining the
contingency table are defendable. For all the experimeamiducted as part of this thesis, the
order of co-occurrence is ignored.

Pointwise mutual information (PMI), is one of the most widaked measures of associa-

tion. Its formula is given below:

Nwt X N
Myse X Nt

pmi(w,t) = log
PMI gives a score of O if the occurrence of one event is siedity independent of the other.
Scores can reach positive infinity if the events are depdra@hnegative infinity if they are
inversely dependent. Strictly speaking, the above formdaks not truly represent PMI because
while PMI calculations expect,; to be less than or equal tg,, the way term co-occurrence in
textis usually counted,; may be greater tham,; for example, in a particular sentence, if there
are two occurrences otlose tow, thenny is incremented by 2 whereag is incremented by

just 1. Church and Hanks (1990) pioneered the use of such ébBbHd measure of association

and they called iword association ratio to differentiate it from PMI. Also, co-occurrence
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counts for word association ratio respect the order of temtext. Since the experiments in
this thesis ignore order of co-occurrence and because fieeettice from PMI is only minor,
rather than coining a new term and in accordance with the otatipnal linguistics jargon, |
will refer to the PMI-based measure of association simpliplsis.

The odds ratio (Tan et al., 2002) varies between 0 (invedeghendent) and positive infinity

(dependent);
M- X Nt

oddgw,t) =
where a score of 1 indicates statistical independence. 'syateefficient (Tan et al., 2002)
transforms the odds ratio to-al to 1 scale with O representing independence.
\/ t)—1
Yulgw,t) = oddswit)
yoddgw,t) +1

The cosine (van Rijsbergen, 1979) and Dice coefficient vatyvben 0 and 1, while the

coefficient (Tan et al., 2002) gives values between 0 anditiypfin

n
cogw,t) = ——=%

vV My X vV Nyt
2 X Nyt

My + Nyt

(Nt X N——) — (M= X N—)
\/nW* X Nye X Nyt X Ny,

Dice(w,t) =

pw,t) =
There is no particular value signifying independence fesththree measures. The higher the

values, the stronger the association between the word degars.

2.1.2 WordNet

WordNet is described by its creators as a “large, electedlyi@available, lexical database of
English” (Fellbaum, 1998). It is a semantic network in whigch node, called a synset,
represents a fine-grained concept or word sense. Each syeetposed of a gloss and a set
of near-synonymous words which refer to that concept. Tinsetg are connected by lexical

relations such as hyponymy, meronymy, and so on.
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WordNet 3.0, the current version as of this thesis, has nmare 117,000 synsets and covers
more than 155,000 word-types. It has more than 81,000 n@&80Q verb, 18,000 adjective,
and 3,000 adverb synsets. It has a coverage of more thanQDL@gin, 11,000 verb, 22,000
adjective, and 4,000 adverb word-types.

Since its creation, WordNet has been used by the compugiioguistics research com-
munity for a wide range of tasks from machine translatioreta tategorization to identifying
cognates. Its remarkable success has propelled creatwordhets for numerous other lan-
guages too. For example, GermaNet is a wordnet that confatean nouns, verbs, and
adjectives. It has more than 60,000 synsets.

However, the fine-grainedness of WordNet remains one ofeysdcawbacks. WordNet-
based measures of semantic distance require matricesedfl siZN, whereN is the number
of senses—81,000 just for nouns. The approach proposedsithisis relies on a published
thesaurus, but for the sake of comparison | also conducteeriments using state-of-the art

approaches that rely on WordNet and GermaNet.

2.1.3 Thesauri

Published thesauri, such Reget'sandMacquarie divide the English vocabulary into around
a thousanaategoriesof near-synonymous and semantically related words. Worthsmore
than one meaning are listed in more than one category. Foy ad-type in the vocabu-
lary of the thesaurus, the index specifies the categorid¢dishd. Categories roughly corre-
spond to very coarse word senses or concepts (Yarowsky),188@ the terms will be used
interchangeably. For example, in tMacquarie Thesaurydark is listed in the categories
ANIMAL NOISES andMEMBRANE. These categories represent the coarse sendesmiof A
published thesaurus thus provides us with a very coarse tnaieeloped set or inventory of
word senses or concepts that are more intuitive and digiertiian the “concepts” generated
by dimensionality-reduction methods such as latent semanglysis. Using coarse senses

from a known inventory means that the senses can be repeesenambiguously by a large
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number of possibly ambiguous words (conveniently avadlablthe thesaurus)—a feature |
will exploit to determine useful estimates of the strengthssociation between a concept and
co-occurring words.

We use theMacquarie Thesauru@Bernard, 1986) categories as very coarse word senses.
It has 812 categories with around 176,000 word-tokens an@098wvord-types. This allows
us to have a much smalleoncept—concept distance matribof size just 812 812 (roughly
.01% the size of matrices required by existing measures).

Note that in published thesauri, suchRsget'sandMacquarie categories are further di-
vided into paragraphs and paragraphs into semicolon graMpsds within a semicolon group
tend to be semantically closer to each other than those fierélift semicolon groups of the
same paragraph. Likewise, words within a paragraph tend temantically closer than those
in different paragraphs. The experiments described intti@isis do not take advantage of this
information, except those detailed in Chapter 4. are strally quite different from the so
called “distributional thesaurus” automatically genedaby Lin (1998b), wherein a word has
exactly one entry, and its neighbors may be semanticaliytgdlto it in any of its senses. All

future mentions othesaurusn this thesis will refer to a published thesaurus.

2.2 Knowledge-rich approaches to semantic distance

Creation of electronically available ontologies and seticametworks like WordNet has al-
lowed their use to help solve numerous natural languagdgmrsbincluding the measurement
of semantic distance. Budanitsky and Hirst (2006), Hirst Bndanitsky (2005), and Patward-
han et al. (2003) have done an extensive survey of the vavimndNet-based measures, their
comparisons with human judgment on selected word pairs,tfagid usefulness in applica-
tions such as real-word spelling correction and word serssenbiguation. Hence, this section

provides only a brief summary of the major knowledge-ricramges of semantic distance.
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2.2.1 Measures that exploit WordNet's semantic network

A number of WordNet-based measures consider two concejts tbose if they are close to
each other in WordNet. One of the earliest and simplest rmeass the Rada et al. (1989)
edge-countingmethod. The shortest path in the network between the twetagncepts
(target path) is determined. The more edges there are between two wiesnore distant
they are. Elegant as it may be, the measure hinges on thdylangerrect assumption that all
the network edges correspond to identical semantic distanc

Nodes in a network may be connected by different kinds ofclxielations such as hy-
ponymy, meronymy, and so on. Edge counts apart, the HirstS#@nge (1998) measure
takes into account the fact that if the target path consfegges that belong to many different
relations, then the target concepts are likely more distéhe idea is that if we start from a
particular nodes; and take a path via a particular relation (say, hyponymya, ¢ertain extent
the concepts reached will be semantically related;toHowever, if during the way we take
edges belonging to different relations (other than hypoyjywery soon we may reach words

that are unrelated. Hirst and St-Onge’s measure of sentataiedness is listed below:
HS(cy,c2) = C— path length- k x d (2.1)

wherec; andc; are the target concepts$is the number of times an edge pertaining to a relation
different from that of the preceding edge is taken, @hdndk are empirically determined
constants. More recently, Yang and Powers (2005) propossghted edge-counting method
to determine semantic relatedness using the hypernymgrtyypy, holonymy/meronymy, and
antonymy links in WordNet.

Leacock and Chodorow (1998) used just one relation (hypghyand modified the path
length formula to reflect the fact that edges lower down iniiaa hierarchy correspond to
smaller semantic distance than the ones higher up. For dgasymsets pertaining tports
car andcar (low in the hierarchy) are much more similar than those jp@rtg totransportand

instrumentatior(higher up in the hierarchy) even though both pairs of nodeseparated by
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exactly one edge in WordNet's-a hierarchy.

len(cy, ¢2)

LC(c1,C2) = —log D

(2.2)

whereD is the depth in the taxonomy.

Resnik (1995) suggested a measure that combines corpgtictavith WordNet. He pro-
posed that since thewest common subsumeror lowest super-ordinate (Iso)of the target
nodes represents what is similar between them, the sensamiiarity between the two con-
cepts is directly proportional to how specific the Iso is. Tingre general the Iso is, the larger
the semantic distance between the target nodes. This sggedimeasured by the formula for

information content (IC):

Regci, c2) = IC(Iso(cy, c2)) = —logp(lso(cy, cz)) (2.3)

Observe that using information content has the effect oériehtly scaling the semantic sim-
ilarity measure by depth of the taxonomy. Usually, the loter lowest super-ordinate, the
lower the probability of occurrence of the Iso and the cotespbsumed by it, and hence, the
higher its information content.

As per Resnik’s formula, given a particular lowest supetimate, the exact positions of
the target nodes below it in the hierarchy do not have anycietia the semantic similarity.
Intuitively, we would expect that word pairs closer to the Ee more semantically similar
than those that are distant. Jiang and Conrath (1997) an{LB®i7) incorporate this notion
into their measures which are arithmetic variations of e terms. The Jiang and Conrath
(1997) measurelC) determines how dissimilar each target concept is fromsbelC(c;1) —
IC(Iso(cy,c2)) andIC(cy) — IC(Iso(cy, €2))). The final semantic distance between the two
concepts is then taken to be the sum of these differenceq1BBv) (like Resnik) points out
that the Iso is what is common between the two target conesjptshat its information content

is the common information between the two concepts. His fban(Lin) can be thought of as
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taking the Dice coefficient of the information in the two targoncepts.

JC(c1,c2) = 2logp(Iso(cy,cz)) — (log(p(ca)) + (log(p(c2))) (2.4)
_ B 2 x logp(Iso(cy,cp))
Lin(es,c2) = log(p(ca)) + (log(p(c2)) (&5)

Budanitsky and Hirst (2006) show that the Jiang-Conrathsmesahas the highest correla-
tion (0.850) with the Miller and Charles noun pairs and perfe better than all other measures
considered in a spelling correction task. Patwardhan €2@03) get similar results using the
measure for word sense disambiguation.

All of the approaches described above rely heavily (if néglgd on the hypernymy/hyponymy
network in WordNet; they are designed for, and evaluatetdhoun—noun pairs. However, more
recently, Resnik and Diab (2000) and Yang and Powers (20@®&)loped measures aimed
at verb—verb pairs. Resnik and Diab (2000) ported severakaores which are traditionally
applied on the noun hypernymy/hyponymy network (edge dognResnik (1995), and Lin
(1997)) to the relatively shallow verb troponymy networkeltwo information content-based
measures best ranked a carefully chosen set of 48 verbsén ofdheir semantic distance.
Yang and Powers (2006a) ported their earlier work on nouas@¥ind Powers, 2005) to verbs.
In order to compensate for the relatively shallow verb tropoy hierarchy and the lack of a
corresponding holonymy/meronymy hierarchy, they prodoseveral back-off models—the
most useful one being the distance between a noun pair teadhbasame lexical form as the
verb pair. However, the approach has too many tuned paresn@&en all) and performed

poorly on a set of 36 TOEFL word choice questions involvinghuargets and alternatives.

2.2.2 Measures that rely on dictionaries and thesauri

Lesk (1986) introduced a method to perform word sense digarabon using word glosses

(definitions). The glosses of the senses of a target wordaangared with those of its context

10nly those verbs were selected which require a theme anditheategorization frames of verb pairs had to
match.
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and the number of word overlaps is determined. The sensethatmost number of overlaps
is chosen as the intended sense of the target. Inspired$ggproach, Banerjee and Pedersen
(2003) proposed a semantic relatedness measure that deemscepts to be more seman-
tically related if there is more overlap in their glosses.taldy, they overcome the problem
of short glosses by considering the glosses of concept®dela the target concepts through
the WordNet lexical semantic relations such as hyponynpeéhyymy. They also give more
weight to larger overlap sequences. Patwardhan and Pad@@@6) proposed another gloss-
based semantic relatedness measure which performed\shghse than the extended gloss
overlap measure in a word sense disambiguation task, bledligibetter at ranking the Miller
and Charles (1991) word pairs. Their approach has certaiitesities to the one proposed in
this thesis and so will be discussed in more detail in thei@e8 6 Related workof the next
chapter.

Jarmasz and Szpakowicz (2003) use the taxonomic structuhe &oget’s Thesauru®
determine semantic similarity. Two words are consideredimally similar if they occur in
the same semicolon group in the thesaurus. Then on, dewgdgassimilarity are word pairs in
the same paragraph, words pairs in different paragraplenidielg to the same part of speech
and within the same category, word pairs in the category,sandn until word pairs which
have nothing in common except that they are in the thesaoragially distant). They show
that this simple approach performs remarkably well at nagkvord pairs and determining the

correct answer in sets of TOEFL, ESL, aRdader’s Digestvord choice problems.

2.3 Knowledge-lean approaches to semantic distance

2.3.1 The distributional hypotheses: the original and the ew

Distributional measuresare inspired by the maxim “You shall know a word by the company
it keeps” (Firth, 1957). These measures rely simply on raw @aad possibly some shallow

syntactic processing. They are much less resource-huhgrythe semantic measures, but
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they measure the distance between words rather than wosgser concepts. Two words are
considered close if they occur in similar contexts. Stagsacquired from large text corpora
are used to determine how similar the contexts of the two sareé. This distance between
sets of contexts can be used as a proxy for semantic distaneerds found in similar contexts

tend to be semantically similar—tlistributional hypothesis (Firth, 1957; Harris, 1968).

The hypothesis makes intuitive sense, as Budanitsky arst FA006) point out: If two
words have many co-occurring words in common, then simiargs are being said about
both of them and so they are likely to be semantically simi@onversely, if two words are
semantically similar, then they are likely to be used in ailsinfashion in text and thus end
up with many common co-occurrences. For example, the séralyntsimilar bugandinsect
are expected to have a number of common co-occurring wowds ascrawl, squash, small,
woods and so on, in a large enough text corpus.

The distributional hypothesis only mentions semantic lsinty and not semantic related-
ness. This coupled with the fact that the difference betvgeemantic relatedness and semantic
similarity is somewhat nuanced, and can be missed, meanakmast all work employing
the distributional hypothesis was labeled as estimatingasgic similarity. However, it should
be noted that distributional measures can be used to estimo#t semantic similarity and se-
mantic relatedness. Even though Schitze and Pedersen) @®® Landauer et al. (1998), for
example, use the tersimilarity and notrelatednesstheir LSA-based distance measures in
fact estimate semantic relatedness and not semantic styil& propose more specific dis-
tributional hypotheses that make clear how distributianabsures can be used to estimate

semantic similarity and how they can be used to measure semelatedness:

Hypothesis of the distributionally close and semanticallyelated:

Two target words are distributionally close and semaritiaalated if they have
many common strongly co-occurring words.

(For examplegdoctor-surgeoranddoctor-scalpel See example co-occurring words

in Table 2.1.)
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Table 2.1: Example: Common syntactic relations of targataavith co-occurring words.

Co-occurring words

cut(v) hardworking(adj) patient(n)
Semantically similar
target pair
doctor(n) subject—verb noun—qualifier subject—object
surgeon(n) subject-verb noun—qualifier subject-object
Semantically related
target pair
doctor(n) subject-verb noun—qualifier subject-object
scalpel(n) prepositional object—verb - prepositional objecteabj

Hypothesis of the distributionally close and semanticallysimilar:

Two target words are distributionally close and semarticsimilar if they have
many common strongly co-occurring words that each haveahesyntactic re-
lation with the two targets.

(For exampledoctorsurgeon but notdoctor-scalpel See syntactic relations with

example co-occurring words in Table 2.1.)

The idea is that both semantically similar and semantiaalgted word pairs will have
many common co-occurring words. However, words that areaséinally similar belong to
the same broad part of speech (noun, verb, etc.), but the saetenot be true for words that
are semantically related. Therefore, words that are seoadigtsimilar will tend to have the
same syntactic relation, such as verb—object or subjedi;-wéth most common co-occurring
words. Thus, the two words are considered semanticallyeclsimply if they have many
common co-occurring words. But to be semantically simitanall, the words must have the
same syntactic relation with co-occurring words. Constterword pairdoctor—operateln a

large enough body of text, the two words are likely to havddiewing common co-occurring
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words: patient, scalpel, surgery, recuperai@nd so on. All these words will contribute to a
high score of relatedness. However, they do not have the sgntactic relation with the two
targets. (The wordloctoris almost always used as a noun whilgerateis a verb.) Thus,
as per the two newly proposed distributional hypothedestorandoperatewill correctly be
identified as semantically related but not semanticallyilarmThe word paidoctor—nurseon
the other hand, will be identified as both semantically ezland semantically similar.

In order to clearly differentiate from the distance as cla®d by a WordNet-based se-
mantic measure (described earlier in Section 2.2.1), thtanice calculated by a corpus-based

distributional measure will be referred to @distributional distance.

2.3.2 Corpus-based measures of distributional distance

| now describe specific distributional measures that relghendistributional hypotheses; de-
pending on which specific hypothesis they use, they mimleeeisemantic similarity or se-

mantic relatedness.

2.3.2.1 Spatial Metrics: Cos, l, L»

Consider a multidimensional space where the number of diroea is equal to the size of the
vocabulary. A wordv can be represented by a point in this space such that the canpoafw

in a dimension (corresponding to woxdsay) is equal to the strength of association (SoA) of
w with x (SoAw, x)) (Figure 2.1 (a)). Thus, the vectors corresponding to twoda@reclose
together, and thereby get a low distributional distanceesdbthey share many co-occurring
words and the co-occurring words have more or less the samegthh of association with
the two target words (Figure 2.1 (b)). The distance betwe@nviectors can be calculated in

different ways as described below.

Cosine

The cosinemethod (denoted bgos) is one of the earliest and most widely used distribu-
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(a) Vi (b) 4

SOA(W,y)| - :

SoA(W,X)

xY
x Y

Figure 2.1: (a) A representation of wordin co-occurrence vector space. Valugs wy,
andwz are its strengths of association withy, andz, respectively. (b) Spatial distributional

distance between target wordg andws.

tional measures. Given two wordtg andws, the cosine measure calculates the cosine of the
angle betweenv; andws. If a large number of words co-occur with boty andws,, then
w1 andws will have a small angle between them and the cosine will bgetasignifying a
large relatedness/similarity between them. The cosinesureajives scores in the range from
0 (unrelated) to 1 (synonymous).

> weC(wr)UC(ws) (P(W[wa) X P(w|wy))
[ Suecton) POVW)2 1 [T cciu P2

whereC(t) is the set of words that co-occur (within a certain window)hwthe wordt in a

Cogqwi,Wp) (2.6)

corpus. In this example, conditional probability of the @meurring words given the target
words is used as the strength of association.

The cosine was used, among others, by Schitze and Ped&f9f) Gnd Yoshida et al.
(2003), who suggest methods of automatically generatistgiblitional thesauri from text cor-
pora. Schitze and Pedersen (1997) use the Tipster catégorpus (Harman, 1993) (450,000

unique terms) and thé/all Street Journato create a large but sparse co-occurrence matrix of
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3,000 medium-frequency words (frequency rank between®gf@ 5,000). Latent seman-
tic indexing (singular value decomposition) (Schitze &edlersen, 1997) is used to reduce
the dimensionality of the matrix and get for each term a wagdter of its 20 strongest co-
occurrences. The cosine of a target word’s vector with ed¢heoother word vectors is cal-
culated and the words that give the highest scores comprsthesaurus entry for the target
word.

Yoshida et al. (2003) believe that words that are closebteel for one person may be dis-
tant for another. They use around 40,000 HTML documents neigee personalized thesauri
for six different people. Documents used to create the tiresdor a person are retrieved from
the subject’'s home page and a web crawler which accessexllohdcuments. The authors
also suggest a root-mean-squared method to determinenthiargty of two different thesaurus

entries for the same word.

Manhattan and Euclidean Distances

Distance between two points (words) in vector space carb@salculated using the formu-
lae forManhattan distancea.k.a. theL1 norm (denoted by 1) or Euclidean distancea.k.a.
theL> norm (denoted by k). In the Manhattan distance (2.7) (Dagan et al. (1997), Daga
et al. (1999), and Lee (1999)), the difference in strengthssbciation ofv; andw, with each
word that they co-occur with is summed. The greater the idiffee, the greater is the distribu-
tional distance between the two words. Euclidean distad&) (Lee, 1999) employs the root
mean square of the difference in association to get the fistullslitional distance. Both the L
and Ly norms give scores in the range between 0 (zero distance onggrous) and infinity

(maximally distant or unrelated).

Li(wi,Wo) = Z | P(w|wq) — P(w|ws) | (2.7)

weC(wy)UC(wo)

Lo(wi,Wo) = \/ S (P(Wwi)—P(Wwy))? (2.8)
weC(wq)UC(Wa)
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The above formulae use conditional probability of the cotwang words given a target word
as the strength of association.

Lee (1999) compared the ability of all three spatial metiicdetermine the probability of
an unseen (not found in training data) word pair. The measuarerder of their performance
(from better to worse) were:iLnorm, cosine, and4inorm. Weeds (2003) determined the cor-
relation of word pair ranking as per a handful of distribnabmeasures with human rankings
(Miller and Charles (1991) word pairs). She used verb-dlgaas from theBritish National

Corpus (BNChand found the correlation ofi{Lnorm with human rankings to be 0.39.

2.3.2.2 Mutual Information—Based MeasuresHindle, Lin

Hindle (1990) was one of the first to factor the strength obesdion of co-occurring words
into a distributional similarity measure.Consider the nouns; andn that exist as objects
of verby; in different instances within a text corpus. Hindle used fihlowing formula to
determine the distributional similarity af; andny solely from their occurrences as object of
Vi

[ min(1 (vi,my). 1 (v, 1)),

if I (vi,nj) > 0andl(vi,ng) >0

Hingp;(vi, nj, k) = ¢ | max(1 (i, nj), 1 (vi,ng)) |, (2.9)

if I (vi,nj) <0andl(vi,nc) <0

\ 0, otherwise

| (n,v) stands for the PMI between the noaand verbr (Note that in case of negative PMI val-
ues, the maximum function captures the PMI, which is loweaatisolute value). The measure
follows from the distributional hypothesis—the more sinithe associations of co-occurring
words with the two target words, the more semantically simihey are. Hindle used point-

wise mutual information (PM#)as the strength of association. The minimum of the two PMIs

2See Grefenstette (1992) for an approach that does NOT iaatgostrength of association of co-occurring
words. He, like Hindle (1990), uses syntactic dependertoieseate distributional profiles of words. The Jaccard
coefficient is applied to a pair of such distributional predito determine their similarity.

3In their respective papers, Donald Hindle and Dekang Lierés pointwise mutual information as mutual
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captures the similarity in the strength of associatiom; afith each of the two nouns.

Hindle used an analogous formula to calculate distribatisimilarity (Hinsypj) using the
subject-verb relation. The overall distributional simityabetween any two nouns is calculated
by the formula:

N
Hin(ny,np) = % (Hinobj(Vi, N1, N2) + Hinsupi(Vi, 1, n2)) (2.10)
=
The measure gives similarity scores from 0 (maximally dsigir) to infinity (maximally sim-
ilar or synonymous). Note that in Hindle’'s measure, the $etoeoccurring words used is
restricted to include only those words that have the samtasiya relation with both target
words (either verb—object or verb—subject). This is theef measure that mimics semantic

similarity and not semantic relatedness. A form of Hindil@easure where all co-occurring

words are used, making it a measure that mimics semantiedeless, is shown below:

([ min(1(w,wa), | (W, ws)),
if 1(w,wq) > 0 andl (w,wy) > 0
Hinye| (W1, W2) | max(1 (w,wy), | (W, w»)) |, (2.11)
weC(w

if I(w,wq) <0andl(w,wp) <0

0, otherwise

whereC(t) is the set of words that co-occur with ward

Lin (1998b) suggests a different measure derived from H@imation-theoretic definition
of similarity (Lin, 1998a). Further, he uses a broad set a@itagtic relations apart from just
subject-verb and verb—object relations and shows thagusultiple relations is beneficial
even by Hindle’s measure. He first extracts triples of thenfox, r,y) from the partially parsed
text, where the word is related toy by the syntactic relation. If a particular triple(X,r’,y’)
occursc times in text, then the pointwise mutual informatibfx',r’,y) is the information

contained in the proposition: the trip(e,r,y) occurred a constartttimes. Lin defines the

information.
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distributional similarity between two wordg; andws,, as follows:

Z(F,W) ET(Wl)ﬂT(Wz) (I (W17 r7W) + I (W27 r7 W))

Lin(wy,wp) =
(e > rw)eT(wy) | (WL, W) + 5w e T wy) (W, T, W)

(2.12)

whereT (X) is the set of all word pairg,y) such that the pointwise mutual informatibgx, r,y),

is positive. Note that this is different from Hindle (1990h&re even the cases of negative
PMI were considered. As mentioned earlier, Church and H&b#80) show that it is hard
to accurately predict negative word association ratios wanfidence. Thus, co-occurrence
pairs with negative PMI are ignored. The measure gives aitylscores from 0 (maximally
dissimilar) to 1 (maximally similar).

Like Hindle’s measure, Lin’s is a measure of distributiosiahilarity. However, it distin-
guishes itself from that of Hindle in two respects. First lnormalizes the similarity score
between two words (numerator of (2.12)) by their cumulasivengths of association with the
rest of the co-occurring words (denominator of (2.12)). sTisia significant improvement as
now high PMI of the target words with shared co-occurringagoslone does not guarantee a
high distributional similarity score. As an additional tdgment, the target words must have
low PMI with words they do not both co-occur with. Second, tHHenuses the minimum of
the PMI between each of the target words and the shared aoroug word, while Lin uses
the sum. Taking the sum has the drawback of not penalizing fmismatch in strength of
co-occurrence, as long ag andw, both co-occur with a word.

Hindle (1990) used a portion of th&ssociated Preseews stories (6 million words) to
classify the nouns into semantically related classes. 1998b) used his measure to generate
a distributional thesaurus from a 64-million-word corptishee Wall Street Journal, San Jose
Mercury, andAP Newswire He also provides a framework for evaluating such autoratiyic
generated thesauri by comparing them with WordNet-baseldRoget-based thesauri. He
shows that the distributional thesaurus created with higsue is closer to the WordNet and

Roget-based thesauri than that created using Hindle’sureas
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2.3.2.3 Relative Entropy—Based Measures: KLD, ASD, JSD

Kullback-Leibler divergence

Given two probability mass functiongx) andq(x), theirrelative entropy D(p||q) is:

D(plla) = X; p(X) Iog% for q(x) # 0 (2.13)
Intuitively, if p(x) is the accurate probability mass function correspondiragramdom variable
X, thenD(p||q) is the information lost when approximatingx) by q(x). In other words,
D(p||q) is indicative of how different the two distributions are. |&&e entropy is also called
theKullback-Leibler divergence or theKullback-Leibler distance (denoted byKLD ).

Pereira et al. (1993) and Dagan et al. (1994) point out thatisvbave probabilistic dis-
tributions with respect to neighboring syntactically tethwords. For example, there exists a
certain probabilistic distributiordf (P(v|n1)), say) of a particular noum being the object of
any verb. This distribution can be estimated by corpus ofparsed or chunked text. Lei
(P(v|n2)) be the corresponding distribution for noop These distributiongdy andd,) define
the contexts of the two noungi(andny, respectively). As per the distributional hypothesis,
the more these contexts are similar, the meyeandn, are semantically similar. Thus the
Kullback-Leibler distance between the two distributiogigndicative of the semantic distance
between the nouns andny.

KLD(ny,n2) = D(dhf/d2)
= Svevp P(Vn) log gy for P(vinp) #0 (2.14)

= Suevbrin)bi(ny) P(VIM) log g for P(viny) 7 0

whereVb is the set of all verbs andly(x) is the set of verbs that haweas the object. Note
again that the set of co-occurring words used is restricdeddude only verbs that each have
the same syntactic relation (verb-object) with both tangeins. This too is therefore a measure
that mimics semantic similarity and not semantic relatedne

It should be noted that the verb-object relationship is nberent to the measure and that

one or more of any other syntactic relations may be used. Giyaatso estimate semantic relat-
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edness by using all words co-occurring with the target wofthsis a more generic expression

of the Kullback-Leibler divergence is as follows:

KLD(wp,wp) = D(d1||d2)
= Swev P(Wjwy)log gty for P(wjwa) # 0 (2.15)

= Sweciw)Lc(wy PWIWi) log piaeld for P(wiwg) # 0

whereV is the vocabulary (all the words found in a corpusjt), as mentioned earlier, is the
set of words occurring (within a certain window) with wdrd

It should be noted that the Kullback-Leibler distance issyshmetric, that is, the distance
from wy to we is not necessarily, and even not likely, the same as thendisttomw, to
wi. This asymmetry is counter-intuitive to the general novbsemantic similarity of words,
although Weeds (2003) has argued in favor of asymmetric mneasFurther, it is very likely
that there are instances such tRétv; |v) is greater than O for a particular vevbwhile due
to data sparseness or grammatical and semantic constthmtsaining data has no sentence
wherev has the objeat,. This make$?(wz|v) equal to 0 and the ratio of the two probabilities
infinite. Kullback-Leibler divergence is not defined in suwzdses but approximations may be
made by considering smoothed values for the denominator.

Pereira et al. (1993) used KLD to create clusters of nourns fverb-object pairs corre-
sponding to a thousand most frequent nouns iMGraier's EncyclopediaJune 1991 version
(20 million words). Dagan et al. (1994) used KLD to estim#ie probabilities of bigrams that
were not seen in a text corpus. They point out that a significamber of possible bigrams
are not seen in any given text corpus. The probabilities olfi figrams may be determined by
taking a weighted average of the probabilities of bigrammpased of distributionally similar
words. Use of Kullback-Leibler distance as the semantitadie metric yielded a 20% im-
provement in perplexity on thé/all Street Journahnd dictation corpora provided by ARPA's
HLT program Paul (1991).

It should be noted here that the use of distributionally Eimivords to estimate unseen

bigram probabilities will likely lead to erroneous resufisase of less-preferred and strongly-
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preferred collocations (word pairs). Inkpen and Hirst (Z0@oint out that even though words
like taskandjob are semantically very similar, the collocations they forithwother words
may have varying degrees of usage. Whikinting tasks a strongly-preferred collocation,
daunting jobis rarely used. Thus using the probability of one bigram toveste that of another

will not be beneficial in such cases.

a-skew divergence
The a-skew divergence(ASD) is a slight modification of the Kullback-Leibler divergenc

that obviates the need for smoothed probabilities. It hagdthowing formula:

P(wlw)
(Wwz) + (1 — o) P(wlwy)

ASDw1, W) = z P(w|wy)log aP (2.16)

weC(wy)UC(wy)
wherea is a parameter that may be varied but is usually set®.0Note that the denomi-
nator within the logarithm is never zero with a non-zero ntate. Also, the measure retains
the asymmetric nature of the Kullback-Leibler divergencee (2001) shows that-skew di-
vergence performs better than Kullback-Leibler divergeimcestimating word co-occurrence
probabilities. Weeds (2003) achieves a correlation.48@nd 026 with human judgment on

the Miller and Charles word pairs usidgD(wq, W) andASD(wp, w1 ), respectively.

Jensen-Shannon divergence
A relative entropy—based measure that overcomes the pnoffi@symmetry in Kullback-

Leibler divergence is th@ensen-Shannon divergenca.k.a.total divergence to the average
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a.k.a.information radius . It is denoted by)JSD and has the following formula:

ISDwiwp) = D <d1H%(d1+d2)) D (d2||%(d1+d2)) (2.17)
P(wiws)
— P(wjwy)]
WEC(W1UC(W2) < wiw)log 3 (P(Wjwa) + P(wjwy))
P(w|wy)
P(w|ws)log L (Plww) - P(w\wz))> (2.18)

The Jensen-Shannon divergence is the sum of the Kullbaitietelivergence between each
of the individual co-occurrence distributiods andd, of the target words with the average
distribution (‘@). Further, it can be shown that the Jensen-Shannon diveggaroids the
problem of zero denominator. The Jensen-Shannon diveegetiterefore always well defined
and, likea-skew divergence, obviates the need for smoothed estimates

The Kullback-Leibler divergence;-skew divergence, and Jensen-Shannon divergence all

give distributional distance scores from 0 (synonymou#)fiaity (unrelated).

2.3.2.4 Latent Semantic Analysis

Latent semantic analysis (LSA)(Landauer et al., 1998) can be used to determine distribu-
tional distance between words or between sets of wbrdsnlike the various approaches
described earlier where a word—word co-occurrence marreated, the first step of LSA
involves the creation of a word—paragraph, word—docunwergimilar such word-passage ma-
trix, where gpassages some grouping of words. A cell for wosd and passagp is populated
with the number of timess occurs inp or, for even better results, a function of this frequency
that captures how much information the occurrence of thelwoa text passage carries.

Next, the dimensionality of this matrix is reduced by apptysingular value decom-
position (SVD), a standard matrix decomposition technique. This smadleosdimensions

represent abstract (unknown) concepts. Then the originadwpassage matrix is recreated,

4Landauer et al. (1998) describe it as a measursiroflarity, but in fact it is a distributional measure that
mimics semantic relatedness.



CHAPTER 2. STATE-OF-THE-ART IN ESTIMATING SEMANTIC DISTANCE 43

but this time from the reduced dimensions. Landauer et 88§} point out that this results in
new matrix cell values that are different from what they wieeéore. More specifically, words
that are expected to occur more often in a passage than waatitfinal cell values reflect,
are incremented. Then a standard vector distance measgteas cosine, that captures the
distance between distributions of the two target words pieg.

LSA was used by Schitze and Pedersen (1997) and Rapp (200@gisure distributional
distance, with encouraging results. However, there is meheuristic way to determine when
the dimension reduction should stop. Further, the genencepts represented by the reduced
dimensions are not interpretable; that is, one cannotmi@erwhich concepts they represent in
a given sense inventory. This means that LSA cannot dirbetlysed for tasks such as unsuper-
vised sense disambiguation or estimating semantic sityitzirknown concepts. Finally, it has
two of the biggest problems that plague all distributionafrdvdistance measures—conflation
of word senses and computational complexity. More abowelaad other limitations of dis-

tributional and WordNet-based measures is given in Sedtidmhead.

2.3.3 The anatomy of a distributional measure

Even though there are numerous distributional measuresy wfavhich may seem dramati-
cally different from each other, all distributional meassiperform two functions: (1) create
distributional profiles (DPs), and (2) calculate the distance between two DPs.

The distributional profile of a word is the strength of asation between it and each of the
lexical, syntactic, and/or semantic units that co-occuhwii Commonly usedneasures of
strength of associatiomare conditional probability (O to 1) and pointwise mutudbmmation
(—o0 to ©). Commonly used units of co-occurrence with the target #rerovords and so we
speak of théexical distributional profile of a word (lexical DPW). The co-occurring words
may be all those in a predetermined window around the taogetay be restricted to those
that have a certain syntactie.§.,verb—object) or semanti@(g.,agent—theme) relation with

the target word. We will refer to the former kind of DPsrafation-free. Usually in the latter
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case, separate association values are calculated for tduh different relations between the
target and the co-occurring units. We will refer to such D&setation-constrained. Typical

relation-free DPs are those of Schiitze and Pedersen (a8@7yoshida et al. (2003). Typical
relation-constrained DPs are those of Lin (1998a) and L88LR Below are contrived, but

plausible, examples of each for the wanalse the numbers are conditional probabilities:

relation-free DP

pulse beat.28,racing.2,grow.13,beans.09,heart.04, ...

relation-constrained DP
pulse <beat subject-verb .34, <racing, noun—qualifying adjective .22, <grow,

subject—verb- .14, ...

Since the DPs represent the contexts of the two target witrelslistance between the DPs
is the distributional distance and, as per the distribatidrypothesis, a proxy for semantic
distance. Ameasure of DP distancesuch as cosine, calculates the distance between two dis-
tributional profiles. While any of the measures of DP disean@y be used with any of the
measures of strength of association, in practice only icedambinations are used (see Ta-
ble 2.2) and certain other combinations may not be meanifgfuexample, Kullback-Leibler
divergence withp coefficient. Observe from Table 2.2 that all standard-covation distri-
butional measures (or at least those that are describedsichhpter) use either conditional
probability or PMI as the measure of associafton.

In this thesis, | show how distributional word-distance sweas can be used to estimate
concept-distanceAll experiments will use standard combinations of measdfileP distance
and measure of association. Therefore, to avoid cluttetead of referring to a distribu-
tional measure by its measure of DP distance and measursaxfiason (for exampley-skew
divergence—conditional probability), | will refer to itraply by the measure of DP distance

(in this caseqp-skew divergence).

5Sense dominance experiments in Chapter 5 use all measisesmith of association listed in table 2.2.
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Table 2.2: Measures of DP distance, measures of strengtssot@tion, and standard com-
binations. Measures of DP distance that are part of expetsria this thesis as well as the
measures of strength of association that they are traditionsed in combination with, are

marked in bold.

Measures of DP distance Measures of strength of association
a-skew divergence (ASD) @ coefficient (Phi)

cosine (Cos) conditional probability (CP)

Dice coefficient (Dice) cosine (Cos)

Euclidean distance gnorm) Dice coefficient (Dice)

Hindle’s measure (Hin) odds ratio (Odds)

Kullback-Leibler divergence (KLD) pointwise mutual information (PMI)
Manhattan distance gLnorm) Yule’s coefficient (Yule)

Jensen—Shannon divergence (JSD)

Lin’s measure (Lin)

Standard combinations

a-skew divergence—¢ coefficient (ASD—CP)
cosine—conditional probability (Cos—CP)

Dice coefficient—conditional probability (Dice—CP)

Euclidean distance—conditional probability,(horm—CP)
Hindle’'s measure—pointwise mutual information (Hin—PMI)
Kullback-Leibler divergence—conditional probability (IR—CP)
Manhattan distance—conditional probability; (horm—CP)
Jensen—Shannon divergence—conditional probability (JSBCP)

Lin’s measure—pointwise mutual information (Lin—PMI)
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2.4 Other semantic distance work

Apart from the work described so far, which aims at estingaemantic distance between
pairs of concepts and pairs of words, there is a large amdumbik that focusses on estimat-
ing semantic distance between larger units of languagendgraad Stevenson (2004, 2006)
propose ways to determine fine-grained semantic distanteeebe two texts, each of which
is represented by a set of words weighted by their frequeaycourrence in text. They
map the words to WordNet'’s is-a hierarchy and use graphrétieapproaches to find the dis-
tance between two concept distributions. In paraphraddagzflay and Lee, 2003; Schilder
and Thomson Mclnnnes, 2006), machine translation (seed(3897) and Knight and Marcu
(2005) for surveys), text summarization (Gurevych and I&tr2004; Zhu and Penn, 2005),
and others, the aim is to estimate the distance between tvesgd or sentences; in informa-
tion retrieval (Varelas et al., 2005), to estimate the distabetween a word (or a few words)
and a document; in text clustering (see Steinbach et al 0)2@0 survey), authorship attribu-
tion (Feiguina and Hirst, 2007), and others, to estimatedtb&ance between two documents;
and in determining selectional preferences (Resnik, 198&ecting verb argument alterna-
tions (McCarthy, 2000; Tsang and Stevenson, 2004), andtttee goal is to estimate the
distance between two word—frequency pair sets. Some ofttbreeaalgorithms explicitly use
the semantic distance between a pair of words (or concepthpastarting point (see Table 1.2
in Chapter 1 for examples), while others implicitly do so §izing networks of semantically
related concepts and/or co-occurrence information frot te

There is also work on estimating the strength of specific sg¢imeelations between concept
pairs—recall that semantic relatedness is a function (fesless as per each of the semantic
relations between the target pair and that semantic sityilgra function of closeness as per
synonymy, hypernymy/hyponymy, and antonymy. See Mirkialef2007) for work on lexical
entailment, Lucero et al. (2004) for detecting antonymsl kim et al. (2003) for detecting
synonyms.

The vastness of literature pertaining to the tasks mentiamehis sub-section precludes
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their discussion in this thesis. However, a lion’s sharéneffuture work (see Section 8.5) will
be the use of ideas proposed in this thesis to both deterramarstic distance between larger

units of language and to estimate specific lexical semaalitions such as antonymy.



Chapter 3

Distributional Measures of

Concept-Distance

3.1 A very coarse concept inventory

In this chapter, | will propose a new distributional conedjgtance approach that combines
corpus statistics with a published thesaurus to overconité, warying degrees of success,
many of the limitations of earlier approaches. The categan the thesaurus are used as very
coarse senses or concepts; most published thesauri havedaaadhousand categories. This
allows investigating the impact of choosing a coarse conoepntory—an area not explored
by other approaches, which tend to use the relatively muate rivee-grained WordNet (with
more than 100,000 senses). Further, it means that pre-dorg@ucomplete concept—concept
distance matrix now involves the creation of a matrix appr@tely only 1000< 1000 in size
(much smaller and roughly .01% the size of matrices requine@xisting measures). This
makes the new approach computationally less expensiveharstdrage requirements easy to

meet.

48
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3.2 The distributional hypothesis for concepts

As discussed earlier in Sections 1.3.1 and 1.2.3.1, thealdimbitation of using the distribu-
tional hypothesisto estimate semantic distance is the conflation of word seng¢hile in
most cases, the semantic distance between two conceptst{ozdn the closest senses of two
words) is required, distributional measures of word-distagive some sort of a dominance-
based average of relevant sense-pairs. Further, wordswgleein different senses tend to keep
different “company” (co-occurring words). For examplenswler the contrived but plausible

distributional profile ofstar.

star: spaced.21,movie0.16,famoud).15,light 0.12,constellatiorD.11,heat0.08,
rich 0.07,hydrogen0.07, ...

Observe that it has words that co-occur both vathrs CELESTIAL BODY sense andtars
CELEBRITY sense. Thus, it is clear that different senses of a word wilbably have very
different distributional profiles. Using a single DP for tiwerd will mean the union of those
profiles. While this might be useful for certain applicasothis thesis will argue that in a num-
ber of tasks (including estimating semantic distance)ugirgy different DPs for the different
senses is not only more intuitive, but also, as | will shovetlyh numerous experiments, more
useful. In other wordgistributional profiles of senses or concepts (DPCan be used to

infer semantic properties of the senses:
You know aconceptoy the company it keeps.

Therefore, | propose profiling the co-occurrence distidng of word senses or concepts,
rather than those of words, to determine distributionaigise between concepts, rather than
the distance between words. The closer the distributiomdil@s of two concepts, the smaller

is their semantic distance. Below are example distribatipnofiles of two senses &TAR:

CELESTIAL BODY: space0.36,light 0.27,constellation0.11,hydroger0.07, ...

IRecall that the distributional hypothesis states, “Youwmoword by the company it keeps”.
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CELEBRITY: famoud).24,movie0.14,rich 0.14,fan0.10, ...

The values are the strength of association (usually pogstwiutual information or conditional
probability) of the target concept with co-occurring wards should be noted that creating
such distributional profiles of concepts is much more cinglileg than creating distributional
profiles of words which involve simple word—word co-occuiee counts. (In the next section,

| show how these profiles may be estimated without the usersfesannotated data). How-
ever, once created, any of the many distributional measarebe used to estimate the distance
between the DPs of two target concepts (just as in the casadifibnal word-distance mea-
sures, distributional measures are used to estimate ttendesbetween the DPs of two target
words). For example, here is how cosine is traditionallydiseestimate distributional distance
between two words (as described in Section 2.3.2.1 earlier)

S wectw)uC(m) (PWW) x P(Wjw2))

[ Suecton) POVW)2 1 [T ucciu P(WW2

C(t) is the set of words that co-occur (within a certain window)hwthe wordt in a corpus.

Coqwi,Ws) (3.1)

The conditional probabilities in the formula are taken frtiva distributional profiles of words.
We can adapt the formula to estimate distributional distdmetween two concepts as shown

below:
2 weC(c)UC(cp) ( (wlcg) x P(w|cp))

\/ZWGC (c1) P(wlcy) 2 X \/Zwec () W|C2>

C(x) is now the set of words that co-occur withncept xwithin a pre-determined window. The

(3.2)

Cogp(Cy,C2) =

conditional probabilities in the formula are taken from thstributional profiles of concepts.
With the new approach, if the distance between two wordsgsired, then the distance
between all relevant sense pairs is determined and the mmiisichosen. For example sfar
has the two senses mentioned abovefastnhas one (let’s call ifFusION), then the distance
between them is determined by first applying cosine (or astyidutional measure) to the DPs

of CELESTIAL BODY andFUSION:

CELESTIAL BODY: space0.36,light 0.27,constellation0.11,hydroger0.07, ...
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FUSION: heat0.16, hydrogen0.16, energy0.13, bomb0.09, light 0.09, space
0.04, ...

then applying cosine to the DPS©ELEBRITY andFUSION:

CELEBRITY: space0.36,light 0.27,constellatior0.11,hydrogen0.07, ...

FUSION: heat0.16, hydrogen0.16, energy0.13, bomb0.09, light 0.09, space
0.04, ...

and finally choosing the one with minimum semantic distartbat is, maximum similar-

ity/relatedness:

distancéstar, fusion = maxCogCELEBRITY,FUSION), CO§ CELESTIAL BODY, FUSION))
(3.3)
Note that the maximum value is chosen above because cosargnslarity/relatedness mea-
sure. In case of distance measures, suahsisew divergence, the lower of the two values will

be chosen.

3.3 Estimating distributional profiles of concepts

Determining distributional profiles efordssimply involves making word—word co-occurrence
counts in a corpus. Determining distributional profilegohceptson the other hand, requires
information about which words co-occur with which concepthis means that a direct ap-
proach requires the text, from which counts are made, to bgesannotated. Since existing
labeled data is minimal and manual annotation is far too esipe, indirect means must be
used. | now present a way to estimate distributional profifeoncepts from raw text, using a

published thesaurus (the concept inventory) and a boptstrg algorithm.
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3.3.1 Creating a word—category co-occurrence matrix

A word-category co-occurrence matrix (WCCM)is created having word types as one

dimension and thesaurus categodes another.

C1 C2 ... Cj
Wi | M1 M2 ... IMyj
W2 | M1 M2 ... MMy
Wi | M1 M2 ... [T

The matrix is populated with co-occurrence counts from gdarorpus. A particular celtyj,
corresponding to worgy; and category or concepy, is populated with the number of times
w; co-occurs (in a window of5 words) with any word that hag as one of its senses (i. &,
co-occurs with any word listed under concepin the thesaurus). For example, assume that
the concept OCELESTIAL BODY is represented by four words in the thesauastellation,
planet, starandsun If the word spaceco-occurs withconstellation(15 times),planet (50
times), star (40 times), andsun (65 times) in the given text corpus, then the cell épace
andCELESTIAL BODY in the WCCM is populated with 170 (1550-+ 40+ 65). This matrix,
created after afirst pass of the corpus, is calledbtse word—category co-occurrence matrix
(base WCCM).

The choice oft-5 words as window size is somewhat arbitrary and hinges omthgion
that, in text and speech, words close to a target word are mdigative of its semantic prop-
erties than those more distant. Church and Hanks (199@)eingeminal work on word—word
CO-occurrence association, also use a window sizesofvords and argue that this size is large
enough to capture many verb—argument dependencies anchgktesnough so that adjacency
information is not diluted too much. In the word sense domdagaexperiments (described
ahead in Chapter 5 and through which the WCCM was first evadi)atising the whole sen-

tence as context resulted in a lower accuracy than when tisegb word window. While, itis
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reasonable to determine optimal window sizes for diffeegaplications from held out datasets,
we decided to use a fixed window size for all our experimentsabge for most of the tasks
there were only limited amounts of gold standard evaluadeta.

A contingency table for any particular wovdand categoryg can be easily generated from
the WCCM by collapsing cells for all other words and categ®iinto one and summing up

their frequencies.
c —C

W | Nwe M-

W | No¢ N
The application of a suitable statistic, such as pointwisgual information or conditional
probability, will then yield the strength of associatiortween the word and the category.

As the base WCCM is created from unannotated text, it will bsyn For example, out
of the 40 timesstar co-occurs withspace 25 times it may have been used in thELES
TIAL BODY sense and 15 times in tleELEBRITY sense. However, since this information
was not known to the system, the cell fgace—CELESTIAL BODY in the base WCCM was
incremented by 40 rather than 25. Similarly, the cell§pace—CELEBRITY was also incre-
mented by 40 rather than 15. That said, the base WCCM doegreagitong word—category
Co-occurrence associations reasonably accurately. 3 hieciause the errors in determining the
true category that a word co-occurs with will be distributkohly across a number of other
categories. For example, even though we increment countstb space-CELESTIAL BODY
andspaceCELEBRITY for a particular instance whespaceco-occurs withstar, spacewill
co-occur with a number of words such@anet, sunandconstellatiorthat each have the sense
of celestial bodyn common (Figure 3.1), whereas all their other senseskebyldifferent and
distributed across the set of concepts. Therefore, thecarmence count, and thereby strength
of association, o§paceandCELESTIAL BODY will be relatively higher than that (fpaceand
CELEBRITY (Figure 3.2). For more details, see discussion of the gépériple in Resnik

(1998).
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CELESTIAL BODY

/

one sense ok
space . . W . .

~—a fragment of tex

other sense(s) af

/

w € {constellationplanet star, sun}

Figure 3.1: The wordpacewill co-occur with a number of wordX that each have one sense

of CELESTIAL BODY in common.

CELESTIAL BODY

SoA ~_
=== sense oftar
Space . . star . .

e

a fragment of tex

sense obtar

/

/4

Figure 3.2: The base WCCM captures strong word—categopgccasrence associations.

3.3.2 Bootstrapping

| now describe a bootstrapping procedure which can be usestit@e, even more, the errors
in the WCCM due to word sense ambiguity. Words that occurectosa target word tend to

be good indicators of its intended sense. Therefore, a sguass of the corpus is made and
the base WCCM is used to roughly disambiguate the words iBath word in the corpus is
considered as the target one at a time. For each sense ofdbg its strength of association
with each of the words in its context-6 words) is summed. The sense that has the highest
cumulative association with co-occurring words is chosetha intended sense of the target

word. In this second pass, a néwotstrapped WCCM is created such that each ceil, cor-
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responding to woray; and concept;j, is populated with the number of timag co-occurs with
any wordused in sensegjcFor example, consider again the 40 tinsear co-occurs wittspace

If the contexts of 25 of these instances have higher cumvelatrength of association witte-
LESTIAL BODY thanCELEBRITY, suggesting that in only these 25 of those 40 occurrestaes
was used iIlCELESTIAL BODY sense, then the cell fepace-CELESTIAL BODY is incremented
by 25 rather than 40 (as was the case in the base WCCM). Thistbmgped WCCM, created
after simple and fadtword sense disambiguation, is expected to better capturg-woncept
co-occurrence values, and hence strengths of associatloasy than the base WCCM. The
base and bootstrapped WCCMs were first evaluated througth sesrse dominance experi-
ments (described ahead in Chapter 5); the bootstrapped W@ markedly better results.
Further iterations of the bootstrapping procedure did Im@tyever, improve results. This is not
surprising because the base WCCM was created without any semse disambiguation and
so the first bootstrapping iteration with word sense disgomtion is expected to markedly
improve the matrix. The same is not true for subsequenttiber® Therefore, all other ex-
periments that use a word—concept co-occurrence matdhkydimg the ones described ahead
in this chapter, use the bootstrapped matrix (created afteootstrapping iteration over the

base WCCM).

3.3.3 Mimicking semantic relatedness and semantic similéy

The distributional profiles created by the above methodpéog relation-free. This is because
(1) all co-occurring words (not just those that are relatethe target by certain syntactic re-
lations) are used, and (2) the WCCM, as described above itmo8s@3.3.1 and 3.3.2, does
not maintain separate counts for the different syntactatiomns between the target and co-
occurring words. Thus, distributional measures that usse¢tWCCMs will estimate semantic

relatednesdetween concepts. Distributional measures that mimic sgosimilarity, which

2Speed of disambiguation is important here as all words ircthipus are to be disambiguated. After deter-
mining co-occurrence counts from the BNC (a 100 million woodpus), creating the bootstrapped WCCM from
the base WCCM took only about 4 hours on a 1.3GHz machine v@@BLmemory.
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Figure 3.3: An overview of the new distributional concepstance approach.

require relation-constrained DPCs, can easily be creabed WCCMs that have rows for each
word—syntactic relation pair (rather than just words).g(8arlier Sections 2.3.1 and 2.3.3 for
more discussion of the motivating principles.) Howeverthis thesis, all experiments are
conducted using distributional measures that estimatasgorelatedness mainly because of
time constraints, because relatedness subsumes siynauit because there is a need for good
relatedness measures (WordNet-based measures are Bgpecaat estimating semantic re-

latedness).

3.4 An overview of the evaluation

| evaluate the newly proposed distributional conceptadise approach (Figure 3.3) through
its usefulness in various natural language tasks. Taskgphications that use distance values
can be classified as what | will call concept-distance tasklsveord-distance task€oncept-

distance tasksrequire distance between explicit senses or concepts @sanse inventory)
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and other units of text. For example, unsupervised wordesdsambiguation (Lin, 1997)
requires the semantic distance between a word’s sensesaodntext. These tasks must be
solved with the sense inventory associated with the taskefample, if the task is to do un-
supervised sense disambiguation on data annotated wises&mm WordNet, then either a
WordNet-based approach must be used or the senses fromeakntwledge source (for ex-
ample, the thesaurus) must be mapped to WordWeird-distance tasks seeminglyat least,
require distances between words. For example, malapramsmction (Hirst and Budanitsky,
2005) requires the semantic distance between the spebingnis of the target word and its
context. However, semantic distance is essentially a prppéword senses or concepts and
not words (see discussion in the introduction of this thessgction 1.1); even though it seems
as if the word-distance task involves only words, what idlyaeeeded is the distance between
the intended senses of those words, which tends to be tlamdesbetween their closest senses.
These tasks may be independently solved with differentsienentories or even without using
any sense invento/Concept-distance tasks can be attempted with WordNetlbrasasures
of concept-distance or distributional measures of condegtance, but not the traditional dis-
tributional measures of word-distance. Word-distanckstaan be attempted with any of the
three types of measures.

In the following section, | will describe experiments useilbthree kinds of distance mea-
sures to solve two word-distance tasks. In the next chapteil) show how distributional
concept-distance measures can be used to estimate sediataicce in one language using a
knowledge source from another. | will evaluate this crasgtlal approach on another pair of
word-distance tasks. In Chapters 5 and 6, | will show the ngwbposed approach can be
used in the concept-distance tasks of word sense dominadce@d sense disambiguation.
In Chapter 7, 1 will show how my cross-lingual semantic distaapproach not only overcomes

the knowledge source bottleneck (Chapter 4) but is alsailsetasks that inherently involve

3Traditional distributional word-distance measures doreguire any sense inventory; however, as a conse-
guence, they conflate the many senses of a word and give a doceirbased average semantic distance of the
relevant sense pairs.
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two or more languages, such as machine translation.

3.5 Evaluation: monolingual, word-distance tasks

In this section, | describe experiments that evaluated igtellsitional concept-distance mea-
sures on two monolingual word-distance tasks: ranking vpatids in order of their semantic
distance and correcting real-word spelling errors. Eask wll be described in the subsec-
tions below. | will compare the new approach with statekad-airt distributional word-distance
measures.

The distributional profiles of concepts were created from Bhitish National Corpus
(BNC) and theMacquarie Thesaurus22.85% of the 9800 812 cells in the base WCCM
had non-zero values whereas the statistic in the bootstBCCM was 9.1%. The word-
distance measures used a word—word co-occurrence mageted from tha8NCalone. The
BNCwas not lemmatized, part-of-speech tagged, nor chunkeel vdtabulary was restricted
to the words present in the thesaurus (about 98,000 word}yjm¢h to provide a level evalua-
tion platform and to filter out named entities and tokens #natnot actually words (for exam-
ple, the BNC hasdahahahahahahahaaaaa, perampaamd Owzeeeyaaagh Also, in order
to overcome large computation times of distributional wdistance measures, co-occurrence
counts less than five were reset to zero, and words that aaveccwith more than 2000 other
words were stoplisted (543 in all). This resulted in a wordtahco-occurrence matrix having
non-zero values in 0.02% of its 9B0x 98,000 cells.

| useda-skew divergence (ASD)a(= 0.99), cosine (Cos), Jensen—Shannon divergence
(JSD), and Lin’s distributional measure (kjg)° to populate corresponding concept—concept
distance matrices and word—word distance matrices. Whdeasy to completely pre-compute

the concept—concept distance matrix (due to its small seehpletely populating the word—

4TheMacquarie Thesaurusas 98,000 word types and 812 categories.
5Although Lin (1998a) used relation-constrained DPs, is¢hexperiments all DPs are relation-free.
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word distance matrix is non-trivial because of memory antetconstraints. Therefore, the
word—word distance matrix was populated on the fly and onthi¢cextent necessary.

The same distributional measures will be used to solve thepair ranking and spelling
correction tasks in two different ways: first by calculatiwgrd-distance, and then by calcu-
lating concept-distance. This allows for an even-keeledparison of the two approaches.
However, comparison with WordNet-based measures is notramistforward. Both of the
above-mentioned semantic distance tasks have tradityooe¢n performed using WordNet-
based measures—which are good at estimating semanti@astynbetween nouns but partic-
ularly poor at estimating semantic relatedness betweeoemirpairs other than noun—noun.
This has resulted in the creation of “gold-standard” datly dor nouns. As creating new
gold-standard data is arduous, we perform experimentsistirexnoun data. Of course, even
though itis a given that WordNet-based measures are significless applicable than the pro-
posed new approach, it will be interesting to determine hometitive the new approach is

on concept-pairs for which WordNet-based measures candatamsl perform best on.

3.5.1 Ranking word pairs

A direct approach to evaluate semantic distance measutesletermine how close they are
to human judgment and intuition. Given a set of word-paitsnhans can rank them in order
of their distance—placing near-synonyms on one end of thkimg and unrelated pairs on

the other. Rubenstein and Goodenough (1965a) provide a-gahdard” list of 65 human-

ranked word-pairs (based on the responses of 51 subjeatsQudmatic distance measure is
deemed to be more accurate than another if its ranking of ywang correlates more closely
with the human ranking. Measures of concept-distance cterrdne distance between each
word-pair by first finding the concept-distance between aitof senses of the two words,
and then choosing the shortest distance. This is based asguenption that when humans
are asked to judge the semantic distance between a pair déwibiey implicitly consider its

closest senses. For example, most people will agreebtrat and interestare semantically
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related, even though both have multiple senses—maost ofhwdrie unrelated. Alternatively,
a concept-distance method can take the average of the chkstamtween each of the relevant
pairs of senses.

Table 3.1 lists correlations of human rankings with thosated using the word—word co-
occurrence matrix—based traditional distributional wdistance measures and the correlations
using the newly proposed word—concept co-occurrence xaaiaised distributional concept-
distance measures. Observe that the distributional cowlisance measures give markedly
higher correlation values than distributional word-digta measures. (Figure 3.4 depicts the
results in a graph.) Also, using the distance of the closastes pair (for Cos and LRy gives
much better results than using the average distance ofalbmgt sense pairs. (We do not report
average distance for ASD and JSD because they give very digtgnce values when sense-
pairs are unrelated—values that dominate the averagesylogkning the others, and making
the results meaningless.) These correlations are, howsvbly lower than those obtained
by the best WordNet-based measures (not shown in the taieh fall in the range .78 to .84
(Budanitsky and Hirst, 2006).

3.5.2 Correcting real-word spelling errors

The set of Rubenstein and Goodenough word pairs is much tad torsafely assume that
measures that work well on them do so for the entire Englistabolary. Consequently, se-
mantic measures have traditionally been evaluated througfe extensive applications such
as the work by Hirst and Budanitsky (2005) on correctiegl-word spelling errors (or
malapropisms). If a word in a text is not semantically close to any other avor its con-
text, then it is considered suspect If the suspect has a spelling-variant timsemantically
close to a word in its context, then the suspect is declaredlaaple real-word spelling error
and analarm is raised; the semantically close spelling-variant is @ered itscorrection.
Hirst and Budanitsky tested the method on 500 articles fitoenl987—-89Vall Street Journal

corpus for their experiments, replacing one noun in eve@ti2@vord by a spelling-variant
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Table 3.1: Correlations with human ranking of Rubensteth@oodenough word pairs of auto-
matic rankings using traditional word—word co-occurresxased distributional word-distance
measures and the newly proposed word—concept co-occarieased distributional concept-

distance measures. Best results for each measure-typlecava s boldface.

Measure-type

Word-distance Concept-distance

Distributional measure closest average
a-skew divergence 0.45 0.60 -
cosine 0.54 0.69 0.42
Jensen—Shannon divergence 0.48 0.61 -
Lin’s distributional measure 0.52 0.71 0.59
@ word-distance W concept-distance
0.8

o
)]

correlation
o
iy

o
(V]

o

ASD Cos JSN Lin

distributional measure

Figure 3.4: Correlations with human ranking of Rubensteid &oodenough word pairs
of automatic rankings using traditional word—word co-acence—based distributional word-
distance measures and the newly proposed word—concepccorence—based distributional

concept-distance measures. Best results for each metgparare shown in boldface.
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and looking at whether the method could restore the origumatl. This resulted in text with
1408 real-word spelling errors out of a total of 107,233 ntakens. | adopt this method and
this test data, but whereas Hirst and Budanitsky used WdrblBsed semantic measures, | use
distributional concept- and word-distance measures.

In order to determine whether two words are “semanticathge! or not as per any measure
of distance, d@hreshold must be set. If the distance between two words is less thaihtésh-
old, then they will be consideresemantically close Hirst and Budanitsky (2005) pointed
out that there is a notably wide band in the human ratingsefRihbenstein and Goodenough
word pairs such that no word-pair was assigned a distance \mdtween 1.83 and 2.36 (on a
scale of 0—4). They argue that somewhere within this bandistable threshold between se-
mantically close and semantically distant, and therefetélsesholds for the WordNet-based
measures such that there was maximum overlap in what thenatitomeasures and human
judgments considered semantically close and distantowolf this idea, | use an automatic
method to determine thresholds for the various distrimaiconcept- and word-distance mea-
sures. Given a list of Rubenstein and Goodenough word padesed according to a distance
measure, | repeatedly consider the mean of all adjacertntistvalues asandidate thresh-
olds. Then I determine the number of word-pairs correctly cfessias semantically close
or semantically distant for each candidate threshold,idensg which side of the band they
lie as per human judgments. The candidate threshold withelsigaccuracy is chosen as the
threshold.

| follow the Hirst and St-Onge (1998) metrics to evaluatd-meard spelling correction.
Suspect ratio and alarm ratio evaluate the processes of identifying suspects and raising

alarms, respectively.
number of true-suspects
number of malapropisms (3 4)
number of false-suspects ’
number of non-malapropisms

suspect ratio=

number of true-alarms
number of true-suspects (3 5)

number of false-alarms
number of false-suspects

Detection ratio is the product of the two, and measures overall performamdetecting the

alarm ratio=




CHAPTER 3. DISTRIBUTIONAL MEASURES OFCONCEPFDISTANCE 63

errors.
number of true-alarms
number of malapropisms (3 6)

number of false-alarms
number of non-malapropisms

Correction ratio indicates overall correction performance, and is the ‘trattine” statistic.

detection ratio=

number of corrected malapropisms
number of malapropisms (3 7)

number of false-alarms
number of non-malapropisms

correction ratio=

Values greater than 1 for each of these ratios indicateteelsatter than random guessing. The
ability of the system to determine the intended word, giveat it has correctly detected an

error, is indicated by theorrection accuracy (0 to 1).

number of corrected malapropisms

3.8
number of true-alarms (3.8)

correction accu racy=

Notice that the correction ratio is the product of the dedeatatio and correction accuracy. The

overall (single-point) precision (P), recall(R), and Fesx(F) of detection are also computed.

__ number of true-alarms
P = number of alarms (3'9)
___number of true-alarms
R = number of malapropisms (3'10)
F i (3.11)

The product of detection F-score and correction accurabigiwwe will call correction per-
formance, can also be used as a bottom-line performance metric.

Table 3.2 details the performance of distributional wondd @oncept-distance measures.
For comparison, the table also lists results obtained bgtHind Budanitsky (2005) using
WordNet-based concept-distance measures: Hirst and §-Qi998), Jiang and Conrath
(1997), Leacock and Chodorow (1998), Lin (1997), and Re§h8#95). These information
content measures rely on finding the lowest common subsuosrdf the target synsets in
WordNet's hypernym hierarchy and use corpus counts to uhier how specific or general
this concept is. The more specific the Ics is and the smakedifference of its specificity with
that of the target concepts, the closer the target conceptasidered. (See Section 2.2.1 for

more details.)



Table 3.2: Real-word spelling error correction. The bestilts as per the two bottom-line statistics are shown infaokl

suspect alarm detection correctiorcorrection detection correction
Measure ratio  ratio ratio  accuracy ratio P R F performance
Distributionalyorg
a-skew divergence 3.36 1.78 5.98 0.84 5.03 7.37 4553 12.69 .6610
cosine 291 1.64 4.77 0.85 406 5.97 37.15 10.28 8.74
Jensen—Shannon divergence 3.29 1.77 5.82 0.83 488 7.192 442.37 10.27
Lin’s distributional measure 3.63 215 7.78 0.84 6.52 9.38 58.38 16.16 13.57
Distributionakoncept
o-skew divergence 411 254 10.43 0.91 9.49 12.19 25.28 16.44 14.96
cosine 4.00 251 10.03 0.90 9.05 11.77 26.99 16.38 14.74
Jensen—Shannon divergence 3.58 2.46 8.79 0.90 7.87 10.486 346.08 14.47
Lin’s distributional measure 3.02 2.60 7.84 0.88 6.87 9.45.88 15.04 13.24
WNetoncept
Hirst—St-Onge 424 195 8.27 0.93 7.70 9.67 26.33 14.15 613.1
Jiang—Conrath 4.73 2.97 14.02 0.92 12.91 14.33 46.22 21.88 20.13
Leacock—Chodrow 323 272 8.80 0.83 7.30 1156 60.33 19.40 6.101
Lin’s WordNet-based measure 357 271 9.70 0.87 8.48 9.56565116.13 14.03
Resnik 258 275 7.10 0.78 555 9.00 55.00 15.47 12.07
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Figure 3.5: Correcting real-word spelling errors

Observe that the correction ratio results for the distrdndl word-distance measures are
poor compared to distributional concept-distance measthie concept-distance measures are
clearly superior, in particulax-skew divergence and cosine. (Figure 3.5 depicts the sesult
a graph.) Moreover, if we consider correction ratio to belib#om-line statistic, then three
of the four distributional concept-distance measuresearfpm all WordNet-based measures
except the Jiang—Conrath measure. If we consider correptoformance to be the bottom-
line statistic, then again we see that the distributionalcept-distance measures outperform
the word-distance measures, except in the case of Lin'sldibnal measure, which gives
slightly poorer results with concept-distance. Also, imirast to correction ratio values, us-
ing the Leacock—Chodorow measure results in relativeliagrigorrection performance values
than the best distributional concept-distance measurekileW is clear that the Leacock—
Chodorow measure is relatively less accurate in choosmgght spelling-variant for an alarm
(correction accuracy), detection ratio and deteckescore present contrary pictures of rela-
tive performance in detection. As the correction ratio ied®ained by the product of a number
of ratios, each evaluating the various stages of malaprop@rection (identifying suspects,
raising alarms, and applying the correction), | believe i ibetter indicator of overall perfor-

mance than correction performance, which is a not-so-etegaduct of arf--score and accu-
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racy. However, no matter which of the two is chosen as thebwtine performance statistic,

the results show that the newly proposed distributionateptidistance measures are clearly
superior to word-distance measures. Further, of all thediWet-based measures, only that
proposed by Jiang and Conrath outperforms the best disotial concept-distance measures

consistently with respect to both bottom-line statistics.

3.6 Related work

Apart from the vast array of work on WordNet-based and distional word-distance measures
(summarized in Chapter 2), below is a brief description ofkumeelated specifically to that
described in this chapter.

Yarowsky (1992) proposed a model for unsupervised wordeseiisambiguation using
Roget’s ThesaurusA mutual information—like measure was used to identify dgthat best
represent each category in the thesaurus, which he callsatient words The presence of
a salient word in the context of a target word is evidence thatword is used in a sense
corresponding to the salient word. The evidence is incafeorin a Bayesian model. The
word-category co-occurrence matrix | created can be seemasns of determining the degree
of salience of any word co-occurring with a concept. | furtmeproved the accuracy of the
WCCM using simple bootstrapping techniques.

Pantel (2005) also provides a way to create co-occurrenc®ngefor WordNet senses.
The lexical co-occurrence vectors of words in a leaf nodepanpagated up the WordNet hi-
erarchy. A parent node inherits those co-occurrences teaglered by its children. Lastly,
co-occurrences not pertaining to the leaf nodes are remiowgdits vector. Even though the
methodology attempts at associating a WordNet node or setisenly those co-occurrences
that pertain to it, no attempt is made at correcting the feagy counts. After allwordl—
word2 co-occurrence frequency (or association) is likely notsame aseNSEL-word?2 co-

occurrence frequency (or association), simply becaugell may have senses other than
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SENSEL, as well. Further, in the Pantel (2005) system, the co4oenae frequency associ-
ated with a parent node is the weighted sum of co-occurreecgeiéncies of its children. The
frequencies of the child nodes are used as weights. Senggutylissues apart, this is still
problematic because a parent concept (gagp) may co-occur much more frequently (or
infrequently) with a word than its children. In contrastethootstrapped WCCM not only
identifies which words co-occur with which concepts, bubdias more accurate estimates of
the co-occurrence frequencies.

Patwardhan and Pedersen (2006) cregigregate co-occurrence vectorior a WordNet
sense by adding the co-occurrence vectors of the words WotsiNet gloss. The distance
between two senses is then determined by the cosine of tHe batyveen their aggregate
vectors. However, such aggregate co-occurrence vec®exaected to be noisy because they
are created from data that is not sense-annotated. Thettapptisig procedure introduced
in Section 3.3.2 minimizes such errors and as | will show ira@hr 5 markedly improves
accuracies of natural language tasks that use these cor@cce vectors.

Véronis (2004) presents a graph theory—based approactembify the various senses of
a word in a text corpus without the use of a dictionary. Forhetarget word, a graph of
inter-connected nodes is created. Every word that co-eosith the target word is a node.
Two nodes are connected with an edge if they are found to caragith each other. Highly
interconnected components of the graph represent theatiffeenses of the target word. The
node (word) with the most connections in a component is sgpriative of that sense and its
associations with words that occur in a test instance arttosspuantify evidence that the target
word is used in the corresponding sense. However, theseg#iieeof association are at best
only rough estimates of the associations between the sewlsecaoccurring words, since a

sense in his system is represented by a single (possiblygaimis) word.
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3.7 Conclusion

| have proposed a framework that allows distributional measto estimate concept-distance
using a published thesaurus and raw text. These distritmiticoncept-distance measures
are more intuitive proxies for semantic measures thanibligional word-distance measures.
| evaluated them in comparison with traditional distriloutal word-distance measures and
WordNet-based measures through their ability to rank weamls in order of their human-
judged linguistic distance, and their ability to corredalrevord spelling errors.

| showed that distributional concept-distance measurgseoiormed word-distance mea-
sures in both tasks. They do not perform as well as the bestNétrbased measures in ranking
a small set of word pairs, but in the task of correcting reatehspelling errors, they beat all
WordNet-based measures except for Jiang—Conrath (whitlaikedly better) and Leacock—
Chodorow (which is slightly better if we consider correatiperformance as the bottom-line
statistic, but slightly worse if we rely on correction ratidt should be noted that the Ruben-
stein and Goodenough word-pairs used in the ranking taskekss all the real-word spelling
errors in the correction task, are nouns. We expect that thelMét-based measures will per-
form poorly when other parts of speech are involved, as thagarchies of WordNet are not
as extensively developed. Further, the various hieras@me not well connected, nor is it clear
how to use these interconnections across parts of speechléaiating semantic distance. On
the other hand, our DPC-based measures do not rely on ammydhes (even if they existin a
thesaurus) but on sets of words that unambiguously repreaeh sense. Further, because our
measures are tied closely to the corpus from which co-oenae counts are made, we expect
the use of domain-specific corpora to give even better iesult

Both DPW- and WordNet-based measures have large spacenadetijuirements for pre-
computing and storing all possible distance values for guage. However, by using the cate-
gories of a thesaurus as very coarse concepts, pre-cormgautchstoring all possible distance
values for our DPC-based measures requires a matrix of silge8d2x 812. This level of

concept-coarseness might seem drastic at first glanceg$uits show that distributional mea-



CHAPTER 3. DISTRIBUTIONAL MEASURES OFCONCEPFDISTANCE 69

sures of distance between these coarse concepts are isiglgréeccurate in natural language
tasks. Part of future work is to try an intermediate degremafseness (still much coarser than
WordNet) by using the paragraph subdivisions of the thesamstead of its categories to see
if that gives even better results (see Future Directionsi@e8.5) for more discussion.

This newly proposed distributional approach of conceptatice has all the attractive fea-
tures of a distributional measure, and yet avoids probldmesmse-conflation (limitation 1.2.3.1)
and computationally complexity (limitation 1.2.1.1). A<alculates distance between coarse
senses, each represented by many words, even if some werdstaseen often in a text cor-
pus, all concepts have sufficient representation even il migora, thereby avoiding the
data sparseness problem (limitation 1.2.3.2). Howeveralree this method uses a published
thesaurus, the lack of high-quality knowledge sources istrtanguages (limitation 1.2.2.1)
remains a problem. Also, the approach as proposed is stitbimgual (limitation 1.2.1.2).

The next chapter addresses both these issues by makingdigaap cross-lingual.



Chapter 4

Cross-lingual Semantic Distancé

4.1 The knowledge-source bottleneck

Accurately estimating semantic distance, as discussédidreiarSection 1.1 of Chapter 1, has
pervasive applications in computational linguistics)uling machine translation, information
retrieval, speech recognition, spelling correction, ad tategorization. However, applying
algorithms for semantic distance to most languages is headey the lack of high-quality lin-
guistic resources. WordNet-based measures of semanti@ndées such as those of Jiang and
Conrath (1997) and Resnik (1995), require a WordNet whiasamt exist for most languages.
Distributional measures of word-distance, such as cosidexaskew divergence, rely simply
on raw text, but as | showed in the previous chapter, are nesgshdccurate because they con-
flate the many senses of a word. Distributional measuresrafeqm-distance combine written
text with a published thesaurus to measure distance betearereptqor word sensesusing
distributional measures, such as cosine argkew divergence. They avoid sense conflation

and achieve results better than the traditional word-deganeasures and indeed also most

1This chapter describes work done in collaboration with TarsZesch and Iryna Gurevych of Darmstadt
University of Technology. They played a pivotal role in thaleiation of the ideas presented here. They compiled
the "gold-standard” data for tHeeader’s Digesivord choice task and the ranking of German word pairs in order
of their semantic distance. They also provided baselin@stimdistance values as per state-of-the-art GermaNet
measures. | am grateful for their contributions and an éimgcollaboration.
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of the WordNet-based semantic measures (also shown in &weops chapter). Further, the
distributional concept-distance measures are much maokcaple than the WordNet-based
measures, which are only good at estimating semantic sitgilaetween noun pairs. How-
ever, the high-quality thesauri and (to a much greater €X¢#ardNet-like resources that these
concept-distance methods require do not exist for mosteB000-6000 languages in exis-
tence today and they are costly to create. While such litiguissources are being created for
English, Chinese, Spanish, Bengali, Hindi, and German-gtages that enjoy a large number
of speakers—aothers such as Pashto (Afghanistan), KanBad#h(Indian), Greek, and Kazakh
are largely ignored, let alone Swahili (African), Cherokeative American), Guarani (indige-
nous South American), and such. This chapter proposes aonayetcome this knowledge
bottleneck.

| introducecross-lingual distributional measures of concept-distace, or simplycross-
lingual measures that determine the distance between a word pair in resqaooelanguage
L1 using a knowledge source in a resource-rich languggeAn L;—L, bilingual lexicor?
will be used to map words in the resource-poor language tasviorthe resource-rich one. |
will compare this approach with the best monolingual appinea, which usually require high-
guality knowledge sources in the same languagg the smaller the loss in performance, the
more capable the cross-lingual algorithm is of overcomm@iguities in word translation. An
evaluation, therefore, requires hnthat in actuality has adequate knowledge sources. There-
fore | chose German to stand in as the resource-poor landyagfee monolingual evaluation
in German will use GermaNet. | chose English as the resatchd-,; the cross-lingual eval-
uation will use theMacquarie Thesaurus The evaluation tasks will involve estimating the
semantic distance between German words. Both monolingubkeoss-lingual approaches
will use the same German corpus, but while the monolinguaiaach will use a knowledge

source in the same language, the German GermaNet, thelicrggal approach (which | will

2For most languages that have been the subject of acaderdig #ere exists at least a bilingual lexicon
mapping the core vocabulary of that language to a major warlguage and a corpus of at least a modest size.
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CELESTIAL RIVER FINANCIAL
CELEBRITY BODY BANK INSTITUTION FURNITURE JUDICIARY } cen
star bank bench }wen
Stern Bank } wee

Figure 4.1: The cross-lingual candidate senses of Germads&ternandBank In red are

concepts not really senses of the German words, but simigtcas of the translation step.

describe ahead) will use a knowledge source from anothgubsge, the EnglisMacquarie
Thesaurus The remainder of the chapter describes our approach irstefi@erman and En-

glish, but the algorithm itself is language independent.

4.2 Cross-lingual senses, cross-lingual distributionalpfiles,
and cross-lingual distributional distance

Given a German word“ in context, we use a German—English bilingual lexicon tedatne

its different possible English translations. Each Engliahslationn®" may have one or more
possible coarse senses, as listed in an English thesauhgse English thesaurus concepts
(c=™ will be referred to as theross-lingual candidate sensesf the German wora€. Figure
4.1 depicts examples. They are called “candidate” becawse ®f the senses @f" might
not really be senses @f€. For examplecELESTIAL BODY andCELEBRITY are both senses
of the English wordstar, but the German wor8terncan only mearcELESTIAL BODY and not
CELEBRITY. Similarly, the GermaBankcan meanFINANCIAL INSTITUTION Of FURNITURE,

but notRIVER BANK or JUDICIARY. An automated system has no straightforward method of
teasing out the actual cross-lingual senseg®from those that are an artifact of the translation
step. So we treat them all as its senses. Now, | proceed tonlaeesemantic distance justasin
the monolingual case, except that the words are German andgénses are English thesaurus

categories. Table 4.1 presents a mini vocabulary of Gern@mdsweeded to understand the
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Table 4.1: Vocabulary of German words needed to understasdiscussion.

German word Meaning(s) German word Meaning(s)
Bank 1. financial institution Licht light

2. bench (furniture) Morgensonne morning sun
berihmt famous Raum space
Bombe bomb reich rich
Erwarmung heat Sonne sun
Film movie (motion picture) Star star (celebrity)
Himmelskrper heavenly body Stern star (celestial body)
Konstellation  constellation Verschmelzung fusion

discussion in this chapter.
As in the monolingual estimation of distributional conceltance, the distance between
two concepts is calculated by first determining their DPd¢he example monolingual DPs

of the two senses dftar:

CELESTIAL BODY (celestial body, sun, .): space0.36,light 0.27,constellation

0.11,hydroger0.07, ...
CELEBRITY (celebrity, hero, . .): famoud.24,movie0.14,rich 0.14,fan0.10, ...

In the cross-lingual approach, a concept is now glossed agsgonymous words in a#n-
glishthesaurus, whereas its profile is made up of the strengttssotation with co-occurring
Germanwords. | will call themcross-lingual distributional profiles of conceptsor justcross-
lingual DPCs. Here are constructed examples for the two cross-lingualidate senses of the

German wordstern

CELESTIAL BODY (celestial body, sun, .). Raum0.36,Licht 0.27,Konstellation
0.11, ...
CELEBRITY (celebrity, hero, ..): berihmt0.24,Film 0.14,reich0.14, ...
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The values are the strength of association (usually pogstwiutual information or conditional

probability) of the target concept with co-occurring wards order to calculate the strength
of association, we must first determine individual word andoept counts, as well as their
co-occurrence counts. The next section describes how taeske estimated without the use
of any word-aligned parallel corpora and without any semseotated data. The closer the
cross-lingual DPs of two concepts, the smaller is their sgimalistance. Just as in the case
of monolingual distributional concept-distance measydescribed in the previous chapter),
distributional measures can be used to estimate the destaetaveen the cross-lingual DPs of
two target concepts. For example, recall how cosine is usedmonolingual framework to

estimate distributional distance between two conceptscfdsed in Section 3.2 earlier):

Y wec(ey)uc(cp) (P(W(C1) X P(w(cz))

\/ ZWEC (c1) W| C1 \/ ZWEC (c2) W| CZ)

Cogp(Cy,C2) =

(4.1)

C(x) is the set of English words that co-occur with Englesincept »xwithin a pre-determined
window. The conditional probabilities in the formula arkea from the monolingual distribu-
tional profiles of concepts. We can adapt the formula to egBnaross-lingual distributional
distance between two concepts as shown below:

S weeceencieen) (POWEEICE™) x P(welcs™)
\/ ¥ weeec(cem P(Wd€cf")? x \/ Y weeec(cgn) P(WAe[C5")2

C(x) is now the set of German words that co-occur with English ephg within a pre-

Cosef". ) =

(4.2)

determined window. The conditional probabilities in thenfola are taken from the cross-
lingual DPCs.

If the distance between two German words is required, therdistance between all rel-
evant English cross-lingual candidate sense pairs isrdated and the minimum is chosen.
For example, ifSternhas the two cross-lingual candidate senses mentioned auer-
schmelzungpas one Kusion), then the distance between them is determined by first aggply
Cosine (or any distributional measure) to the cross-lihgus of CELESTIAL BODY andFu-

SION:
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CELESTIAL BODY (celestial body, sun, .): Raum0.36,Licht 0.27,Konstellation
0.11, ...
FUSION (thermonuclear reaction, atomic reaction, ). Erwaermung).16,Bombe

0.09,Licht0.09,Raum0.04, ...
Then applying cosine to the cross-lingual DPs&f EBRITY andFUSION:

CELEBRITY (celebrity, hero, ..): berihmt0.24,Film 0.14,reich0.14, ...
FUSION (thermonuclear reaction, atomic reaction, ). Erwarmung0.16,Bombe

0.09,Licht 0.09,Raum0.04, ...

And finally choosing the one with minimum semantic distantt@t is, maximum similar-

ity/relatedness:

distancéStern Verschmelzung= max CogCELEBRITY,FUSION), CO§ CELESTIAL BODY, FUSION))
(4.3)
Maximum is chosen because cosine is a similarity/relatesingeasure. In case of distance

measures, such asSkew Divergence, the minimum will be chosen.

4.3 Estimating cross-lingual DPCs

Determining cross-lingual distributional profiles of cepts requires information about which
words in one language; co-occur with which concepts as defined in another langliage
This means that a direct approach requires the text;jnffrom which counts are made, to
have a word-aligned parallel corpuslip. Further, theL, text must be sense annotated. Such
data exists rarely, if at all, and it is expensive to creatbusl another way to obtain these
counts must be devised. | now present a way to estimate tnggsal distributional profiles of
concepts from raw-text (in one languadg) and a published thesaurus (in another language,

L,) using anL1—L bilingual lexicon and a bootstrapping algorithm.
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4.3.1 Creating cross-lingual word—category co-occurrereematrix

| create a cross-lingual word—category co-occurrenceixnaith German word types/ € as

one dimension and English thesaurus conceftas another.

en en en
" " . G

W(ie M1 M2 ... Myj

WE | mpy Mgy ... My

wle | my mz ...omy

The matrix is populated with co-occurrence counts from gddBerman corpus. A particular
cell mj, corresponding to word#® and concept§", is populated with the number of times
the German wor@{® co-occurs (in a window of-5 words) with any German word havire

as one of itxcross-lingual candidate senseBor example, th&aum-CELESTIAL BODY cell

will have the sum of the number of tim&aumco-occurs wittHimmelskrper, Sonne, Mor-
gensonne, Star, Sterand so on (see Figure 4.2). This matrix, created after apfrss of the
corpus, is called theross-lingual base WCCM A contingency table for any particular Ger-
man wordw®€ and English categorg®" can be easily generated from the WCCM by collapsing

cells for all other words and categories into one and summjmnipeir frequencies.

Cen _|Cen

W€ | N decen My,
W€ | noen N
The application of a suitable statistic, such as PMI or coowial probability, will then yield
the strength of association between the German word andnfjiéesk category.
As the cross-lingual base WCCM is created from unannotaet it is expected to be
noisy (for the same word-sense-ambiguity reasons as to dynonolingual base WCCM
is noisy—explained in Section 3.3.1 earlier). Yet, agae, ¢ross-lingual base WCCM does

capture strong associations between a category (conageptioaoccurring words (just like the
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CELESTIAL BODY }cen

1 ! !
celestial body sun star ... jwe"
Himmelskrper Sonne Morgensonne Star Stern ... Jw®

Figure 4.2: Words havingeLESTIAL BODY as one of their cross-lingual candidate senses.

monolingual base WCCM). For example, even though we incréroeunts for bottRaum-
CELESTIAL BODY andRaum-CELEBRITY for a particular instance wheRaumco-occurs with
Star, Raumwill co-occur with a number of words such &mmelskrper, Sonneand Mor-
gensonnghat each have the sense@H#LESTIAL BODY in common (see Figures 4.2 and 4.3),
whereas all their other senses are likely different andibliged across the set of concepts.
Therefore, the co-occurrence counRdEumandCELESTIAL BODY, and thereby their strength

of association, will be relatively higher than thoseReumandCELEBRITY (Figure 4.4).

4.3.2 Bootstrapping

As in the monolingual case, a second pass of the corpus is toaikambiguate the (German)
words in it. Each word in the corpus is considered as the tanmge at a time. For each cross-
lingual candidate sense of the target, its strength of #&ssmc with each of the words in its
context -5 words) is summed. The sense that has the highest cumudetseeiation with
co-occurring words is chosen as the intended sense of thettaord. A new bootstrapped
WCCM is created by populating each caljj, corresponding to Wom\lﬁIe and concept$",
with the number of times the German wond® co-occurs with any German wongsed in
cross-lingual senseSt. (Again, this is just like the monolingual bootstrappingxpkained
earlier in Section 3.3.2.) A statistic such as PMI is thenliggpo these counts to determine
the strengths of association between a target concept aodatoring words, giving the cross-

lingual distributional profile of the concept.
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CELESTIAL BODY

\
one sense of

. X . .
“>~a fragment of tex
e

other sense(s) of

Raum

x € {Stern, Sonne, Himmelsiper, Morgensonne, Konstellatipn

Figure 4.3: The wordRaumwill also co-occur with a number of other worgdshat each have

one sense afELESTIAL BODY in common.

sense ofStern

a fragment of tex

sense ofStern

Figure 4.4: The base WCCM captures strong word—categonccasrence associations.

4.4 Evaluation

We evaluate the newly proposed cross-lingual distrib@tiomeasures of concept-distance on
the tasks of (1) measuring semantic distance between Gewoeds and ranking German
word pairs according to semantic distance, and (2) solviagr@n ‘Word Power’ questions
from Reader’s Digest The cross-lingual approach uses the following resourttesGerman
newspaper corpugiz (Sep 1986 to May 1999; 240 million words), the Englidlacquarie
ThesaurugBernard, 1986) (about 98,000 words), and the German—&mngllingual lexicon
BEOLINGUS' (about 265,000 entries). Multi-word expressions in thes#ueus and the bilin-

Shttp://www.taz.de
“http://dict.tu-chemnitz.de
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Table 4.2: Distance measures used in the experiments.
(Cross-lingual) Distributional Measures (Monolingual) GermaNet Measures

Information Content—based Lesk-like

a-skew divergence (Lee, 2001) Jiang and Conrath (1997) hypepseudo-gloss (Gurevych, 2005)
cosine (Schitze and Pedersen, 1997) Lin (1998c) radiadiesgloss (Gurevych, 2005)
Jensen-Shannon divergence (Dagan et al., 1994) Resni&)(199

Lin (1998a)

gual lexicon were ignored. We used a context-&fwords on either side of the target word for
creating the base and bootstrapped WCCMs. No syntactipnoeessing was done, nor were
the words stemmed, lemmatized, or part-of-speech tagged.

In order to compare results with state-of-the-art monaladgapproaches we conducted
experiments using GermaNet measures as well. The spedsficbdtional measures and
GermaNet-based measures used are listed in Table 4.2.nd&tm@anon divergence anod
skew divergence calculate the difference in distributiohg/ords that co-occur with the tar-
gets. Lin’s distributional measure and Lin's GermaNet meagollow from his information-
theoretic definition of similarity (Lin, 1998c). The GermafNneasures used are of two kinds:
(1) information content measures, and (2) Lesk-like messstirat rely om-gram overlaps in
the glosses of the target senses, proposed by Gurevych)(28655ermaNet does not have
glosses for synsets, Gurevych (2005) proposed a way ofiegesmbag-of-words-type pseudo-
gloss for a synset by including the words in the synset anginsets close to it in the network.
The information content measures rely on finding the lowestroon subsumer (Ics) of the
target synsets in a hypernym hierarchy and using corpustsoormetermine how specific or
general this concept is. The more specific the Ics is and tladlenthe difference of its speci-

ficity with that of the target concepts, the closer the taogeicepts are.
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Table 4.3: Comparison of datasets used for evaluating senthstance in German.

Dataset Year Language # pairs PoS Scores # subjects Corrdla
Gur65 2005 German 65 N discre®,1,2,3,4 24 .810
Gur350 2006 German 350 N,V,A discrdte1,2,3,4 8 .690

4.4.1 Ranking word pairs
4.4.1.1 Data

A direct approach to evaluate distance measures is to cenpam with human judgments.
Gurevych (2005) and Zesch et al. (2007b) asked native Gespeakers to mark two different
sets of German word pairs with distance values. S&ur§5) is the German translation of the
English Rubenstein and Goodenough (1965b) dataset. ItShasw—noun word pairs. Set 2
(Gur350) is a larger dataset containing 350 word pairs made up ofsyauembs, and adjectives.
The semantically close word pairs in Gur65 are mostly synmwr hypernyms (hyponyms) of
each other, whereas those in Gur350 have both classicabendassical relations (Morris and
Hirst, 2004) with each other. Details of thessmantic distance benchmarkdare summarized
in Table 4.3. Inter-subject correlations are indicativaled degree of ease in annotating the

datasets.

4.4.1.2 Results and Discussion

Word-pair distances determined using different distaneasures are compared in two ways
with the two human-created benchmarks. The rank orderinigeopairs from closest to most
distant is evaluated with Spearman’s rank order correigtiothe distance judgments them-
selves are evaluated with Pearson’s correlation coefficieThe higher the correlation, the
more accurate the measure is. Spearman’s correlationag@aatual distance values after a list

is ranked—only the ranks of the two sets of word pairs are @msipto determine correlation.

5The datasets are publicly available atttp://wwv. ukp.tu- darnstadt. de/ dat a/
senRel Dat aset s.
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On the other hand, Pearson’s coefficient takes into accandladistance values. So even if
two lists are ranked the same, but one has distances betwasaautively-ranked word-pairs
more in line with human-annotations of distance than themthen Pearson’s coefficient will

capture this difference. However, this makes Pearson’fficieat sensitive to outlier data

points, and so one must interpret it with caution.

Table 4.4 shows the results. Observe that on both datasgtsydmoth measures of corre-
lation, cross-lingual measures of concept-distance parfmt just as well as the best mono-
lingual measures, but in fact better. (Figure 4.5 depictsrésults in a graph.) In general,
the correlations are lower for Gur350 as it contains crasS-Rord pairs and non-classical
relations, making it harder to judge even by humans (as shHowtine inter-annotator cor-
relations for the datasets in Table 4°3)Considering Spearman’s rank correlatianskew
divergence and Jensen-Shannon divergence perform begitordétasets. The correlations
of cosine and Lin’s distributional measure are not far béhitmongst the monolingual Ger-
maNet measures, radial pseudo-gloss performs best. @oimgjdPearson’s correlation, Lin’s
distributional measure performs best overall and radiaugde-gloss does best amongst the

monolingual measures.

4.4.2 Solving word choice problems fronReader’s Digest
4.42.1 Data

Our approach to evaluating distance measures follows thirmasz and Szpakowicz (2003),
who evaluated semantic similarity measures through thmiityato solve synonym problems
(80 TOEFL (Landauer and Dumais, 1997), 50 ESL (Turney, 208xid 300 (EnglishiReader’s
DigestWord Power questions). Turney (2006) used a similar appré@mevaluate the identifi-

cation of semantic relations, with 374 college-level npiéichoice word analogy questions.

60ne can also note that the drop in correlation when moving tttassical to non-classical relations is some-
what higher for the automatic measures than for humans. Hewé is unclear what we can conclude from
this.
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Table 4.4: Correlations of distance measures with humagngshts. The best results obtained

using monolingual and cross-lingual measures are markiedlth

Gur65 Gur350
Spearman’s Pearson’s Spearman’s Pearson’s
Measure rank correlation correlation rank correlation cor relation
Monolingual
hypernym pseudo-gloss 0.672 0.702 0.346 0.331
radial pseudo-gloss 0.764 0.565 0.492 0.420
Jiang and Conrath measure 0.665 0.748 0.417 0.410
Lin’s GermaNet measure 0.607 0.739 0.475 0.495
Resnik’'s measure 0.623 0.722 0.454 0.466
Cross-lingual
a-skew divergence 0.794 0.597 0.520 0.413
cosine 0.778 0.569 0.500 0.212
Jensen-Shannon divergence 0.793 0.633 0.522 0.422
Lin’s distributional measure 0.775 0.816 0.498 0.514
O monolingual M cross-lingual
1
0.8
5
< 06
=
4
= 04
~
0.2
0
Spearman's Pearson's Spearman's Pearson's
Gurés Gur3s0

dataset and correlation-measure

Figure 4.5: Ranking German word pairs
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Issues of the German edition Beader’s Digesinclude a word choice quiz called ‘Word
Power’. Each question has one target word and four altesnaibrds or phrases; the objective
is to pick the alternative that is most closely related totdrget. The correct answer may
be a near-synonym of the target or it may be related to thetdrg some other classical or

non-classical relation (usually the former). For exanple:

Duplikat (duplicate)
a. Einzelstick(single copy) bDoppelkinn(double chin)
c. Nachbildung(replica) d.Zweitschrift(copy)

As part our collaboration, Torsten Zesch compiledReader’s Digest Word Power (RDWP)
benchmark for German, which consists of 1072 of these word-choicelprob collected from
the January 2001 to December 2005 issues of the Germanagegulition (Wallace and Wal-
lace, 2005). Forty-four problems that had more than oneecbanswer and twenty problems
that used a phrase instead of a single term as the target vgesrakbd. The remaining 1008
problems form our evaluation dataset, which is significatatger than any of the previous
datasets employed in a similar evaluation.

We evaluate the various cross-lingual and monolinguahdist measures by their ability
to choose the correct answer. The distance between the tardeeach of the alternatives is
computed by a measure, and the alternative that is closagsbsen. If two or more alternatives
are equally close to the target, then the alternatives adetgebetied. If one of the tied
alternatives is the correct answer, then the problem is teouas correctly solved, but the
corresponding score is reduced. The system assigns a dcorg, @.33, and 0.25 for 2, 3,
and 4 tied alternatives, respectively (in effect approstingathe score obtained by randomly
guessing one of the tied alternatives). If more than onergt®’e has a sense in common with
the target, then the thesaurus-based cross-lingual nesasilr mark them each as the closest
sense. However, if one or more of these tied alternatives ke same semicolon group of

the thesaurus as the target, then only these are chosendsdést senses. Recall that words

’English translations are in parentheses.
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in a thesaurus category are further partitioned into diffiéparagraphs and each paragraph
into semicolon groups. Words within a semicolon group areenctosely related than those in
semicolon groups of the same paragraph or category.

Even though we discard questions from the German RDWP ddtegeontained a phrasal
target, we did not discard questions that had phrasal aliges simply because of the large
number of such questions. Many of these phrases cannot bd fouhe knowledge sources
(GermaNet oMacquarie Thesaurugia translation list). In these cases, we remove stopwords
(prepositions, articles, etc.) and split the phrase intoponent words. As German words in
a phrase can be highly inflected, all components are lemathtizor example, the targeha-
ginar (imaginary) hasnur in der Vorstellung vorhandef@xists only in the imaginatigms one
of its alternatives. The phrase is split into its componeatdsnur, Vorstellungandvorhan-
den The system computes semantic distance between the tadjetah phrasal component

and selects the minimum value as the distance between targgqtotential answer.

4.4.2.2 Results and Discussion

Table 4.5 presents the results obtained on the German RDWeéhimark for both monolin-
gual and cross-lingual measures. Only those questions iacchwthe measures have some
distance information are attempted; the column ‘# attedifgieows the number of questions
attempted by each measure, which is the maximum score thah&asure can hope to get.
Observe that the thesaurus-based cross-lingual measavesimuch larger coverage than the
GermaNet-based monolingual measures. The cross-lingeagumnes have a much larger num-
ber of correct answers too (column ‘# correct’), but this twemis bloated due to the large
number of ties. We see more ties when using the cross-lingealsures because they rely
on theMacquarie Thesaurysa very coarse-grained sense inventory (around 800 catsyor
whereas the monolingual measures operate on the fine-gr@ieenaNet. ‘Score’ is the score
each measure gets after it is penalized for the ties. Tha-tirmgual measures cosine, Jensen-

Shannon divergence, and Lin’s distributional measureiolke highest scores. But ‘Score’
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by itself does not present the complete picture either asnghe scoring scheme, a measure
that attempts more questions may get a higher score justriadom guessing. We therefore

present precision (P), recall (R), ardneasure (F):

S
P =3z an(é?ﬁﬁted (4.4)
R =3 (4.5)
F o =ZR (4.6)

Figure 4.6 depicts the results in a graph. Observe that dssdmgual measures have a higher
coverage (recall) than the monolingual measures but lowesigion. TheF measures show
that the best cross-lingual measures do slightly better the best monolingual ones, despite
the large number of ties. The measures of cosine, Jenseam@hmdivergence, and Lin’s distri-
butional measure remain the best cross-lingual measuheseas hypernym pseudo-gloss and

radial pseudo-gloss are the best monolingual ones.

4.5 Conclusion

| have proposed a new method to determine semantic distaracpassibly resource-poor lan-
guage by combining its text with a knowledge source in a wbffig preferably resource-rich,
language. Specifically, | combined German text with an Ehgthesaurus to create cross-
lingual distributional profiles of concepts—the strengtfi@ssociation between English the-
saurus senses (concepts) of German words and co-occurimga® words—using a German—
English bilingual lexicon and a bootstrapping algorithnsigaed to overcome ambiguities of
word-senses and translations. Notably, | do so without seeafi sense-annotated text or word-
aligned parallel corpora. | did not parse or chunk the tert, aid | stem, lemmatize, or
part-of-speech-tag the words.

| used the cross-lingual DPCs to estimate semantic distbpageveloping new cross-

lingual distributional measures of concept-distance.s€haeasures are like the distributional
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Table 4.5: Performance of distance measures on word choitdepns. The best results ob-

tained using monolingual and cross-lingual measures arkauan bold.
Reader’s Digest Word Power benchmark

Measure # attempted #correct #ties Score P R F
Monolingual
hypernym pseudo-gloss 222 174 111715 .77 .17 .28
radial pseudo-gloss 266 188 15184.7 .69 .18 .29
Jiang and Conrath 357 157 1 156.0 .44 .16 .23
Lin’s GermaNet measure 298 153 1 1525 51 .15 .23
Resnik’s measure 299 154 33 1483 50 .15 .23
Cross-lingual
a-skew divergence 438 185 81 1516 .35 .15 .21
cosine 438 276 90 223.1 51 .22 .31
Jensen-Shannon divergence 438 276 9@29.6 .52 .23 .32
Lin’s distributional measure 438 274 90 228.7 .52 .23 .32
@ monolingual B cross-lingual
0.8
06
0.4
0 .
precision recall F-measure

Figure 4.6: Solving word choice problems.
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measures of concept-distance (Mohammad and Hirst, 20086b2, except they can deter-
mine distance between words in one language using a thesawrdifferent language. | evalu-
ated the cross-lingual measures against the best monaliageas operating on a WordNet-like
resource, GermaNet, through an extensive set of expergoerivo different German seman-
tic distance benchmarks. In the process, my collaboralignsa Gurevych and Torsten Zesch)
compiled a large German benchmarkRéader’s Digestvord choice problems suitable for
evaluating semantic-relatedness measures. Most pres@uantic distance benchmarks are
either much smaller or cater primarily to semantic simijameasures.

Even with the added ambiguity of translating words from cawegliage to another, the
cross-lingual measures performed better than the bestlimgnal measures on both the word-
pair task and thdkeader’s Digestvord-choice task. Further, in the word-choice task, the
cross-lingual measures achieved a significantly highezrame than the monolingual measure.
The richness of English resources seems to have a major iygya@n though German, with
GermaNet, a well-established resource, is in a betteripnghian most other languages. This
is indeed promising, because achieving broad coverageefmurce-poor languages remains
an important goal as we integrate state-of-the-art appesam natural language processing
into real-life applications. These results show that theppsed algorithm can successfully
combine German text with an English thesaurus using a iihGerman—English lexicon to
obtain state-of-the-art results in measuring semanttaice.

These results also support the broader and far-reachiig that natural language prob-
lems in a resource-poor language can be solved using a kdge/kource in a resource-rich
language (for example the cross-lingual PoS tagger of @aoeand Yarowsky (2002)). Cross-
lingual DPCs also have tremendous potential in tasks imitigreavolving more than one lan-
guage. In Chapter 7 ahead, | investigate the use of crogsdIDPCs in word translation. This
work will act as a launching pad for other multilingual etfoon machine translation (Section
8.5.1), multi-language multi-document summarizationc{®a 8.5.2), multilingual informa-

tion retrieval (Section 8.5.3), and multilingual documehistering (Section 8.5.4). | believe
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that the future of natural language processing lies notandsdlone monolingual systems but

in those that are powered by automatically created mutiial networks of information.



Chapter 5

Determining Word Sense Dominance

5.1 Introduction

In the last two chapters, | showed how corpus statistics @ndmbined with a published
thesaurus to estimate semantic distance. | evaluatedwhapproach, in both monolingual and
cross-lingual frameworks, on certain word-distance tgdtksks that do not explicitly require
distance between a concept and another unit of languageathet, seemingly at least, require
the distance between words). Those were tasks where disbriial profiles of words (DPWSs)
can and have been used, but, as | have shown, using distnbuprofiles of concepts (DPCs)
gives as much better results. In this chapter, | describegbeof DPCs in a task where DPWs
alone cannot help. This chapter describes the evaluatitimeofiew approach on @ncept-
distancetask—determining word sense dominance.

In text, the occurrences of the senses of a word usually hakewaed distribution (Gale
etal., 1992; Ng and Lee, 1996; Sanderson and van Rijsbet§68). For example, in a set of
randomly acquired sentences containing the vetanah it is probable that most of the instances
correspond to thBODY OF WATER sense as opposed to the rather infrequent OF LENGTH
Or FEMALE PARENT OF AN ANIMAL senses. Further, the distribution varies in accordance

with the domain or topic of discussion. For example, ASSERTION OF ILLEGALITY sense

89
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of chargeis more frequent in the judicial domain, whereas in the donehieconomics, the
EXPENSHCOST sense occurs more often. Formally, ttegree of dominance of garticular
senseof a word target word) in a given text {arget text) may be defined as the proportion of
occurrences of the sense to the total occurrences of thet teogd. The sense with the highest
dominance in the target text is called fredominant senseof the target word.

Determination of word sense dominance has many uses. Ampeanagsed system will ben-
efit by backing off to the predominant sense in case of insefftevidence (Hoste et al., 2001).
The dominance values may be used as prior probabilitiehéodifferent senses, obviating the
need for labeled training data in a sense disambiguatidn fdatural language systems can
choose to ignore infrequent senses of words (McCarthy,&2@Dd4a) or consider only the most
dominant senses (McCarthy et al., 2004b). An unsuperviggdithm that discriminates in-
stances into different usages can use word sense dominassign labels to the different
clusters generated.

Word sense dominance may be determined by simple countsenise-tagged data. How-
ever, as mentioned earlier, dominance varies with domaihexisting sense-tagged data is
largely insufficient to meet these needs. | propose four neasures to accurately determine
word sense dominance using raw text and a published thesaunlike the McCarthy et al.
(2004b) system, these measures can be used on relativeljtamaet texts, without the need
for a similarly-sense-distributeduxiliary text. Further, given a new target text, the measur
are much faster and they can be employed not just for nounfobuainy part of speech. |

perform an extensive evaluation using artificially genssldhesaurus-sense-tagged data.

5.2 Related work

McCarthy et al. (2004b) automatically determine domaiaesiic predominant senses of words
by using both a measure of distributional similarity (LirfR9Bb) and a measure of semantic

similarity (Jiang and Conrath, 1997). The system (Figutg &utomatically generates a distri-



CHAPTER 5. DETERMINING WORD SENSE DOMINANCE 91

similarly sense distributed

M WordNet H
dominanc Lin's o
‘ target text‘ ominance thesaurusm auxiliary corpus

dominance values

Figure 5.1: The McCarthy et al. system. Its limitations ua#: (1) requirement of a large cor-
pus similarly sense distributed as the target text, (2)eliamce on WordNet-based semantic
distance measures which are good only for noun pairs, ante€) to re-create Lin’s distribu-

tional thesaurus for each new text with a different senseiloligion.

butional thesaurus from a large corpus. The target textad €@ this purpose, provided it is
large enough. Otherwise a large corpus with sense disoibstmilar to the target text (text
pertaining to the specified domain) must be used.

The thesaurus has an entry for each word type, which listegelil number of words
(neighborg) that are distributionally most similar to it. Since Lin’ssttibutional measure
overestimates the distributional similarity of more-fueqt word pairs (Mohammad and Hirst,
2005), the neighbors of a word corresponding to the predamisense are distributionally
closer to it than those corresponding to any other sensee&adr senss of a target word,
the distributional similarity scores afwith all it neighbors are summed using the semantic
similarity of swith the closest sense of the neighbor as weight. The seatgéls the highest
score is chosen as the predominant sense.

The McCarthy et al. system needs to re-train (create a nesatinas) every time it is to
determine predominant senses in data from a different domEtis requires large amounts
of part-of-speech-tagged and chunked data from that donkairther, the target text must be
large enough to learn a thesaurus from (Lin (1998b) usedraiBibn-word corpus), or a large
auxiliary text with a sense distribution similar to the tairgext must be provided (McCarthy

et al. (2004b) separately used 90-, 9.1-, and 32.5-milvoind corpora). As the McCarthy et al.
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‘ [ published thesaurus } ‘

1l 1l

\| dominanc ili
‘ target textH‘ om asure% WCCM m auxiliary corpus

dominance values

Figure 5.2: My word-sense-dominance system. Notably: t(igd uses an auxiliary corpus,
but it does not need to have a sense distribution similaradaiget text, (2) the word—category
co-occurrence matrix is created just once, and (3) it relirea published thesaurus and can be

applied to content words of any part of speech.

system relies on a WordNet-based measure of semantic cieséarwell, and as WordNet-based
measures are particularly poor at estimating semantitedii@ss, the approach, in practice, is
applicable only to nouns and it is unable to exploit inforimafrom semantically related, albeit

semantically dissimilar, co-occurring words.

5.3 My word-sense-dominance system

| present a method (Figure 5.2) that, in contrast to the Mit(yaet al. (2004b) system, deter-
mines word sense dominance even in relatively small amaafrirget text (a few hundred
sentences); although it does use a corpus, it does not eegsiimilarly-sense-distributedor-
pus. Nor does my system need any part-of-speech-taggedalttaugh that may improve
results further), and it does not need to generate a thesausxecute any such time-intensive
operation at run time. The approach stands on the hypotiegig/ords surrounding the target
word are indicative of its intended sense, and that the dana@ of a particular sense is pro-
portional to the relative strength of association betwéand co-occurring words in the target
text. As shown in the previous two chapters, this strengtissbciation can be determined not
just for a noun sense and co-occurring words but also for #mgr part of speech. Therefore,

this sense dominance approach can be applied not just t@nowinto any part of speech.
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5.3.1 Small target texts and a domain-free auxiliary corpus

As before, | use thdlacquarie Thesauryswith its 812 categories, as a coarse-grained sense
inventory. | create a word—category co-occurrence ma¥McCM) and distributional profiles

of these concepts or categories (DPCs) using the bootstigaatgorithm described earlier

in Section 3.3 and a subset of tBeitish National Corpus (BNCJBurnard, 2000); | use all
except every twelfth sentence of the BNC and keep the renmifoir evaluation purposés.
This corpus, used in addition to the target text, will beadtiheauxiliary corpus. If the target

text belongs to a particular domain, then the creation oM#@&CM from an auxiliary text of

the same domain is expected to give better results than éhefasdomain-free text. The target
text itself may be used as the auxiliary corpus if it is largewggh. However, the key feature of
my approach is that the target text does not have to be lagjeaan a domain-free auxiliary

corpus can help obtain accurate results.

5.3.2 Dominance measures

| examine each occurrence of the target word in a given uethgarget text to determine
dominance of any of its senses. For each occurrénaka target word, let T’ be the set of
words (tokens) co-occurring within a predetermined windwaundt’; let T be the union of all
suchT’ and letZ; be the set of all such’. (Thus|Zt| is equal to the number of occurrences of
t, and|T| is equal to the total number of words (tokens) in the windomesiad occurrences of
t.) I propose four methods (Figure 5.3) to determine domiadDew, D) u, De w, andDg y)
and the underlying assumptions of each.

Di w is based on the assumption that the more dominant a partgeriae is, the greater the
strength of its association with words that co-occur withHbr example, if most occurrences

of bankin the target text correspond ROVER BANK, then the strength of associationraf/ER

INote that even though we use a subset of the the BNC for ei@iyas described ahead in Section 5.5 ahead,
we create different test sets pertaining to different seiisteibutions from this subset. Thus, we are not assuming
that the corpus used to create the WCCM and the test setsh@garme sense distribution. In fact, they do not.
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Weighted | Unweighted
voting | voting
Implicit sense
disambiguation Diw Dy
Explicit sense
disambiguation Dew Deu

Figure 5.3: The four dominance methods.

BANK with all of banKs co-occurring words will be larger than the sum for any otbense.

DominanceD, w of a sense or categorg)(of the target wordty is:

2weT A(w,c) 51
ZC’esenseg) ZWET A(W, C/) ( . )

whereA is any one of the measures of association, such as pointwisgamnformation,

D|7w(t,C) =

described earlier in Section 2.1.1—cosine (Cos), Dicefmoeft (Dice), odds ratio (Odds),
pointwise mutual information (PMI), Yule’s coefficient (M), and@ coefficient. Metaphori-
cally, words that co-occur with the target word give a wegghtote to each of its senses. The
weight is proportional to the strength of association betwthe sense and the co-occurring
word. The dominance of a sense is the ratio of the total vdtgsts to the sum of votes
received by all the senses.

A slightly different assumption is that the more dominantatipular sense is, the greater
the number of co-occurring words having highest strengtassbciation with that sense (as
opposed to any other). This leads to the following methoglpl&ach co-occurring word casts
an equal, unweighted vote. It votes for that sense (and rex)oti the target word with which
it has the highest strength of association. The domin&nggof the sense is the ratio of the
votes it gets to the total votes cast for the word (number ed@murring words).

Diult,c) — |{W€T:S‘r_1rsl|(w,t):c}\ (5.2)
Sng(w,t) = argmaxA(w,c) (5.3)

c’esenseft)

Observe that in order to determibgyy or D, y, we do not need to explicitly disambiguate

the senses of the target word’s occurrences. | now desdtdraaive approaches that may be
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used for explicit sense disambiguation of the target wasdsurrences and thereby determine
sense dominance (the proportion of occurrences of thaekeDdgy relies on the hypothesis
that the intended sense of any occurrence of the target veatiighest strength of association

with its co-occurring words.

{T' € 2;:Sns(T',t) =c}|
| 24|

DEyw(t,C) =
(5.4)

Sns(T',t) = argmax § A(wc) (5.5)

c'esensed) weT’
Metaphorically, words that co-occur with the target wordega weighted vote to each of its
senses just as D, yv. However, votes from co-occurring words in an occurreneesammed
to determine the intended sense (sense with the most vdtésg target word. The process
is repeated for all occurrences that have the target woredh word that co-occurs with the
target word votes as described @y, then the following hypothesis forms the basifegfy:
in a particular occurrence, the sense that gets the maxinaies ¥rom its neighbors is the

intended sense.

{T' € 2t :Sng(T',t) =c}|
| 24|

Sng(T',t) = argmax |[{we T’ :Sng(w,t) ='}| (5.7)

c'esenseft)

DE7U (t,C) = (5.6)

In method<Dg v andDg y, the dominance of a sense is the proportion of occurrenctsbf
sense.

The degree of dominance provided by all four methods hasath@ning properties: (i)
The dominance values are in the range 0 to 1—a score of 0 isipliest possible dominance,
while a score of 1 means that the dominance is highest. (& ddminance values for all the

senses of a word sumto 1.
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5.4 Pseudo-thesaurus-sense-tagged data

To evaluate the four dominance methods we would ideallydémences that have target words
annotated with senses from the thesaurus (the conceptanygnHowever, human annotation
is both expensive and time intensive. So | present an atteerepproach of artificially generat-
ing thesaurus-sense-tagged data following the ideas afdokeet al. (1998) and Mihalcea and
Moldovan (1999). Around 63,700 of the 98,000 word types mNfacquarie Thesauruare
monosemous—listed under just one of the 812 categories. This mean®othaverage around
77 words per category are monosemoBseudo-thesaurus-sense-tagged (PTST) ddfar

a non-monosemous target wardfor example,brilliant) used in a particular sense or cate-
gory c of the thesaurus (for exampleNTELLIGENCE) may be generated as follows. Identify
monosemous words (for examptdevel belonging to the same category@sick sentences

containing the monosemous words from an untagged auxtkatycorpus.
Hermione had aleverplan.

In each such sentence, replace the monosemous word witlrtjet tvordt. In theory the
words in a thesaurus category are near-synonyms or at leasgly related words, making
the replacement of one by another acceptable. For the senddaove, we replacdeverwith
brilliant. This results in (artificial) sentences with the target wasdd in a sense corresponding
to the desired category. Figure 5.4 summarizes the process.

Clearly, many of these sentences will not be linguisticai formed, but the non-monosemous
word used in a particular sense is likely to have similar couoring words as the monosemous
word of the same categofyThis justifies the use of these pseudo-thesaurus-sengedtagta

for the purpose of evaluation.

2Strong collocations are an exception to this, and theiceffeust be countered by considering larger window
sizes. Therefore, we do not use a window size of just one omwrds on either side of the target word, but rather
windows of-+5 words in our experiments.
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target word published thesaurus corpus

brilliant » INTELLIGENCE » Hermione had a clever plan.
brilliant bi
target sense (ambiguous)

clever (monosemous)

smart (ambiguous)
pseudo-thesaurus sense—tagged data
Hermione had a brilliantnteLLicence  plan.

INTELLIGENCE

Figure 5.4: An overview of how pseudo-thesaurus-sensgetadata was created.

| generated PTST test data for the head words BnNSEVAL-1 English lexical sample
spacé using theMacquarie Thesauruand the held out subset of tlBNC (every twelfth

sentence).

5.5 Evaluation

| evaluated the four dominance methods, like McCarthy et24104b), through the accuracy
of a naive word sense disambiguation system that always giut the predominant sense of
the target word. The predominant sense is determined bydfaleh four dominance methods,
individually. The more accurately a measure determinepthdominant sense of the target
words, the higher will be the accuracy of the word sense disguration system. | used the

following setup to study the effect of sense distributiorpenformance.

3SENSEVAL-1 head words have a wide range of possible senses, andmalitgilaf alternative sense-tagged
data may be exploited in the future.
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55.1 Setup

For each target word for which we have PTST data, the two nasiirthnt senses are identi-
fied, says; andsp. If the number of sentences annotated vgitlands, is x andy, respectively,
wherex >y, then ally sentences of, and the firsty sentences of; are placed in @ata bin.
Eventually the bin contains an equal number of PTST sengefwrethe two most dominant
senses of each target word. Our data bin contained 17,44énees for 27 nouns, verbs, and
adjectives. We then generate different test data dgetfsom the bin, wherex takes values
0,0.1,0.2,...,1, such that the fraction of sentences annotated syiik a and those withs,

is 1—a. Thus the data sets have different dominance values eveglthibey have the same
number of sentences. (Note that because of the way the thataseompiled, each has half as
many sentences as there are in the bin.)

Each data sedy is given as input to the naive word sense disambiguatiotesysif the
predominant sense is correctly identified for all targetdsothen the system will achieve high-
est accuracy, whereas if it is falsely determined for aly¢éamvords, then the system achieves
the lowest accuracy. The value afdetermines thisipper bound andlower bound. If a
is close to (b, then even if the system correctly identifies the predontisanse, the naive
disambiguation system cannot achieve accuracies mucktigéin 50%. On the other hand, if
a is close to 0 or 1, then the system may achieve accuracies wd®0%. A disambiguation
system that randomly chooses one of the two possible semiseadh occurrence of the target
word will act as the baseline. Note that no matter what theidigion of the two senses{,

this system will get an accuracy of 50%.

5.5.2 Results

Highest accuracies achieved using the four dominance mgtmad the measures of association
that worked best with each are shown in Figure 5.5. The tas@bthe figure showsean

distance below upper bound (MDUB)for all a values considered. Measures that perform
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DewW(PMI, Odds, Yule): .02 D,w (PMI): .03
Diu (¢, PMI, Odds, Yule): .11 De,u (¢, PMI, Odds, Yule): .16

Figure 5.5: Best results: four dominance methods

almost identically are grouped together and the MDUB valisésd are averages. The window
size used was:5 words around the target word. Each datakgtwhich corresponds to a
different target text in Figure 2, was processed in less thaecond on a 1.3GHz machine
with 16GB memory. Weighted voting methodsg w andD, w, perform best with MDUBs
of just 0.02 and 0.03, respectively. Yule’s coefficient, ®daltio, and PMI give near-identical,
maximal accuracies for all four methods with a slightly geealivergence i v, where PMI
does best. The coefficient performs best for unweighted methods. Dice asihe do only
slightly better than the baseline. In general, results ftbenmethod—measure combinations
are symmetric across = 0.5, as they should be.

Marked improvements in accuracy were achieved as a reshtiaftrapping the WCCM

(Figure 5.6). Most of the gain was provided by the first baagging iteration itself whereas
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Figure 5.6: Best results: base vs. bootstrapped

further iterations did not improve accurac®gw andD, w still had MDUBs of 0.02 and
0.03, respectively). This is not surprising because it ihenfirst bootstrapping iteration that
word sense disambiguation is first done (not while creatirggltase WCCM). The marginal
improvements to the WCCM by subsequent iterations do nag laavmuch effect. All boot-
strapped results reported in this thesis pertain to jusitenation® The bootstrapped WCCM

is 72% smaller, and 5 times faster at processing the datalsatsthe base WCCM.

4Even though the DPCs were conceived with the intention afeging semantic distance, this work on word
sense dominance (Mohammad and Hirst, 2006a) precededpkerments on the word-distance tasks described
in the last two chapters (Mohammad and Hirst, 2006b; Mohadhal., 2007a). Once it was determined through
these sense dominance experiments that bootstrappingvasoeptimal, the same was done for all other experi-
ments described in this thesis, with occasional sanitylchec
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5.5.3 Discussion

Considering that this is a completely unsupervised appr,oaat only are the accuracies achieved
using the weighted methods well above the baseline, butralsarkably close to the upper
bound. This is especially true for values close to 0 and 1. The lower accuraciesforear
0.5 are understandable as the amount of evidence towardsénses of the target word are
nearly equal.

Odds ratio, pointwise mutual information, and Yule's caréint perform almost equally
well for all methods. Since the number of times two words couw is usually much less than
the number of times they occur individually, pointwise naltinformation tends to approxi-
mate the logarithm of odds ratio. Also, Yule’s coefficientislerivative of odds ratio. Thus
all three measures will perform similarly in case the courdag words give an unweighted
vote for the most appropriate sense of the target & inandDg y. For the weighted voting
schemesD, w andDkg w, the effect of scale change is slightly highetDnw as the weighted
votes are summed over the complete text to determine doeendnDeg v the small number
of weighted votes summed to determine the sense of the taaydtmay be the reason why
performances using pointwise mutual information, Yuledeficient, and odds ratio do not
differ markedly. Dice coefficient and cosine gave belowdtiag accuracies for a number of
sense distributions. This suggests that the normalizZatitake into account the frequency of
individual events inherent in the Dice and cosine measusgsnot be suitable for this task.

The accuracies of the dominance methods remain the saneg&rtfet text is partitioned as
per the target word, and each of the pieces is given indiVigtathe disambiguation system.
The average number of sentences per target word in eachetid¢as 323. Thus the results
shown above correspond to an average target text size oBaglgentences.

| repeated the experiments on the base WCCM after filteringsmiting to 0) cells with

frequency less than 5 to investigate the effect on accuwsarid gain in computation time (pro-

5If two events occur individually a large number of times,rttieey must occur together much more often to
get substantial association scores through PMI or odds, i@dicompared to cosine or the Dice coefficient.
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portional to size of WCCM). There were no marked changesau@acy but a 75% reduction
in size of the WCCM. Using a window equal to the complete sereeas opposed ta5 words

on either side of the target resulted in a drop of accuracies.

5.6 Conclusions

| proposed four methods to determine the degree of dominaheesense of a word using
distributional profiles of concepts. | used thacquarie Thesauruas a very coarse concept
inventory. | automatically generated sentences that haaegat word annotated with senses
from the published thesaurus, which were used to perfornxtamsive evaluation of the dom-
inance methods. The system achieved near-upper-bountsrasing all combinations of the
the weighted dominance method (v andDg w) and three different measures of association
(Odds, PMI, and Yule).

We cannot compare accuracies with McCarthy et al. (2004bjume use of a thesaurus
instead of WordNet means that knowledge of exactly how tesabrus senses map to WordNet
is required. However, | showed that, unlike the McCarthyl esystem, this new system gives
accurate results without the need for a lasgailarly-sense-distributet&xt or retraining. The
target texts used were much smaller (a few hundred sendeheesthose needed for automatic
creation of a distributional thesaurus (a few million wgrdgly system does not perform any
time-intensive operation, such as the creation of Lin’s#lueus, at run time; and it can be

applied to all parts of speech—not just nouns.



Chapter 6

Unsupervised Word Sense Disambiguation

6.1 Introduction

Word sense disambiguatioror WSD is the task of determining the intended sense or meaning
of an ambiguousarget word from its context. The context may be a few words on either side
of the target, the complete sentence, or it could includewadentences around it as well.
Humans are skilled at word sense disambiguation. For exgnepen thoughveaknessan
mean eithelAN INSTANCE OR PERIOD OF LACKING IN STRENGTH FAULT, Or A SPECIAL

FONDNESS in the sentence below:
The Dark Lord has a weakness for ice cream.

we very quickly home into thePECIAL FONDNESSsense, and often without conscious effort.
However, automatic word sense disambiguation has provdx tmuch harder. There are
many reasons for this including the difficulties of encodognprehensive world knowledge,
determining what the senses of a word must be, how coarseeothii| sense-inventory must
be, and so on.

That said, determining the intended sense of a word is patgntiseful in many natural
language tasks including machine translation and infaonagetrieval. The more-accurate ap-

proaches for word sense disambiguation are supervisedh@&mneet al., 2007; Pedersen, 2001;

103
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Ng and Lee, 1996; McRoy, 1992). These systems rely on semsg#ated data to identify
co-occurring words that are indicative of the use of thedtwgprd in each of its senses.
However, only limited amounts of sense-annotated datd exid it is expensive to cre-
ate. Thus, a number unsupervised but knowledge-rich appesahave been proposed that
do not require sense-annotated data but make use of one erahtire lexical semantic net-
works in WordNet (Sussha, 1993; Banerjee and Pedersen; 2888 and Powers, 2006b).
In this thesis, | have proposed an unsupervised approacétéondine the strength of associ-
ation between a sense or concept and its co-occurring watts-distributional profile of a
concept (DPC)—relying simply on raw text and a published#ueus. | now show how these
distributional profiles of concepts can be used to creatareuperviseaaive Bayes word-
sense classifier (determining both the prior probabilitgt #re likelihood in an unsupervised
manner). | will compare it with a baseline classifier thabalses the strength of association
between the senses of the target and co-occurring wordseles only on contextual evi-
dence. Since | use pointwise mutual information (PMI) to suea the strength of association,
| will refer to the baseline classier as the PMI-based d&ssiBoth the naive Bayes and the
PMI-based classifiers participated in SemEval-DEaglish Lexical Sample Task (task #17).
Most other unsupervised word sense disambiguation (asseppodiscriminatior) systems,
such as those mentioned above, rely on a language-spedadifidéaige source such as Word-
Net and as a consequence are monolingual. The approachsprbpere uses raw text and a
published thesaurus and it can be used both monolingualgl{ewn ahead in this chapter)
and cross-lingually (as | will show in the next chapter in gugse of a word-translation task).
Notably, when used cross-lingually the system can perfoomiwense disambiguation even in
aresource-poor language by combining its text with a pbhbtighesaurus from a resource-rich

one.

1SemEval-07 is a workshop of ACL-07, where systems competarious semantic analysis tasks on newly
compiled/created test data.
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6.2 The English Lexical Sample Task

The English Lexical Sample Task (Pradhan et al., 2007) waaditibnal word sense disam-
biguation task wherein the intended (WordNet) sense ofgetarord was to be determined
from its context. The training and test data had 22,281 a8814instances respectively for
100 target words (50 nouns and 50 verbs). They are in Ser2alatia format. WordNet 2.1

was used as the sense inventory for most of the target wantlseltain words were assigned
one or more senses from OntoNotes (Hovy et al., 2006). Matiyeofine-grained senses were

grouped into coarser ones. Here is an example trainingnosta

<instance id="29:0@5@wsj12wiR53@wsj@en@on” docsrc="ws}’

<answer instance="29:0@5@wsj12wg53@wsj@en@on” senseid="1"wn="1,2,3”
wn-version="2.1">

<context>

This is just not so . The reality is that Bank finances are ratids As of June

30, 1989 — the day our past fiscal year came to a close — only 4fitBe Bank

's portfolio was<head> affected<head> by arrears of over six months . This is

an enviably low level . Moreover , the Bank follows a pruderdyisioning policy

and has set aside $ 800 million against possible loan losses .

</context>

<linstance-

The target wordaffectis enclosed with thechead> and </head> tags. From the answer
instance line (second line) we know that the above instasmaanotated with sense identifier 1
(senseid="1"), and that the intended sense of the targetameept defined as the grouping of

three wordnet synsets (wn="1,2,3"). Below is an exampleitetance:

<instance id="15:0@35@browncfcfll@brown@en@on” doctnown” >
<context>

every orthodontist sees children who are embarrassed byntla¢formed teeth .
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Some such youngsters rarely smile , or they try to speak wighmtouth closed
. In certain cases , as in Dick Stewart 's , a child 's persoynai <head> af-
fected<head> . Yet from the dentist s point of view , bad-fitting teeth skobu
be corrected for physical reasons . Bad alignment may rasatirly loss of teeth
through a breakdown of the bony structure that supports tbets .

</context>

<linstance-

Note that the test instance does not have an answer-ingtamce

6.3 Coping with sense-inventory mismatch

As described earlier, | create distributional profiles ofioepts or senses by first representing
the sense with a number of near-synonymous words. A thes@iaunatural source of such
synonyms. Even though the approach can be ported to Wordtkete was no easy way of
representing OntoNotes senses with near-synonymous woftdsefore, | asked four native
speakers of English to map the WordNet and OntoNotes sehdles H00 target words to the
Macquarie Thesauruand continue to use it as sense inventory. | also wanted toierahe
effect of using a very coarse sense inventory, such as tegaats in a published thesaurus,
(only 812 in all) on word sense disambiguation.

The annotators were presented with a target word, its War@xéoNotes senses, and
the Macquarie senses. WordNet senses were representeddiysys, glosses, and example
usages. The OntoNotes senses were described throughtgyptaterns and example usages
(provided by the task organizers). The Macquarie sensésg@aes) were described by the
category head (a representative word for the category) ardther words in the category.

Specifically, words in the same semicolon group as the tavget chosen, as words within

2The synonyms within a synset, along with its one-hop neighlaad all its hyponyms, can represent that
sense.
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a semicolon group of a thesaurus tend to be more closelyedetabin words across groups.
Annotators 1 and 2 labeled each WordNet/OntoNotes senke &fst 50 target words with one

or more appropriat®élacquarie Thesaurusategories. Annotators 3 and 4 labeled the senses
of the other 50 words. | combined all four annotations inilW@dNet—Macquarie mapping

file by taking, for each target word, the union of categories ehdx the two annotators.

6.4 The DPC-based classifiers

| will now describe the two classifiers that took part in thegksh Lexical Sample Task. Both
use words in the context of the target word as features ardrebt on a word—category co-
occurrence matrix to determine the evidence towards eattessf the target. The general

structure of the WCCM is shown below again for ease of refazen

C1 C2 ... Cj

Wi | M1 Mi2 ... Myj

W2 | Mp1 Mp2 ... MM

Wi mg omgo.omg

It has words in one dimension and categories in the other.réicpéar cellm;j for wordw; and
sense or categol contains the number of times they co-occur in text. As dbsdrearlier in
Section 3.3, | created the word—category co-occurrencexifgf CCM) using a bootstrapping

algorithm and théritish National Corpus (BNC{Burnard, 2000).

6.4.1 Unsupervised n&ve Bayes classifier

The naive Bayes classifier uses the following formula temeine the intended sensg:

Cnb = argmav(c;) l_!/v P(wi|cj) (6.1)

cjeC
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whereC is the set of possible senses of the target word (as listdeeiMacquarie Thesaurys
andW is the set of words that co-occur with the target (I used a aindf +5 words)3
Traditionally, prior probabilities of the sense?(¢;)) and the conditional probabilities in
the likelihood (7., ew P(Wilcj)) are determined by simple counts in sense-annotated data. |
approximated these probabilities using counts from thedwoategory co-occurrence matrix,

thereby obviating the need for manually-annotated data.

2i mj
P(ci) =< 6.2
) S, M o2
P(wilcj) = zrir::” (6.3)

Here,mjj is the number of times the wom co-occurs with the categogy—as listed in the

word—category co-occurrence matrix (WCCM).

6.4.2 PMI-based classifier

Pointwise mutual information (PMI) between a sense of tingetaword and a co-occurring

word is calculated using the following formula:

P(wi,
PMI (Wi, c;) = log P(Wi()wx g()c,) (6.4)
where P(wi,cj) = zmirjn- (6.5)
i,j
and P(w) = % (6.6)

Here,m;j is the countin the WCCM anl(c;) is as in equation 6.2. For each sense of the target
word, the sum of the strength of association (PMI) betweemd each of the co-occurring

words (in a window oft-5 words) is calculated. The sense with the highest sum isechas

3Note that while it is reasonable to filter out non-contenpstords, it is not necessary in the case of the two
classifiers described in this and the next subsection. Thesas will have a small and more-or-less identical
co-occurrence strength of association with all conceptissanwill not play a significant role in determining the
intended sense. Of course, in certain cases the exactquositnon-content words (for example, the target word
being immediately preceded lmp) is indicative of the intended sense, but these classifiensad make use of
such exact positional information.
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the intended sense.

Cpmi = argmax PMI(wi,cj) (6.7)

cjeC wie

Note that even though the PMI-based classifier uses priduagitities of the categorie3(c;)
(determined from the WCCM) to determine the strength of @ission ofc; with co-occurring
words, the classifier does not bias (multiply) this contekevidence witfP(c;). Since it uses
only contextual evidence, | call the PMI-based classifieasetine to the classifier described

in the previous sub-section.

6.5 Evaluation

Both the naive Bayes classifier and the PMI-based classifisx applied to the training data of
English Lexical Sample Task. For each instanceMlaequarie Thesaurusategoryc that best
captures the intended sense of the target was determinedsyBtem then labels an instance
with all the WordNet senses that are mapped io the WordNet—Macquarie mapping file
(described earlier in Section 4.1). Multiple answers foliretance are given partial credit as

per SemEval’s scoring program.

6.5.1 Results

Table 6.1 shows the performances of the two classifiers otrdireng data. The system at-
tempted to label all instances and so we report accuracegsahstead of precision and recall.
The naive Bayes classifier performed markedly better initrg than the PMI-based one and
so was applied to the test data. (Figure 6.1 depicts thetsasuh graph.) The table also lists
baseline results obtained when a system randomly gueseeas time possible senses for each
target word. Note that since this is a completely unsupedvisystem, it is not privy to the
dominant sense of the target words. We do not rely on the mgrddisenses in WordNet as that
would be an implicit use of the sense-tagged SemCor corpherefore, the most-frequent-

sense baseline does not apply.
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Table 6.1: English Lexical Sample Task: Results obtaing@aguhe PMI-based classifier and

the naive Bayes classifier on ttraining data.

WORDS BASELINE PMI-BASED NAIVE BAYES

all 27.8 41.4 50.8

nouns only 25.6 43.4 53.6

verbs only 29.2 38.4 445
baseline @ PMI-based M naive Bayes
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accuracy
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all verbs

Figure 6.1: English Lexical Sample Task: Results obtairedgithe PMI-based classifier and

the naive Bayes classifier on ttraining data.
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Table 6.2 shows results obtained by the naive Bayes ckssifithe test data. It also shows
results obtained using just the prior probability and likebd components of the naive Bayes
formula. Note that the prior probability alone gives muchéo accuracies than likelihood for
nouns whereas in case of verbs, prior probability does bhé&deerall, for all target words, the
accuracy of the naive Bayes classifier is better than thabfidual components. (Figure 6.2

depicts the results in a graph.)

6.5.2 Discussion

The naive Bayes classifier’s accuracy is only about oneepéage point lower than that of
the best unsupervised system taking part in the task (Pnagthal., 2007). One reason that
it does better than the PMI-based one is that it takes intowtcprior probabilities of the
categories. Further, PMI is not very accurate when dealiiily low frequencies (Manning
and Schitze, 1999). In case of verbs, lower combined aciesraompared to when using just
prior probabilities suggests that the bag-of-words typéeatures are not very useful. It is
expected that more syntactically oriented features wik dietter results. Using window sizes
of +1,4+2, and+10 on the training data resulted in lower accuracies (exaces not shown
here) than that obtained using a window-b% words. A smaller window size is probably
missing useful co-occurring words, whereas a larger winsiae is adding words that are not
indicative of the target’s intended sense.

The use of a sense inventoiMécquarie Thesaurygifferent from that used to label the
data (WordNet) clearly will have a negative impact on thailtss The mapping from Word-
Net/OntoNotes to thdlacquarie Thesauruss likely to have some errors. Further, for 19
WordNet/OntoNotes senses, none of the annotators founesauhus category close enough
in meaning. This meant that the system had no way of correliigmbiguating instances
with these senses. Also impacting accuracy is the signtficéine-grained nature of WordNet
compared to the thesaurus. For example, following are tlee tho-called coarse senses for the

nounpresidentin WordNet: (1) executive officer of a firm or college, (2) theef executive
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Table 6.2: English Lexical Sample Task: Results obtainéagute naive Bayes classifier on

thetest data

WORDS BASELINE PRIOR LIKELIHOOD NAIVE BAYES
all 27.8 374 49.4 52.1
nouns only 25.6 18.1 49.6 49.7
verbs only 29.2 58.9 49.1 54.7

baseline @ prior M likelihood E naive Bayes

-~
o
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all nouns verbs

Figure 6.2: English Lexical Sample Task: Results obtairedgithe naive Bayes classifier on

thetest data
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of a republic, and (3) President of the United States. Thewassenses will fall into just one

category for most, if not all, thesauri.

6.6 Conclusions

In this chapter, | showed how distributional profiles of cepis can be used in place of sense-
annotated data. | implemented an unsupervised naive Bayeéssense classifier estimating its
probabilities from a word—category co-occurrence mattestimates the semantic distance
between the senses of the target word and its context. | caupawith a baseline PMI-
based classifier. Both classifiers took part in SemEval-Biglish Lexical Sample task. On
the training data, the naive Bayes classifier achieved edéylbetter results than the PMI-
based classifier and so was applied to the respective test @atboth test and training data,
the classifiers achieved accuracies well above the randeeliba. Further, the naive Bayes

classifier placed close to one percentage point from theumssipervised system.



Chapter 7

Machine Translation?!

7.1 Introduction

Cross-lingual distributional profiles of concepts (intuodd in Chapter 4), are useful not only
to solve natural language problems in a resource-poor Egeyusing knowledge sources from
a resource-rich one (as shown in Chapter 4), but are alsalus¢ésks that inherently involve
two or more languages. This is because the cross-linguakpP@ide a seamless transition
from words in one language to concepts in another. In thiptemal will explore the use of
cross-lingual DPCs in one such taskaachine translation (MT).

Machine translation is the task of automatically transelgtiext in one languagesgurce
into another farget). In other words, given a sentence in the source languagehinetrans-
lation is the task of constructing/determining that seogem the target language which is
closest in meaning to it. For example, the following is a gogumlit—output pair of a machine

translation system:

Source sentence (in English)You know a person by the company they keep

Target sentence (in German):Das Wesen eines Menschen erkennt man an der

1This chapter describes work done in collaboration withiptRlesnik, University of Maryland. Philip played
a crucial role in identifying the potential of distributiahprofiles of concepts in a cross-lingual framework. He
provided access to Chinese text used in experiments, ashaellgrateful for the insights and helpful discussions.
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Gesellschaft, mitder er sich umgibt

The need for accurate machine translation is simple and ebimgy it allows understanding
of foreign-language text. Bjoreign languagel mean a language that the reader does not
understand. Machine translation is vital towards elimgathe language divide and allowing
speakers of all languages easy access to information.

Given its significance, it is not surprising that machinastation has enjoyed the attention
of a large number of researchers, giving rise to a rich ditsecd approaches and ideas. In
the last fifteen years, statistical machine translationevatved as the dominant methodology.
To learn more about machine translation and popular appesacee the machine translation
chapter in Foundations of Statistical Natural Language ProcessifManning and Schitze,
1999) and the Statistical Machine Translatidriextbook (Koehn, 2007). See Dorr et al. (1999)
for a survey of approaches in machine translation and Lope@7) and Knight and Marcu
(2005) for recent surveys of statistical machine transtati

Statistical machine translation involves learning fromamyple translations inherent in par-
allel corpora—corpora that are translations of each ott&wwever, parallel corpora are a
limited resource. Like sense-annotated data, not manyi@lacarpora exist, and none for
most language pairs. In this chapter, | show how cross-ahdistributional profiles of con-
cepts can be useful in machine translation. Notably, my@gagr does not require any paral-
lel corpora or sense-annotated data. An implementation@i & system participated in the
Multilingual Chinese—English Lexical Sample Task and pthfirst among the unsupervised
systems. It should be noted that the experiments preseatedahe only an initial exploration
of the abilities of cross-lingual DPCs in machine transhatand multilingual tasks in gen-
eral. Experiments on a full-scale machine translationesysdre planned for the near future in

collaboration with Philip Resnik (see Section 8.5.1 on fatwork).
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7.2 The Multilingual Chinese—English Lexical Sample Task

The objective of the Multilingual Chinese—English LexiG&ample Task (Jin et al., 2007) was
to select from a given list a suitable English translatioa Ghinese target word in context. The
training and test data had 2686 and 935 instances resdgdtivd0 target words (19 nouns and
21 verbs). The instances were taken from the January, Fgbaral March 2000 editions of
the People’s Daily—a popular Chinese newspaper. The organizers usedhimese Semantic
Dictionary (CSD) developed by the Institute of Computational Linguistfegking University,
both as a sense inventory and as a bilingual lexicon (to eéx&rauitable English translation
of the target word once the intended Chinese sense was de¢elin A CSD-based system
can use the bilingual lexicon to determine which sensese€thinese target word correspond
to its given English translations. The system then analgresccurrence of the target word
to determine which of these Chinese senses is intended.n$tence is then labeled with the
corresponding English translation.

However, one of the motivations for this task was that tradél word sense disambigua-
tion tasks force all competing systems to work with the saemss-inventory. By presenting
the sense disambiguation task in the guise of a word-tramsltask, such a restriction is no
longer obligatory. In that spirit, my system does not useG@B®, but rather the Engliddac-
quarie Thesaurusln order to determine the English translations of Chinesed#/in context,
our system first determines the intended cross-lingualidatel sense. Recall from Section
4.2 that cross-lingual candidate senses of a target worchénlanguagd., are those cate-
gories in the thesaurus of another langubgéhat are reachable by looking up the target in an
L1—L> bilingual lexicon and the translations in the thesaurus. See Figure 7.2 for Chinese—
English examples. Also recall that they are called “candfiaenses because some of the
senses of ah, word might not really be senses of the word—for example CELEBRITY,
PRACTICAL LESSON andSTATE OF ATMOSPHEREIN the example of the figure. Using the
English thesaurus instead of CSD also means that the systgrites a mapping of the given

English translations to the English thesaurus categors&hkdr than a mapping from the En-
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MODE OF STATE OF THE
CELEBRITY CONDUCT ATMOSPHERE oo
‘ PRACTICAL  EXPOSE TO
ChLiI N BORY LESSON ELEMENTS
star moral weather }ow
) L
5 de
23 KAk yow

Figure 7.1: The cross-lingual candidate senses of exantptee€e words. In red are concepts

not really senses of the Chinese words, but simply artifaictise translation step.

glish translations to Chinese senses—as provided by CSDhatike speaker of Chinese and
| mapped the English translations of the Chinese target svirédppropriatéacquarie The-
sauruscategories—referred to as tlnglish translations—Macquarie category mapping
We used three examples (from the training data) per Engbstskation for this purpose. Once
the intended sense (thesaurus category) of the Chineseisvdetermined, the system uses
this English category—English word mapping to assign the@miate English translation to

the Chinese target word.

7.3 The cross-lingual DPC—-based classifiers

In the subsections below, | will describe the two word senassifiers that took part in the
Multilingual Chinese—English Lexical Sample Task. Botte @hinese words in the context
of the Chinese target word as features to determine its degreross-lingual sensdléc-
guarie Thesaurusategory). Both classifiers rely on the cross-lingual (€ka+English) word—
category co-occurrence matrix to determine the evidenwartts each English cross-lingual
candidate sense of the target. In chapter 4, | described henm&h text can be combined
with an English thesaurus using a German—English bilinlgxaton to create German—English
word—category co-occurrence matrix. Using the same dlguaril now create a cross-lingual

(Chinese—English) word—category co-occurrence matrtk @hinese word types" as one
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; CELESTIAL BODY | }
celestial body sun star Fwe
t f i '

PN H K| B A} e

Figure 7.2: Chinese words haviogLESTIAL BODY as cross-lingual candidate senses.

dimension and English thesaurus concefitsas another.

en en en
cf" " ...

h .
Wg_ M1 M2 ... Myj

W' | mpy Mg ... Mg

wh my omgz omy

The matrix is populated with co-occurrence counts from gdaChinese corpus; we used
a collection of LDC-distributed corpofa—Chinese Treebank English Parallel Corpus, FBIS
data, Xinhua Chinese—English Parallel News Text Versi@nbkta 2, Chinese English News
Magazine Parallel Text, Chinese News Translation Text PagindHong Kong Parallel Text
A particular cellmj, corresponding to womi/fh and concepd:‘l?”, is populated with the number
of times the Chinese wong™ co-occurs with any Chinese word havidg as one of iteross-
lingual candidate sensed$-or example, the cell fck* (SPACE andCELESTIAL BODY will
have the sum of the number of timx*: co-occurs witt X, B, kM, £, £, and so on
(see Figure 7.2). As before, we used Macquarie Thesauru@Bernard, 1986) (about 98,000
words). The possible Chinese translations of an Englistdware taken from the Chinese—
English Translation Lexicon version 3.0 (Huang and Graif)2) (about 54,000 entries).

As described earlier too, this base word—category co-oenae matrix (base WCCM),
created after a first pass of the corpus, captures strongiaseas between a category (con-

cept) and co-occurring words. For example, even though arement counts for botk= —

2http://www.ldc.upenn.edu
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CELESTIAL BODY and A%*—CELEBRITY for a particular instance whe X* co-occurs with
2234, K% will co-occur with a number of words such X, KB, and H that each have
the sense ofELESTIAL BODY in common (see Figure 7.2), whereas all their other senses ar
likely different and distributed across the set of conceptwerefore, the co-occurrence count,
and thereby the strength of associationkx* andCELESTIAL BODY will be relatively higher
than that oiA%* andCELEBRITY.

Again as described for the German—English case in Chaptesdcond pass of the corpus
is made to disambiguate the (Chinese) words in it. A new b@gped WCCM is created by
populating each cethj, corresponding to worvi/fh and conceptt", with the number of times

the Chinese wore¢" co-occurs with any Chinese woused in cross-lingual sensg'c

7.3.1 Cross-lingual ndve Bayes classifier

The cross-lingual naive Bayes classifier has the follovorgula to determine the intended
English sensep of the Chinese target wom e

i = argmaxP(cf") [T hP(WF“IC?”) (7.1)
i wehewe

whereC®" is the set of possible senses (as listed inNtaequarie ThesaurysandWe is the
set of Chinese words that co-occur with the tangl,e; (we used a window of-5 words).

A direct approach to determine these probabilities, pniobpbilities of the senseE’((c‘J?”))
and the conditional probabilities in the Iikelihooﬁ\(,ichewch P(\A/i°h|c‘1?”)), require word-aligned
parallel corpora and sense-annotated corpora. Both aemsie and hard-to-find resources. |
approximate these probabilities using counts from thesshogual word—category co-occurrence

matrix, thereby obviating the need for manually-annotalatz.

eny _ 2i M
F’(CJ ) zi7jn-]j (7.2)
P(WEN ™) = 1 (7.3)

Yy
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Here, mj is the number of times the Chinese wcwﬁ‘ co-occurs with the English category

c‘f”—as listed in the Chinese—English word—category co-oete matrix.

7.3.2 PMI-based classifier

Pointwise mutual information (PMI) between a cross-lingcendidate sense of a Chinese

target word and a co-occurring Chinese word is calculatedyuke following formula:

PMI(WE, c8) = | P ) 7.4
(W, cy") = OgP(WiCh)xP(C‘J?”) (7.4)
where P(weh, cem — _ M 7.5

(W™, 7" 5 (7.5)

and P(we) = 2™ 7.6

(W) S, (7.6)

Here,mj; is the count in the WCCM anB(c;) is as in equation 7.2. For each cross-lingual
candidate sense of the Chinese target, the sum of the sdtrehgssociation (PMI) between
it and each of the co-occurring Chinese words (in a window-56fwords) is calculated. The
sense with the highest sum is chosen as the intended sense.

Chomi=argmax S PMI(w", c§") (7.7)
crecen wehiewen

Note that even though the PMI-based classifier uses pridugibities of the categorie(c;)
(determined from the cross-lingual WCCM) to determine tinergyth of association afj with
co-occurring words, the classifier does not bias (multifilyy contextual evidence witR(c;).
Since it uses only contextual evidence, | call the PMI-baaskifier a baseline to the classifier

described in the previous sub-section.

7.4 Evaluation

Both the naive Bayes classifier and the PMI-based clasgiiex applied to the SemEval train-

ing data. For each instance, the Macquarie categoryc®ayhat best captures the intended
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Table 7.1: Multilingual Chinese—English Lexical SamplesKia Results obtained using the

PMI-based classifier on the training data and the naive 8algssifier on thé&aining data.

BASELINE PMI-BASED NAIVE BAYES

WORDS micro macro micro macro micro macro

all 33.1 383 339 40.0 385 447
nounsonly 419 435 436 450 494 50.5
verbsonly 28.0 341 280 356 319 39.6

sense of the target Chinese wavfl' was determined. The system then labels an instance with
all the English translations that are mapped tothe English translations—Macquarie category
mapping (described earlier in Section 7.2). Multiple ansaer an instance are given patrtial
credit as per SemEval’s scoring program. However, the imgtial Chinese—English lexical
sample task evaluation script did not give partial creditase of multiple answers, and so an

answer is chosen at random from the tied alternatives.

7.4.1 Results

Table 7.1 shows accuracies of the two classifistacro averageis the ratio of the number of
instances correctly disambiguated to the total, whemg@as averageis the average of the ac-
curacies achieved on each target word. As in the Englishcaéample Task, both classifiers,
especially the naive Bayes classifier, perform well abbeedaseline classifier which chooses
one of the possible English translations at random. (Figu8edepicts the results in a graph.)
Since the naive Bayes classifier performed markedly bitéerthe PMI-based one too, it was
applied to the test data.

Table 7.2 shows results obtained on the test data. Agairethits are well above baseline.
The table also presents results obtained using the indiVicmponents of the naive Bayes

classifier, likelihood and prior probability. In generatjqr probabilities are less useful than
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Figure 7.3: Multilingual Chinese—English Lexical SamplkesK: Results obtained using the

PMI-based classifier on the training data and the naive 8algssifier on thé&aining data.

the likelihood, so much so that they are negatively impactine overall performance in some

cases. (Figure 7.4 depicts the results in a graph.)

7.4.2 Discussion

Our naive Bayes classifier was a clear first among the twopamsised systems taking part in
the task (Jin et al., 2007). The use of a sense inventorydiftérom that used to label the data
(Macquarie as opposed to CSD) again will have a negativedhgrathe results as the mapping
may have a few errors. The annotators believed none of tlem ditacquarie categories could
be mapped to two Chinese Semantic Dictionary senses. Tlastrtieat our system had no way
of correctly disambiguating instances with these senses.

There were also a number of cases where more than one CSDo$enserd was mapped
to the same Macquarie category. This occurred for two resasbinst, the categories of the
Macquarie Thesauruact as very coarse senses. Second, for certain target wioedsjo CSD
senses may be different in terms of their syntactic behayeirsemantically very close (for
example, the8E SHOCKED andSHOCKED senses 0#%%#). This many-to-one mapping meant

that for a number of instances more than one English traoslatas chosen. Since the task
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Table 7.2: Multilingual Chinese—English Lexical SamplesKia Results obtained using the

PMI-based classifier on the training data and the naive Belgssifier oriest data

BASELINE PRIOR LIKELIHOOD NAIVE BAYES

WORDS micro macro micro macro micro macro micro macro

all 331 383 354 417 388 446 375 431
nounsonly 419 435 453 471 481 508 50.0 51.6
verbsonly 28.0 341 291 368 329 39.0 296 35.5

baseline [@Eprior MWlikelihood E naive Bayes

o)}
o

()}
o

N
o

accuracy
o8]
o
|

N
o

—
o O
|

all nouns verbs

Figure 7.4: Multilingual Chinese—English Lexical SamplesK: Results obtained using the

PMI-based classifier on the training data and the naive Belgssifier ortest data
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required us to provide exactly one answer (and there was ntialperedit in case of multiple

answers), a category was chosen at random.

7.5 Conclusions

In this chapter, | showed how cross—lingual distributiopfiles of concepts can be useful
in tasks that inherently involve two or more languages. Bigally, | show that they are use-
ful in machine translation. | implemented an unsupervisagiderBayes word-sense classifier
that uses cross-lingual (Chinese—English) distributipnafiles of concepts to determine the
intended English sense of a given Chinese word from its gbntdotably, | do so without
using any manually sense-annotated data or parallel car@ice the intended English sense
was determined, the exact English translation was detechfirom a manually mapped file.
Automated approaches for this step can also be used.

| compared the cross-lingual naive Bayes classifier withseline cross-lingual PMI-based
classifier. Both classifiers took part in SemEval-07’s Mulgjual Chinese—English Lexical
Sample Task. Just as in the English Lexical Sample Task rideskcin the previous chapter),
on the training data, the naive Bayes classifier achievae#ledly better results than the PMI-
based classifier and so was applied to the test data. On IsbHnitraining data, the classifiers
achieved accuracies well above the random baseline. Futtieecross-lingual naive Bayes
classifier placed first among the unsupervised systems.

Applying cross-lingual DPCs to other multilingual task<ksltas multilingual document
clustering, summarization, and information retrievalnsespecially exciting aspect of future

work (see Section 8.5 for more details).



Chapter 8

Conclusions

8.1 Distributional concept-distance

In this thesis, | have proposed a new hybrid approach thabows a published thesaurus with
text to measure semantic distance. The central argumdrdtishe semantic distance between
two concepts can be accurately determined by calculatgligtance between their distribu-
tional profiles. The distributional profile of a concept i tsirength of association between
it and each of the words that co-occur with it. The argumeminslar to the distributional
hypothesis—‘you know a word by the company it keeps”. Howetlgere the targets are
words whereas here the targets are word senses or concepts.

Determining distributional profiles of concepts is mordidifit than determining distribu-
tional profiles of words, which require only simple word—a@@o-occurrence counts. A direct
approach for estimating concept—word co-occurrence sqmeeded to create DPCs) requires
sense-annotated data, which is rare and expensive to crpatposed a way to estimate these
counts, and thereby the DPCs, using a bootstrapping aigoriNotably, | do so without the
use of any sense-annotated data. | use the categories idishgalthesaurus (812 in all) as
concepts or coarse senses. This newly proposed approach fibid created by the many

limitations of existing approaches described next.
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8.2 Problems with earlier approaches

One of the contributions of this thesis was to do a comparagiudy of previous distance
approaches and to flesh out the problems associated with theewvarious WordNet-based
measures have been widely studied (Budanitsky and Hir€lg;2Ratwardhan et al., 2003),
and even though individual distributional measures aredased more and more, the study of
distributional measures on the whole has received muclatesstion. In Chapter 2, | presented
a detailed analysis of distributional measures and a @iggtcomparison with WordNet-based
measures. | summarize the key limitations of both WordNestelol and distributional word-
distance measures here.

The best WordNet-based measures of concept-distance medy @xtensive hierarchy of
hyponymy relationships for nouns and are therefore onlydgaaeestimating semantic similar-
ity between nouns. They are particularly poor at estimasemgantic relatedness between all
other part-of-speech pairs and cross-part-of-speeck pach as a noun—verb and adjective—
noun. Further, WordNet, with more than 117,000 synsetsvésyafine-grained sense inventory
(Agirre and Lopez de Lacalle Lekuona (2003) and citatiomseim). This itself leads to sev-
eral problems: (1) Creating such an extensively connectdgark of concepts for another
language is an arduous task. Even if there are WordNet pgsojed¢he pipeline for a hand-
ful of languages, most languages will have to make do witlomet (2) Fine-grained senses
may have the effect of erroneously splitting the semantatedness/similarity score. (3) It
is computationally expensive and memory-intensive toqaepute all sense—sense distance
values—a pre-requisite for use in real-time applications.

Distributional measures of word-distance conflate all fmsssenses of a word, giving
a dominance-based average of the distances between thes sdéribe target words. There-
fore distributional word-distance measures perform poeen compared to concept-distance
measures, because in most natural language tasks, whenagtaeget word pair, we usually
need the distance between their closest senses. Distrlalitheasures of word-distance, like

the WordNet-based measures, also require the computdtiarge distance matrice¥ (x V),
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whereV is the size of the vocabulary (usually at least 100,000). Amally, both distribu-
tional word-distance and WordNet-based concept-distameasures have largely been used

monolingually. They do not lend themselves easily to taBksinvolve multiple languages.

8.3 Features of the new approach

In contrast, distributional measures of concept-distatetermine profiles of concepts (word
senses) and do not conflate the distances between the magssd#ma word. | have shown
that they are markedly more accurate than distributionativeistance measures through ex-
periments on a number of natural language tasks: ranking pairs in order of their semantic
distance, correcting real-word spelling errors, and sgword-choice problems. The newly
proposed approach can accurately measure both semaatedmtss and semantic similarity.
Further, it can do so for all part-of-speech pairs and ndtfiusnoun pairs (as in case of the
best WordNet-based measures). When measuring semantiargyrbetween English noun
pairs, the distributional concept-distance measure®parEompetitively, but the Jiang Con-
rath measure which uses WordNet does better. When measaingntic similarity between
German noun pairs, the cross-lingual distributional cphcistance measures perform better
than the best monolingual GermaNet-based measures, ingltie Jiang Conrath measure.

| use theMacquarie Thesaurusategories (812 in all) as concepts. Drastic as this may
seem, | have shown through experiments in a number of ndaurgiage tasks that accurate
results can be obtained even with such a coarse senseeanyehie use of thesaurus categories
as concepts means that to pre-compute all distance valuesweequire a concept—concept
distance matrix of size only 822812—much smaller than (and about 0.01% the size of) the
matrix required by traditional semantic and distributiomgasures. This also means that the
distance between two concepts (categories) is calculetedthe occurrences all the words
listed under those categories and so the approach largalyssthe data-sparseness problems of

distributional word-distance measures (poor word—wostkdice estimation due to insufficient
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number of occurrences of the target word(s) in a corpus).

As mentioned earlier, distributional measures of concigtance combine text and a pub-
lished thesaurus. | have shown how this can be done in a nmguali framework, with both
text and thesaurus belonging to the same language, and oss-longual framework, where
they belong to different languages. Cross-lingual distidnal profiles created in the latter
case provide a seamless transition from words in one largt@goncepts in another. This
allows the use of these cross-lingual DPCs to attempt tais&ksésource-poor language using
a knowledge source from a resource-rich one. It also allsviowattempt tasks that inher-
ently involve two or more languages, such as machine traosland multilingual information

retrieval.

8.4 How the new approach helps

A large number of natural language tasks are essentiallasteadistance tasks (see Section
1.1.3 for more discussion). Thus, potentially, they carbahefit from the new distributional
concept-distance approach. Certain kinds of tasks areiedigavell suited to take advantage
of the unique features of this new approach and | describm thelow along with specific

conclusions from my experiments.

8.4.1 Moving from profiles of words to profiles of concepts

Firth’'s (1957) distributional hypothesis states that veoatcurring in similar contexts tend
to be semantically similar. Distributional word-distanoeasures estimate how similar two
words are by quantifying the similarity between their pexil However, most words have
more than one meaning and semantic similarity of two woraswvaay greatly depending on
their intended senses. In Chapter 3, | showed that withiloigional profiles of concepts, the
same distributional measures can now be used to estimatnsiendistance between word

senses or concepts. Further, | showed that the newly prdmuseept-distance measures are
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more in line with human notions of semantic distance andratitarkedly higher accuracies in
(1) ranking word pairs as per their semantic distance and)icdrrecting real-word spelling

errors.

8.4.2 Obviating the need for sense-annotated data

A large number of problems, such as word sense disambigu@fsSD), are traditionally
approached with sense-annotated data. Other problentsasuletermining word sense domi-
nance, become trivial given such data. However, manuafipited data is expensive to create
and not much exists—a problem further exacerbated by thaipahneed for domain-specific
data for many different domains. The distributional prafitd concepts proposed in this thesis
are created in an unsupervised manner and can be used iropaese-annotated data.

In Chapter 5, | proposed methods to determine the degreerindmce of a sense of a
word using distributional profiles of concepts. They achawear-upper-bound results even
when the target text was relatively small (a few hundredesesgs as opposed to thousands
used by other approaches). Unlike the McCarthy (2006) systeshowed that these new
methods do not require largamilarly-sense-distributetext or retraining. The methods do
not perform any time-intensive operation, such as the ioreaff Lin’s thesaurus, at run time;
and they can be applied to all parts of speech—not just noimthe process of evaluation,
| automatically generated sentences that have a target avordtated with senses from the
published thesaurus. One of the future directions is toraatally generate sense-annotated
data using various sense-inventories, and in differentadiosn

In Chapter 6, | described an unsupervised naive Bayes sande classifier that estimates
its prior and likelihood probabilities from the word—cabeg co-occurrence matrix. The clas-
sifier obtained close to one percentage point from the toppersised system that took part

in SemEval-07’s English Lexical Sample task.
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8.4.3 Overcoming the resource-bottleneck

In a majority of languages, estimating semantic distaned,iadeed many other natural lan-
guage problems, is hindered by a lack of manually created/leutye sources such as WordNet
for English and GermaNet for German. In Chapter 4, | presktie idea of estimating seman-
tic distance in one, possibly resource-poor, languagegusiknowledge source from another,
possibly resource-rich, language. (This is work done itabaration with Torsten Zesch and
Iryna Gurevych of the Darmstadt University of Technolodyd)d so by creating cross-lingual
distributional profiles of concepts, using a bilingual B and a bootstrapping algorithm,
but without the use of any sense-annotated data or wordealigorpora. The cross-lingual
measures of semantic distance were evaluated on two talgksst{mating semantic distance
between words and ranking the word pairs according to semdistance, and (2) solving
Reader’s DigestWord Power’ problems. “Gold standard” evaluation datatfagse tasks were
compiled by Zesch and Gurevych. We compared results witbetlobtained by conventional
state-of-the-art monolingual approaches to determineatheunt of loss-in-accuracy due to
the translation step. Apart from traditional informatioontent measures proposed by Resnik
(1995) and Jiang and Conrath (1997), we also compared tlss-Grmual distributional mea-
sures with Lesk-like measures proposed specifically fon@é&fet (Gurevych, 2005).

The thesaurus-based cross-lingual approach gave mueh testtilits than monolingual ap-
proaches that do not use a knowledge source. Further, intasite and all the experiments,
the cross-lingual measures performed as well if not sighdtter than the GermaNet-based
monolingual approaches. This shows that the proposed-tnogsal approach, while allowing
the use of a superior knowledge source from another langusgéle to keep at a minimum
losses due to the translation step. We show that in languhgésack a knowledge source,
large gains in accuracy can be obtained by using the promwesd-lingual approach. Further,
even if the language has a semi-developed knowledge sdagtter results can be obtained by

using the cross-lingual approach and a superior knowledgess from another language.
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8.4.4 Crossing the language barrier

Cross-lingual distributional profiles of concepts (intnoed in Chapter 4), are useful not only
to solve natural language problems in a resource-poor Eggywith knowledge sources from
a resource-rich one (as shown in Chapter 4), but are alsalus¢ésks that inherently involve
two or more languages. In Chapter 7, | showed how cross-dirdjstributional profiles of con-
cepts can be useful in machine translation. | implementadhaapervised naive Bayes word-
sense classifier that uses cross-lingual (Chinese—Endistibutional profiles of concepts to
determine the intended English sense of a given Chinese fnantits context. Notably, | did
so without using any manually sense-annotated data orl@lacatpora. The classifier placed
first among the unsupervised systems that took part in SektEi&Multilingual Chinese—
English Lexical Sample Task.

Applying cross-lingual DPCs to other multilingual taskkuas multilingual document
clustering, summarization, and information retrievalsegpecially exciting aspect of future

work (see sub-sections 8.5.4, 8.5.2, and 8.5.3 ahead).

8.5 Future directions

Future work on this topic can be divided into two kinds: (1)pmoving the estimation of
DPCs by using better algorithms, task-suited sense-inoviest and syntactic information; and
(2) using the DPC-based approach in a variety of other natamguage tasks that can take
advantage of its features.

| have used categories in the thesaurus as concepts. Howeysrpublished thesauri di-
vide categories into paragraphs, and paragraphs into eseEmigroups. On certain tasks it
may be more beneficial to use these as less-coarse senawie®e Also, | have used all
words in a category, irrespective of their part of speechuilltbe interesting to determine the
role of different parts of speech in different tasks. It iscalorth comparing performance of

thesaurus-based DPCs with those created from other kngevalirces, especially Wikipedia.
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Wikipedia is appealing, not just because it is created bytmemunity (75,000 active contrib-
utors) and so in many ways reflects language and conceptewsith used and understood,
but also because of its very high coverage (5.3 million ksiin 100 languages). Of course,
it is challenging to organize Wikipedia concepts as in a ighleld thesaurus (see Zesch et al.
(2007a) and Milne et al. (2006) for some exploration in thisad; the DPC-based approach
of using a thesaurus to estimate semantic distance can teaisealuate different thesaurus-
representations of Wikipedia.

The distributional profiles of concepts | used were caleddtom simple word—concept
co-occurrences without incorporating any syntactic infation. Yet they have achieved com-
petitive results in various natural language tasks. Thée siex will be to use only those co-
occurring words that stand in certain syntactic relatisnsh as verb—object and subject—verb,
with each other and determine if that leads to significantrow@ments in accuracies of DPC-
based applications.

Finally, the ideas presented in this thesis can be appliedrtomber of natural language

tasks. Below are some of the applications that | am espgam#rested in.

8.5.1 Machine translation

The experiments described in Chapter 7 constitute only teediage of using cross-lingual
DPCs for machine translation (MT). | intend to determinenj@m-specific) probabilities of
possible English translations of Chinese words and use #geprior probabilities in a full-
fledged MT system. The next step will be to do the same for jglstalsam also interested in
determining how useful cross-lingual DPCs are in choodwegcbrrect target hypothesis from
the topk that an MT system picks. It is worth determining whether commg a traditional

word-based language model with a concept-based languadel midl improve results.
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8.5.2 Multilingual multi-document summarization

Consider the task of summarizing several news articlestaheusame event that are written
in several different languages. Conventional approactess at best, find concepts pertinent
only within the scope of each document and include them istimemary. Further, identifying
sentences that convey more or less the same informatiossaarticles in different languages
is a problem. Using my algorithm we can create different DB&@sesponding to words in each
language and concepts as pae commornventory of senses. Therefore, we can determine
concepts that are deemed significant by the document setlasla &and also identify sentences
that convey more or less the same information to create a petaent and non-redundant

summary.

8.5.3 Multilingual information retrieval

State-of-the-art models in information retrieval (IR) bavaditionally made certain indepen-
dence assumptions so that their models remain relativaiplsi They assume that different
word-types in the document and query are independent. Hawéwvthe query has a term
scalpe] then we would want the system to score a document highehdssurgeonas op-
posed to another completely unrelated word. Recentlyethas been some encouraging work
incorporating such dependencies and semantic relatiotm$Rrsystems (Cao et al., 2005; Gao
et al., 2004). However these methods are computationapigresive. As my approach uses
a very coarse sense-inventory (only 812 concepts), it caiygare-compute semantic relat-
edness values between all concepts pairs and use it to &stienen dependencies. Even so,
| believe the crucial benefit of my approach will be in crosgfial IR, where the documents
and queries belong to different languages; using croggs#ihDPCs not only can we place all
gueries and documents in the same concept-space (as eeésirithe previous section), we

can also incorporate term dependencies between termsdaioaigto different languages.
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8.5.4 Multilingual document clustering

A large number of tasks such as estimating semantic disemetdocument clustering involve
vector representations of linguistic units such as wordscepts, documents and so on in
word-space. This has largely worked out nicely; howevecgdrtain tasks the approach can
fall on its face, a case in point being multilingual documeluistering. If words in a docu-
ment are used as features, then no two documents from diffleneguages will be grouped
together, even though they may have similar content. Partyofuture work is to represent
documents in the same concept-space by using cross-limggtabutional profiles of con-
cepts. For example, if the document pool has articles iniEmgEpanish, and Russian, then
| can use English—English, Spanish—English, and Russiaghdh distributional profiles to
represent each document in an English thesaurus’s cospape. Then a standard clustering
algorithm can be used to group them according to content.

As part of a monolingual baseline for this, | have alreadydtmted some experiments in
collaboration with Yaroslav Riabintn We used th&euters-21578orpus for our experiments.
It had 21,578 documents; 3,746 of these were labeled witle than one topic/class and were
discarded. The baseline system simply replaced every woeddocument with its coarse
senses (thesaurus categories) and appliekltheans clustering algorithm. It obtained a purity
of 0.792

The state-of-the-art bag-of-words model, which clusteesdtocuments using words as fea-
tures, obtained a purity of 0.86 (which is comparable to ishield results on this corpus).
However, as pointed out, that approach will not work on ninjual data. The next step will
be to cluster a multi-lingual dataset using a cross-lingpaakline—replace each word with its

cross-lingual candidate senses. Then more sophisticgsteiss can be developed that make

Lyaroslav Riabinin was a fourth-year undergraduate stuatghe University of Toronto when we collaborated.
He is now a graduate student in the same university.

2Purity is one of the standard metrics used to evaluate adtooh@cument clustering. It is the proportion of
documents clustered correctly. A document is consideréd wustered correctly if it is placed in a cluster where
documents similar to it form the majority.
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use of cross-lingual distributional profiles.

8.5.5 Enriching ontologies

Human-created knowledge sources, such as WordNet and’'®®gesaurus, are widely used
to solve natural language problems. However, as languagieesvand new words are coined
in different domains, the lack of coverage becomes an iss@n presently developing an
algorithm to supplement a published thesaurus with new aadqusly unknown words. This
is essentially a classification task where a category of esadurus that best represents the
usages of the unknown target is to be chosen. One way of dhiagstto represent each
category by a vector in some multi-dimensional featurezspa traditional word-distribution
approach to this will require sense-annotated data andategaries will be represented in
(high-dimensional) word-space. My algorithm uses DPCsstorate these vectors, therefore
doesnot require sense-annotated data, and places the vectors iditognsional category-
space. Initial experiments show a large gain over the besdliam also interested in using the
DPCs to automatically enrich an ontology with more inforimat such as identifying lexical

entailment (Mirkin et al., 2007) and antonymy (Muehleis&®97; Lucero et al., 2004).

8.5.6 Word prediction/completion

Word prediction or completion is the task of predicting onqaeting a partially typed word
using the preceding context as cue. Unigram and bigram rmdbteintais et al., 2001) and
those combined with some part-of-speech information (F-@£102) have been shown to per-
form reasonably well; yet there is plenty of room for improwent. It will be interesting to
determine if their performance can be improved on by usiegitin combination with mea-
sures of semantic distance. The hypothesis is that givest aflpossible words, the intended

one is that which is closely related to the preceding cor{tax2006; Li and Hirst, 2005).
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8.5.7 Text segmentation

A document may be about a certain broad topic, but differentigns of the document tend
to be about different sub-topics. Text segmentation is #s& of partitioning a document
into (possibly multi-paragraph) units or passages suchdahaeh passage is about a different
sub-topic than the ones adjacent to it. These passages anactdrized by the presence of
more-than-random number of semantically related wordsr{i§l@nd Hirst, 1991; Halliday
and Hasan, 1976). Further, these semantically relatedsamosay belong to different parts of
speech. ldentifying such links between words (possiblptmflexical chains) is crucial to au-
tomatic segmentation. However, WordNet-based measus=nadintic distance are good only
at estimating semantic similarity between nouns and bigtional word-distance measures are
much less accurate. The distributional concept-distappeoach proposed in this thesis has
neither limitation. Further, as | use a very coarse sengentory (thesaurus categories), the
method is expected to yield more, longer, and accuratedexitains. Hearst (1997) uses
word—word co-occurrence distributions for text segmeotatvith encouraging results. How-
ever, those distributions suffer from problems due to wertse ambiguity. Distributional pro-
files of concepts provide a natural way to determine assonmbetween co-occurring word
senses. All these factors suggest that the ideas propogbdithesis hold promise in text

segmentation as well.
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