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Abstract

We discuss a hierarchical probabilistic model whose predictions are similar to those of
the popular language modelling procedure known as 'smoothing'. A number of interesting
differences from smoothing emerge. The insights gained from a probabilistic view of this
problem point towards new directions for language modelling. The ideas of this paper are
also applicable to other problems such as the modelling of triphomes in speech, and DNA
and protein sequences in molecular biology. The new algorithm is compared with smoothing
on a two million word corpus. The methods prove to be about equally accurate, with the
hierarchical model using fewer computational resources.

1 Introduction

Speech recognition and automatic translation both depend upon a language model
that assigns probabilities to word sequences. The automatic translation system
implemented at IBM used a crude 'trigram' model of language with impressive
results (Brown, DellaPietra, DellaPietra and Mercer 1993). Similar language models
are also used in speech recognition systems (Bahl, Jelinek and Mercer 1983; Jelinek
and Mercer 1980). Trigram models are often implemented using a particular kludge
involving 'smoothing' their predictions with the predictions of better-determined
bigram and monogram models, the smoothing coefficients being determined by
'deleted interpolation' (Jelinek and Mercer 1980; Bahl, Brown, de Souza, Mercer
and Nahamoo 1991). Another generally used language model employs a similar
procedure known as 'backing off' (Katz 1987).

Text compression is a similar prediction task in which character sequences are to
be predicted (adaptively, or otherwise). In text compression, the smoothing technique
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is known as 'blending' and is used to combine the predictions obtained using contexts
of different orders (Bell, Cleary and Witten 1990).

This paper's aim is to reverse-engineer the underlying model which gives a proba-
bilistic meaning to smoothing, allowing it to be better understood, objectively tuned
and sensibly modified. The objective is not to create a rival language model but
rather to demonstrate the Bayesian approach to language modelling and show that
it is feasible. For simplicity, this paper will pretend that the language model is simply
a bigram model, since the key issues can be addressed by studying the smoothing of
bigram statistics. This paper assumes throughout that a bigram model, i.e. a Markov
process, is an appropriate language model, and discusses optimal inference subject
to that assumption.

1.1 The bigram language model with smoothing

To develop a predictive model for language, a string of T words D = wi,w2,...wT,
is observed and the marginal and conditional frequencies are observed. We define
the marginal count F, to be the number of times that word i occurs, and the
conditional count Fy to be the number of times that word j is immediately followed
by word f. (We are ignoring the option of grouping words by a common root and
other complications not central to the concept of smoothing.) Given these counts,
'estimators' of the marginal probability of word i and of the conditional probability
of word i following word j are /,• = (F,-Hx/ W)/(T+a) and/,,,- = (F,u+p/W)/(Fj+P),
where the 'initial counts' OL/W and P/W are commonly set to 0, 1/2 or 1 (Bell et
al. 1990). The subscripts i and j run from 1 to W, the total number of distinct
words in the language. If the initial counts are set to 0 we obtain the maximum
likelihood estimators /, = F,/T and fty = F^/Fj, which assign zero frequency to all
words and word pairs that did not occur in the data. The practical aim of language
modelling is to predict what word wt will be given wt-\ and given all the available
information and data. This prediction is described by a 'predictive' probability over
w,, P(w,|w,_i). One might be inclined to use the observed conditional frequency
/w,|w,_, as an estimator for this predictive probability, if the statistics were adequate.
But typically (and especially in the case of trigram modelling), this conditional
frequency estimator has large variance, because there are so many possible couplets
ij that only a small fraction of them have been observed in the data. So the following
kludge is adopted:

(1) P(wt\wt-l) = Afw,+{l-X)fWl]Wl_r

Thus the noisy bigram statistics are 'smoothed' by the better determined monogram
model's predictions. A cross-validation procedure called 'deleted interpolation' is
used to set X (Jelinek and Mercer 1980; Bahl et al. 1991). This involves dividing the
data into a number of blocks, computing predictions for each block using the other
blocks as training data, and adjusting k to optimize predictive performance. It has
been found that better predictions can be obtained if contexts W] with similar values
of /W| are grouped together, with a separate k for each group determined by deleted
interpolation.
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In text compression, 'blending' combines together the predictions of different
models in a manner similar to equation (1). The parameters equivalent to X are not
adapted, but are fixed by the a priori choice of an 'escape mechanism'. According to
(Bell et al. 1990), "there can be no theoretical justification for choosing any particular
escape mechanism". We would agree that it is not possible to make language models
without making a priori assumptions; but we argue that it is possible within a
hierarchical model effectively to determine the smoothing parameters a posteriori
from the data.

1.2 Any rational predictive procedure can be made Bayesian

The smoothing procedure sounds sensible, but slightly ad hoc. Since rational infer-
ence can always be mapped onto probabilities (Cox 1946), the aim of this paper
is to discover what implicit probabilistic model the above procedure can be related
to. The smoothing formula and deleted interpolation were originally conceived as
a way of combining together the predictions of different models. But in this paper
we will define a single hierarchical model with a non-trivial Dirichlet prior which
gives predictive distributions similar to (1), including adaptive expressions for the
weighting coefficients equivalent to X. However, various interesting differences will
emerge, highlighting problems with equation (1).

2 An explicit model using Dirichlet priors

The heart of a bigram model is a conditional distribution P(w, = i|w,_i = j),
described by W(W — \) independent parameters, where W is the number of words
in the language [W possible conditioning terms on the right-hand side, for each of
which a probability distribution with (W — 1) independent parameters is specified].
These parameters will be denoted by Q, with P{w, = i|w,_i = j) = q,y. Q is a
W x W transition probability matrix. A single row of Q, the probability vector
for transitions from state j , is denoted by q|;. (Alternative ways of parameterizing
the model might be defined using, for example, the marginal word probabilities
P(w,) and the joint probabilities P(n>,,w,_i). However, the conditional probability
parameterization Q is chosen because it is the natural representation of a Markov
process; the marginal distribution P(w,) is not independent, but is a deterministic
function of the conditional probability matrix Q: namely, P(w,) is the principal
eigenvector of Q.) The parameters Q are never perfectly known, and our uncertainty
about their values can be represented by a probability distribution over possible Qs.

2.1 The inferences we will make

A model jV is a specification of the model parameters, the way that the probability
of the data depends on those parameters, and a prior probability distribution on
those parameters. Given a model 3f, there are two inferences we will be interested
in making. Both these inferences can be made mechanically using the rules of
probability theory:
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A: Infer the parameters given the data
We do this by Bayes' theorem, which gives the probability of the parameters Q given
the data D in terms of the likelihood function P{D\Q, J4?) and the prior distribution
P(Q\JP):

The normalizing constant is given by integrating the numerator over Q:

(3) P(D\tf) = J P(D\Q,3f)P(Q\je)dkQ,

where k is the dimensionality of Q.

B: Predict the next word in a given context
To obtain the probability of wt given wt-\ and the data /), we use the sum rule
of probability P(A\C) = /P(A\B,C)P(B\C) dB to marginalize over the unknown
parameters Q:

(4) P(wt\wt-UD,Jfr) = J P(Wt\W[-UQ,D,jr)P(Q\D,Jf)dkQ

(5) = JqWtlWl^P(Q\D,je)dkQ.

The distribution inside the integral, P(Q\D, JF), depends upon the likelihood function
and the prior, as shown in equation (2).

2.2 The likelihood function

The likelihood function P(D\Q, JF) can be written down immediately, independent
of the assumptions #? which define the rest of the model. We make the simplifying
assumption that the first word of the data set is given a priori, and is not to be
predicted by the model. The probability of the string of words is then the probability
of the second word given the first, times the probability of the third word given the
second, and so forth:

(6)

We can rewrite this product by counting how often each variable q,^ appears in the
product. This is given by the conditional count F,y. Thus

(7)
j i

So given the assumed bigram model, the conditional counts F^ contain all the
relevant information that the data convey about Q.

2.3 What prior?

Thus having defined the parameterization of the model, Q, the only question that
remains before the two inferences above are fully defined is 'what is the prior over
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QT In particular, this paper examines the question, what prior P{Q\3/F) would give
us predictive distributions of the 'smoothed' form (I)?

2.4 A convenient family of priors: Dirichlet distributions

The Dirichlet distribution (Antoniak 1974) for a probability vector p with / compo-
nents is parameterized by a measure u (a vector with all coefficients u, > 0) which we
will write here as u = am, where m is a normalized measure over the / components
(52m> ~ 1)> a n d a is a positive scalar:

(8) P(p|am) = _ _ _ JJp«».-»5 ( £ ( P l -\)= Dirichlet(/>(p|am).
£ (.otmj ._1

The function <5(x) is the Dirac delta function which simply restricts the distribution
to the simplex such that p is normalized, i.e. J2,p, = 1. The normalizing constant of
the Dirichlet distribution is:

(9)

The vector m is the mean of the probability distribution:

(10) I Dirichlet(/)(p|am) p d'p = m.

The role of a can be characterized in two ways. First, the parameter a measures the
sharpness of the distribution; it measures how different we expect typical samples
p from the distribution to be from the mean m. A large value of a produces a
distribution over p which is sharply peaked around m. The effect of a can be
visualized by drawing a typical sample from the distribution Dirichlet(/)(p|am), with
m set to the uniform vector m; = I/I, and making a Zipf plot, that is, a ranked plot of
the values of the components p,. It is traditional to plot both p, (vertical axis) and the
rank (horizontal axis) on logarithmic scales so that power law relationships appear
as straight lines. Figure 1 shows these plots for a single sample from ensembles with
/ = 100 and / = 1000 and with a from 0.1 to 1000. For large a, the plot is shallow
with many components having similar values. For small a, typically one component
p, receives an overwhelming share of the probability, and of the probability that
remains to be shared among the other components, another component pi receives a
similarly large share. In the limit as a goes to zero, the plot tends to an increasingly
steep power law.

Second, we can characterize the role of a in terms of the predictive distribution
that results when we observe samples from p and obtain counts F = (F\,F2,•• -Fi)
of the possible outcomes. The posterior probability of p is, conveniently, another
Dirichlet distribution:

P(F|p)P(p|«m)
(11) P(p|F,am) =

/ •* /"\\ X 1 j c\ \ \\ if I
1 ' ~ P(F|am)
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Fig. 1. Zipf plots for random samples from Dirichlet distributions with various values of
a = 0.1... 1000. For each given / and a, / samples from a standard gamma distribution were
generated with shape parameter a/I and normalized to give a sample p from the Dirichlet

distribution. The Zipf plot shows the probabilities p,, ranked by magnitude, versus their
rank.

(13)

(14)
P(F\ccm)Z(am)

= Dirichlet(/)(p|F + am).

The predictive distribution given the data F is then:

(15) P(i\F,am)= /Dirichlet(/)(p|F + am)p d'p = F, + am,-
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Notice that the term ami appears as an effective initial count in bin i. The value of
a defines the number of samples from p that are required in order that the data
dominate over the prior in subsequent predictions. If a > Yl, Fitnen P(W>am) — mil
if a < Y.,Fi then P(i|F,am) = F f / (£ , Ff).

Finally, we note from equations (9) and (14) that the 'evidence' for am, P(F|am),

,1M pm , Z(F + am) n,nF,+«m,) T(a)
(16) p ( F | a m ) = ^ ^ r = nE.F.+a) n,r(«m,)-
The important role of the evidence (also known as the marginalized likelihood) will
become clear shortly. Additional useful formulae and approximations are found in
Appendix A.

2.5 Definition of the hierarchical model 34?D

We now define the prior of a hierarchical model that we denote J^D (D for
Dirichlet). It is called a hierarchical model because as well as containing unknown
parameters Q which place a probability distribution on data, it contains unknown
'hyperparameters' which define a probability distribution over the parameters Q.

To obtain predictions similar to those of the smoothing equation (1), we must
assign a coupled prior to the parameters Q, that is, a prior under which learning the
probability vector for one context q7 gives us information about what the probability
vectors q;- in other contexts might be. We introduce an unknown measure on the
words, u = am, and define a separable prior, given am, on the vectors q|; that make
up Q:
(17) F(Q|am, jfD) = J ] Dirichlet(/)(q|>m).

j

We produce a dependence between the vectors q^ by putting an uninformative prior
P(am) on the measure am (to be precise, a flat prior on m and a broad gamma
prior over a). The prior on Q defined by this hierarchical model is then:

(18) P{Q\3tfD) = /j|[Dirichlet(')(q|>m)]F(am)d'
J j

am.

When we use this hierarchical model we can effectively find out from the data what
the measure should be, as we will show in section 3. If we have additional prior
knowledge about the language such that we expect specific structure in the measure,
then we could define a more informative prior P(am) which should further improve
the model's predictive performance. In this paper, we aim simply to demonstrate a
minimal data-driven Bayesian model, where the emphasis is on getting information
from the data, rather than adding detailed human knowledge. The hierarchical
model that we have described puts a qualitative prior over the parameters Q
(qualitative in that the form of a Dirichlet distribution is specified, but without
specifying quantitative values for the hyperparameters am); this is effectively turned
into a quantitative prior by consulting the data. This general approach is sometimes
called 'empirical Bayes'. Our method is distinguished from many empirical Bayes
prescriptions in that (a) we use Bayesian inference to control the hyperparameters;
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(b) we motivate this procedure as an approximation to the ideal predictive Bayesian
approach.

2.6 Inference and prediction using the hierarchical Dirichlet model

It is convenient to distinguish two levels of inference. We are interested in the
plausible values of (at level 1) the parameters, Q = {qiy} and (at level 2) the
'hyperparameters' am. We use the results of section 2.4.

2.6.1 Level 1 inference

At level 1, we assume we know m and a. It is then easy to infer a posterior
distribution for Q, and get a predictive distribution. By Bayes' theorem the posterior
distribution is

This distribution is separable into a product over contexts j , because both the prior
P(Q\am,3>i?D) and the likelihood P{D\Q,3fD) are separable.

(20) P(Q\D, am, J^D) = ]J P(%\D> am> *o\
j

The posterior distribution of each conditional probability vector is simply another
Dirichlet distribution:

(21) P(%\D,am,JfD) oc ]Jq^j + °""' ~ l5(£, «,|y-l) = Dirichlet(/)(q|v|F + am).
i

This posterior can be used for prediction:

(22) P(i\j,D,«m,XD) = J ^ * " " '
L

Notice that m is taking precisely the role of the marginal statistics in equation (1).
To make this explicit, the predictive distribution can be written:

(23) P(i\j, D, am, jfD) = ^m, + (1 - Xj)fAj,

where fiy = F,y/Fj and

( 2 4 > X' = FTT*
Note that, in contrast to X in equation (1), this quantity kj is not constant. It
varies inversely with the frequency of the given context j . Practitioners of deleted
interpolation have, as mentioned in the introduction, found it useful to divide the
contexts j into different groups, according to their frequency Fj, with a separate
X for each group. Each X has to be optimized using deleted interpolation. Here,
simply by turning the handle of Bayesian inference, we have produced a smoothing
prescription which, we anticipate, eliminates this need to group contexts by their
frequency. The appropriate variation of X with F} is automatically present in (24).
(Not that this is a new idea: the 'blending' method in text compression (Bell et al.
1990) uses the same variation with Fj.)
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2.6.2 Level 2 inference

At the second level of inference, we infer the hyperparameters given the data. The
posterior distribution of am is, by Bayes' theorem:

(25) ^

The data-dependent term P{D\<xm, Jfo) is the normalizing constant from the first
level of inference (19). We call it the evidence for am. We will proceed by finding
the maximum [am]MP of the posterior distribution P(am|D, J^D)- The ideal Bayesian
method would put a proper prior on the hyperparameters and marginalize over
them when making predictions:

(26) P(i\j,D,JtrD)= jP(am\D, J^D)P(i\j,D, am, jtTD)dw(am).

However, if (as we expect) the posterior distribution P(am|D, ^ D ) is sharply peaked
in am so that it is effectively a delta function in (26), relative to P(i\j,D,am, 3>PD),
then we may approximate:

(27) P(i\j, D, JfD) ~ P(i\j, D, [am]MP, *>„).

So instead of marginalizing over the hyperparameters, we optimize them; the opti-
mization is computationally more convenient, and often gives predictive distributions
that are indistinguishable from the true predictive distribution (MacKay 1995c). We
are assuming a noninformative prior P(am\^fD), so the posterior probability maxi-
mum [am]MP is found by maximizing the evidence F(D|am, Jfo). If the accuracy of
this approximation is doubted in any specific case, then the correct marginalization
over the hyperparameters can be performed by, for example, Monte Carlo methods
(see, for example, Neal (1992, 1993) and (West 1992)). We note in passing that the
mode of a posterior probability distribution does not have any fundamental status
in Bayesian inference, and its location can be changed arbitrarily by a non-linear
reparameterization. The maximum of the evidence, on the other hand, is invariant
under reparameterization.

Now, the question is, will mMP turn out equal to the marginal statistics /,? If it did,
then this Bayesian procedure would reproduce the predictions of smoothing. The
answer is, no, the optimal measure is different. This will be discussed first using a toy
example to persuade the reader that equation (1) is unsatisfactory. The mathematics
of the Bayesian optimization of am will then be worked out in detail.

Example: A data set for which equation (1) is evidently unsatisfactory.

Imagine, you see, that the language, you see, has, you see, a frequently occurring couplet,
'you see', you see, in which the second word of the couplet, see, follows the first word, you,
with very high probability, you see. Then the marginal statistics, you see, are going to become
hugely dominated, you see, by the words you and see, with equal frequency, you see.

Now given this data set, what is the conditional probability of each word if and
when a novel context occurs? In particular, what are the probabilities of the words
'you' and 'see'? Where the Dirichlet model (23) would assign probabilities m™, the
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smoothing formula (1) would assign probabilities proportional to /,. So using the
smoothing formula, the predictions P(you|novel) and P(see|novel) would come out
equal, since 'you' and 'see' have both occurred equally often (11 times) so far. But is
this intuitively reasonable? 'You' evidently has a relatively high probability in any
context, whereas 'see' only has a high frequency because it has a high probability of
following 'you'. Thus intuitively P(you|novel) should be greater than P(see|novel).
We would like the probability of a word to relate not to its raw frequency, but rather
to the number of contexts in which it has occurred. We will see shortly that mMP does
exactly this.

It should be emphasized that this failure of the smoothing formula is not because
of any inadequacy of the bigram model; a Markov process can easily capture the
couplet in the data set above. (In text compression, the method known as 'update
exclusion' (Bell et al. 1990) avoids the problem described above.)

3 Inferring Dirichlet hyperparameters

3.1 The dice factory

An analogy may be useful to describe the inferences we will now make. Imagine that
a factory produces biased /-sided dice. We might model the probability vector q of a
single die as coming from a Dirichlet prior with unknown hyperparameters u = am
that characterize the factory. The data are the outcomes of rolls of J dice labelled
by j . Each die j is rolled a number of times Fj, and we are told the counts of the
outcomes, F,y, which give us imperfect information about the parameters Q = {<jf,|;}.
Given these measurements, our task is to infer the hyperparameters u = am of the
factory, in order to make better predictions about future rolls of individual dice.

This problem is identical to the language modelling problem, where the number
of dice J and the number of classes / are both equal to the number of words W.
We can imagine the language being generated by a dice rolling procedure in which
the outcome of roll t determines which die is rolled at time t + 1. Other inference
problems, in genome modelling for example, can also be related to the inference of
models for dice factories.

3.2 The evidence for am

The posterior probability of am is proportional to P(D|am) = JJj f(F|y|am), which
we obtain from equation (16):

(28)

We now work in terms of w, = am,. To find the most probable u = am, we differenti-
ate, using digamma functions defined by *F(x) = d log T{x)/dx. (The motivation for
evaluating the gradient is that the optimization of a continuous function of many
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variables u, is easiest if the gradient of the function is calculated.)

(29) — log P(D\a) = y^ [V(F,\j + «i) - V(Fj + £,- "•') + *(E? «?) ~ ^(".)1 •

This gradient may be fed into any optimization program to find uMP. A conjugate
gradients algorithm (Press, Flannery, Teukolsky and Vetterling 1988), for example,
easily finds the optimum. However, we can obtain further insight and derive an
explicit optimization algorithm by making some approximations.

3.3 Inferring u = am—approximations for w, < 1 and a > 1

We now assume that a > 1 and u, < 1 to derive an algorithm specialized for the
parameter regimes expected in language modelling. We expect a to be greater than 1
because a corresponds to the rough number of data points needed to overwhelm the
Dirichlet prior. How many times Fj do we expect we need to see context j for us to
have learnt the principal properties of qy? If we have only seen a context one or two
times, then we intuitively expect our prior knowledge of the high frequency of the
word 'the', for example, to still be important. But once we have seen a context a few
tens or hundreds of times we expect that the observed counts will differ significantly
from the default distribution. And in preliminary experiments we did find that the
most probable a ranged from about 1.4 to about 60. Now since the m,'s sum to one,
a typical m, will be l/(size of vocabulary), therefore u,- = am, can be expected to be
less than 1.

We use the relationship vP(x+1) = x¥(x) + £ to combine the first and fourth terms
in equation (29):

| ) ( ) \ l F T ^ ^ ^ T ^
tiU — 1 + Ui Fj\j — 2 + u, 2 + u, 1 + Ui u,

The number of terms in this sum is F^. Assuming M, is smaller than 1 we can
approximate this sum, for Ft\j > 1, by

^ 2(31) 1/u, + 53 l/(/ - 1) - Ui ^2 l/(/ - I)
/=2 /=2

Approximating the other terms ^(a) — ¥(Fj + a) with equation (39), we obtain
the following prescription for the maximum evidence hyperparameters uMP. For each
F and i, let NFi be the number of contexts j such that F,y > F, and let F,max be the
largest F such that Np, > 0. Denote the number of entries in row T of Fty that are
non-zero, Nu, by Vt. Compute the quantities:

jrmax

(32) G, = £ > / , / ( / - 1 )
/=2
pmAX

(33) H, = J2Nfi/(f-l)2

/=2
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and define:

then the optimal hyperparameters u satisfy the implicit equation:
TV

(35) < p = . '
K(aMP) - d + ,/(K(a»r) - Gip + 4HtV,

This defines a one-dimensional problem: to find the a such that the u, given by (35)
satisfy ^ , . M, = a. This optimal a can be found by a bracketing procedure or by a
reestimation procedure in which we alternately use (35) to set u,- given a and then
set a := ^ , a,-. We use this algorithm in section 4.

3.4 Comments thus far

• A predictive algorithm similar to 'smoothing' has been derived within a fully
probabilistic model.

• The smoothing vector is not the marginal distribution, as used in the traditional
language model. Rather, we see from the numerator in equation (35) that u,
is directly related to Vt, the number of contexts in which word i has occurred,
thereby satisfying the desideratum raised by the toy example of the previous
section.

• The weight X of the smoothing vector scales automatically with the number of
counts. There is no need to separate words into separate categories depending
on their raw frequency.

• This framework does not involve cross-validation; all the data is devoted to
every aspect of the modelling process.

• This perspective reveals the crudity of the implicit model underlying smooth-
ing: all the conditional probability vectors in the matrix Q are modelled as
coming from a single Dirichlet distribution. This distribution is characterized
only by a mean probability vector m and a single scalar measure of spread
about this mean, a. It seems plausible, even if a bigram model is assumed, that
a more complex distribution for qy might give a better model. For example, as
discussed later in section 5, we might believe that contexts come in equivalence
classes or types - this would motivate a mixture model for the vectors q̂ -.

4 Application to a small corpus

We conducted an experiment to compare deleted interpolation with the new method
empirically (Peto 1994). We used each algorithm to construct an alternative model
from the training corpus. We then compared the predictive accuracy of the algo-
rithms by evaluating the perplexity of the test data under each of the competing
models: the better the model, the smaller the perplexity.

Perplexity is defined as 2H(G;^, where H(Q;P) is the cross-entropy between the
unknown 'true' model Q and the assumed model P. (For the case of two distributions
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over alternatives i, H(Q;P) = 51,-Qi log2 A-) For the bigram models we use, and a
large enough test corpus, the perplexity of the test corpus can be approximated by

rr -i-'/r
(36) Perplexity- m P ( w t | w , _ , )

where T is the number of words in the corpus (see Brown et al. 1992).
The training and test corpora were taken from the English portion of Gale and

Church's (1991) sentence-aligned version of the Canadian Hansard, the proceedings
of the Canadian Parliament. This text had already been separated into sentences
and stripped of titles, formatting codes and speaker identifiers. We removed sentence
numbers and added sentence-begin and sentence-end markers. In keeping with
common practice for experiments of this type, we split off punctuation and suffixes
beginning with apostrophes from the words they followed, making them separate
tokens. In order to reduce the total number of types in the vocabulary, we also
replaced each number by the special token "#".

The resulting sentences were distributed into nine blocks of about 1.7 Mbytes
each, with consecutive sentences going to different blocks. This interleaving of the
sentences performs the important function of homogenizing the data: otherwise
significant differences in token frequencies could result from different portions of
the corpus as different topics were being discussed. The first six blocks were used
for training data (about 2 million words), and the test data were extracted from the
remaining three blocks.

We prepared three different test samples from the test data. Because the algorithms
being compared only assign probabilities to bigrams composed of tokens that appear
in the training data, they have no way of dealing with previously unseen tokens (we
chose not to address the important zero-frequency problem in this study). Therefore,
we removed all sentences that contained a token that did not occur in the training
data. This left 14,393 sentences (about 260,000 tokens) in Sample 1. Next, recognizing
that the Hansard contains many conventional phrases and sentences that might skew
the results of the experiment, we removed from Sample 1 all sentences that were
duplicated in either the test data or the training data. This left 12,000 sentences
(about 243,000 tokens) in Sample 2. Finally, to test whether the sample was large
enough for the approximation of perplexity in equation (36) to hold, we pseudo-
randomly chose half the sentences in Sample 2 to become Sample 3 (6000 sentences,
about 116,000 tokens).

The two algorithms have different numbers of parameters to be optimized. For the
deleted interpolation method, the number of AS is chosen subjectively. We ran the
deleted interpolation method with 3, 15 and 150 As to judge the effect of this choice.
In the hierarchical model presented in this paper, there is one hyperparameter u, for
each type in the training data vocabulary.

The experiment was conducted as follows. First, raw frequencies and relative
frequencies of tokens and bigrams were obtained from the training data as a whole.
Next, the most probable values for the parameters of each model were solved for
iteratively. For the Dirichlet model, this meant solving the simultaneous equations
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Table 1. Perplexities of the three test data samples under the different models.
T = number of tokens in sample.

Algorithm

Deleted interpolation Dirichlet

Sample T/1000 3 ;.s 15 As 150 As

1
2
3

260
243
116

89.57
79.60
88.47
91.82

88.91
79.90
89.06
92.28

given by equation (35) to obtain uMP. For the smoothing method, separate frequencies
were first calculated for each block, and then the A's were obtained using deleted
interpolation (Jelinek and Mercer 1980). The optimization was halted when on
average each parameter of the model had converged to eight decimal places. The
optimized parameter values for each model were then used to compute predictive
probabilities P(i\j) for each bigram in the test data. Finally, the perplexity of each of
the three test data samples was evaluated using each of the models, and the results
were compared.

The perplexity of each test sample under each model is given in Table 1. For all
three samples, the perplexities under the deleted interpolation model and under the
Dirichlet model are nearly the same.

For Sample 2, three deleted interpolation models having different numbers of As
were tested. The effect of altering the number of As was very small. When 150 As
were used, we found that the values of A decreased with the frequency Fj roughly
as expected from equation (24).

Finally, the perplexity results for the smaller Sample 3 are close to the correspond-
ing results for Sample 2. This suggests that Sample 2 is large enough to provide a
meaningful comparison of models. The fact that the perplexity results for Sample 1
are lower than those of Sample 2 probably reflects the high degree of regularity of
the extra (conventional) data more than the small increase in test data size.

With regard to resource use, the new algorithm has an advantage. The number
of iterations required for each algorithm to converge was comparable. However,
a single iteration of our Dirichlet model requires time linear in the size of the
vocabulary, while an iteration of deleted interpolation requires time linear in the size
of the training corpus. The larger the training corpus, the more significant would
be this advantage of the Dirichlet model. Also, deleted interpolation requires more
memory because it keeps separate count and frequency data for each block of the
training corpus. In our implementation there were six such blocks.

We have not made a direct comparison with the 'backing-off' algorithm because
Katz's (1987) results indicate that backing-off is indistinguishable in performance
from deleted interpolation on a similar bigram modelling task.



Hierarchical Dirichlet language model 303

5 Discussion

The exercise of creating a Bayesian version of the 'smoothing' procedure has given
several benefits. (1) The Dirichlet model is not identical to smoothing; the differences
are intuitively reasonable. (2) The Dirichlet model does away with cross-validation
and therefore makes full use of the data while requiring fewer computational
resources.

We would like to distinguish the general Bayesian method from the particular
hierarchical Bayesian model discussed in this paper, and the computational approxi-
mations used to implement it. We emphatically do not view the presented algorithm
as the Bayesian answer to language modelling, nor do we claim that this particular
algorithm will necessarily be superior to deleted interpolation in any given appli-
cation. There are many possible Bayesian language models, and the one we have
studied is virtually the simplest possible. We now discuss other possible models.

5.1 Generalizations

Language modelling has here been viewed as the modelling of a set of probability
vectors q̂  drawn from a coupled density over the simplex (the simplex is the space of
probability vectors q, satisfying q, > 0 and J2, a> = 1)> w i t n o n e probability vector qi;
for each context j . In this paper's model, the context j is simply the previous word,
and the density over the simplex is a single Dirichlet distribution parameterized by
am.

The two simplest modifications to this model are to change the functional form
of the density over the simplex, and to change the definition of a context.

An alternative density over probabilities to the Dirichlet distribution is the entropic
prior (Skilling 1989; Gull 1989),

(37)

The entropic prior, like the Dirichlet prior, characterizes a language by a single
mean and spread of a distribution of conditional probabilities q(y- for all contexts
j . Recent work at IBM on 'maximum entropy language modelling' (S. & V. Delia
Pietra, personal communication) might be interpreted in terms of an entropic prior.
This interpretation could then be used to obtain a Bayesian prescription for a and
m, as this paper has done for the Dirichlet model.

A more interesting model might assert that there are different types of context,
such that for all contexts of the same type, the conditional probabilities q are similar.
If we do not know a priori what the type of each context is, then this model is
a mixture model. A mixture model Jf M defines a density over q as a weighted
combination of C independently parameterized simple distributions, where each
mixture component c = 1... C might be a Dirichlet or entropic distribution. Various
algorithms can be used to implement mixture models: both Monte Carlo methods
(Neal 1992) and Gaussian approximations (Hanson, Stutz and Cheeseman 1991).
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Mixture models are applied to the modelling of amino acid probabilities in Mackay
(1995d).

Alternatively, a model might define the context to be the last two words, with the
type of the context being defined by the most recent word. With a coupled prior for
the context hyperparameters, this model would give predictions similar to those of
the smoothed trigram language model.

The mixture model is also able to capture the same clustered structure as the
hierarchical trigram model, but has the potential advantage that it can discover
other relationships between the contexts; for example, if it happens to be the case
that the last word but one is sometimes more important than the last word in
characterizing q ,̂ then the more flexible mixture model can capture this structure
in the data.

Finally, we might believe that the type of a context is more naturally described
with a componential structure (G. Hinton, personal communication; see also Williams
and Hinton 1991). Imagine, for example, that any context is either legalistic or not;
and that in any context, either a verb is likely, or is unlikely. A traditional mixture
model would have to use four mixture components to capture these two sources
of variation; and in general we would need a number of mixture components
exponential in the dimensionality of the context space; whereas we might believe
that the number of parameters needed to describe the probability distribution ought
only to be linear in that number of dimensions. This motivates the development of
componential models (a type of latent variable model), in which the type of a context
is represented with several continuous or discrete dimensions. A componential model
is described and applied to the modelling of amino acid probabilities in Mackay
(1995d). It has been generalized to the modelling of joint distributions of multiple
amino acids in MacKay (1995a, 1995b).

5.2 Relationship to previous 'empirical Bayes' approaches

An approach similar in spirit to the one advocated in this paper has been described
by Nadas (1984). His 'empirical Bayes' approach also interprets the smoothing
formula (1) in terms of a prior whose hyperparameters are determined from the
data.

In contrast to the present paper, however, Nadas at several points 'chooses'
estimators in an arbitrary way (in the fully Bayesian approach there are no choices,
only mechanistic inferences). Another weakness of Nadas' paper is that the prior
that is considered is a technically inappropriate prior that neglects normalization of
the probability vectors qi;-.

The technique of smoothing is also used in modelling with classification trees,
and this literature contains a similar paper in which an 'empirical Bayes' approach
is used (Buntine 1992). As above, this approach is compromised by the invocation
of ad hoc estimators, instead of the derivation of inferences. An estimator for m is
given that is not, in fact, the most probable m. No objective procedure for setting a
is given.
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A fully Bayesian approach to the hyperparameter a has been given by West (1992),
along with a Monte Carlo algorithm for Gibbs sampling of this hyperparameter.

The advantages of a fully Bayesian attitude to data modelling are, firstly, that one
is forced to make all one's assumptions explicit; and secondly, that once the model
is defined, all inferences and predictions are mechanically defined by the rules of
probability theory.
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Appendix A: The Gamma function and Digamma function

The Gamma function is defined by T(x) = /J0 du MX"'e~u, for x > 0. In general,
T(x + 1) = xr(x), and for integer arguments, T(x + 1) = x!. The digamma function
is defined by ¥(x) = j-x logT(x).

For large x (for practical purposes, 0.1 < x < oo), the following approximations
are useful:
(38) logT(x)~ (x-i) |

(39) ^(x) = ^ logr(x) ~ log(x) - ^ + 0(1 /x2).

And for small x (for practical purposes, 0 < x < 0.5):

(40) log T(x) ~ log i - yex + O(x2)

(41) ^

where ye is Euler's constant. The digamma function satisfies the following recurrence
relation exactly:

(42) ^

Formula for a more general algorithm

The algorithm presented in this paper is based on series expansions of ^(u) and
is not valid for all u. The following formula, although it is not part of a series
expansion, gives an approximation to the difference *¥(F + u) — *¥(u) that is accurate
to within 2% for all u and all positive integers F:

(43) T(F + II) - T(u) ~ 1 + log F + " ~f
l
2
/2.

This approximation is useful for gradient-based optimization of Dirichlet distribu-
tions (MacKay 1995d).
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