
Automatic Detection of Authorship Changes within Single

Documents

by

Neil Graham

A thesis submitted in conformity with the requirements

for the degree of Master of Science

Graduate Department of Computer Science

University of Toronto

Copyright c
 2000 by Neil Graham

Abstract

Automatic Detection of Authorship Changes within Single Documents

Neil Graham

Master of Science

Graduate Department of Computer Science

University of Toronto

2000

One of the most di�cult tasks facing anyone who must compile or maintain any large,

collaboratively-written document is to foster a consistent style throughout. In this thesis,

we explore whether it is possible to identify stylistic inconsistencies within documents

even in principle, given our understanding of how style can be captured statistically.

We carry out this investigation by computing stylistic statistics on very small samples

of text comprising a set of synthetic collaboratively-written documents, and using these

statistics to train and test a series of neural networks. We are able to show that this

method does allow us to recover the boundaries of authors' contributions. We �nd that

time-delay neural networks, hitherto ignored in this �eld, are especially e�ective in this

regard. Along the way, we observe that statistics characterizing the syntactic style of

a passage appear to hold much more information for small text samples than those

concerned with lexical choice or complexity.

ii

Acknowledgements

Although it almost seems a cliche, it is unquestionably true that this document would

not have been possible without the help of numerous people. Since I came to this �eld

from the rather distant realm of mathematics, my task of understanding the background

material was not inconsiderable. The fact that blindness makes independent review of

printed technical material quite di�cult would have caused this task to be even more

arduous had it not been for the e�orts of so many researchers in this �eld who generously

provided me with the electronic source for their papers. While an itemization is almost

certain to neglect someone, I thank David Holmes, Sameer Singh, Fiona Tweedie, Patrick

Juola, Robert Matthews, David Mealand, Graeme Hirst, Geo�rey Hinton, Ian Lancashire,

Judith Klavans, Dan Jurafsky and Bill Teahan for providing this invaluable service.

Thanks also go to those authors who availed themselves of the CMPLG archive|one

of a number of like projects that garner far too little support. Thanks are also due to

Julia Boma-Fischer for providing a superlative reading of a critical paper and for general

assistance with linguistic nomenclature.

Particularly in the last stages of the thesis, my extreme weakness in statistics showed

itself starkly. The assistance of Melanie Baljko, Alex Budanitsky and Bhaskara Marthi

in helping to �ll this dearth of knowledge is greatly appreciated. Eric Joanis is also to

be remembered for pointing out my grave omissions when applying Brill's part of speech

tagger.

The computational demands of so many parts of this experiment meant that it would

not have proceeded had excellent computer equipment not been available. Funding from

the Natural Sciences and Engineering Research Council (NSERC) allowed for the pur-

chase of su�ciently powerful hardware. Also to be highlighted is NSERC's patience|a

quality all too rare, not just among funders but generally|in funding me directly for

two years and indirectly through Graeme Hirst's research grant for an additional four

months.

iii

Finally and principally, I thank Graeme Hirst for ably and e�ciently supervising this

thesis. From setting the broad research objectives and suggesting an appropriate corpus

to helping to get papers in usable formats, from setting up contacts with other researchers

to providing high- and low-level suggestions for the betterment of the writing, Graeme's

experience and above all patience has showed throughout. Most remarkably, despite this

close involvement, Graeme has allowed me the widest possible freedom in conducting the

course of the experiments.

iv

Dedication

To my parents

v

Contents

1 Purpose and Background 1

1.1 Purpose . 1

1.2 Terminology . 2

1.2.1 Our \Style" . 2

1.2.2 Specialized Terminology . 3

1.3 Hypothesis and Outline . 4

1.4 Background . 5

1.4.1 Stylometric Statistics and Style 5

1.4.2 Work on Small Corpora . 7

1.4.3 Stylometric Statistics and Neural Networks 8

2 Selection and Initial Processing of the Corpus 11

2.1 Selecting the Corpus . 11

2.2 Initial Processing: Overview . 12

2.3 Locating and Removing Article Headers 15

2.4 Identi�cation of Mis-Quoted \From"s . 17

2.5 Locating Quotations . 19

2.5.1 The Algorithm . 19

2.5.2 Testing the Quotation Identi�cation Algorithm 23

2.5.3 Nested Quotations . 27

vi

2.6 Moving the Quotations . 28

2.7 Reformatting Paragraphs . 30

2.8 Removing Signatures . 32

2.8.1 Detailed Explanation of the Heuristics 34

2.8.2 Testing . 37

2.8.3 Removing File Trailers . 40

2.9 Recording the Article Boundaries . 41

2.10 Results of Processing the Corpus . 43

3 Statistics Computed in this Experiment 45

3.1 Introduction . 45

3.2 Entropy and Juola's Measure . 46

3.3 Word-Length Statistics . 49

3.4 Syllable Distributions . 50

3.5 Statistics on Sentence Length . 53

3.6 Frequency Distribution of Punctuation 54

3.7 Distribution of Parts of Speech . 56

3.8 Function-Word Frequencies . 57

3.9 The Type/Token Ratio . 60

3.10 Measures of Vocabulary Richness . 64

3.10.1 Simpson's Index . 64

3.10.2 Yule's Characteristic . 65

3.11 Vocabulary Distribution Modeling . 66

3.12 Special Type Frequencies . 68

3.13 Character-Level Statistics . 70

3.14 Inter-Sample Approaches . 71

3.15 Statistics Database Organization . 74

vii

4 Generating the Statistics 77

4.1 Introduction . 77

4.2 General Approach . 78

4.2.1 Interesting Implementation Details 79

4.3 General Assumptions Behind the Statistical Computations 80

4.3.1 Tokenizing the Text . 81

4.3.2 Case Selection . 84

4.3.3 Possessives and Clitics . 85

4.3.4 Juola's Statistic . 86

4.4 Problematic Statistics . 87

4.4.1 Calculating Sentence Lengths . 87

4.4.2 Finding Part-of-Speech Frequencies 91

4.5 Verifying the Output . 101

5 Building Neural Nets to Locate Authorship Changes 103

5.1 Introduction . 103

5.1.1 Basic Neural Net Concepts . 103

5.1.2 Why Neural Nets? . 106

5.1.3 General Course of the Experiments 107

5.2 Simple Multilayer Perceptrons . 111

5.3 Committees of Experts . 115

5.3.1 Motivation . 115

5.3.2 Results with Individual Experts 117

5.3.3 The Full Committee of Experts 129

5.3.4 The \Best" Committee of Experts 130

5.4 Time-Delay Neural Networks . 133

5.4.1 Motivation . 133

5.4.2 The \Best" Time-Delay Network 135

viii

5.4.3 Other Time-Delay Neural Networks 137

5.5 How Good is Our Best? . 138

6 Conclusions and Future Work 143

6.1 Conclusion . 143

6.2 Related Work . 146

6.3 Future Directions . 147

Bibliography 152

ix

List of Tables

2.1 Results obtained by running the �rst version of the quotation identi�cation

script on pseudorandomly-chosen �les from our corpus. 25

2.2 Results obtained by running the �nal version of the quotation identi�cation

script on pseudorandomly-chosen �les from our corpus. 26

2.3 Results obtained by running the �rst version of the signature removal

script on pseudorandomly-chosen �les from our corpus. 38

2.4 Results obtained by running the �nal version of the signature removal

script on pseudorandomly-chosen �les from our corpus. 39

3.1 The mean letters/syllable, and the standard deviation from the mean, as

obtained from the MRC2 database. 52

3.2 List of punctuation marks we will compute frequencies of, complete with

descriptions of their common uses. 55

3.3 The number of words that we would consider as function words having

frequencies higher than certain values in the one million-word K&F corpus. 58

3.4 The list of function words for which we will compute per sample frequencies. 59

3.5 The contents of each record of our statistics database. 75

4.1 Comparison of the actual number of words, sentences and average words/sentence

with values derived from our average sentence-length routine. 92

5.1 Results obtained for various networks used to test syllable frequencies. . 118

x

5.2 The results we obtained with networks trained on the average sentence

length statistics we computed for each paragraph. 120

5.3 Results obtained for various networks used to test part-of-speech frequencies.121

5.4 Results obtained for various networks used to test punctuation frequencies. 123

5.5 Results obtained for various networks used to test entropies. 124

5.6 The results we obtained with networks trained on the hapax statistics we

computed for each paragraph. 126

5.7 The results we obtained with networks trained on the Waring-Herdan

statistics we computed for each paragraph. 127

5.8 The lowest test MSE's and corresponding training MSE's that were ob-

tained with each of the ten \expert" networks that we trained on subsets

of our data. 128

5.9 The results we obtained with committees comprising all ten networks we

describe having trained in the last subsection, with a gating network of a

certain size. 129

5.10 The results we obtained with the \best" committee of experts. 131

5.11 The results we obtained with the \best" committee of experts when we

failed to freeze the experts' internal weights. 132

5.12 The results we obtained with the �rst time-delay neural network architec-

ture that we tested. 136

5.13 Results computed on one particular run of the third baseline test. 140

5.14 Selected results computed by running our best time-delay network on our

test suite. 141

xi

Chapter 1

Purpose and Background

1.1 Purpose

Anyone who has spent much time reading manuals, reports, textbooks or other collaboratively-

written documents can attest to the fact that such documents are often marked by a lack

of stylistic cohesiveness that makes them not only less enjoyable to read but palpably

more di�cult to comprehend. Anyone whose task has been to put together such a docu-

ment will undoubtedly con�rm that attempting to impose a consistent style throughout

is one of the hardest aspects of the job.

The goal of this thesis is to take a small step towards constructing software to assist

editors in their e�orts to create stylistically uniform documents. This will be done by

investigating techniques for determining the boundaries between various authors' contri-

butions in collaboratively-written documents. Such work, it is hoped, could act as the

basis for software which would not only spot stylistic discrepancies but describe those

discrepancies and suggest ways of remedying them. This investigation will also explore

several interesting theoretical questions in statistical stylometry and in particular the

application of neural networks to this �eld.

1

Chapter 1. Purpose and Background 2

1.2 Terminology

1.2.1 Our \Style"

Before we can discuss our contentions more formally, we must develop some terminology.

One of the most common content words in our study being \style", we �rst discuss in

detail what we mean|and do not mean|by this highly polysemous term.

Even when con�ned to a strictly literary domain, style is not a simple concept to

get hold of. Those involved with modern text mark-up languages, particularly those in

the XML (Extensible Mark-up Language) family, use the term to describe aspects of a

document's presentation that are customizable by either writer or reader. A document

should come with, or refer to, one or more \style sheets", which describe how the contents

are to be displayed|and, at least in theory, interpreted|on some given platform, and

may be supplied by an author, the user, or even some third party. This meaning has no

relevance at all for this study; should we need to refer to the presentational aspects of

documents, we will use the less-fashionable term \format".

\Functional style", a term synonymous with genre, is used by some researchers in the

�eld of genre detection; for this usage and a general proof of the di�culty experienced

even by researchers in consistently using \style", see Karlgren [12]. Since we may assume

that any collaboratively-written document will not contain subdocuments that could be

placed in signi�cantly di�erent literary genres, this use of \style" is quite out of the

scope of our work. Another use of \style" which is closer to our meaning is in the

context of categorization: researchers often talk of \formal" versus \informal" style, or

\suasive" versus \non-suasive" style. We will follow the convention of referring to this

facet of documents as their \register". These classi�catory schemes are germane to our

purposes; a document written in part formally and in part colloquially must be regarded

as highly stylistically incoherent. But, this problem is of interest to many researchers;

in information retrieval, for instance, it would be highly desirable were a user able to

Chapter 1. Purpose and Background 3

specify the register of documents of interest. There seeming to be no reason why such

techniques, when developed, should not be directly applicable to solving this aspect of

our problem, we have chosen to concentrate on another, broader, meaning of style.

For us, an author's style is the product of all those elements of his/her idiolect|

\personal language behaviour" [16]|that can be perceived in his/her writing. It is that

elusive property of text which, in addition to (and doubtless in conjunction with) semantic

cues, enables people to decide whether two passages share a common author. Style can be

manifested at the level of the logical and syntactic structures prevalent in a text, or by the

choice of words or extent of the diction employed. We make no claim that techniques do|

or even can|exist to completely characterize a text in these deep and subjective terms.

Yet, we do maintain that such a characterization can be approximated by statistical

means, even for very short texts, and further that such approximated characterizations

can be used to infer whether two given texts are from a document produced by a single

author.

1.2.2 Specialized Terminology

We use this subsection to introduce some terminology in hopes of facilitating our descrip-

tions of our hypotheses and our attempt to validate them. For the purposes of this thesis,

a document will be viewed as consisting of a sequence of \parts". Parts correspond to

the largest textual units of any given document which are known to have some unique

author. The critical nature of the de�nition of part cannot be overestimated, since the

stylometric statistics that our procedure relies upon will be computed over parts. Since

paragraphs are the largest identi�able units of text in our corpus that we can be sure have

unique authors, we assume here that a part will simply correspond to a paragraph. In

other contexts, such as textbooks, where chapters are often written by single authors, a

larger unit than a paragraph should be selected to correspond to a part; this follows from

the fact that the more text contained in parts the more accurate the statistics computed

Chapter 1. Purpose and Background 4

from those parts. We prefer to use more general language in describing our hypotheses

than simply to use paragraphs as the canonical unit of text because the type of textual

unit to be considered as indivisible will depend on the corpus.

Particularly in chapter 2, we will have occasion to discuss methods employed to indi-

cate that some particular portion of a given text has been taken from a previously-written

text or has its origins with authors other than those primarily responsible for the text as

a whole. We will term such subtexts as \quotations". We will refer to punctuation marks

traditionally used to demarcate quotations|such as double quotes, single quotes, etc.|

as \quotation marks". We will refer to less traditional ways of identifying quotations,

such as greater-than signs prepended to each quoted line, as \quote marks"; such are

commonly to be found in e-mail messages or USENET postings. We will also use \quote

mark" to subsume the entire class of methods and symbols used to identify quotations.

1.3 Hypothesis and Outline

The hypothesis of this thesis is that stylometric statistics easily derivable from parts of

documents can be used to determine boundaries between the contributions of di�erent|

unknown|authors if the contributions have not been edited with a view towards ho-

mogenizing their style, even if they are very small and topically similar. To state the

proposition more speci�cally: in this experiment we attempt to show that it is possible to

develop a neural network which takes as input a sequence of sets of stylometric statistics,

each set computed from a paragraph of some document, and outputs a sequence of pre-

dictions regarding the location of authorship boundaries. If we are able to exhibit such

a network, and show that its performance is signi�cantly better than that of a baseline,

we will have validated our hypothesis.

This experiment will involve several phases. First, we must select an appropriate

corpus. Then, it will be necessary to divide each document in our corpus into parts,

Chapter 1. Purpose and Background 5

recording where the authorship contribution boundaries are located and ensuring that

no obvious structural or domain-speci�c features exist which could bias the performance

of our networks. We will compute stylometric statistics on each of the parts and prepare

those statistics to be used to train and test various neural networks. If the results from

the neural nets are not clear, it may prove desirable to develop a baseline statistical test

for evaluating how well the neural net approach works.

1.4 Background

1.4.1 Stylometric Statistics and Style

There is considerable evidence in the literature to suggest that our hypothesis might

prove to be valid, and before we proceed to describe our experiment, we will review

some of the relevant studies. Work in \authorship attribution"|the �eld dedicated to

developing reliable techniques for resolving questions of disputed authorship|is partic-

ularly relevant. This relevance stems from the fact that, to ascribe a disputed work to

one of a set of putative authors, one must have some method for telling apart works

known to have been produced by each author. Since an author's idiolect is re
ected in

his/her style, style can be expected to be the most reliable indicator upon which to base

such judgements. Therefore, much work in this area has focused on quantifying authors'

styles; most of our techniques originate from this endeavour.

Although Tweedie et al [33] inform us that Augustus de Morgan postulated as early

as 1851 that di�erences in the lengths of words employed by authors might be used

to settle questions of authorship, it was not until the 1880's that his idea was tested.

Probably the best-known work in authorship attribution was carried out by Mosteller

and Wallace [23], who worked on the Federalist Papers. Principally written by James

Madison and Alexander Hamilton, the authorship of the vast majority of these essays,

originally written to convince New Yorkers to ratify the U.S. Constitution, is uncontested.

Chapter 1. Purpose and Background 6

However, on the night before his death, Hamilton claimed that twelve of the papers then

believed to have been written by Madison were actually his own work. All of the essays

vary between 900 and 3500 words, according to Tweedie et al [33], and thus each one

represents a reasonably large sample of writing. Since all are of the same literary genre

and concern the same topic, and since there are many undisputed examples of each

potential author included in the set, they provide ideal conditions for testing statistical

techniques of authorship attribution against standard literary methods. The results

obtained by Mosteller and Wallace, and subsequently by many other researchers such

as Holmes et al [8], generally concur with those arrived at through commonly-accepted

literary methods, and thus lend strong support to the idea that stylometric statistics do

in fact measure some real aspect of an author's writing.

The Federalist Papers are far from being the only instance in which disputed au-

thorship has been studied using statistical methods. In his excellent paper [7], David

Holmes mentions several examples. Chief among these have been attempts to determine

whether certain disputed plays were produced by Shakespeare, Marlowe or Fletcher. The

Bible has also attracted much interest in this �eld, since authorship of many portions

is unclear. Other workers, such as Lancashire [16], combine stylometric statistics and

traditional literary techniques while studying the works of a single author in detail.

We have noted above that the concept of literary genre, while irrelevant for our

present purposes, is not distant from our notion of style. Several recent papers have

examined genre from an information retrieval perspective, taking the view that it would

be highly desirable were users able to make genre-speci�c queries, particularly on such

a heterogeneous database as the Internet. Both Karlgren and Cutting [13] and Kessler

et al [14] have successfully used stylometric statistics to detect meaningful genres in

the Ku�cera and Francis Corpus (otherwise known as the Brown Corpus) [15], a set of

text samples by many authors, each of approximately two thousand words, containing

slightly more than one million words in total. Although these results might be slightly

Chapter 1. Purpose and Background 7

weakened by the fact that the samples comprising the Ku�cera and Francis Corpus were

selected precisely to exemplify a very wide range of genres, they demonstrate clearly that

stylometric statistics can be used to discriminate genres. Both groups of researchers go

so far as to equate stylometric statistics with style, implicitly referring to their work as an

attempt to use stylistic cues to detect genre. Using a quite di�erent set of well-accepted

stylometric statistics from either Karlgren and Cutting or Kessler et al, Mealand [21]

shows a high degree of clustering among generically-similar sections of the gospel of

Mark. While the problem of discriminating between genres is not one we address, these

results are clear evidence that stylometric statistics are useful not only for discriminating

among some small set of authors, but also for capturing deep facets of text.

All this research stands in support of the idea that stylometric statistics are, in some

measure at least, capable of capturing some aspect of style. But, while they all rely on

large samples of text, it is small samples that attract our interest in this study. In the

next subsection we describe research using smaller sample sizes.

1.4.2 Work on Small Corpora

Like ourselves, other researchers have wondered whether such good results as are noted

in the preceding subsection would be obtainable from smaller samples. One of the most

interesting studies along this line, performed by Glover and Hirst [5], had subjects write

summaries of two halves of a TV program, creating a set of arti�cial collaboratively-

written documents by randomly matching the beginning and ending summaries of dif-

ferent authors. This study showed that stylometric statistics could
ag collaboratively-

written and non-collaboratively-written documents with reasonable probability, despite

the fact that the texts involved were almost universally less than �ve hundred words in

length.

Recent work by Patrick Juola [11] demonstrates a novel technique that appears to

hold particular promise. With this technique, described in detail in section 3.2 below,

Chapter 1. Purpose and Background 8

Juola uses samples as small as �ve hundred characters to correctly classify all the disputed

Federalist Papers.

Stamatatos et al [27] describe a complex but fascinating method for ascribing the

authorship of small samples of modern Greek text. In this method, particular sentence-

and chunk-boundary detectors are combined with a particular multi-pass parser [28] and

are used to generate a rich set of statistics on the syntax of a given document; for example,

the proportion of words not parsed after each pass of the parser is computed. Armed with

these statistics computed on a small sample of newspaper articles written by a known

set of authors, principal component analysis is used to group articles by author. While

far from perfect, the results thus obtained are very encouraging in that for most authors,

the majority of their articles that were used in the sample are present in a single cluster.

Though no controls for genre were applied, and the focus of this work is more classically

authorship-attributive than ours, it is nonetheless extremely encouraging.

1.4.3 Stylometric Statistics and Neural Networks

Most of these studies have used fairly conventional statistical techniques; however, the

use of neural nets in conjunction with stylometric statistics appears to be becoming

increasingly popular. Tweedie et al [32] present an extensive review of the uses of neural

nets in stylometry. Their own work [33] in this connection involves the Federalist Papers.

By training a single network with a small hidden layer on a subset of the function words

originally used in the study by Mosteller and Wallace, Tweedie et al not only are able to

correctly classify the disputed papers, but make interesting conjectures regarding three

papers thought to have been jointly authored by both Hamilton and Madison.

The pioneering work in the application of neural nets to stylometry, according to

Tweedie et al [32], was undertaken by Matthews and Merriam in papers such as [20]. In

this paper, a very small set of function word frequencies is used as input to a multilayer

perceptron (a neural net having a hidden layer) to examine four plays that have been

Chapter 1. Purpose and Background 9

attributed both to Shakespeare and John Fletcher. A large corpus of undisputed plays by

both authors exists to train this network, and the results of the study on sections of the

disputed works prove to be highly interesting, correlating reasonably well with accepted

scholarship.

Neural nets have also found recent popularity in the genre detection community.

Building on the results published by Karlgren and Cutting, Kessler et al [14] have used

neural nets to attempt to place samples from the Brown corpus into genres. Unlike

Karlgren and Cutting, Kessler et al have preferred to de�ne their own genres, and have

implemented a much more well-motivated approach to the problem of de�ning precisely

what a genre is. Thus, the improvement in results that they observe comes as little sur-

prise. They also compare both a linear perceptron and a multilayer perceptron approach

with the output produced by logistic regression analysis|a technique considerably more

powerful than the simple discriminant analysis performed by Karlgren and Cutting. Both

neural nets perform better in most cases than logistic regression analysis.

So clearly our hypothesis rests on a substantial body of work, not only with respect to

the usefulness of neural nets in the �eld, but to the notion that, even for small samples of

writing, aspects of auctorial style can in fact be captured statistically. It is equally clear

that we propose to break new ground in a number of directions. First, we are training

our neural nets not on large corpora produced by a small number of known authors as

was done by Matthews and Merriam or Tweedie et al, but on a large corpus written

by a large number of unknown authors. Second, we propose to compute stylometric

statistics on a large number of very small samples of work. This is important since

most stylometric statistics are thought to be unreliable on small samples; [7]. Third, our

neural net architectures will of necessity have to be di�erent than those used by previous

workers in this area, since we require our nets to tell us whether two samples are di�erent,

rather than to �t a single sample into one of a set of classes. Finally, we propose to use

some stylometric statistics|such as distribution of punctuation|that have been widely

Chapter 1. Purpose and Background 10

ignored in the literature because researchers have felt they are prone to error [7]; we

discuss this point further in section 3.6. All this shows that while our basic tenets are

well-founded, there are many ways in which this research could prove ground-breaking.

Chapter 2

Selection and Initial Processing of

the Corpus

2.1 Selecting the Corpus

For the purposes of this experiment, we need a corpus of documents satisfying several

criteria. First, the corpus must be large|containing at least many hundreds of examples

of small samples of text produced by many di�erent authors. While one of the advan-

tages of neural networks is their resistance to over�tting to small amounts of data, it is

certainly true that the more data that are available the better the trained networks will

be. Second, since some of our stylometric statistics will be computed from the output of

part of speech taggers, which perform poorly on poorly-written text (i.e., text with many

typing or grammatical errors), we must insist that our corpus contain writing of at least

reasonable quality. Although our techniques are directed towards characterizing the style

of authors, we must concede that we have little evidence to support the contention that

these techniques are entirely independent of topic. That is, a priori we cannot state that

our techniques are no less likely to successfully distinguish writings on closely related

topics than pieces discussing widely divergent topics. Therefore, to test our technique

11

Chapter 2. Selection and Initial Processing of the Corpus 12

thoroughly we would like our corpus to be such that authors are writing about similar

issues from a similar perspective. Should we be successful, it would then be reasonable

to assume that our results would generalize to other domains.

Since it satis�es most of these requirements, we have chosen to use the Risks corpus1

as our source of documents. This corpus represents over six megabytes of unprocessed

text|very nearly one million words|and is mostly composed of small chunks. Informal

analysis indicates that several dozen authors at the very least have made contributions

to this corpus. Since this is a moderated forum, only posts with reasonably good writing

quality are included. We have some measure of topic control because of the fact that

most postings tend to relate to issues of privacy, security, or software quality.

2.2 Initial Processing: Overview

One of the drawbacks of using a newsgroup archive such as the Risks corpus is that

considerable e�ort needs to be expended to reduce the archive to a standard form from

which meaningful stylometric statistics can be computed. Hence, the �rst step in the

experiment was to write programs to perform this reduction. We discuss this e�ort in

detail in the remainder of this chapter.

Since the purpose of this experiment is to explore whether sets of stylometric statis-

tics can be used to determine the boundaries of authors' contributions, any structural

characteristics of the corpus that correlate with those boundaries and any features that,

in some sense, taint the style of a particular contribution must be recognized and if pos-

sible eliminated. In this corpus, article headers, authors' \signatures", and text quoted

within articles all fall into these categories. Given that in this experiment parts will cor-

respond to paragraphs, to allow stylometric statistics for parts to be easily computed it is

1Forum on Risks to the Public in Computers and Related Systems (comp.risks), ACM Committee
on Computers and Public Policy, Peter G. Neumann, moderator. We use every digest of this newsgroup
from Apr. 5, 1996 through Apr. 1, 1999.

Chapter 2. Selection and Initial Processing of the Corpus 13

also imperative that paragraphs be formatted consistently throughout the corpus. As we

perform these modi�cations, we must maintain a record of exactly where the boundaries

between authors' contributions occur so that we have a basis for training and testing the

neural nets that we will describe in chapter 5 below. In the next few sections, we provide

a rationale and detailed descriptions of the steps taken to achieve each of these goals,

and give as complete a picture as possible of the successes and limitations of the actions

we have taken.

Before continuing with these descriptions, it will be helpful to de�ne precisely several

terms and to describe the architecture common to all the programs used to carry out

the procedure. Our corpus is divided into over two hundred �les; virtually every �le

conforms to a very precise format. Each �le begins with a header, which we will refer to

as the \�le header", which contains such introductory information as the issue number,

a table of contents of the articles contained in the �le, and often the �le's transmission

record (most of the �les having been taken from a private e-mail archive, and so having

passed from the list over the Internet to the archive.) The �le header is followed by

one or more \articles"|or messages composed entirely by one author, possibly with

annotations (from the group moderator, for example) and embedded quotations by other

authors. Each article has its own \article header", described in the next section. The

rest of the article is composed of the \article body". With the exception of one �le,

every �le ends with a characteristic \�le trailer", that has the form of an article but

contains exactly the same text, describing the comp.risks newsgroup/archive/digest, in

every �le. We de�ne a \contribution" as all the text within a single article body that

was written by a single author. Fortunately, collaborative writing appears to be highly

unusual in this corpus. Hence, the assumption that there is an onto mapping between

the set of contributions and some set of authors is not unrealistic. It is of course quite

possible for a single article body to contain multiple contributions|through the author

of the article having quoted other authors, for example. The last element of an article

Chapter 2. Selection and Initial Processing of the Corpus 14

may be a \signature"|text giving information about the author, such as his/her name,

a�liation, e-mail address, location, etc. We discuss signatures, and our interest in them,

extensively below in section 2.8.

All the programs|or more accurately scripts|used in this phase were written in

Perl. This language was chosen principally for its excellent pattern-matching and string-

handling facilities, as well as the ease with which one can use it to construct \�lters". By

a �lter, we mean a program that accepts a �le's contents as its standard input, performs

changes to the contents, and outputs the altered text on its standard output. With the

exception of the index-building script described in section 2.9 below, all the scripts used

in this phase were �lters.

The approach taken in these scripts is to read the input line by line, process it in some

way|possibly using temporary arrays|then store it in an \output array". The contents

of this output array are then sent to standard output after all available input has been

read. While this approach requires each processed �le to reside entirely in memory at

some point, and also requires at least twice the number of memory copies that would

have been needed had the processed output simply been sent to standard output as

soon as processing was complete, the current approach permits output of the �lters to

be piped one to another; simply sending output to standard output before completing

reading on standard input either results in processes blocking each other|deadlock|or

in bu�er over
ow. Since the corpus only needed to be processed once, and all the �les

are of manageable size (less than 60 kilobytes) there is no particular need to adopt the

most space- or time-e�cient approach. The main justi�cation for the approach we have

chosen is its
exibility and the ease with which the various scripts could be tested. Since

the scripts can each be called directly from the command-line, the order of calling can

be tailored to the kind of test being performed. Also, �les can be partially processed

using some scripts, modi�ed to exhibit some trait of interest, and immediately used as

input to the script currently under evaluation. Had the processing been done as a series

Chapter 2. Selection and Initial Processing of the Corpus 15

of subroutine calls (arguably the most e�cient method possible), this would have been

dramatically more di�cult. Hence, though this approach is not optimally e�cient, since

it made debugging considerably easier, accuracy of the processing can be expected to

be higher than it would have been had any of the other approaches we considered been

selected. The coordination of the �lters is not di�cult, and will be described in section 2.9

below.

2.3 Locating and Removing Article Headers

One of the more pleasant traits of this corpus is that article headers have a very consistent

format. Article headers have up to �ve lines. These are: �rst, 30 dashes (60 for the �rst

article in a �le, the one immediately following the �le header). This line is followed by

zero or one blank lines, then lines for the date the message was sent, from whom, and

�nally a line indicating the subject of the article. We have developed a script, described

in detail below, which uses this format to replace article headers by unambiguous, easily-

identi�able tokens.

For a segment of text to be considered as a candidate for an article header, we demand

that it begin with a line consisting of exactly the correct number of dashes, as described

above, and containing no other characters. We allow the subsequent optional blank

line to contain any whitespace characters (here meaning either tab characters or space

characters.) Further, the date, from, and subject lines are permitted to begin with any

sequence of characters at all, whether whitespace or not; this is justi�ed by the fact that,

for example, a tilde (~) precedes these lines in certain headers. The \date" line must

have the word \date:", complete with colon, somewhere on it; the \d" may or may not be

lowercase. It must be followed by a nonempty sequence of whitespace characters, then by

at least three sequences of alphanumeric characters followed by whitespace characters or

non-alphanumeric characters. Here, non-alphanumeric characters include such characters

Chapter 2. Selection and Initial Processing of the Corpus 16

as periods, colons or slashes that are often used to separate the �elds of a date. This

ensures that a date will only match if the word \date" is followed by some text which

could possibly be a date in some format (either words or numbers demarcated with some

non-alphanumeric character). For the \from" �elds, the word \from" may be in either

case. The word \from" must be followed by a colon, a nonempty sequence of whitespace

characters (and optional non-word characters), then two or more alphanumeric strings

of any positive length, separated by non-alphanumeric characters. This allows matching

of almost any name or e-mail address; even though very weak, this heuristic turned out

to be overly strong in several cases where an article had originated with the moderator

of the RISKS Forum, and so only the word \RISKS" followed the \from". These cases

were corrected manually wherever found|garbage data were added to make the �eld

conform to expectations. The \subject" �eld must contain the word \subject:", with

colon, with the \s" of either case. No whitespace or non-alphanumeric characters need

appear between the colon and the �rst alphanumeric character in the subject line|but

some of either type may occur. One string of positive length of alphanumeric characters

must occur after the colon|the article must have a subject. Since all RISKS �les have

tables of contents which use the information in the subject �eld, the assumption that at

least one identi�able word will be present is entirely valid.

Once an article header has been identi�ed, the script substitutes for it in the output

an unambiguous, single-line token. Fifty consecutive @ signs was chosen, since a search of

the entire corpus demonstrated that nothing like this token appears in the corpus. This

substitution dramatically simpli�es the deletion of article boundaries and the recording

of their location, which is performed by a subsequent script, described in section 2.9. If

the script detects a region of text that matches some, but not all, of the features of an

article header, it leaves that region unchanged in the output text.

Finally, this script also deletes the �le header. This is done because the structure of

the �le header is dramatically di�erent from that of any article|it is a table of contents|

Chapter 2. Selection and Initial Processing of the Corpus 17

and this would clearly skew the results of an algorithm trying to use stylistic information

to identify its boundaries. Further, since every �le begins with a �le header, it would be

trivial for such an algorithm to identify the �le header based on structural rather than

stylistic cues. The fact that, by de�nition, this table of contents will be composed of

phrases chosen by di�erent authors would also introduce noise into the computation of

an algorithm attempting to distinguish di�erent authors on the basis of the style of the

phrases they choose; i.e. �le headers are not themselves contributions, as we have de�ned

the term, and do not contain contributions of su�cient size to merit retaining them in

the processed corpus. Hence, the presence of �le headers would introduce unnecessary

noise into the identi�cation of subsequent contribution boundaries. So it was felt that

they should be purged for all �les.

Aside from the small number of errors caused by not correctly identifying \from" �elds

in article headers that were discussed above, and one or two cases in which fewer than

30 dashes were present, this script appears to be highly accurate. While no formal tests

were carried out, since this script was used in conjunction with all other scripts that were

formally tested, considerable indirect observation of its performance was made. We did

not observe a single case in which text was incorrectly classi�ed as an article or �le header.

Some cases were observed where the script generated a run-time warning regarding use

of uninitialized values, but in these cases no e�ect on the output was observed. No case

was observed where the script failed to identify and eliminate a �le header. It seems fair

to state that the script deleted �le headers and replaced article headers very reliably, and

thus that it does not introduce signi�cant noise into the data.

2.4 Identi�cation of Mis-Quoted \From"s

An unfortunate consequence of the fact that this corpus is composed of e-mail messages

is that some e-mail programs are in the habit of placing quote marks in front of the

Chapter 2. Selection and Initial Processing of the Corpus 18

word \from" when it appears as the �rst word in a line. Clearly, this is done because a

\from" in this position could indicate that the following text was sent originally by some

party other than the party who sent the e-mail being read; the e-mail program is merely

reminding the reader of this possibility. By quote marks, here we refer to >, since this

symbol is most often used to indicate quoted text in the e-mail domain.

Since it is our goal to �nd boundaries between authors' contributions, and hence we

need to detect quotations|text supplied by other authors|this treatment of \from"s

poses problems for us. Inasmuch as such lines are often, indeed usually, not part of quo-

tations, and are actually commonly integral parts of text, before identifying quotations

for further processing we must �rst ensure that lines of this type will only be treated as

quotations if they are quotations. So, we have devised a script to remove quote marks

from in front of certain \from"s. Such a \from" will be recognized if it is preceded by a

> (and possibly whitespace, possibly between the \from" and the >.) To avoid deleting

legitimately-placed quote marks, there must be no >'s at the beginning of the closest

text-bearing line to the \from" in question. That is, there must be no > (with optional

whitespace) at the beginning of the �rst line containing non-whitespace characters, either

before or after the line containing the \from" in question. The case of the word \from" is

not signi�cant for this script. When the script recognizes a line containing a mis-quoted

\from", it simply removes the quote marks at the beginning of the line.

As with the header identi�cation script, no formal testing was done on this script.

However, when the script was evaluated on an arti�cial test suite, no bugs were observed.

Further, no errors have been observed in informal examination of real data treated by

the script when it was used in conjunction with other scripts that were formally tested.

It appears that this script does not introduce any noise into the data, and indeed that it

helps to decrease the overall level of noise present in the data.

Chapter 2. Selection and Initial Processing of the Corpus 19

2.5 Locating Quotations

Of the many aspects of the e-mail domain which distinguish it from other literary forms,

one of the most striking is the profusion and structure of quotations. For research aiming

to train an algorithm to contrast authors using statistical measures of their style, little

could introduce more confusion into the data than to attribute the work of one author

wrongly to another. Viewed from this perspective it is plain that, without substantial

revision, corpora from the e-mail domain would not be at all suitable for training or test-

ing such an algorithm. Fortunately, to make it easy for humans to tell when information

is being quoted, several formatting conventions have been adopted. By using these same

formatting indicators, it has proven possible to develop an algorithm to tell quotations

apart from original text with reasonably high probability. We use this algorithm to in-

sert unambiguous markers around quoted material, as well as to remove the formatting

indicators used to identify the quotations. In this section, we discuss this algorithm and

describe the procedure used to verify its e�cacy.

2.5.1 The Algorithm

The algorithm employed to detect quotations is in fact a set of rather complex heuristics,

motivated both by a knowledge of this corpus in particular and methods of quoting

generally employed on the Internet. While the most common method of quoting found

in other domains, whereby a quotation mark is applied to the beginning and the end of

a quoted passage, is used in this corpus as well, the most popular methods of indicating

quotations in the e-mail domain can be divided into two groups. In the �rst group,

some speci�c character, possibly with some whitespace added after it, is applied to the

beginning of each line being quoted. Alternatively, some �xed amount of whitespace

may be applied to each line of the text being quoted. Each of these techniques poses

interesting problems, and so they will be discussed in turn.

Chapter 2. Selection and Initial Processing of the Corpus 20

We have found that three di�erent characters|the greater-than symbol (>), colon,

and the vertical bar (|)|are placed at the beginning of lines to indicate that those lines

have been quoted. E-mailers that conform to this convention of indicating quotations

often apply these symbols automatically to messages that are being forwarded or replied

to. Furthermore, e-mail discussions often contain \threads"|series of messages in which

two or more parties respond to each other's e-mails, often re-quoting substantial parts of

previously-seen messages in order to preserve context. All this means that these symbols

can appear, at least in theory, in arbitrarily complex combinations. In practice, we have

seen instances in this corpus where three greater-than signs were used to indicate a quo-

tation, or where two greater-than signs followed by a vertical bar were used. Hence, when

we look for a string indicating that a quotation of this form has begun, we must match on

a (possibly empty) sequence of whitespace characters, followed by a non-empty sequence

of any one of our three characters followed by a possibly empty series of whitespace char-

acters. This quotation-indicator will be terminated by a newline, or the �rst character

outside the set of our three quote marks and the whitespace characters. Once such a

sequence has been identi�ed, the corresponding line of text is considered to be part of a

quotation; we assume that our procedure for handling mis-quoted \from"s has already

been run. When we �rst �nd such a sequence, we infer that a quotation has begun and

store a begin-quotation token (described below) on the line preceding in our output array.

We say that the quotation continues so long as the same pattern as was found at the

beginning of the �rst line in the quotation matches the beginnings of subsequent lines

that contain non-whitespace characters (we allow quotations to persist over blank lines).

The only exception to this rule is for seemingly \quoted" lines immediately preceded and

followed by non-blank, non-quoted lines. Such lines are not treated as quotations, since

the quote marks may be ful�lling some content-related function. We have not observed a

case in which a line of text was quoted in this way; authors appear to consistently isolate

single lines of quoted material. Once we have deemed a quotation to have �nished, we

Chapter 2. Selection and Initial Processing of the Corpus 21

insert an end-quotation token on the next line of output, and continue processing our in-

put. After the extent of a quotation has been determined, the prepended quote-indicator

characters are stripped o� every line, so that the text is formatted like a regular block of

text. Also, to allow quoted paragraphs using the indented paragraph style (described in

section 2.7) to be treated correctly, we have written the script in such a way as to include

whitespace characters as part of the string to be removed from each line only when those

whitespace characters are present on all non-blank lines of the quotation. This completes

our treatment of this type of quotation.

Quotations that are indicated by prepending a certain amount of whitespace to each

line are much harder to recognize. Some authors have a habit of beginning each line of

their work exactly one space away from the left margin. While this is no doubt pleasant

aesthetically, it means that we cannot treat text indented with one space character as

quoted material. Fortunately, our testing (discussed in subsection 2.5.2 below) demon-

strates this does not lead to a signi�cant number of false positives. Other authors do not

use a block style of paragraphing, preferring to indent the �rst line of each paragraph.

This means that we cannot treat a single indented line of text as a quotation if it is fol-

lowed by non-indented lines. If an indented line is preceded by non-indented text, then

it may represent the run-over of an item in a list of points to a new line; thus we cannot

treat such lines as quotations. Often, Internet URL's or FTP site names are placed on

isolated lines and indented, in order that they may be located and cut and pasted with

greater ease. Thus, we cannot treat as a quotation an isolated line of indented text begin-

ning with a token such as \http", \ftp", \www", \url", or one of these tokens preceded

by a character such as <, which is often used to set such information o�. Originally, we

had decided not to treat indented material appearing at the beginning of an article as a

quotation, since some articles begin with titles, which are almost always indented. In our

�rst round of testing, however, we discovered that this exception resulted in a very signif-

icant number of false negatives. It can also be argued that the structural cues provided

Chapter 2. Selection and Initial Processing of the Corpus 22

by titles might make it arti�cially easy for an algorithm to pick out the beginning of a

contribution. Believing it better to err on the side of caution, we have eliminated this

exception. Therefore, any unit of text that begins with two or more space characters, or

with a tab character, that is not covered by any of the above exemptions is treated as a

quotation.

Indented quotations, once recognized, are treated in much the same way as quotations

indicated with special line-initial characters. E�ectively, we store a begin-quotation token

on the line before the quotation, and an end-quotation token on the line following it, and

attempt to strip all the indenting whitespace from the beginning of each line of the

quotation. As with quotations indicated by quote marks, blank lines do not terminate

quotations and are preserved within them.

Quotation mark-delimited quotations are not commonly used in the e-mail domain,

and so we had initially planned to ignore them. However, after the results of our �rst

round of testing indicated that an unacceptable number of large quotations were being

missed because of this design decision, we decided to take them into account in our

script's �nal version.

Quotations of this variety pose a number of problems conceptually as well as algo-

rithmically. Chief among these is how to distinguish material inside quotation marks

that was composed by another author, and hence is a \quotation" for our purposes,

from material that we would not want to treat as a quotation. For example, when in-

troducing terms, authors often use quotation marks; clearly these should not be treated

as quotations|indeed, to do so would potentially deprive us of valuable insights into

the style and word choice of an author. Other kinds of quotations, such as reports of

conversations (which occur often in this corpus), form an integral part of the structure

of the text; they might contribute phrases or clauses of sentences, for example, and so to

excise these sorts of quotations would leave disjointed text that might not be amenable to

further analysis. Thus, we have decided to identify only large segments of text appearing

Chapter 2. Selection and Initial Processing of the Corpus 23

between quotation marks as quotations|text at the sentence or even paragraph level.

Speci�cally, if we �nd a line which begins with either a " or ``, the characters most

often used to commence quotations, and we �nd a quotation-terminator (", '' or ``),

as the last non-whitespace character of the same or subsequent line of text, we treat all

intervening text as a quotation. We also demand that no quotation marks appear in the

text anywhere between the line-initial and line-�nal marks that we use as demarcators.

We do not allow this type of quotation to persist over blank lines. While this is rather

arbitrary and weak|we do not insist that the quotation marks match, for example|our

testing leads us to believe that it at least �nds most of the large blocks of text quoted in

this way, which could introduce considerable noise into our data if left unidenti�ed.

Our treatment of passages identi�ed in this way is analogous to that given to passages

using other quoting conventions. We insert begin-quotation and end-quotation tokens on

the lines preceding and following the passage in question, and strip o� the quotation

marks we have identi�ed.

We have selected a line of 50 consecutive \q"s as our begin-quotation token, and

50 consecutive \u"s as our end-quotation token. We insert blank lines after both these

tokens in the output so that paragraphs are still identi�able. It is the responsibility of

another �lter, discussed in section 2.6, to further process the quotations once they are

identi�ed and made to resemble original text in their formatting.

2.5.2 Testing the Quotation Identi�cation Algorithm

To test the quotation identi�cation portion of this phase of the experiment, we �rst had

to select a random subset of the �les in our corpus. This we did by developing a simple

script which used Perl's pseudorandom generation facilities to select and output a subset

of its input lines, whose size is governed by a command-line argument. Then we sent

this script a listing of our archive's �lenames for its input, and used the subset of names

that it returned as our test set. This is the same method we used to test our \signature"

Chapter 2. Selection and Initial Processing of the Corpus 24

removal script, discussed in section 2.8.

As noted above, we ran through two iterations of testing. For both tests, we used

ten �les|approximately 5% of our entire corpus. The results of the �rst test are given

in table 2.1.

We should �rst observe that the determination of what quotations actually were

present in the test data was manual, and hence subjective and prone to inconsistency.

We have tried to be very liberal in our interpretation of what constitutes a quotation;

when an article body, for example, is composed almost exclusively of an extract from

some publication, we have construed the extract to be a quotation even though the

originator contributed virtually none of his or her own text. Since attributing quoted

material to the author of an original work could introduce very considerable noise into

our data, we felt that identifying only 76:8% of the quotations present was unacceptably

poor performance. An examination of the quotations that were not recognized led us to

treat indented material at the start of articles as quotations, as mentioned above. Also,

we added the capability of handling some instances of the use of traditional quoting

methods to our script. After implementing these features, we tested our algorithm once

again on another ten �les, and came up with the results given in table 2.2.

As in the previous test, we tried to err on the side of caution when assessing what

is a quotation. Despite this we achieved over 95% accuracy in identifying quotations.

Further, the standard deviation of our missed quotations was cut in half, providing some

indication that there were no large clusters of missed quotations. We are con�dent that it

would be extremely di�cult to reduce the percent of missed quotations further, since most

of the missed quotations were de�ned by context|e.g., an article body would contain an

introduction, then a forwarded message, without using format to indicate the presence of

a quotation. Another example of a type of quotation that would be very di�cult to spot

is a quotation demarcated by square brackets. We suspect that, over the entire e-mail

domain, these would be quite infrequent; however, since this is the style the moderator

Chapter 2. Selection and Initial Processing of the Corpus 25

File Num. of False Num. of Unidenti�ed Num. of Correctly Total Num. of

Name Positives Quotations Identi�ed Quotations Quotations

18.08 3 0 6 6

18.56 1 1 2 3

18.87 1 1 9 10

18.96 0 3 3 6

19.10 0 5 6 11

19.45 3 1 4 5

19.69 1 1 7 8

19.70 0 2 6 8

19.95 0 1 4 5

20.14 2 1 6 7

Total 11 16 53 69

Mean 1.10 1.60 5.30 6.90

Percent 17.18 23.20 76.80 100

Std. Deviation 1.20 1.43 2.06 2.42

Table 2.1: Results obtained by running the �rst version of the quotation identi�cation

script on pseudorandomly-chosen �les from our corpus.

The percent entry in the false positives column refers to the percent of marked entities

that were not quotations.

Chapter 2. Selection and Initial Processing of the Corpus 26

File Num. of False Num. of Unidenti�ed Num. of Correctly Total Num. of

Name Positives Quotations Identi�ed Quotations Quotations

18.06 5 2 10 12

18.22 2 0 14 14

18.33 1 0 4 4

18.37 3 0 8 8

18.71 2 0 5 5

19.30 2 1 8 9

19.43 4 1 9 10

19.61 3 0 5 5

19.76 0 0 10 10

20.10 0 0 8 8

Total 22 4 81 85

Mean 2.20 0.40 8.10 8.50

Percent 21.35 4.70 95.30 100

Std. Deviation 1.62 0.70 2.96 3.21

Table 2.2: Results obtained by running the �nal version of the quotation identi�cation

script on pseudorandomly-chosen �les from our corpus.

As in table 2.1, the percent entry in the false positives column refers to the percent of

marked entities that were not quotations.

Chapter 2. Selection and Initial Processing of the Corpus 27

of the comp.risks newsgroup uses to interject his own comments, its frequency in this

corpus is not by any means insigni�cant. Normally, the moderator also uses indentation,

so that our tests for indentation succeed at identifying these quotations. However, in

the cases where this is not done we cannot detect this type of quotation. Since square-

bracketed material does not often denote the presence of quotations, and indeed could

form a signi�cant part of an author's style, we believe that to include this cue would

not only dramatically increase the proportion of false positives, but would do so in a

systematic way that would bias the resulting data. Finally, it is interesting to observe

that, though the number of false positives doubled between tests, the proportion of false

positives to correct identi�cations only increased marginally. We feel very con�dent that

to further increase our recall, however, we would begin to drastically increase the rate

of mis-identi�cation; thus, we have been content with the accuracy we achieved on this

test.

2.5.3 Nested Quotations

Before moving on to describe what we have done with the quotations we have identi�ed,

we must discuss the matter of \nested quotations." By a nested quotation, we mean a

quotation that appears inside another quotation. While this is less common in our cor-

pus than might be expected (possibly because our corpus is tightly moderated and hence

substantial re-quoting is kept to a minimum), nested quotations nonetheless occur with

su�cient frequency to warrant consideration. The algorithm we have presented above is

simply designed to detect a single layer of quotations; it reads through the document only

once, and considers each line in sequence; hence, it is not possible for the algorithm to

distinguish a nested quotation from a non-nested quotation, since, at least in the case of

quotations indicated by formatting, both can have the same formatting indicators. For-

tunately, if an outer quotation precedes an inner quotation and the algorithm successfully

detects the outer quotation, it simply treats the nested quotation as regular text|which

Chapter 2. Selection and Initial Processing of the Corpus 28

means that the nested quotation maintains its integrity. That is, if the nested quotation

is indicated by having each line preceded by one more > symbol than occurs for each line

of the outer quotation, after processing, every line of the inner quotation is still preceded

by one > sign. Thus, if the algorithm is run over the text produced by its previous run,

the inner quotation can be successfully identi�ed and marked. If no part of the outer

quotation precedes any part of the inner quotation, the algorithm simply treats them

as two separate quotations, marking them separately in the text. For reasons that will

become clear when we discuss what we have done with the quotations we have found

(section 2.6), this e�ect suits our purposes well. In practice, we have found this tech-

nique extremely e�ective. Moreover, we have found no case in which it is necessary to

apply the algorithm more than twice to our corpus. Thus, we are able to accurately

detect nested quotations by simply circulating our corpus through the algorithm twice.

2.6 Moving the Quotations

Once we have reformatted quotations to resemble original text, and demarcated them

in such a way that they can be located and their extent determined unambiguously,

the question immediately arises as to what should be done with them. At least three

possibilities suggest themselves: we could excise all quotations from the corpus; we could

leave them in place, counting their boundaries as contribution boundaries; or we could

treat them as contributions in their own right, but move them to new locations so that

the original text of which they were a part is made to be contiguous.

None of these proposals is free from disadvantages. To simply eliminate quotations

entirely would substantially diminish the size of our corpus. There is also an argument

which hypothesizes that, should our methods succeed, it will be due to the fact that

articles have structure, and that our algorithm has learned not to distinguish style but

rather to distinguish article conclusions from article introductions. Since one would not

Chapter 2. Selection and Initial Processing of the Corpus 29

expect quoted material to obey the same structural constraints as entire articles, testing

the algorithm on quotations might prove to be highly instructive. But simply leaving

the quotations in place and treating them as contributions will dramatically increase the

frequency of authorship changes in our corpus. We have already admitted that our task

of training an algorithm using the data we plan to generate will be very challenging. It

therefore seems reasonable to try, wherever possible, to preserve auctorial contributions|

that is, not to break up individual contributions unless absolutely necessary. This follows

from the fact that, the more authorship changes we introduce, the less easy it will be

to train our algorithm on the resultant data. Thus, we are persuaded that the third

proposal o�ers the most promise.

This option poses two challenges. The �rst, where to put the quotations once they

are extracted from the text, we have solved very simply. Largely to make the task of ex-

amining our algorithm's performance on quotation-contributions easier, we have decided

simply to store the quotations at the beginning of the �le in which they were found. Since

the order in which the quotations are recorded does not seem to be signi�cant, for ease

of implementation we store them in reverse order from their occurrence in the original

document. Internally, of course, the structure of each quotation is completely preserved.

The second problem posed by our decision to move quotations but treat them as

individual contributions is far more subtle. One does not have to have vast experience

with the Internet to realize that, in most threads, one tends to have a quoted paragraph,

followed by a response; it is highly uncommon that more than one paragraph is quoted

and then responded to. In itself, this fact will tend to skew our data|our algorithm

may do very well simply by guessing that an authorship boundary occurs after each

paragraph. Worse, quotations can be extremely short|one- or two-line quotations are

not uncommon at all. Nor do quotations have to be complete sentences: often phrases

or relative clauses will be quoted as providing su�cient context for a response.

Our method for dealing with these facts is both straightforward and arbitrary. We

Chapter 2. Selection and Initial Processing of the Corpus 30

demand that, in order to remain part of our corpus, each quotation have at least four

text-bearing lines, regardless of how many paragraphs it contains. On the one hand this

does, in some measure, ensure that a quotation contains enough text for a meaningful

amount of stylistic information to be retained within it. On the other, this increases

the likelihood that a quoted passage has more than one paragraph|thus lessening the

amount of skew introduced into our data by the presence and concentration of quotations.

Once we had made these decisions, the implementation was trivial. The script de-

veloped to detect and move our quotations simply looks for the begin-quotation token

and adds all subsequent data to the beginning of the array storing the output, until the

corresponding end-quotation token is found. Care is taken within the script to allow for

nested quotations, and to store them sequentially|inner quotations are extracted from

outer quotations and stored before them in the output data. This script also removes

\empty quotations"|quotations containing only lines of whitespace characters. These

occur as noise occasionally produced by our quotation-detecting procedure. Finally, this

script removes all end-quotation tokens, relying on article boundary tokens and begin-

quotation tokens to serve as authorship demarcators in the output. The job of removing

quotations with fewer than four non-blank lines is left to the �nal step of processing,

discussed in section 2.9.

Since this procedure is quite straightforward, an arti�cial test suite was considered

su�cient to evaluate its accuracy. In this evaluation, and in examination coinciding with

the formal evaluation of our signature-removing procedure, the script was not observed

to make any errors.

2.7 Reformatting Paragraphs

Since we have decided that, for the purposes of this experiment, parts|the units from

which our stylistic statistics are to be derived|will correspond to paragraphs, we can

Chapter 2. Selection and Initial Processing of the Corpus 31

make computing these statistics much simpler by ensuring that all paragraphs in our cor-

pus are in a standard format. Further, as described in detail below our signature removal

procedure operates only on paragraphs; this procedure will be made more accurate and

reliable the more accurate and reliable our procedure for identifying paragraphs. Thus,

it behooves us to standardize the format of paragraphs in our corpus as far as is possible.

The most common, and the most tractable, paragraph format to be found in the e-mail

domain uses blank lines (or more generally lines composed only of whitespace characters)

to mark the boundaries of paragraphs. This is the format to which we would like to

reduce all paragraphs, since it is very simple and the boundaries between paragraphs

are totally unambiguous. Some authors prefer to adhere more to the traditional style

of indenting the �rst line of their paragraphs, and so leave some whitespace in front

of this line, but nevertheless still include a blank line between each paragraph. While

these indentations could potentially confuse analysis that looks for writing in point form,

because the paragraph breaks are unambiguous we have made no attempt to alter this

formatting. Other authors, however, rely strictly on indentation of the �rst line to

indicate the extent of their paragraphs. Since such indentations are very di�cult to

distinguish from indentations used to set o� the items in a text written in point form,

we must reformat this type of paragraph.

The most salient feature of the procedure we have adopted for reformatting this type of

paragraph is its conservatism. As much as the potential for missing paragraph boundaries

could introduce noise into our data, to introduce paragraph boundaries that are not

present in the original corpus would do even more harm, since they could destroy the

syntactic integrity of the original text and hence invalidate the statistics computed from

that text. For this reason we feel justi�ed in demanding that articles to be reformatted

conform to strict conditions. Since we run this procedure on our corpus after marking

and moving quotations, and it would appear that the decision on what paragraph format

to use depends on an individual author and hence is likely to pervade all the text of a

Chapter 2. Selection and Initial Processing of the Corpus 32

contribution, we feel that it is reasonable to decide that once we identify a contribution as

having paragraphs that need reformatting, the reformatting should be applied throughout

that contribution. To identify a contribution as requiring reformatting, we demand that

its �rst text-bearing line contain an indentation, be followed by at least two non-indented

text-bearing lines, and that this pattern be repeated at least once with no intervening

blank lines. Since we require the �rst text-bearing line to contain an indentation, it is

highly unlikely that we will mistake a contribution containing material written in point

form for one needing reformatting. Our requirement that each paragraph be at least three

lines long in total, and that there be at least two such paragraphs at the start of the

contribution, gives us further assurances in this regard. Once we identify a contribution

as requiring reformatting, we simply delete all indentations and place a blank line in the

output before the line which was originally indented.

We have tested the script which implements this procedure on some arti�cial test

data, and have found its performance to be satisfactory. Since this paragraphing style

is relatively uncommon in our corpus, we have only observed two instances where this

procedure should be applied; in both cases it was triggered and was successful. We

have no other means of verifying that our implementation is free of defects or that our

conditions for triggering its application are su�ciently|or overly|strong. Nonetheless,

we are con�dent that we have removed at least some noise from our corpus by developing

and implementing this procedure.

2.8 Removing Signatures

There is little doubt that, in some sense at least, style and an author's signature are

intimately related. That one person might choose a signature containing his employer's

name, his job title, his e-mail address and name while another chooses one containing only

his name and a third chooses not to use any signature at all may say a great deal about

Chapter 2. Selection and Initial Processing of the Corpus 33

the type of writing these people are likely to produce. But, however much information

there may be in signatures, we cannot use them for our research. It is, after all, not

hard to distinguish a signature from a non-signature with high probability|this section

demonstrates a method that, with very slight modi�cations, would do precisely that.

If we allowed signatures to persist in our corpus, we need do nothing more than use

this very method to search for signatures, then predict authorship boundaries to occur

immediately afterwards in order to achieve a high authorship boundary recovery rate.

Indeed, such a procedure might be useful as a baseline comparison to the performance of

the neural nets we will discuss in chapter 5. Since we wish to investigate whether more

subtle evidences of style can allow us to achieve a good boundary recovery rate, we must

eliminate signatures from our corpus to as great an extent as possible.

One assumption underlying our treatment of this subject that we must immediately

state is that signatures can only occur as the last identi�able paragraph of text in an arti-

cle body. This assumption is by no means always valid; postscripts and post-postscripts

usually occur after signatures, for example. Also, the moderator of this list very often

inserts comments that pertain to the article immediately after its last paragraph. Finally,

some authors do not have their signatures as paragraphs, but prefer to put their names

at the end of the last line of text in their articles.

Fortunately, as mentioned above, we have been quite successful in identifying the

moderator's comments as quotations; when identi�ed, they are then moved out of the

article. In these cases then, the author's signature, if it exists, will indeed occur as the

last identi�able paragraph in the contribution. We have seen no obvious way of dealing

with postscripts, or with signatures that are part of the last line of text. Fortunately, as

the testing outlined below shows, these cases are not common.

The heuristics for detection of signatures are quite complex, and motivated by general

knowledge of the Internet and secondarily by knowledge of this corpus in particular. As

with the quotation-�nding procedure, we were forced to proceed in two steps, but the

Chapter 2. Selection and Initial Processing of the Corpus 34

modi�cations for the second phase were not as extensive as in the quotation-�nding case.

2.8.1 Detailed Explanation of the Heuristics

Our fundamental contention is that the purpose of a signature is to convey certain in-

formation, so that to recognize a signature it su�ces to recognize these indicative pieces

of information. There are seven types of information that signatures usually contain:

the author's name, e-mail address, phone number, URL, postal address, job title (pos-

sibly including company name), and erudite or witty quotations which authors use to

personalize their signatures and make them more interesting. We choose to de�ne para-

graphs that contain certain combinations of these features as signatures, positing that

most random paragraphs have a low probability of containing such combinations so that

we falsely identify as few paragraphs as possible. We discuss these combinations, and

how we detect each unit of information, in the remainder of this subsection.

The most obvious type of signature is one containing a single name. We also count

as signatures those paragraphs containing an identi�able name, along with any one of an

e-mail address, a URL, or a phone number. For this type of signature, we demand that

the identi�ed name be separated from surrounding text in some way. This separation

may be a single tab character, two or more whitespace characters, a comma, or by

whitespace followed by a less-than symbol (often used to enclose e-mail addresses or

URL's.) Further, we count two-line paragraphs whose second line contains a name and

whose �rst contains one or two words as a signature|some authors, such as the author

of this thesis, preferring to close their articles with a salutation such as \cheers," followed

by their name. As noted below in our description of our procedure to identify names,

these are not easy to identify; thus, we count as a signature any paragraph containing

two of an e-mail address, a URL, or a phone number. Finally, some authors simply

include their e-mail address as a signature, and so we allow a single e-mail address also

to constitute a signature.

Chapter 2. Selection and Initial Processing of the Corpus 35

Unlike the other features, postal addresses, titles, and profound quotations are not at

all easy to identify. Recognizing that all these features tend to contain a high proportion

of words beginning with uppercase characters, we have used the heuristic of treating as

signatures paragraphs containing high proportions of words beginning with uppercase

characters, regardless whether they contain any identi�able names, e-mail addresses,

URL's, or phone numbers. For this purpose, we count as words only text beginning

with some alphabetic character that has no alphabetic character immediately to its left;

numbers, for example, are not considered words under this simplistic de�nition. At �rst

we planned to demand that 75% of identi�able words in a paragraph be uppercase before

treating that paragraph as a signature. Our �rst round of testing showed that this allowed

a considerable number of legitimate signatures to pass through unidenti�ed; thus, in our

�nal version we lowered the threshold to 60%.

Having discussed the combinations of types of information that we use to identify

signatures, we must turn to the nontrivial task of describing how we have proposed

to identify those features|i.e. names, phone numbers, e-mail addresses and URL's|

that we considered to be identi�able. Of these four, names are probably the hardest to

detect. In general, we de�ne a name to be a string of one to three words consisting of

alphanumeric characters, and demarcated by whitespace, periods, or dashes. We include

periods to allow for initials, dashes for hyphenated last names. We do not insist that the

�rst alphanumeric characters in words be uppercase, since, while a common convention

in formal writing, it is not altogether pervasive in e-mail signatures. This will not catch

all names|we would miss, for example, John E. Smith Ph.D., since this contains more

than three words. However, since the de�nition is already very broad, and in practice

we have found it fairly comprehensive, we have chosen to include a maximum of three

words in a name. If a name is inside a paragraph|that is, it is included along with

information such as an e-mail address|we demand that the words begin with uppercase

characters. In this case, these signatures have usually been made up in advance and

Chapter 2. Selection and Initial Processing of the Corpus 36

are included automatically with each article the author sends, so it is likely that the

uppercase convention will be observed. A name in isolation (or in a two-line signature

with a salutation) will often be typed as needed, which explains why the uppercase

convention is commonly ignored.

Contributors to our corpus reside in many nations, and this is re
ected in the variety

of phone numbers to be found in their signatures. We have thus had to adopt a very

liberal de�nition of what constitutes a phone number: speci�cally, a phone number is

either composed of two strings of digits, separated by a space or a dash, whose �rst

constituent has length 2 or 3 and whose second constituent has length 3 or 4, or else is a

series of three or more strings of digits, each of length 2 or 3, separated by periods. While

this de�nition encompasses some postal addresses|and, more signi�cantly, also overlaps

some styles for citing legal documents such as sections of statutes|it has nonetheless

served us well enough in practice.

E-mail addresses are rather more standardized than phone numbers, and hence are

more tractable. We de�ne an e-mail address to be a nonempty string of alphanumeric

characters followed by an @ sign, followed by a nonempty series of strings of alphanumeric

characters, demarcated by periods, and ending with two or three alphabetic characters.

We also permit dashes and underscores to be parts of the \alphanumeric" strings referred

to in the preceding sentence. This pattern matches every e-mail address we have tested

it on; we have not observed it to produce a false positive in any test.

URL recognition is somewhat more complex than the recognition of e-mail addresses.

First, we demand that our URL's begin with one of \http://", \www", \ftp", or, in upper-

or lowercase, \url". These
ags provide a strong indication that a URL is present, but

we also demand that a domain name be present|that is, that a nonempty series of

alphanumeric strings, demarcated by periods, and terminated by a string of two or three

alphabetic characters, be present. While it may be argued that this is more strict than is

necessary, we want to make certain that we do not confuse e-mail addresses with URL's;

Chapter 2. Selection and Initial Processing of the Corpus 37

this is why we require one of the identifying
ags to be present as well as the domain

name.

2.8.2 Testing

Now that we have completed our lengthy discussion of what combinations of features

we consider to indicate a signature, and of how we have detected those features, we will

proceed to a description of our testing. As in our testing of our quotation identi�cation

procedure, we selected ten �les from our corpus using the pseudorandom number gener-

ation facilities provided by Perl. The results we observed in our �rst test are presented

in table 2.3.

While this table demonstrates that the �rst draft of our signature-removing proce-

dure is reasonably e�ective, we decided to implement several modi�cations in hopes of

increasing its accuracy further. First, we �ne-tuned our procedure for recognizing sig-

natures composed of names and e-mail addresses. At �rst we did not permit names to

be followed by only one whitespace character. The results in table 2.3 convinced us to

recognize names that were followed by a tab character, as well as those followed by some

whitespace character and a less-than symbol. We also expanded our de�nition of what

constitutes a phone number to include period-separated numbers|as discussed above. It

was at this stage that we decided to lower the percentage of uppercase words from 75%

to 60% which a paragraph must contain in order to be counted as a signature. Finally,

we observed several instances where single-paragraph articles were treated as signatures

and thus had their entire text excised. In an attempt to avoid this, if the text of a

single-paragraph article occupies four or more lines, we only examine it for a high pro-

portion of upper-case characters; we do not subject it to e-mail address, name, URL or

phone-number detection. Since these changes are not fundamental, we decided to verify

their e�ectiveness with only a test of �ve randomly-chosen �les. The results of this test

are shown in table 2.4.

Chapter 2. Selection and Initial Processing of the Corpus 38

File Num. of False Num. of Unidenti�ed Num. of Correctly Total Num. of

Name Positives Signatures Identi�ed Signatures Signatures

18.08 2 1 14 15

18.21 3 2 7 9

18.41 1 3 7 10

18.48 1 2 6 8

18.74 4 0 9 9

19.48 4 2 8 10

19.83 1 4 8 12

19.87 2 1 7 8

19.92 0 2 11 13

20.13 1 0 9 9

Total 19 17 86 103

Mean 1.90 1.70 8.60 10.30

Percent 15.570 16.50 83.50 100

Std. deviation 1.37 1.25 2.50 2.31

Table 2.3: Results obtained by running the �rst version of the signature removal script

on pseudorandomly-chosen �les from our corpus.

As in table 2.1, the percent entry in the false positives column refers to the percent of

deleted entities that were not signatures.

Chapter 2. Selection and Initial Processing of the Corpus 39

File Num. of False Num. of Unidenti�ed Num. of Correctly Total Num. of

Name Positives Signatures Identi�ed Signatures Signatures

18.15 0 1 10 11

18.19 1 1 10 11

18.41 1 2 8 10

19.28 2 0 6 6

19.63 6 1 6 7

Total 10 5 40 45

Mean 2 1 8 9

Percent 18.18 11.1 88.9 100

Std. deviation 2.35 0.71 2.00 2.45

Table 2.4: Results obtained by running the �nal version of the signature removal script

on pseudorandomly-chosen �les from our corpus.

As in table 2.3, the percent entry in the false positives column refers to the percent of

deleted entities that were not signatures.

Chapter 2. Selection and Initial Processing of the Corpus 40

Due to the smallness of the sample size for the tests described in table 2.4, we must

take care not to attach too great a signi�cance to them. Also, one of the �les in the

second sample was the same as in the �rst; this may have biased the result. However,

these results would seem to indicate that our changes to the signature-removing procedure

were e�ectual, if not quite to the degree we might have hoped. It is not obvious to us how

we might improve the accuracy of our signature removal without dramatically increasing

the incidence of false positives. We have trouble with recognizing signatures exactly for

the reasons mentioned at the beginning of this subsection: they are highly individual and

therefore are incredibly varied. The humorous or learned quotations which many authors

include turn out to be quite as hard to detect as we had feared. Formats of signatures

vary wildly: some authors are very plain, but others ornament their signatures with

ASCII graphics or align portions in columnar formats. As we stated before, we have not

even attempted to handle signatures appended to the end of the �nal paragraph of the

contribution. All this shows that achieving greater accuracy in signature detection would

be more arduous than the bene�ts derived therefrom would appear to justify. Hence, we

have been content with removing just under 90% of the signatures, and accept an almost

20% rate of false positives.

2.8.3 Removing File Trailers

The �nal, trivial task we have accorded to our signature-removing script is to remove

what might be considered as the \signature" of the corpus itself|the �nal article in every

�le, which contains useful information such as the location of the comp.risks archive,

how to subscribe to its mailing list, who the moderator is, etc. It seemed clear to us

that the constant repetition of this data in the training set might bias the algorithm.

Indeed, we could not see a reason why this repeated article should be preserved: we

still have a vast amount of text at our disposal, so its presence adds nothing. Since it

would certainly introduce a bias into our training set, it seemed to us imperative that

Chapter 2. Selection and Initial Processing of the Corpus 41

this article be eliminated in all �les.

There are other articles which are repeated from time to time in the corpus: for

example, in roughly one out of ten �les, an article is included that reminds readers of

the existence of the Privacy Forum and the Computer Privacy Digest, two fora related in

content to comp.risks. While even this repetition will likely bias our training to some

degree, the bias introduced will be far less than that introduced by an article repeated

in every �le. Further, there is an argument to be made that it would be interesting

to examine the performance of our trained algorithm when given data that it has seen

before in a context it has not observed previously; these repeated articles provide us with

a good means of examining this facet of our trained algorithm's performance.

For these reasons, we have decided that the �le trailer would be the only article we

systematically eliminate from the corpus. To achieve this, we simply suppress in our

output all text following the last contribution boundary found in the input �le. As

discussed in the next section, this part of our procedure was perfectly accurate with

the exception of one �le in the corpus, where the error was obvious and was corrected

manually.

2.9 Recording the Article Boundaries

Now that we are able to identify all the boundaries between contributions, we are �nally

ready to go through our corpus and remove the tokens we have used to demarcate con-

tribution boundaries, and record where those boundaries are. Simultaneously with this

activity, we do some �nal cleaning up on our corpus.

For the statistics-gathering phase of our experiment at least, we have decided to

maintain the division of our corpus into �les. To facilitate access to the records of the

locations of contribution boundaries, we have decided to centralize these records in one

�le. Thus, it makes sense for the script that determines the locations of the contribution

Chapter 2. Selection and Initial Processing of the Corpus 42

boundaries to be responsible for coordinating the activities of our other scripts, since

this script must remain in operation throughout the processing of the entire corpus in

order to write the contribution boundary information to a single �le. This motivates our

incorporation of the running of all our other procedures into this script.

We elected to use a reasonably simple format for the contribution boundary database.

Each line of the database �le corresponds to a �le of the corpus, and begins with that

�le's name. It then consists of a series of pairs of positive integers, each surrounded

by parentheses and whitespace. For the i-th pair on some line, the �rst element of the

pair represents the line number on which contribution i begins in the �le named at the

beginning of the line; the second element of the pair is the paragraph number of the

�rst paragraph of contribution i. Line numbers, naturally, refer to the sequence of lines

of a �le; paragraphs are similarly numbered. In both cases, the numbering begins at

1. We also maintain a record of where the last contribution ends|that is, if there are

n contributions in a �le, we store the line and paragraph number where the n + 1-st

contribution would begin. We have chosen to store both line and paragraph information

partly to make statistical examination of the lengths of paragraphs and contributions

easier, and partly because it was not clear at this stage which type of data we would

want to use when training our algorithm or examining its results.

As well as removing the quotation and article boundary tokens left in the text form

previous processing, this script is also responsible for removing noise such as consecutive

blank lines, empty articles, and quotations that are less than four lines long; for an

explanation of this last feature, see section 2.5. The script has been designed to process

a series of corpus �les, given either as command-line arguments separated by spaces, or

as standard input separated by newlines. This not only facilitates processing the entire

corpus, but permits one to test this script and the collection of procedures it relies upon

on speci�c �les of interest.

The functioning of this script was tested on both arti�cially-generated test suites and

Chapter 2. Selection and Initial Processing of the Corpus 43

on small amounts of real data from the corpus. Since its functions are, in the main,

fairly straightforward, it was not felt that a formal test, such as that carried out for the

quotation-identifying or signature-removing scripts, was in order. We have not observed

any bugs in this script.

2.10 Results of Processing the Corpus

We had remarkably few problems in running the series of scripts discussed in the preceding

sections on the entire corpus. Of the 221 �les processed, we observed just six warning

messages: �ve were generated by our header removal script, and appeared to cause no

problems (as noted in section 2.3, this is not uncommon for this script). One warning was

generated by our quotation-moving script, which also does not appear to have caused any

serious degradation of our data. One �le, 20.06, was seriously damaged by our signature

removal script: it is the only �le in the corpus which does not have the characteristic �le

trailer described above, and so its last article was eliminated. Unfortunately, the reason

for its lack of a trailer was that there was only one article in this �le, so it seems it

was not considered necessary to append a trailer. We solved this problem manually by

appending a trailer and running our �le processing script, as described in section 2.9, on

this �le alone.

The above result adds yet more force to our assertion that the scripts we have devel-

oped in this phase of the experiment have few bugs, and have predictable e�ects on the

corpus. In this phase, we have attempted to reduce the amount of noise in our data|

through �nding and isolating quotations from original articles, removing features such

as signatures and article headers that correlate strongly with contribution boundaries,

and reformatting paragraphs that are hard to detect. While some of our processing|

particularly signature deletion and quotation identi�cation|are not perfectly accurate,

we are con�dent that we have achieved a degree of accuracy su�cient to allow us to state

Chapter 2. Selection and Initial Processing of the Corpus 44

that, if our result is negative, it will not be because our data were too noisy.

After completing the task of initially processing the corpus, we observe that we have

just over 750; 000 words remaining, according to the standard Unix command wc, and

about 4:5 megabytes of text. Both measures show that our initial processing has reduced

our corpus to about three-quarters its original size. Clearly we still have a tremendous

amount of data with which to work.

Chapter 3

Statistics Computed in this

Experiment

3.1 Introduction

In this section, we discuss several categories of statistics that have been used in literature

on authorship attribution, stylistic analysis, genre detection and information retrieval.

Insofar as is possible, we discuss the motivations for and de�nition of these statistics,

and then proceed to investigate the applicability of each statistic to our experiment.

Recalling that one of the goals of this experiment is to determine which statistics work

well on samples as small as those present in our corpus, we will compute values for all

statistics except where there are very good reasons not to do so. We pay particular

attention to these cases in this section.

Throughout this section, let N denote the total number of identi�able textual items,

often referred to as tokens in the stylistic literature, to be found in a sample. Let V

be the number of orthographically-di�erent tokens in a sample; in the literature, V is

often referred to as the number of \types". The concept of \type" is a general one:

though the words \actual", \actuality", and \actually" all have the same root, they are

45

Chapter 3. Statistics Computed in this Experiment 46

all considered to be of di�erent types. For a given sample, let Vi be the number of types

that appear exactly i times; i.e. V1 is the number of types (and therefore tokens) that

appear exactly once in a sample, also known as \hapax legomena." \hapax dislegomena"

refers to V2; both terms are commonly-used in the literature.

3.2 Entropy and Juola's Measure

The concept of entropy derives from thermodynamics, where it is used to characterize

the amount of order within a system. In thermodynamics, the higher the temperature

within a system, the more movement will be observed among its component particles and

thus the higher the system's level of chaos and the higher its entropy. Following the lead

of the information-theoretic community, investigators of style have borrowed the concept

in an attempt to measure the amount of structure in an author's writing. They use the

formula

H = �
X
i

Pi log Pi (3.1)

where they de�ne Pi to be the probability of the appearance of the i-th word type|i.e.

Pi is the total number of occurrences of tokens in types appearing i times, divided by

the number N of tokens in a text;

Pi
def
=

iVi
N
: (3.2)

In theory then, the more structured|or at least the more homogeneous|an author's

writing, the lower its entropy; the more disordered|or varied|the higher the observed

entropy. It is then postulated that an author's oeuvre displays a characteristic amount

of structure, and thus a characteristic entropy.

Chapter 3. Statistics Computed in this Experiment 47

A slight modi�cation to the entropy formula has been proposed, called the \diversity"

of a text; this is

H
def
= �

X
i

Pi
logPi
logN

: (3.3)

This measure returns the value one when all the words in a text are di�erent, and zero

when they are all the same (the text is completely uniform). Holmes [7] reports that it has

been shown that this measure has little theoretical justi�cation, however. Further, the

entropy measure itself may provide valuable information. Since we will need to calculate

Vi for some of our other statistics, there seems no reason not to compute the entropy,

even though it will behoove us carefully to watch its impact on our networks if they are

trained using it. Since the formula for the diversity adds a seemingly redundant factor to

the formula for the entropy, it would appear that we would gain nothing by computing

the diversity.

While previous research has concentrated on entropy at a lexical level, recent work by

Juola takes the use of entropy to the level of characters. In [11], Juola explains the process

by which his method can be applied to authorship attribution studies. For a sample of

text C characters long, Juola selects a \window-size" parameter c such that 0 < c < C.

A \window" is composed of c consecutive characters from the sample. Suppose such a

window begins at index i (i.e., at the i-th character),

1 � i � C � c:

Juola then calculates the length of the longest sequence of characters, beginning at index

c+i+1; that is identical to some sequence of characters found within the window. Letting

this quantity equal Li, Juola's statistic is then de�ned as

L̂
def
=

PC�c
i=1 Li
C � c

: (3.4)

Chapter 3. Statistics Computed in this Experiment 48

The method can be shown to converge to the information-theoretic entropy as c !

1; [11]. While in [10] Juola has worked with samples as small as 100 characters in

comparing works in di�erent languages, his work on authorship attribution used windows

of 500, 1000 and 2000 characters. His cross-language work appeared to show that 250 was

an optimal length; each of his latter measures worked well in authorship attribution [11].

It is true that most writers on the statistical treatment of literary questions view the

lexeme as the ideal unit for computation, since lexemes are in some sense the basic unit

of thought and thus most aspects of an author's idiolect can be expected to manifest

themselves at the lexical level. Thus, most scholars in this community likely view Juola's

work with some skepticism. Nonetheless, Juola's apparent success with small samples

shows that his method might provide us valuable information|information that the

more traditional stylostatistics, with their reliance on large corpora, might not be able

to provide. So it makes eminent sense for us to utilize Juola's measure.

Given the smallness of our samples, a window length of 250 characters is too large

to permit the achievement of a meaningful number of measurements on a signi�cant

proportion of our corpus. Therefore, we will use a window size of at least 50 characters,

or 1

4
of our text, up to a maximum of 250 characters. For paragraphs containing less

than 200 characters|so that C

4
< 50|we will use an estimate of the expected entropy

of English text.

Seemingly a very basic statistic, the actual value of the expected entropy of English is

much debated. Teahan [30] cites studies that, depending on the alphabet considered and

the method of estimation, have plausibly determined an upper bound on this measure

to be anywhere from 1:3 (Shannon) to 5 (Church). Both Teahan and Manning and

Sch�utze [18] cite a very extensive study in which Brown et al determine an upper bound

to be 1:75. Since the majority of interest in entropy comes from the data compression

community, which uses it to estimate the ideal compression rate of English text, only

upper bounds seem to have been calculated. We must do more research on this question,

Chapter 3. Statistics Computed in this Experiment 49

but Brown's estimate will likely prove our best choice both because of the amount of

text on which it is based and because of the fact that the full range of symbols (not just

alphabetic characters, as in Shannon's study, for example) was used in its computation.

3.3 Word-Length Statistics

Holmes [7] cites several studies that used word-length distributions. These authors simply

recorded the proportion of words in a sample of text of length i for all lengths greater-

than zero. These scholars viewed words as being drawn at random from an author's

frequency distribution; thus, the comparatively simple statistical tests they performed

with the word-length frequencies were justi�ed.

Holmes [7] cites subsequent work, chie
y by Smith, which �nds that word-length

distributions, far from characterizing the work of any particular author, depend far more

on the genre in which an author is writing or even the point in an author's career at which

writing occurs. He also found that, within certain genres, word-length distributions seem

not to di�er signi�cantly between authors.

Smith's �ndings regarding word-length distributions changing over time (both in gen-

eral and with respect to individual authors) are clearly irrelevant to our experiment, since

newsgroup articles tend to be written over short periods of time, and our entire corpus

spans a period of only three years. Further, we have no interest in matching one post by

an author with a subsequent post. Finally, all our samples are from the same genre. On

the other hand, our samples will on average contain around �fty words; this leads us to

be very concerned that bias may be introduced into our data through the smallness of

our samples.

Nonetheless, since this statistic is trivial to compute, we will compute it. We will

compute word-length frequencies for words of lengths i; 1 � i � 15. We choose �fteen as

an upper bound since the MRC2 dictionary [35] documentation shows that less than 0:6%

Chapter 3. Statistics Computed in this Experiment 50

of words are longer than �fteen characters. We will include words with more than �fteen

characters in the count of �fteen-character words; this of course biases the frequency

data, however, since use of such long words can be expected to mark an author's style,

this bias should not be detrimental. We recognize in advance that it is most unlikely

that this statistic will prove of much value.

We will also compute the average word length for each sample. Since this is a summary

statistic, it can be expected to exhibit less variance than do word-length frequencies.

Indeed, it would seem unwise to use both in the same test, so we will take care to

conduct our tests using one or the other of these measures.

3.4 Syllable Distributions

A tremendous amount of research has gone into examining whether authors display char-

acteristic patterns of syllable usage. Holmes [7] cites work that involved the calculation

of the average number of syllables per word, the relative frequencies of i-syllable words,

and the distribution of gaps between i-syllable words. Various genres|both poetry and

prose|can be identi�ed by these characteristics. It has been shown that frequency dis-

tributions discriminate languages more than speci�c authors. Other work has gone into

developing distributions that characterize an author|that is, which can predict the fre-

quency of i-syllable words that will be used in a text by that author. Other work demon-

strates that syllable counts from consecutive words are to a large extent independent,

but may depend on genre.

That many scholars hold that valuable information can be extracted from an author's

syllable usage is plain. Much of the work, particularly in modeling syllable distributions,

is rather immature; it has not been tested extensively enough|nor accepted widely

enough|to justify our including it in this experiment. The work investigating gaps

between words with certain syllable counts lacks a good cognitive underpinning|it is

Chapter 3. Statistics Computed in this Experiment 51

not easy to imagine how an author could display a consistent pattern with regard to

placing certain gaps between words with certain syllable counts. The work on relative

syllable frequencies, as well as that using syllable averages, does seem very relevant. It

is true that syllables and word-length will correlate very strongly, so that we need to

ensure our tests are not biased by too much in
uence from these statistics. Nonetheless,

it will be worthwhile to compute frequencies of all i-syllable words in a given sample,

for 1 � i � 6. We will count words with six or more syllables in one category, since the

MRC2 dictionary documentation states that less than 0:2% of words contain seven or

more syllables. As in the case of the letters/word statistic discussed in section 3.3 above,

this will introduce a bias in favour of long words; since use of such polysyllabic words

would clearly mark an author's style, we do not view this as a serious drawback. We will

also compute the average syllables/word for each sample.

The MRC2 database will be invaluable in helping us to compute these statistics,

providing us with the source of syllable counts for most of the words in our corpus.

There will, of course, be many words in our corpus which do not appear|or for which

syllable counts are not given|in the MRC2 database; the database is, after all, largely

based on lexical information from the 1960's and 1970's. We have therefore examined

the mean ratio of letters/syllable for all words, and for words of each possible length, for

which records exist in the MRC2 database. We present the results of this investigation

in table 3.1.

Despite the limitations of the examination that are mentioned in table 3.1, we feel

con�dent about basing our treatment of unknown words upon it. We observe that the

ratio of letters/syllable in a word has a clear relation to the word's length; words with

four or �ve letters have a comparatively high ratio|above 3:6|while long words, such as

those with fourteen letters, have a low ratio|below 2:8. In light of this rather surprising

result, we will implement the following approach: letting Si be the mean letters/syllable

observed for words with i letters, when we observe an unknown i-letter word, we will

Chapter 3. Statistics Computed in this Experiment 52

Num. of Letters Mean Letters/Syllable Std. Deviation Letters/Syllable

1 0.9778 0.1217

2 1.995 0.07313

3 2.948 0.2759

4 3.66 0.7551

5 3.633 1.263

6 3.231 1.016

7 3.213 0.7676

8 3.106 0.7286

9 3.051 0.6655

10 2.97 0.6234

11 2.902 0.5465

12 2.871 0.5078

13 2.841 0.4575

14 2.802 0.438

15 2.792 0.4529

16 2.797 0.4197

17 2.828 0.4273

18 2.946 0.5268

19 2.388 0.1917

20 2.5 0

Total 3.164 0.836

Table 3.1: The mean letters/syllable, and the standard deviation from the mean, as

obtained from the MRC2 database.

Note that each entry in the database received the same weight; thus, polysemous words

are counted more than once and no attempt has been made to take the frequency of a

word's use into account.

Chapter 3. Statistics Computed in this Experiment 53

treat it as having round(i

Si
) letters, where round indicates that we will round the result

to the nearest integer. While this will introduce some noise into our calculations, since

the MRC2 database is very extensive we expect that this will be insigni�cant.

3.5 Statistics on Sentence Length

According to Holmes [7], Yule proposed sentence-length as an identifying auctorial at-

tribute as early as 1938. Despite its venerable history, even those scholars who have used

this information point out that its usefulness is fundamentally limited: �rst, sentence

length is often controlled consciously by an author; the most informative statistics, they

argue, are those of which the author|and the reader|are unaware. While this criticism

is valid and relevant to our work, it should be remembered that an author's choice of

sentence lengths|like his choice of content words (content-word choice being viewed al-

most universally as highly informative)|says a great deal about how the author thinks

and writes. A person's style, after all, is not determined merely by their unconscious, but

by how their mind works in its entirety [16]. A second criticism of the use of sentence-

length statistics is that sentence lengths depend explicitly on punctuation, which is often,

particularly for pre-twentieth century works, determined by the editors of the work. In

our corpus, the authors themselves have complete control of punctuation, so that this

criticism does not apply to our experiment.

Most modern authorities agree that sentence length statistics provide con�rmatory

information, but conclusions should not be drawn from them alone. Further, there seems

to be a consensus that sentence-length distributions provide valuable information, while

average sentence length is not useful. The size of our samples makes it plain that cal-

culating sentence-length frequencies is wholly pointless|it is extremely unlikely that

sentences of any one length will occur more than once in any sample. Even the average

sentence length will be subject to great variance, since we cannot expect our samples

Chapter 3. Statistics Computed in this Experiment 54

to contain more than �ve sentences on the average. Since this statistic should not be

di�cult to calculate, we will include it, if for no other reason than to con�rm that it

proves not to be useful in our testing.

3.6 Frequency Distribution of Punctuation

As was just mentioned, workers in �elds related to stylistics have been very reticent of

allowing punctuation to play any part in their studies, since this is often out of the con-

trol of the original author of the text under consideration. In our corpus, punctuation

is completely determined by the original writer, and particularly in view of the small

size of our samples, we feel it would be highly detrimental to our work to deny ourselves

possible information conveyed by punctuation. With a view to capturing some of this

information, we will record the frequency distribution of several punctuation marks that

can be expected to appear commonly in electronic text. Since there has been no work

in this area, we have been obliged to choose the set of punctuation we will use on the

basis merely of personal knowledge acquired by reading portions of our corpus and sim-

ilar electronic sources. For our set of punctuation, we choose those characters listed in

table 3.2.

Most of our choices of punctuation to examine require no comment. As we discussed

in section 2.5, there is very little standardization in the e-mail domain as regards the use

of quotation marks. This explains why we have included four di�erent quotation marks

in our list of punctuation. Even our list is not exhaustive: a single apostrophe is often

used as a quotation mark, particularly to set o� new or unusual terms. We believe that

apostrophes are in general rather content symbols than punctuation characters|their

most common use being to indicate possession and in contracting words|and, since we

do not believe we can reliably distinguish occurrences of apostrophes as punctuation from

other occurrences, we have chosen not to count them at all. For similar reasons we have

Chapter 3. Statistics Computed in this Experiment 55

Punctuation Mark Gloss

. period; also used in ellipses; not when used

to separate acronyms or as a radix point

? question mark

! exclamation mark

: colon, also used in emoticons (e.g. :-));

not when used as a token for separating dates/times

; semicolon

, comma

| dash, when used as a parenthetical mark

() parentheses; each occurrence counted;

often used for emoticons

[] brackets; each occurrence counted

f g curly braces; each occurrence counted

<> angle brackets; less-than and greater-than

symbols; each occurrence counted

" non-directional quotation mark

\ opening double quotation mark (sometimes used as

a non-directional quotation mark)

" closing double quotation mark

` (rare) used for single quotation mark

/ separator; e.g. s/he, and/or;

not when used as a token for separating dates/times

Table 3.2: List of punctuation marks we will compute frequencies of, complete with

descriptions of their common uses.

The symbols for which the note \each occurrence counted" has been added usually come

in pairs, but for our purposes each component of the pair will be counted separately.

Chapter 3. Statistics Computed in this Experiment 56

omitted the percent sign \%", the dollar sign \$", the hyphen \-" and so on. We will

also attempt to count the character \`" only in its role as a quotation mark, not as an

accent. Accented words will be counted as separate types, and so their occurrences will

be noted, for example, in our calculations of the richness of an author's vocabulary (see

section 3.10 below). We should also note the care we took in dealing with dashes: a

string of two or three consecutive \-" characters is always considered to be a dash, while

a single \-" character is only considered to be a dash if isolated by whitespace characters.

Table 3.2 also makes reference to the fact that each component of a grouping-symbol

is counted separately. While we do not deny that, logically at least, parentheses come in

pairs and thus form a single unit of punctuation, since many parenthesis symbols have

multiple meanings (parentheses often occurring in emoticons; < and > having mathemat-

ical meanings) and we have no obvious way of distinguishing one meaning from another,

we felt that counting each component of a pair separately was justi�able. Also, it is well-

known that some authors are much more fond of parenthetical phrases than others|this

thesis, for example, being rife with them|so giving extra weight to this class of punc-

tuation may help to highlight such tendencies. For similar reasons, we have chosen to

count each component of emoticons, and interrobangs, separately.

3.7 Distribution of Parts of Speech

Various researchers have investigated frequencies of use of various part of speech (POS)

categories in attempts both to distinguish di�erent genres and to attribute certain works

to particular authors. While some have contented themselves simply with looking at

the frequency distribution, Holmes [7] cites a study by Antosch, who investigated verb-

adjective ratios and found them to be characteristic of certain genres. Holmes [7] also

cites work by Brainerd, who extensively studied article and pronoun frequencies and

showed them to vary far more between genres than between authors.

Chapter 3. Statistics Computed in this Experiment 57

Although no one appears to have applied these techniques to samples as small as

ours, we will calculate relative POS frequencies for as many categories of words as our

tagger(s) will permit. While information such as verb-adjective ratios might in some

cases be highly valuable, since we are dealing with a single genre it would not appear

that even this well-studied ratio would be worth including. Further, it should be possible

to recover this information from the statistics we derive, should we develop increased

interest in it. Indeed, the networks we train on our statistics may turn out to use such

relationships, and such a result would be highly informative.

3.8 Function-Word Frequencies

The use of function-word frequencies|that is, the number of times some function word

W appears in a text divided by N for that text|has a long history in stylistic research.

Holmes [7] cites a study from 1962, as well as the famous work of Mosteller and Wallace in

1964, both of which involved function words. Researchers �nd function words attractive

because their use is far less susceptible to conscious control than is the use of content

words, so that their study may reveal more about the unconscious aspects of an author's

style. Further, their extremely high frequency means that even in samples of a few

thousand words, their frequencies are likely to be meaningful.

Little work appears to have been done using function-word frequencies on samples

of the size we are considering, but we feel that they are certainly worth computing. To

decide just which words to compute frequencies for, we �rst selected all words in the

Ku�cera and Francis corpus [15] with frequencies above one thousand|all words which

we can expect to observe with a frequency of at least one per thousand. There are 92

such words. We then used the MRC2 database to determine all parts of speech with

which these words are identi�ed. Unfortunately, the MRC2 database gives many archaic

and obscure parts of speech|e.g. \one" is listed as a verb as well as a noun and a

Chapter 3. Statistics Computed in this Experiment 58

K&F Frequency greater-than Number of Function Words

20; 000 6

10; 000 7

5; 000 18

4; 000 22

3; 000 29

2; 500 34

2; 000 40

1; 700 50

1; 000 66

Table 3.3: The number of words that we would consider as function words having fre-

quencies higher than certain values in the one million-word K&F corpus.

pronoun, \an" as a preposition, a conjunction, and an adjective as well as \other", the

category including articles. Thus, we had to use considerable knowledge of common uses

of these words to remove from the list all words commonly used either as verbs or nouns

(excluding pronouns but including auxiliary verbs). We did this because we believe that

these words, almost by de�nition, can serve as content words. Further, it is much more

common in the literature to use only such categories as conjunctions, prepositions and

articles as function words than such words as \would" or \man" that have a frequency

in English above one in a thousand.

After this pruning process, 66 words remained. Table 3.3 gives the fraction of these

words whose Ku�cera and Francis (K&F) frequencies are greater than certain values.

Considering the size of our samples, it does not seem reasonable even to compute

frequencies of words whose K&F frequency is less than 2; 000|our samples contain, on

average, far less than 500 words, so we expect each such word to appear zero times in

each sample. We will compute frequencies for all forty words with K&F frequencies above

Chapter 3. Statistics Computed in this Experiment 59

the of and to a in that he

for it with as his on at by

i this not but from or an they

which you one her all she there their

we him when who more no if out

Table 3.4: The list of function words for which we will compute per sample frequencies.

2; 000. While it is unlikely that the eleven words with K&F frequencies between 2; 000

and 3; 000 will appear an adequate number of times in our samples to be of use to us,

since it is trivial to calculate frequencies for any word once we have developed software

to calculate the frequency of a single word, we lose little in computing frequencies even

for words we are unlikely to be able to use. We can ascertain during the next phase of

our study which statistics are usable, even testing our networks on subsets of the set we

will compute. The function words we will compute frequencies for are listed in table 3.4.

In order to investigate the extent to which our selection of function words is orthodox,

we have taken three lists of function words (or \stop words" as they are called in the infor-

mation retrieval community) from websites. All three lists are much more extensive than

ours, but this is to be expected since, particularly in IR applications, having an extensive

knowledge of what words should be ignored is very important. The list published at

http://www.dcs.gla.ac.uk/idom/ir resources/linguistic utils/stop words was

a proper superset of our list. We found that the list found at http://www.sbl-site-

.org/SWISH-E/AutoSwish/SBL wordlist.htmlwas a superset of ours except that it did

not contain the words \I", \not", \or", and \all". When we observe that this list was

compiled for biblical applications, where Roman numerals are important, the absence of

\I" is unremarkable. It is somewhat more surprising that the other words were considered

to be content words, but this must indicate that, in the judgment of the compiler, these

words are important in biblical research; it seems clear, though, that the decision was

Chapter 3. Statistics Computed in this Experiment 60

very domain-speci�c. More surprising was our discovery that the list compiled by Mitton,

from his paper on spelling checking [22], does not contain \I", \that", or \more". Mit-

ton's interest in spelling correction may explain his decision to treat \I" as a non-function

word; we cannot, however, determine why \more" and \that" are absent|particularly

in view of the fact that words like \moreover" are included as function words. In spite of

our slight disagreements with Mitton and the creators of the SBL project, we believe that

we have demonstrated that our selection of function words does not di�er signi�cantly

from standard practice.

As with some other stylistic statistics, it has been found that individual authors'

characteristic function-word frequency distribution changes during their lifetimes. Lan-

cashire [16] points out that this occurs in the works of Shakespeare, for example, and

many other authors have noted similar trends. Again appealing to the speed with which

e-mail articles tend to be written, as well as to the fact that our goal does not require

us actually to ascribe text to authors, we have no need for concern about this potential

limitation of function-word frequency distributions.

3.9 The Type/Token Ratio

The de�nition of the type/token ratio follows directly from its name. Usually denoted

by R, it is de�ned as

R
def
=

V

N
: (3.5)

Interest in R focuses mainly on its purported capacity for communicating something

about the extent of an author's vocabulary. If one imagines an author to have some

stock of words, from which the author chooses some words more often than others, one

may be able to get an estimate of the size of that stock by looking at the number of

di�erent words introduced over some sample of text. If an author has a large vocabulary,

Chapter 3. Statistics Computed in this Experiment 61

from which he/she can select many words, R might be expected to be large; otherwise, R

will be small. This is a very tractable statistic|it has historically been particularly easy

to calculate it for works of interest, since concordances for various works were constructed

in ways that facilitated this calculation, and made it even feasible by hand.

There are obvious problems with this simplistic characterization of vocabulary rich-

ness. The most signi�cant is its explicit dependence on N , and the fact that while N

can e�ectively increase without bound, there being only a �nite number of words in any

language, V cannot do so. Thus,

lim
N!1

R = 0;

independent of any other factor. This drawback is fatal for our corpus, since our sam-

ples are not only small|making R unstable|but vary comparatively widely: we have

paragraphs with ten words and paragraphs with �ve hundred.

Fortunately, we believe we have found a novel technique to solve the problem of

varying sample lengths. As will be discussed in section 3.11 below, great e�ort has

gone into developing statistical models of authors' characteristic vocabulary distributions.

Holmes [7] cites some interesting work by Muller which seeks to remedy the di�culty of

comparing the vocabulary distributions of texts of di�erent lengths, and we believe we

can bring this solution to bear on the type/token ratio problem.

We �rst note that, if we reduce a text's length by some fraction

U
def
= 1 �Nf=N (3.6)

where the quantity Nf represents the length of the text after reduction, the probability

that a type appearing once will disappear is U , provided the reduction is made randomly.

The probability that a type appearing twice in the text will disappear after a random

length-reduction is U2; in general, the expected number of types that will disappear from

the text after reduction, Vd, is

Chapter 3. Statistics Computed in this Experiment 62

Vd =
1X
i=1

ViU
i (3.7)

and thus the expected value of V , Vf , in the reduced text|that is, the expected number

of types that remain|is given by

Vf = V � Vd (3.8)

=
1X
i=1

Vi(1 � U i): (3.9)

Application of this formula requires a complete knowledge of the frequency distribu-

tion of lexemes. Since such knowledge will be useful in computing other statistics, such

as the lexical entropy discussed in section 3.2, and since it is not in any event a di�cult

programming task given the resources at hand, we do not view this fact as a signi�cant

drawback.

It can be shown that the ratio Vf=V is a function only of U , N=V , and V1=V .

Holmes [7] notes a study by Ratkowsky and Hantrais, who computed tables listing Vf=V

for various values of these three ratios; they found that for large V1=V or low U , Vf=V

is virtually independent of N=V . While the validity of this result does depend on the

Waring-Herdan distribution (see section 3.11 below) providing a good �t for Vi, since we

expect that V1=V will be relatively high in our small samples, and that, in most cases,

U should be low, they do increase our con�dence in the method.

We propose to combine Muller's text-length reduction technique with the type/token

ratio as follows: for some appropriate value of Nf , we will compute Vf on all samples

where N � Nf . We will then compute and record the ratio Vf=Nf .

We must now turn to the question of the choice of Nf . As of yet, we have no statistics

on the size of our samples. Therefore, we cannot give a meaningful value for Nf , except

to say that the distribution of sample lengths will be such that Nf will be greater than

N for some proportion of our samples. For these samples, we will use an average of the

Chapter 3. Statistics Computed in this Experiment 63

statistics computed for the samples for which we were able to compute statistics, since

this seems to be the only well-motivated means of ensuring that we have statistics for

each sample.

We should note that we could simply have picked Nf words at random from our

samples for any Nf , then computed Vf on the resulting set. After all, it is the case

that the text reduction technique was designed primarily for situations where researchers

have concordances, and thus random-sampling would have been infeasible since new con-

cordances would have had to have been created. This suggestion has two drawbacks,

however: �rst, text reduction allows us to use all the information contained in a sample,

rather than ignoring a substantial and possibly valuable proportion of the sample's con-

tents. Secondly, since we cannot take a truly random sample of text, this method appears

to be theoretically better-motivated than taking an inevitably biased part of text out of

our samples.

Holmes [7] reports that Baker developed a statistic which he called \pace", de�ned as

R�1|to be thought of as the rate at which an author uses new words. Baker claims good

success with this statistic|success independent both of text length and genre. Holmes

properly expresses suspicion of this result, considering that Baker's work has no statistical

foundation and it is based only on comparing Shakespeare and Marlowe|whose works

are of similar length and genre. Although very easy to calculate, we believe that even if

Baker is correct our sample sizes are simply too small for this statistic to be unbiased.

Far more e�ective methods of estimating the richness of an author's vocabulary have

been developed and are discussed below, so it would not be pro�table for us to compute

R�1.

Chapter 3. Statistics Computed in this Experiment 64

3.10 Measures of Vocabulary Richness

3.10.1 Simpson's Index

More sophisticated techniques than the basic type/token ratio have been tried in the

attempt to measure the richness of an author's vocabulary. Holmes [7] cites work from

1949 by Simpson, who proposed that a good way to characterize the richness of the

vocabulary used in a sample would be to measure the chance that two arbitrarily-chosen

word-tokens would belong to the same type. Denoted D, this is equivalent to the ratio

of the total number of identical pairs divided by the total number of possible pairs; that

is,

D
def
=

P
1

i=1 i(i� 1)Vi
N(N � 1)

: (3.10)

Since D measures the degree with which words are repeated, not just the number of

words in a given sample, it is far more reliable to work with than R. From Holmes [7]

we learn of work by Johnson who showed that

�(D) =
1X
i=1

P 2

i (3.11)

where �(D) here denotes the expected value of D and Pi has the same meaning as in

equation 3.2. The above equation means that the expected value of D is the probability

that any two items chosen at random from the entire population of vocabulary words

will belong to the same type. Therefore, D is seen not only to measure richness but to

provide an unbiased measure of the corresponding population value, independent of N .

It is thus clear that D could provide us with important information and we will compute

it.

It has been shown that D is far more sensitive to variations of higher-frequency

words|nearly always function words|than lower-frequency content words. The almost

Chapter 3. Statistics Computed in this Experiment 65

negligible contribution of non-function words is very unfortunate from our perspective,

since we would like to follow Lancashire [16], who recommends that content words contain

much information about style. We will nonetheless compute D, bearing this caveat in

mind when we examine whether D and our function-word frequencies appear to play

di�erent roles in our testing.

3.10.2 Yule's Characteristic

Holmes [7] describes work done by Yule in 1944, who developed an estimate of vocabulary

richness based on the assumption that the occurrence of a given word is based on chance

and can be regarded as a Poisson distribution|that is, the likelihood that some given

word will be used is �xed over any amount of time. Under the Poisson assumption,

�P 2

i =
X
i

i(i� 1)Vi=N
2:

From this, Yule derived his \characteristic":

K
def
= 104

P
i i

2Vi �N

N2
(3.12)

where 104 is used to scale the output. It can be shown that

10�4K = D(1 � 1=N):

Although several modi�cations to K have been proposed in the literature, none appears

to give substantial advantages. Some authors propose that K should be calculated using

only some classes of words, but this too has not met with general approval in the litera-

ture, most scholars preferring to include all words when computing K. Holmes [7] cites

work which showed that, under the Poisson assumption, K is constant with respect to

N|a very desirable property from our standpoint. Nonetheless, many authorities are

still skeptical of K, since the notion that word selection from an author's vocabulary can

be modeled by a Poisson process is not well-accepted.

Chapter 3. Statistics Computed in this Experiment 66

We must take care to ensure that the values of our statistics do not deviate dra-

matically from the range 0 to 1, since this could introduce bias into our networks; it is

well-known that neural networks are not tolerant of input that varies widely in magni-

tude. We will therefore compute 10�4K, since the value of this statistic will not di�er

much from D and thus will not be outside our preferred range. We feel that we should

compute a version of K because, although closely related to D, there is some evidence

that it has produced useful information, and we should therefore at least evaluate its

e�ectiveness.

3.11 Vocabulary Distribution Modeling

Even to one completely unfamiliar with statistical characterizations of style, to attempt

to describe the word-usage patterns of any person with a single measure|however well-

motivated and thorough|must appear astonishingly crude. Practitioners in the �eld

agree, and so have expended much time in developing methods for modeling word-usage.

Chief among these is the modeling of vocabulary distributions. This is based on the

idea that for all authors, there exists a parametrized relationship between i and Vi,

and that particular values of the parameters are associated with particular authors.

This relationship is usually modeled as a distribution|that is, researchers have sought

distributions which appear to correlate well with the values of Vi empirically observed in

many works.

Many prospective distributions have been tried. The best results have been achieved

by the Waring distribution, applied to this problem by Herdan in 1964 and now known

in the stylistic literature as the Waring-Herdan distribution. The distribution has two

parameters, x and a, such that

0 < a < x;

its formula is derived by multiplying (x � a)�1 and a series expansion of (x � a)�1 by

Chapter 3. Statistics Computed in this Experiment 67

x� a, producing the expression 1

1 =
x� a

x
+
(x� a)a

x(x+ 1)
+

(x� a)a(a+ 1)

x(x+ 1)(x+ 2)
+ : : : (3.13)

+
(x� a)a(a+ 1) : : : (a+ n� 2)

x(x+ 1)(x+ 2) : : : (x+ n� 1)
+ : : : (3.14)

=
x� a

x
+
1X
i=2

(x� a)�
Qi�2
j=0(a+ j)Qi�1

j=0(x+ j)
: (3.15)

We then assume that, in the limit of an in�nite text size, the value of the i-th term of

this series will approximate the proportion of types that appear i times in the text. That

is,

P1 =
x� a

x
(3.16)

Pi =
(x� a)�

Qi�2
j=0(a+ j)Qi�1

j=0(x+ j)
2 � i (3.17)

In order to make this model useful, x and a must characterize the length of text as well

as the richness and extent of its vocabulary. Herdan proposed the following formulae:

a
def
=

�
V

V � V1
�
V

N
� 1
��1

; (3.18)

x
def
=

aV

V � V1
: (3.19)

Holmes [7] points out that Dolphin and Muller demonstrated that Herdan's original paper

contained a calculation error, so that the formula for a should in fact be

a
def
= (1�

V1
V
)(
N

V
� 1)(

NV1
V 2

� 1)�1: (3.20)

From these formulae, the expected number of words employed i times in a text will be

1Holmes's paper gives the �rst term of this series as x�a

a
. Since for most values of x and a this yields

results > 1 we have assumed this to be a typographical error and so have used x�a

x
as our �rst term.

Chapter 3. Statistics Computed in this Experiment 68

�(Vi) = V Pi (3.21)

as Pi has been de�ned in equations 3.16 and 3.17. Thus, by examining a corpus of an

author's work to compute values for a and x, we can generate values of �(Vi) and compare

these values with those actually observed in a text whose authorship is disputed.

Holmes [7] observes that Muller in 1969|even before the correction to Herdan's

formula had been made|showed that this model is reasonable for text lengths

100 < N < 100; 000:

This result is very favourable from our standpoint. Also, it has been observed that this

distribution overestimates the contribution of low-frequency words, but even this is not

necessarily a drawback of the technique for our purposes, since the contribution of high-

frequency words will already be well-represented in our computations by the statistics we

compute for function-word frequencies, and word-length statistics, for example. However,

it has also been observed that, particularly for small samples of text, V grows proportion-

ally with N . Thus, because our sample sizes vary signi�cantly, it will not be appropriate

for us to compare values of �(Vi) for any samples. We can of course compare values of Pi

for di�erent values of i with every expectation of discovering valuable information|these

are probabilities and are independent of text length. Recognizing that our samples are

small, and thus we expect V5, for instance, to be negligible, we will record only the �rst

�ve terms of the Waring-Herdan distribution for each sample.

3.12 Special Type Frequencies

It has been estimated that ten percent of English vocabulary accounts for ninety percent

of all English text. In spite of this fact, whenever the frequencies of types within a text

have been analyzed, types appearing once (V1 or hapax legomena) are always the most

Chapter 3. Statistics Computed in this Experiment 69

numerous group. Many researchers have postulated that valuable information about an

author's style can be found by examining hapax legomena. Some research has been

conducted into whether once-appearing words occurring at the beginning of a sentence

could prove helpful. While the criticism that this depends on punctuation, often beyond

an author's control, does not apply in our case, subsequent research has questioned the

statistical soundness of this technique.

It has also been reasonably postulated that hapax legomena should increase, ob-

tain a maximum, and then decrease as N ! 1. However, at least two large studies

have cast doubt upon this conjecture: Holmes [7] states that, for the two million-word

Kierkegaard corpus, V1=V = 0:4359; for a corpus with approximately 103 million words

of American English, V1=V = 0:4472. This surprising degree of constancy adds support

to the contention that hapax legomena could play an important part in stylistic research.

Holmes [7] cites Honor�e, who, in 1979, de�ned a measure

R̂
def
=

100 logN

1� V1=V
: (3.22)

This measure is designed to test the propensity of an author to choose new in place

of previously-used words; the higher the value of R̂, the richer the author's vocabulary.

Honor�e found this measure to be stable for text of size above 1300 words in Latin text.

Since this measure has met with considerable acceptance in the literature, we will com-

pute a version of it. As with Yule's characteristic, we must remove the scaling factor 100

so that the values of the measure are closer in magnitude to other values we compute.

Even after rescaling the measure, we use it with caution, since our text sample sizes are

dramatically di�erent from those Honor�e employed, and we must expect that the rate of

hapax legomena we observe will vary dramatically between samples and in general will

be far higher than commonly seen in previous work. We will also compute the ratio of

hapax legomena to the total number of types, but we will use it with even more caution

than we use Honor�e's measure.

Chapter 3. Statistics Computed in this Experiment 70

Another measure that has attracted attention in the literature is the proportion of

hapax dislegomena in a text. Holmes [7] reports that where 1000 < N < 400; 000 this

ratio has been found to be stable; tests on real data have found that, for a particular

author, the ratio is virtually constant. It has been hypothesized that this constancy

derives from the fact that, after an author has written about 1000 words, approximately

as many words will be used a third time (leaving V2) as will be used a second time

(leaving V1 and entering V2). Unfortunately, it has also been noted that, below 1000

words, the proportion of hapax dislegomena increases rapidly. While our samples are

almost universally less than 1000 words in size, since we must calculate V2 for other

statistics, we lose nothing by recording the value of V2=V for each sample.

3.13 Character-Level Statistics

As we have mentioned previously, broad agreement exists within the �elds of authorship

attribution and stylistics that statistics on the level of the lexeme are the most appropri-

ate for work in these �elds. But several statistics at the level of characters, in addition

to those we have discussed in sections 3.2 and 3.6, have been tried: some authors, in-

cluding Mealand [21], have calculated the proportion of words containing certain letters

in particular positions within words. The reasoning behind this measure is that, partic-

ularly in in
ected languages like English and Greek, valuable grammatical information

can be captured by simply looking at the positioning of certain letters in words. For

example, in English, if the last character of a word is \s", the chances that the word is

a plural form are very high; if the last two letters are \ed", the word is more than likely

a past participle. Hence, the information provided by such statistics may well be useful

in situations where little other grammatical information is available. However, there is

no obvious well-motivated means of determining just which letters to look for or in what

positions in a word they should be sought. In our study, we have POS frequencies; since

Chapter 3. Statistics Computed in this Experiment 71

this information will be both more reliable and more plentiful than letter-ratios, we need

not avail ourselves of them.

Another strategy that has been employed is to calculate the percentage frequencies

of the letters of the alphabet in which the text was written. Sometimes percentages of

numerals are also included. A priori, it is no less creditable that this approach should be

successful than that determining frequencies of function words should prove productive;

but, unlike the case of the latter, there has been little evidence advanced in the literature

to support the former approach. Therefore we feel comfortable in refraining from using

it.

3.14 Inter-Sample Approaches

So far in this study, we have focused exclusively on what might be termed \intra-sample"

approaches to stylistic analysis. The common element found in all such methods is that

they view style|or whatever aspect of an author's idiolect they purport to measure|as

being intrinsic to the work of an author, as something for which a meaningful char-

acterization can be rendered by examining a speci�c sample of work. \Inter-sample"

approaches, on the other hand, view style as a comparative quality; though not meaning-

ful (or at least not describable) in isolation, the direct concept involves the comparison

of two or more samples.

If our goal is to assist a compiler of a collaboratively-written document, then in-

evitably most of the information we provide will have to be in the form of compar-

isons. Fortunately, there is nothing in the intra-sample perspective which disallows

comparison|it simply becomes a secondary process; �rst one acquires the pro�les of

some samples, then �nds similarities and di�erences amongst the set. The inter-sample

approach is much more direct, and therefore arguably more immediately useful. In this

section, we examine some inter-sample techniques and review their applicability to our

Chapter 3. Statistics Computed in this Experiment 72

problem. We conclude the section with a discussion of how an experiment to test these

techniques might work, as well as an examination of the reasoning behind our decision

to proceed with an intra-sample experiment �rst.

One �eld where inter-sample measurement is the norm rather than the exception is

information retrieval (IR). One of the principal problems in this domain is to assess the

degree of similarity between two or more documents, or between a query and some set

of documents (or document segments). Many possible ways exist for doing this. Among

these, tests for matching words are a major category. Such tests are often strengthened

so as only to include verbs and nouns, and weakened so that nouns match even if they

are similar (as measured using WordNet, for example) and verbs match if they are in the

same Levin class (that is, are semantically-similar and possess similar \alternations"; see

Levin's book [17] for details). Hatzivassiloglou et al [6], in developing ways to extract

summaries from a set of very short articles, have re�ned these methods and de�ned

some novel \composite" metrics|methods which report a match only if two \primitive"

elements match according to certain constraints. For instance, a constraint might be that

two similar verbs precede by less than some �xed number of words two similar nouns.

The paper goes on to exhibit some interesting methods for normalizing the results with

respect both to sample size and to the frequency of the features under consideration.

Stylistic studies and information retrieval e�orts are quite disparate �elds, of course.

Whereas in IR, the content of a document is of paramount importance, in stylistics it is

the way the words comprising a document are put together that is important, and content

is if anything a distraction. Thus, IR techniques certainly are not directly applicable to

this|or any other|study primarily concerned with style. Nonetheless, work focusing

on inter-document similarities might do well to try and adapt some of these measures.

Such adaptation might, for instance, consist of weakening the composite features of

Hatzivassiloglou et al [6] so that they are independent of content, and capture some

deeper structural characteristic of an author's writing habits|they might look for the

Chapter 3. Statistics Computed in this Experiment 73

placement of adverbs with respect to modal or main verbs, for example. That such work

is strictly comparative seems certain; it is not at all obvious how such traits as these

could be intelligently conveyed through the examination of a single, isolated document.

We have discussed in section 3.9 a method of normalization which has traditionally

been applied to comparing the vocabulary distributions of works of di�erent lengths. For

studies in authorship attribution, the process involves computing a distribution (such

as the Waring-Herdan model described in section 3.11) based on corpora of undisputed

authorship. Vf is then determined for each author under consideration, in such a way

that the corresponding Nf coincides with the length of the work whose authorship is

in dispute. At this point, �(Vi) for the various prospective authors is computed and

compared with the values of Vi that are actually observed.

This approach could be very powerful for our problem, since vocabulary distributions

can paint a detailed picture of the richness of an author's vocabulary|undoubtedly a very

important part of a characterization of an author's style. Indeed, we went to considerable

e�ort investigating ways we might modify our experiment to incorporate this feature|

and this was the genesis for our idea to apply text-reduction to the type/token ratio.

We eventually were forced to conclude that, both because of problems with scaling and

because there is no obvious means of integrating an inter-sample measure with our intra-

sample measures, it would not be possible for us to include this type of measure in our

study.

Clearly, it would not be di�cult to construct an algorithm for �nding boundaries in

authors' contributions based on inter-samplemeasures. Further investigation of the above

two techniques and other inter-sample methods will no doubt be necessary in subsequent

studies. But we feel strongly|and the clear preponderance of intra-sample measures in

the stylistic literature appears to support our contention|that style is fundamentally an

intrinsic property of a sample of text, and that to give a human meaningful feedback on

precisely how two samples di�er it will be necessary �rst to characterize the style of each

Chapter 3. Statistics Computed in this Experiment 74

sample independently. While our hypothetical advice will no doubt have to be given

in comparative terms, we believe that the most general and best-motivated approach to

the problem is to compare well-founded measures of single samples, rather than utilizing

measures based on some direct comparison of the samples. Such comparative measures

may certainly provide valuable auxiliary information, but we think it unlikely that they

will be su�ciently general or straightforward to be decisive in themselves.

3.15 Statistics Database Organization

The primary purpose of this section is to describe the format we use to store all the

statistics that we compute in this phase. Nonetheless, it also serves as a good summary

of those statistics.

As in the case of the database of authors' contributions we compiled in the �rst phase

of the experiment, we feel that it is important for our statistical database to be organized

in a way that makes the information as accessible to a human as to a computer. The

design must also be su�ciently
exible to allow us easily to extract subsets of statistics

that we might develop an interest in during the next phase of the experiment. With

these goals in mind, we set considerations such as space-e�ciency aside and focus on a

design that is both simple and modular.

Our database will consist of a set of �les each of which will be derived from and

have the same name as some �le from our processed corpus. A �le will comprise several

records, each corresponding to a particular paragraph of the corpus �le from which the

entire database �le was derived. Each �eld of a record will exist on a separate line, and

the entries (always numbers) in a �eld will be separated by one space character. The

records will be separated with blank lines. Table 3.5 describes the order in which the

statistics we have decided to calculate will appear in any given record.

Table 3.5 represents a daunting quantity of statistics|133 di�erent statistics will

Chapter 3. Statistics Computed in this Experiment 75

Line Number Description of Fields within Record

0 paragraph number, num. of lines

1 N , V

2 average word length, freq. of i-letter words 1 � i � 15

(words with length > 15 counted as 15-letter words)

3 average syllables/word, freq. of i-syllable words 1 � i � 6

(words with > 6 syllables counted as 6-syllable words)

4 average words/sentence

5 rel. freqs. of various parts of speech

6 rel. freqs. of function words (see table 3.4 for details)

7 rel. freqs. of punctuation (see table 3.2 for details)

8 lexical entropy, Juola's measure

9 normalized type/token ratio R

Simpson's index (D), modi�ed

Yule's characteristic (10�4 �K)

modi�ed Honore's measure (R̂
100

)

10 ratio of hapax legomena (V1
V
)

ratio of hapax dislegomena (V2
V
)

11 �rst �ve terms of corrected

Waring-Herdan distribution

Table 3.5: The contents of each record of our statistics database.

Entries in the �elds of the records will occur from left to right as indicated in the table.

Line numbers are relative to the lines of each record|i.e. each new record begins with

line zero.

Chapter 3. Statistics Computed in this Experiment 76

be calculated for each sample of text. However, the organization of the records is not

coincidental: we have designed the database so that certain categories of statistics will be

easy to ignore, at our discretion. Indeed, it is unlikely we will construct any network that

uses all the statistics|as mentioned above, we should likely avoid training our networks

with both average syllables/word and relative frequencies of syllables/word.

The amount of work required to implement this table is certainly ambitious. But the

function-word frequencies are trivial to calculate, as we describe in the next chapter. D

and K are related so that once one can be calculated the other follows trivially. With

these economies of scale in mind, we are con�dent that the set of statistics we have chosen

to compute is both comprehensive and feasible.

Chapter 4

Generating the Statistics

4.1 Introduction

However straightforward and well-motivated a stylistic statistic may be, it can certainly

never be a completely trivial matter to extract that statistic from a corpus of raw text.

We have expended so much e�ort during this study on computing our statistics that we

have seen �t to devote this entire chapter of this thesis to discussing these issues.

This chapter commences with an examination of the general approach we have taken

in implementing and testing all of our statistical routines. It continues by describing

some of the general assumptions we made concerning aspects of the text such as what

measurements should be case-sensitive and what kinds of strings should constitute words.

We proceed by considering some problems we faced when extracting speci�c statistics:

namely, average sentence lengths and part-of-speech frequencies. We conclude the chapter

by describing two simple methods we used to ensure that we had properly applied all of

our measurements.

77

Chapter 4. Generating the Statistics 78

4.2 General Approach

From the outset, it was clear to us that a radically di�erent implementation design was

required for this phase than for the �rst phase of the experiment. Instead of performing

a number of changes to a given �le, our problem now was to produce a �xed set of data

from every paragraph comprising a given �le. We further observed that each data set

would be composed of a series of subsets, corresponding to correlated statistics such as

our various categories of frequencies; each subset would be generated by a discrete unit of

code. Several of these statistical categories also depend on the same data: for example,

both hapax legomena and hapax dislegomena require a knowledge of type frequencies,

obtainable only via a complete knowledge of the tokens in a passage. Similarly, all of

our vocabulary richness measurements require some information on the type distribu-

tion. The desire to avoid computing information multiple times for each paragraph while

keeping our design as simple as possible motivated our decision to apply all our calcu-

lations in sequence to each paragraph, then record the computed data set, rather than

to apply each operation to all paragraphs and then assemble all the data sets from their

components.

As in the data-normalization phase of the experiment, we believe that the achievement

of the highest possible accuracy must be at least as high a priority in this phase as the

speci�cation of a simple and e�cient design. In order to ensure that our statistical

routines are accurate, it is imperative that we be able to evaluate them separately as well

as in conjunction.

As a means of accomplishing all these tasks, we used Perl's module facilities. Modules

in Perl are the rough equivalent of classes in true object-oriented languages: they permit

the storage of a set of methods and data elements, with mechanisms for controlling

access to identi�ers. Our module contains not only all the routines necessary to calculate

each statistic from a given paragraph, but the routines to coordinate the sequence of

processing and build a data structure containing all the statistics for a given paragraph.

Chapter 4. Generating the Statistics 79

It also contains the method to write this data structure to a �le. Finally, the module

contains all of our static data such as our function-word list.

The module paradigm provides an excellent means of ensuring accuracy because it

allows us to construct a dedicated test platform for each routine which, after being

thoroughly tested, can be used without change during the actual data-gathering run. For

virtually all the functions in our module, we wrote small programs that took a paragraph

on standard input, applied the routine of interest (with all necessary preprocessing) to

that paragraph, and sent the output to standard output. This
exible structure allowed

us to subject our code either to synthetic tests or real data with the same ease.

We have stored our data according to the description described in section 3.15. The

data structure we used to store the statistics for a paragraph before committing them to a

�le is fairly straightforward, motivated by a desire to make the data-writing procedure as

error-proof as possible. The data structure consists of an array of array references, each

referring to an array containing the contents of a single line of output. For instance, the

�rst reference in our data structure refers to an array containing the paragraph number

and the number of lines contained in the paragraph|both, in this case, generated by the

procedure responsible for coordinating the data processing.

The foregoing demonstrates that our desire to promote accuracy combined with sim-

plicity and e�ciency could be expected to be achieved by our design. As we make clear

in section 4.4 below, it turned out that those goals were not all reachable for every statis-

tical category. Unfortunately, we discovered this long after it would have been practical

to alter our implementation enough to meet the actual situation fully.

4.2.1 Interesting Implementation Details

Before we justify several general assumptions, we turn to highlighting some of Perl's

features that facilitated our implementation. One of the bene�ts of our use of Perl

modules is their ability to perform certain actions when they are loaded|much as a

Chapter 4. Generating the Statistics 80

constructor would do in a true OO language. By utilizing this feature we were e�ciently

able to load the MRC2 dictionary (over ten megabytes in size) into memory for our

syllable-frequency calculations: instead of loading it for each paragraph, or each �le, we

were able to load it once per execution of our master data-generation script.

Perl's hash data type, or \associative array" as its manual terms it, is an invaluable

tool in any work where arbitrary strings need to be associated with numerical values.

We used hashes to store our function-word, punctuation and part-of-speech frequencies,

as well as to keep track of the number of times each type had occurred in the paragraph

under consideration. In a language without these facilities, it would have been necessary

either to implement a hashing scheme of our own, or to use an array of data structures

with both string and value �elds, then to mount costly searching and sorting operations

on this array. By using these hashes as parameters to procedures such as those responsible

for vocabulary richness, lexical entropy, hapax, and Waring-Herdan statistics, we were

able to keep our implementation both clean and modular. We have taken care to avoid

using the facilities Perl provides for iterating through a hash when it comes to outputting

our data; because of the way hashes are implemented, the order of this iteration is not

de�ned. To achieve a consistent ordering of the frequencies we store in hashes, we created

an array whose elements contain the keys of the hash in the order in which we wish its

values to be output. Then we simply iterate through the array, using its values as the

keys to obtain the desired hash value.

4.3 General Assumptions Behind the Statistical Com-

putations

The implementation of most of the statistical routines was very straightforward; the next

section describes those routines for which implementation was not simple. In this section

we focus not so much on implementation-level details as on the assumptions we made

Chapter 4. Generating the Statistics 81

about how the data should be treated for particular statistical categories.

4.3.1 Tokenizing the Text

Since almost all of our statistics are computed on the level of the lexeme, arguably the

most important routine in our statistics module is that responsible for tokenizing a given

paragraph. Not only must this routine be able to pick out all identi�able words from

a given text, ignoring non-words like isolated ellipses or dashes, but it must be able to

strip o� punctuation from the words. This latter ability is crucial; for the purposes of

our many type frequency statistics, \computer", \computer," and \(computer)" should

all belong to the same type.

These considerations made it apparent that it would be necessary for us to write

our own routine for tokenizing our corpus, there being no other software available that

would meet our requirements. Our �rst step in tokenizing our text was to treat our

paragraphs as single lines. This normalization simply makes implementing our algorithm

simpler; since in this context newlines have no more interest than any other whitespace

character, there are no disadvantages in replacing with them with spaces. We dispense

with tab characters and multiple consecutive spaces in like manner; the presence of two

or more consecutive whitespace characters is of no more signi�cance to us than a single

one. After this preprocessing, our paragraph is reduced to a single line of tokens, which

are each members of any of several word-classes, and are separated by characters which

do not �t into the word-classes given the context. Since all of our word-classes insist

that a word commence with an alphanumeric character, to �nd all the words in the line

we need only iterate the following two steps until the line is empty: �rst, we determine

the longest series of characters starting at the beginning of the line which matches the

speci�cation of any word class. We then remove from the line those characters and all

that come between them and the next alphanumeric character, or the end of the line.

By assigning the substrings we determine to represent words to elements of an array, we

Chapter 4. Generating the Statistics 82

have a straightforward means for identifying and extracting the sequence of words that

makes up the paragraph under consideration.

We have identi�ed eight word-classes. The most obvious of these is any string com-

posed solely of alphanumeric characters. Thus, strings like \3D" or \A1" are considered

to be single words. Any alphanumeric string strictly containing one or more single dash

or underscore is also taken as a word; \3-D" and \run-of-the-mill" are therefore one word,

but \B-" is truncated to \B". While this treatment would be erroneous in the context of

a report card, in our corpus examples of this usage are quite uncommon. Also, our corpus

is not tightly proofread; it must be anticipated that authors will occasionally use a single

hyphen after a word, instead of two or three, to mean a long dash; such punctuation

should of course either not be followed by a space, or preceded and followed by one, but

such small inconsistencies are often observed in the corpus. This lack of proofreading is

bene�cial to us in one respect, however: soft hyphens|hyphens inserted between two

syllables in a word by typesetters to allow the word to span two lines and improve the

aesthetic appearance of the text|are almost unknown in our corpus, and can therefore

be safely ignored.

Alphanumeric strings with apostrophes in their last, second-last or third-last positions

are also considered single tokens. They form our third word-class. Short forms like \'em"

are not treated correctly, since the apostrophe is stripped; because such words are not

common, but the use of this character at the beginning of words to signify a single quote

is quite common, we felt this compromise was unavoidable. Unfortunately, this also

means that when the apostrophe is used as a quotation mark at the ends of words, it will

be included with the rest of that word; while this is not correct, the use of apostrophes

in this position to indicate collective possession is very common indeed.

Acronyms are also considered whole words, and we permit both lower- and uppercase

letters to comprise an acronym. Thus \a.m." is considered as a single word. Since

URL's are very common in our corpus, they form our �fth word-class and we attempt to

Chapter 4. Generating the Statistics 83

treat them as single words wherever possible; we include all characters between \http"

or \ftp" and the next greater-than or whitespace character as part of the single token.

It can be argued that this de�nition is too restrictive, since many URL's are not given

with the protocol identi�er; it can also be argued that, in view of their prevalence in

our corpus, we should have specially provided for e-mail addresses as well. However, we

were concerned that either broadening of the de�nition might have made it harder to

treat strings such as \his/her" or \and/or" as consisting of two separate words|as they

should be considered, in our view.

Numeric strings for both times (e.g. \12:45") and dates (e.g. \11/06/99") are con-

sidered single words, and are our sixth and seventh word-classes respectively. Finally,

numeric strings containing one or more periods are also considered single words; not only

are such often used for phone numbers, but the period is used in place of the slash as a

date-separator by some authors. Periods which occur at the ends of these strings are not

included: \3.14." is treated as \3.14".

As a result of the modularity of our de�nition of what strings constitute words,

we were able to simplify our testing strategy by sequentially implementing the various

word-classes, and then ensuring that they captured word-forms of their type yet did not

interfere with each other. Even though we are con�dent that this simple strategy �nds

most problems, for such an important procedure it would have been bene�cial had we

been able to �nd a facility to give con�rmation of the e�ectiveness of our procedure. Our

�rst step in this direction was to examine the performance of the standard Unix utility

wc (word count). This program outputs the number of characters, words, and lines in

a given input stream. It has been part of standard Unix distributions for many years,

and we had hoped to use its output to con�rm that we had identi�ed the correct number

of words in a given paragraph. Unfortunately, the de�nition of \word" adopted by this

utility is very simplistic: a word is viewed simply as a sequence of characters bounded by

whitespace. Thus, the sequence community -- there has been is considered to have

Chapter 4. Generating the Statistics 84

�ve words, while community--there has been only contains three. Since we believe

that the true result for the above example should be four, it was clear that wc is too

inaccurate to be of any use to us whatsoever.

Thus, we were compelled to rely on arti�cially-produced testing data, as well as a very

small sample of real data. We conducted a small test of this routine in conjunction with

our evaluation of our routine for calculating the average number of words per sentence in

a paragraph. This test is summarized in table 4.1 located in subsection 4.4.1. We have

found no signi�cant errors in this routine, but it must be admitted that it has not been

validated as extensively as might be desired.

4.3.2 Case Selection

A priori, it is far from obvious for which statistics the case of the words in our corpus

should be deemed signi�cant. We have made no assumptions in the statistical routines

themselves; in none of them are any changes made to the input paragraph. Instead, we

have chosen to express case-related assumptions in the statistical coordination routine,

believing that such localization would make changing the assumptions in light of better

reasoning a much less involved undertaking.

Of all the decisions we made along these lines, the decision to treat types case-

insensitively clearly has the most wide-reaching rami�cations for our work. All of our

vocabulary richness and vocabulary distribution statistics, as well as hapax legomena and

hapax dislegomena, depend directly on how Vi and V are related for various values of i.

For instance, treating types case-sensitively would necessarily increase V1 in proportion

to V and decrease Vi for larger values of i.

While there seems little reason to prefer the case-sensitive approach|other than that

it may accord better with a literal, or at least orthographic, interpretation of the de�nition

of types|because of these extensive rami�cations we shall provide detailed justi�cation

for our decision. We believe that vocabulary and case are orthogonal concepts. That

Chapter 4. Generating the Statistics 85

some words, such as proper nouns, when written in English require capitalization plays

no role in how an author might think about|or even think of|those words. It is also not

relevant to when and whether an author might think to use words that sometimes require

capitalization, when part of a cited title or when placed at the beginning of a sentence|

indeed, there appears to be no category of words that may not appear at the beginning

of any grammatical English sentence. Therefore, we believe that when attempting to

evaluate the richness of an author's vocabulary|or any other characteristic attributed

to vocabulary|case should play no role, even though words with letters of di�erent cases

are not, strictly speaking, the same.

For other applications than describing an author's vocabulary, case certainly is rele-

vant. To deprive our part-of-speech taggers of the valuable information provided by case

would doubtless have had dramatically negative implications for their accuracy. Likewise,

Juola's statistic clearly considers case to be signi�cant. Since it represents an attempt

to characterize the structure inherent in a text, it could be argued that lexical entropy

should also be measured in a case-insensitive context. However, since much of the struc-

ture of a text must exist in its division into sentences, we felt it better to measure lexical

entropy with the case of the text unmodi�ed. Naturally, function-word frequencies have

been calculated case-insensitively.

4.3.3 Possessives and Clitics

Strings containing apostrophes posed some interesting questions. On the one hand, the

strings \he's" and \isn't" contain words that we might like to count in our function-

word frequencies. On the other, an author's choice to use \isn't" instead of the semantic

equivalent \is not" de�nitely indicates something about the register of a passage, and

possibly about the style of the author as well. Yet we wish to treat our data consistently

with regard to all of our statistics.

In the end, we decided to leave tokens containing apostrophes unchanged for all

Chapter 4. Generating the Statistics 86

our computations except those involving part-of-speech frequencies; see subsection 4.4.2

for a discussion of these issues. Clearly, for the purposes of our vocabulary richness

measurements this is the correct treatment. For words denoting possession, the postulate

that authors think of the word and its possessive function separately seems insupportable;

the word \John's" is a single entity, describing a relation of some thing to the concept

\John". This implies that \John's" and \John" should be counted as distinct types. It

seems reasonable to conjecture that people even think about words containing clitics like

the modal verb negations as single units rather than as containing two distinct concepts.

To use the language of Lancashire [16], we believe both these word-classes would act as

one word in the author's \cognitive black box". By the same logic, it seems perverse to

expand the clitic \n't" to the word \not" and count it in our function-word frequencies.

Thus, we are con�dent that our general treatment of words containing apostrophes is

correct in the context of our experiment.

4.3.4 Juola's Statistic

Before concluding our discussion of assumptions, we should describe our handling of the

implementation of Juola's statistic. For the purposes of this statistic, we have decided to

treat newlines as plain space characters. There is a dual motivation behind this decision:

from a practical perspective, it is much easier to deal with a single line of text than

several lines, particularly when the \window" of Juola's statistic would have to stretch

between consecutive lines. From a theoretical viewpoint, when we recall that most text

is generated with word processors and text editors with word-wrapping, we realize that

most newline characters are inserted automatically, not by authors themselves; that is,

most newlines come into being when an author presses the spacebar. Thus, we think

that treating newlines as spaces in a character-level context such as the computation of

Juola's statistic is not only the simplest approach from an implementation perspective

but is also the correct approach theoretically.

Chapter 4. Generating the Statistics 87

4.4 Problematic Statistics

Having discussed the general assumptions we made, and emphasized the ease of most of

our implementation e�ort, we need to turn to two statistics that proved quite di�cult

to calculate, albeit for totally di�erent reasons. In this section we discuss the obsta-

cles we faced while attempting to compute average sentence lengths and part-of-speech

frequencies.

4.4.1 Calculating Sentence Lengths

The problem of determining sentence boundaries is much more challenging than that of

appropriately tokenizing a text. Indeed, the most accurate approach according to Man-

ning and Sch�utze [18], a maximum entropy model developed by Ratnaparkhi, achieves

results that are signi�cantly less than perfect. We had not realized the full extent of this

di�culty, and this underestimation may lie at the root of some of our di�culty in solving

the problem.

In light of the perceived success of our approach to tokenizing our text, we tried to

solve this problem in the same manner. We view a paragraph as consisting of a sequence

of sentences, where each sentence can be recognized by a regular expression. Thus, to

compute the average number of words in the sentences comprising a paragraph, it su�ces

to iterate through the following steps until no more sentences can be found: �rst, the

minimum-length substring beginning at the start of the paragraph that matches our

regular expression-based sentence de�nition is determined. The characters of which this

substring is made up are then removed from the paragraph, along with certain \garbage

characters" that may follow. The current sentence is then sent to the word-identifying

procedure, which is used to obtain a count of the number of words in the sentence. If

this number is determined to be nonzero, we increment variables counting the number of

sentences and the number of words in the paragraph; otherwise the \sentence" is ignored.

Chapter 4. Generating the Statistics 88

Probably the most obvious weakness of this algorithm is that it is not obvious that

English sentences should in general be recognizable by a regular expression, even if all we

ask is that the regular expression be able to recover sentence boundaries. Our conclusion

after this exercise is that it is indeed not always possible, though with su�cient e�ort it

can be done to a reasonable approximation. Central to the di�culty of this problem is to

distinguish when a marker that may indicate the presence of a sentence boundary is in fact

being used for some other purpose. In English, the three primary sentence boundary (or

\full-stop") punctuation marks are the period, exclamation mark, and question mark.

While the latter two are reasonably well-behaved, only infrequently appearing within

sentences, the period is incredibly polysemous: it is used as a decimal point, to separate

letters in acronyms, to separate date and even time �elds, in short forms such as those

for the names of months, and in titles such as \Dr."|to mention only a few of its uses.

Thus, the determination of sentence boundaries is fundamentally context-sensitive.

To disambiguate these situations, we have adopted the following approach. A sentence

consists of a nonempty sequence of \units", and ends when a \full-stop" character is found

which does not �t into any class of unit. A unit is composed of a possibly empty sequence

of non-word characters (any non-alphanumeric character except dashes and underscores)

followed by a word. We only search for a subset of our word-classes here|only those

classes which may contain periods, plus the general class of words that do not contain

periods. We make no provision for apostrophes at all; the apostrophe is simply a non-

word character that divides two words; it is not the responsibility of this procedure to

precisely count words, only to segment paragraphs into sentences. We have also provided

a generous set of non-word characters that may lie between a full-stop character and

the last word character (e.g. quotation marks, right parenthesis, etc.) This set does

not include space characters. This decision was based on our observation that, for our

domain at least, when ellipses are isolated they tend to represent gaps within a sentence,

while when they immediately follow a word they tend to be used as full stops. While this

Chapter 4. Generating the Statistics 89

heuristic is not well-motivated, there is no question that ellipses are often used in both

ways and it provided at least some means of distinguishing their function.

It should be noted that we are by no means the �rst to employ methods of this sort for

this task: Manning and Sch�utze [18] describe a context-free method only slightly more

complex than ours that has been employed to quite good success. Though we developed

our method initially independently, we might have incorporated this version entirely if we

had felt con�dent that its assumption that case and spacing are good sentence-boundary

cues was valid for our domain.

If it were not for the fact that paragraphs must come to an end, and yet cannot be

expected to end in a sentence terminator, even the primitive method described above

would have had no signi�cant problems. For example, if a paragraph were to end in a

right parenthesis, the above procedure would enter an in�nite loop: it would recognize

the sentence boundary before the parenthesis, then be unable to match on the parenthesis

since no alphabetic characters are present; the regular expression would thus leave the

paragraph unchanged|and nonempty|and the loop condition, demanding an empty

paragraph, would fail. Similarly, if no sentence termination character occurred between

the last character in an identi�able word and the end of the paragraph, the match would

fail and the loop would also execute in�nitely. Allowing the end of the paragraph to

serve as a full-stop indicator is therefore imperative. However, we must be very careful

to ensure that no other sentence terminator lies between the beginning of the string and

the end of the paragraph|else we will fail to count a legitimate sentence.

By using the \non-greedy" pattern matching facilities that are built into Perl and

allowing the end of the paragraph to serve as a sentence terminator, we can e�ectively

solve the latter problem. By \non-greedy" we mean that a pattern is matched to the

minimum extent possible|in this case, until the �rst sentence terminator is found|

instead of matching as much of the string as possible as is normal with regular expressions.

The �rst problem is considerably more di�cult to solve. We approached the problem

Chapter 4. Generating the Statistics 90

with the belief that it was possible to de�ne a reasonably small set of characters and

character strings that may follow a sentence in English; examples are right parentheses,

right brackets, quotation marks of all sorts, and for our domain emoticons of various

sorts.

The data proved that this presumption was quite unjusti�ed. After developing what

we felt was a very generous set of allowed characters and character strings, and testing

our routine with much arti�cial and some real data, we set it aside and completed our

other work. When we ran our master data-generation script on all our �les, we found that

after processing a few �les our program would enter an in�nite loop, most often because

it had encountered an example with some characters or character combinations between a

sentence terminator and the end of the paragraph that we had not thought to include. Not

wanting to regenerate our data because of the high cost of generation (see subsection 4.4.2

below), we simply �xed the speci�c problem and continued our generation from the point

at which our procedure had been stymied. After quite a number of situations of this sort,

we were forced to conclude that our approach is inherently
awed, and that we should

have simply used Perl's built-in \non-word" character-class to eliminate all non-word

characters between a sentence terminator and the next \word" character, (or the end of

the paragraph), even though Perl's \non-word" character-class is rather arti�cial. But by

this time, we were quite concerned that such a dramatic change would have an unknown

and possibly signi�cant e�ect on the consistency of our data, so we felt bound to continue

the time-consuming method of simply �xing problems as they arose.

After having run through the entirety of our data set, we are con�dent that the

average sentence-length data are at least highly consistent, even if their acquisition was

quite costly in terms of time and e�ort. Table 4.1 shows the results of a test we performed

on the completed average sentence-length routine (i.e. the routine that emerged after

all data processing was complete). This table shows that the routine is quite accurate;

indeed, the only errors we found that it made in this test had to do with counting numbers

Chapter 4. Generating the Statistics 91

used in point lists as separate sentences, instead of counting them with the sentence they

refer to. Even this error seems debatable. The table also gives us more con�dence in

our word counting capabilities, since on only two occasions in this twenty-paragraph test

did our word-counting routine err, and on both cases it broke only one word up into two

parts.

After completing the implementation of this procedure for computing average words

per sentence, we commenced investigating the computation of part-of-speech frequencies

(discussed in detail in the next subsection). As noted there, one of the taggers we

used (that by Ratnaparkhi [24]) requires that its text be preprocessed by breaking it

up into one sentence per line. The maximum entropy implementation of the sentence-

boundary �nder mentioned in Manning and Sch�utze [18] is included for this purpose.

While Ratnaparkhi's sentence-breaking utility is considerably more e�cient than his

part-of-speech tagger, since our approach does not require the invocation of Java and

all the overhead of executing Java bytecode, it is still considerably more e�cient. Since

it was not until much data had been generated that we realized our approach could

not be made to succeed for all data, we felt that to switch to Ratnaparkhi's sentence-

breaking program would introduce even more potential inconsistency into our data than

simply discarding all \non-word" characters after sentence-terminators|the approach

that would have removed our program from the danger of hitting an in�nite loop. By the

time circumstances forced us to regenerate a considerable portion of our data, our current

procedure had been made su�ciently stable to withstand all of our data, so changing it

was even then not a reasonable option.

4.4.2 Finding Part-of-Speech Frequencies

Determining part-of-speech frequencies for a text involves several steps. First, one or

more part-of-speech taggers must be chosen. Then a method to send the text to the

tagger(s) must be de�ned. Finally, if more than one tagger has been used, a means

Chapter 4. Generating the Statistics 92

Actual Values Derived Values

Num. of Num. of Average Words Num. of Num. of Average Words

Words Sentences per Sentence Words Sentences per Sentence

81 1 81 81 1 81

58 2 29 58 2 29

85 5 17 85 5 17

113 7 16.1429 113 7 16.1429

39 3 13 39 3 13

75 3 25 75 3 25

25 1 25 25 1 25

70 4 17.5 70 4 17.5

36 1 36 36 1 36

10 1 10 10 1 10

93 1 93 93 1 93

94 5 18.4 94 5 18.4

77 3 25.6667 77 3 25.6667

132 7 18.8571 132 7 18.8571

57 2 28.5 58 2 29

112 10 11.2 112 14 8

55 3 18.3333 55 3 18.3333

121 5 24.2 122 5 24.4

22 4 5.5 22 4 5.5

27 2 13.5 27 3 9

Table 4.1: Comparison of the actual number of words, sentences and average
words/sentence with values derived from our average sentence-length routine.
Results are from two paragraphs chosen (manually) from each of ten randomly-selected
�les. The \correct" results were also generated manually; the derived results are from
the output of the average sentence-length procedure, which outputs one number|the
average words per sentence in the sample. Thus, considerable reconstruction had to be
done to produce the derived data presented here.

Chapter 4. Generating the Statistics 93

of determining the optimal tag sequence must be implemented. In this subsection, we

discuss our reasons for using multiple taggers and then examine in detail our solutions

to each of these three tasks.

Choosing Taggers

Having examined the work presented by van Halteren et al [34], we are of the view that

the accuracy of part-of-speech taggers on arbitrary text can be markedly improved by

combining several taggers, particularly taggers based on di�erent algorithms. Our text is

not of the best quality, there being numerous typing errors and even grammatical errors

throughout. Further, as we have been emphasizing throughout the study, accuracy is of

paramount importance. Therefore, we felt that using multiple taggers would be worth the

considerable extra e�ort that would be required, particularly in determining the optimal

tag sequence.

By conducting a Web search for available software, we located and obtained source

or executable code for �ve di�erent taggers. The oldest tagger we found was the classic

transformation-based tagger produced by Eric Brill [4]. This tagger was used by van

Halteren et al, and is still considered to have a competitive accuracy. It is relatively

simple to use, taking a text �le as input and sending the processed �le to standard

output, appending to each word a slash and the appropriate tag, leaving the layout of

the �le otherwise unchanged. Unfortunately, the well-documented fact that this tagger

expects to be presented with one sentence per line, and that punctuation be separated

from words, was pointed out to us well after we had completed our data generation;

hence, the data we produced with this tagger must be considered highly noisy. The

version of Brill's tagger that we acquired had been trained using the Penn Treebank

tag-set [25]. This tagger also has the advantage of taking relatively little time to load,

and of producing output quite rapidly.

The chronologically next tagger we examined was the Decision Tree Tagger from the

Chapter 4. Generating the Statistics 94

University of Stuttgart [26]. This is a very robust tagger which is remarkably easy to

use|one simply supplies the untagged text on its standard input and it sends the result

to standard output. The time it takes to load is also by far the shortest of any of the

taggers we examined; additionally, it is able to process a paragraph of text virtually

instantaneously even on a comparatively slow machine. A considerable disadvantage of

this tagger, which only manifested itself fully during the actual experiment, is that its

output includes not only the words and the tags which correspond to them, but the word's

morphological stem (or \unknown" if such cannot be determined) in an aesthetically

pleasant columnar format, one line devoted to each word of the input. This adds very

considerably to the quantity of output produced by the tagger. Our version of this tagger

was also built using the Penn Treebank tag-set.

We have already alluded to Ratnaparkhi's maximum-entropy tagger [24]. This tag-

ger assumes that the input text will be broken up so that each line contains precisely

one sentence, so that in practice it needs to be used in conjunction with Ratnaparkhi's

maximum-entropy sentence-boundary locator (supplied with the tagger). Both programs

take their input on standard input and send output to standard output, sending copyright

information etc. to standard error; thus it is simple to use them in a pipe to produce

tagged text. As mentioned earlier, this system is monumentally slow: even on a fast

machine (Pentium III, 500 MHz), it takes forty seconds of processor time to load; its

text-processing speed is also very slow. Unlike Brill's tagger or the Stuttgart tagger,

which are stand-alone programs, Ratnaparkhi's tagger is written in Java, and so must

be run in a Java virtual machine; this contributes partly to its slowness. This poor per-

formance seems mainly due to the size of the model the tagger employs: the program

requires an eighty megabyte heap, which implies its model is very extensive indeed (and

also that the tagger can only be run on a very powerful machine). Van Halteren also em-

ployed this tagger and its accuracy was impressive; the version we have was also trained

with the Penn Treebank tag-set.

Chapter 4. Generating the Statistics 95

We also gave consideration to using the QTAG tagger [19] from the University of

Birmingham. This tagger is only distributed in binary Java bytecode, and was expressly

written for and trained with the Birmingham-Lancaster tag-set. While this tag-set is

similar to the Penn Treebank tag-set, the di�erences are nontrivial. Since mapping one

tag-set onto the other is a complex and error-prone task, and would have entailed the ex-

penditure of considerable time, we decided to set this tagger aside without experimenting

with it further.

The most modern tagger we experimented with was Scott Thede's hidden Markov

Model tagger [31]. Thede has shown this tagger to achieve very high rates of accuracy;

further, it can be trained using the Penn Treebank tag-set. Unfortunately, its design is

focused on ease of testing rather than ease of tagging unknown text. This manifests itself

most obviously in the fact that there is no way to train the tagger and subsequently use

it: training and test data must be supplied simultaneously. We felt that no matter how

we implemented our tagging procedures, training this tagger every time we wanted to

use it would be computationally infeasible. We could have tried to modify the tagger's

source code to give it the ability to store the results of training, but since we have three

other taggers that are all relatively easy to use, and moreover which all employ di�erent

algorithms, we felt that the costs of this e�ort would far outweigh the prospective bene�ts.

Tagging the Text

Since all of our other statistics can easily be calculated on a per-paragraph basis, we

strongly preferred to calculate part-of-speech frequencies in like manner. Because of the

inclusion of Ratnaparkhi's tagger in our system, we realized that this decision would

result in an incredible sacri�ce of speed: of the total time taken to process any single

paragraph, more than 97% would be spent simply loading, initializing and getting output

from this single piece of software and its sentence-separating preprocessor. Since each

paragraph takes approximately one minute to process on a fast machine (Pentium III

Chapter 4. Generating the Statistics 96

with 500 MHz processor), with su�cient memory to cache all the programs and data, we

realized that, even were we able to accomplish our data extraction in one pass, it would

still require an entire week of processor-time.

Several problems would have confronted us had we chosen a more e�cient method of

tagging our text. The foremost is the problem of bu�ering in Unix interprocess commu-

nication. For purposes of e�ciency, when a set of data is sent between processes, it is

stored in a four kilobyte block of memory. Unless the process doing the writing speci�es

that the bu�er should be
ushed beforehand, usually after a line has been written, the

data will only be made available to the process expecting them when the end-of-�le is

reached on the data-source or the bu�er is full. If the bu�er becomes full, the process

producing it is suspended pending the bu�er being emptied by the process to which it

is being sent. For instance, if we had decided to tag our text �le by �le, we could not

simply pipe the entire �le to a tagger and then read its output, because all of our taggers

(and Ratnaparkhi's sentence-processing utility) produce data as soon as they are ready.

Had we tried to implement the above procedure, the tagger would be suspended as soon

as it had �lled its four Kb output bu�er; this would cause our program to be suspended

before it �nished writing the entire �le (all our �les have size greater-than four Kb), thus

resulting in \process deadlock". Unfortunately, while the taggers make data available

as soon as they are ready they do not
ush their output bu�ers; this means we could

not simply send the �le in a series of small chunks to the tagger and read the output of

each: in this case, our program would wait for tagger output which would never come

because the tagger's output has yet to �ll its output bu�er|another form of deadlock.

Even sending the end-of-�le character after each chunk does not necessarily avoid this

problem; the only way to force a
ush of the tagger's output bu�er is to close the tagger's

input pipe|terminating the tagger process.

Sending a �le's contents as a tagger's standard input, but writing the tagger's output

to a disk �le might be one way of avoiding these problems. This process is inherently

Chapter 4. Generating the Statistics 97

ine�cient, although of course not as ine�cient as loading Ratnaparkhi's code for each

paragraph. It also forces us to make our process sleep until the �le is completely written|

a nontrivial programming detail. Finally, it o�ers no way to solve the second problem:

given an entire tagged �le, how does one unintrusively re-create the original paragraph

boundaries? The most obvious approach would be to introduce a sentinel string into

our input �les, placing it between each paragraph. Such a string would have to be such

that the tagger would not simply discard it in the output|i.e. it would have to be a

string to which the tagger could attempt to apply a tag. This raises the highly complex

question of what e�ect such \garbage strings" would have on the accuracy of the tagger:

since they would occur very frequently, and be treated as normal text by the tagger, they

would necessarily create an unknown and possibly signi�cant level of noise in the data.

Particularly given the second di�culty, we felt that paying the onerous performance

cost of executing all three taggers on each paragraph was the simplest solution|and the

one giving the most accurate data. Even so, the problems noted above with interprocess

communication dogged us throughout the data generation: especially in the case of the

Stuttgart tagger, with its enriched output, a number of paragraphs caused the output

bu�er to �ll before the input had been completely written|and thus deadlock ensued.

The idea of using temporary disk �les not having occurred to us at this stage (though we

were compelled to use them in the case of Brill's tagger, which requires a �le argument),

we simply imposed arbitrary upper limits on the number of words contained in our

paragraphs, truncating lines until the number of words in a given paragraph was under

the limit. Fortunately, the percentage of long paragraphs is comparatively small: even

for the Stuttgart taggers, for which we had to use the most drastic limit (between 230

and 240 words), we thus truncated less than 0:4% of the paragraphs in the corpus. Only

seven paragraphs had to be pruned for all taggers. This certainly introduces noise into

the data; since only a small number of paragraphs are involved we are con�dent that this

very suboptimal approach will not skew our results drastically.

Chapter 4. Generating the Statistics 98

Determining the Optimal Tag Sequence

Unlike van Halteren et al, who were able to test the performance of their taggers against

correct data, and were able to train \meta-learning" procedures in an attempt to �nd

optimal weighting strategies to settle disagreements among taggers, we have no such

resources. Thus, our only option is to treat all three of our taggers equally, and, when

there is disagreement among the taggers, to use the tag chosen by the majority when

there is a majority, choosing randomly among the three proposed tags when there is not.

This is indeed the strategy we implemented, but we were obliged to take into account

some additional possibilities. There are situations when none of our tagger provides

any meaningful tag for a given token. Of course, when at least one tagger provides a

meaningful tag for the token|that is, a tag from the Penn Treebank tag-set|we pick

the single valid tag (or choose randomly between the two proposed alternatives if only

one tagger fails to return a valid tag). When no valid tag is returned, and we have

no information at all, we have elected to treat the word as a singular common noun.

This stems mainly from our observation that the ending of sentences by URL's is the

phenomenon that most commonly brings this condition about, and in this situation the

URL is certainly a singular noun (and, debatably, a common noun).

The problem of synchronization was a constant annoyance for us. This problem occurs

when di�erent taggers tokenize a segment of text di�erently|that is, when they have

di�erent ideas of what text units should be considered as words. Since we did not want

to introduce noise into the data by changing them to accommodate the taggers, or to

delve deeply into each tagger to understand the details of its tokenization algorithm, for

the most part we adopted the following approach: if all the alphanumeric characters in

the words returned by the taggers are the same, then we infer the tags apply to the same

token and treat them normally. If we �nd that the alphanumeric characters di�er, we

assume that one tagger has tagged the text di�erently from the other two, which are

still synchronized. Further, we assume that the unsynchronized tagger has merged n

Chapter 4. Generating the Statistics 99

tokens together, for some value of n � 2. We then look ahead to �nd the position where

the merging ends|that is, where the alphanumeric characters comprising the strings

returned by all three taggers agree. We then re-synchronize the unsynchronized tagger

by inserting n � 1 unde�ned tags between the tag for the merged string and the tag for

the string that all taggers agree on.

This assumption turns out to be surprisingly realistic. In only one case did we en-

counter a situation which diverged irreparably; in that case, we had no option but to

truncate the paragraph so that the text causing the unsynchronization to occur was no

longer present. The decision to allow the unsynchronized tagger to vote on the �rst tag

is largely arbitrary: it may well have been quite as reasonable to allow it to vote on the

last tag in the sequence, or simply to throw the tag away entirely. We have some obser-

vational evidence that suggests this may be a slightly better approach, but this evidence

is quite weak and circumstantial.

Regrettably, though this approach turned out to give acceptable results, at some point

in our �rst round of processing the data we discovered a bug in our re-synchronization

procedure. Since di�erent taggers treat punctuation di�erently, we only wanted to com-

pare alphanumeric characters. Our original version of the re-synchronization procedure

failed to do this, resulting in many more re-synchronizations than necessary. In an ex-

amination of the data produced early in the �rst round of generation, we discovered that

this error had been very signi�cant, causing as many as 50% more tags to be introduced

into a sequence than there were tokens. Thus, in spite of the enormous computational

cost involved, we were forced to regenerate two-thirds of our data set in order to ensure

data consistency; unfortunately we had kept only very imprecise records of when we had

made this signi�cant change, so erred on the side of caution by regenerating such a high

proportion of our data set.

Despite our aversion to meddling in any way with our paragraphs, we were obliged

to perform one more alteration for the sake of Brill's and Ratnaparkhi's taggers. The

Chapter 4. Generating the Statistics 100

Penn Treebank tag-set has tags for possession; i.e. words such as \John's" have two tags

applied to them: in this case, one denoting a singular proper noun, the next the presence

of a possessive. The Stuttgart tagger takes this into account with raw text. Neither

Brill's nor Ratnaparkhi's taggers do: they require that a space be inserted in front of all

apostrophes, except in the case of the clitic \n't", where the space must occur in front

of the \n" (so that the token may be tagged as an adverb). Abbreviations like \we've"

are then also handled correctly, by having two tags applied to them. This procedure is

easy to accomplish with two simple regular expressions, and we are quite con�dent that

this has not introduced any noise into the data.

We were obliged to make several more unpleasant modi�cations to the text so that

our resynchronization procedure could succeed. We had to remove all double dashes,

used as point indicators, from the beginning of lines; one of our taggers ignored this

sequence while the other two kept it, violating our assumption about how synchronization

is broken. Double consecutive slashes needed to be removed for similar reasons. Isolated

ellipses with more than three periods also needed to be truncated to only contain three

periods. Brill's tagger has a habit of entirely eliminating some classes of URL's; to be safe

we replace them in this case with the string \http", so that Brill's tagger is still presented

with an unknown token. The Stuttgart tagger has an odd treatment of words surrounded

by apostrophes; to avoid problems we simply eliminate the single quotation marks from

its input. While all of these \kludges" are undesirable, none of them should distort any

paragraph signi�cantly, and we expect that in total their e�ect is negligible. Clearly,

however, a more sophisticated synchronization procedure would have been desirable, if

rather hard to implement.

Chapter 4. Generating the Statistics 101

4.5 Verifying the Output

To speed up completion of this very computationally-intensive task, we split our �les

into two groups and ran two similar machines simultaneously, one with each group.

This, combined with constant crashes and restarts and compounded by the decision to

reprocess the �rst two-thirds of our corpus that we had originally processed, made us feel

it was necessary to check that no signi�cant errors had been made in the mechanics of

the data-generation phase. We did this in two ways.

First, we wished to see whether all �les had been processed completely. Since, after

a program crash (either due to a deadlock or an in�nite loop), data would exist up to

the last bu�er write (we have not enabled output bu�er
ushing in our data-generation

routine), there are only a very small number of places where a data �le could end.

Fortunately, none of these possibilities coincides with potential boundaries of records;

that is, it is always the case that when an output bu�er becomes full and is written to

disk automatically, an incomplete data set will be written. Thus, to determine whether

complete output �les have been written, it is only necessary to look at the last two lines

of all output �les to see whether they match the last two lines of all data records. We

found that this was always the case.

The other problem we feared was that, by mistake, during the second round of data

generation we might have had our statistical procedures work on �les from the �rst round

instead of text �les from phase I. To test this we simply observed that our data records

always contain 137 separate tokens; we then merely had to look for the number 137 in

the \number of tokens" �eld in the �rst record of each of our data �les. Had we observed

it, we would then have looked at subsequent records in the �le to see whether they had

this characteristic number in the same �eld. Fortunately, this did not happen.

We are con�dent that the data we generated in this di�cult phase of the experiment

are of very high quality. As the foregoing makes clear, we have sacri�ced considerations

both of e�ciency and di�culty in order to maintain high quality data, and we feel we

Chapter 4. Generating the Statistics 102

have in large measure succeeded. It is indisputable that approaches existed that were

superior to the ones we employed at various stages of the implementation of our data-

collection routines, and during data collection itself. This phase of the investigation has

been illustrative not only of how unpredictable and varied real-world text can be, but

also that one should at all times strive for good software engineering habits. Had we this

task to do over, it is unlikely we would have generated all statistics at once, preferring

the harder to implement but far more
exible approach of calculating each category of

statistic for all �les, then assembling all the results. But if we have not achieved e�ciency

or elegance, at least we have reached our coveted goal of a reasonably clean and consistent

data set to use in the �nal, pivotal, phase of this experiment.

Chapter 5

Building Neural Nets to Locate

Authorship Changes

5.1 Introduction

In section 1.4 we remarked on the growth of interest in the application of neural nets

to authorship attribution problems, and more broadly throughout the community of

researchers who use stylometric statistics. In this section, we brie
y review some basic

neural net concepts and terminology, then explore some of the reasons why neural nets

have been hailed as promising in this community, with particular emphasis on qualities

that make them useful for our research. We then brie
y discuss the software we used

in our experiments and the approach we took to training and testing. In each of the

chapter's three �nal sections we describe a di�erent neural net architecture and give the

results we obtained while experimenting with that architecture.

5.1.1 Basic Neural Net Concepts

When neural nets were �rst proposed in the 1940's [32], they were viewed as a means

of simulating the structures comprising the human brain. Just as the brain has neurons

103

Chapter 5. Building Neural Nets to Locate Authorship Changes 104

which send activations to one another across synapses of varying conducting capabil-

ity, so neural nets contain \units" (nodes) which send activations to other units across

\connections" (links) with varying \weights". In the brain, it was thought that learning

occurred by a process of altering the conduction characteristics of synapses, so that when

trained a brain would respond well to some given stimulus. The neural net analog was

therefore obvious: to train a network, one simply needed to �nd a procedure for system-

atically changing the weights of connections between units so that activations caused by

a certain stimulus would cause the appropriate response to be exhibited by the trained

network.

Even though advances in our understanding of the brain have certainly discredited

this simplistic model of human cognition, the terminology used to describe neural nets

has remained relatively static. Modern neural nets are used for their statistical pattern

recognition capabilities rather than for simulating the human brain. Almost all modern

neural net architectures group units in sequences of two or more \layers". The �rst

layer, the \input layer", is activated directly by data. The �nal layer is referred to as

the \output layer" and produces the �nal output of the neural network for some data

pattern. Between these two are zero or more \hidden layers", composed of units which

are activated by lower layers and activate higher layers, and are present to account

for nonlinear interactions within the data. It has been shown [3] that any neural net

computation can be carried out by a neural net with a single layer of hidden units.

Notwithstanding this fact, as we shall discuss below, more complex architectures are often

preferred. Most network topologies require links only in a forward direction, but certain

models allow units in the same layer to be interconnected|or even for the connection

of units to themselves or to units in lower layers. Often, and always in our experiments,

when connections exist from one layer to another, those layers will be \fully connected";

that is, connections will exist from each unit of the lower layer to each unit in the upper

layer.

Chapter 5. Building Neural Nets to Locate Authorship Changes 105

A unit's activation given a particular pattern on its input connections is determined

by an \activation function". Activation functions �rst aggregate all the inputs to a

particular unit (except in the case of input units where the feature of the input pattern

the unit is connected to is used directly); in our case, the aggregation is always simply

the weighted sum of the incoming connections to the unit. Formally, for the j-th unit in

the upper layer, this aggregation is expressed as:

Aj =
nX
i=0

wij �Oi (5.1)

where Oi is the output of the i-th unit in the lower layer that is connected to unit j (1

when i = 0), wij is the weight of the connection between the two units (or the \bias" of

unit j when i = 0), and n is the number of units connected to unit j. Once this input

value is determined, the activation function subjects it to some type of normalization;

for all our networks, the sum is put through a logistic sigmoid function,

Oj =
1

1 + e�Aj
;

Oj is the �nal unit output, so that the output is forced to lie in the interval (0; 1). We

should emphasize that our use of the logistic sigmoid function in the output unit of each

of our networks means that their output is always stochastic, never binary.

We only concern ourselves in this study with \supervised learning", or learning that

involves the repeated presentation to the network of a set of input patterns and the

corresponding correct outputs. Though paradigms exist that do not require the correct

results to be known, or that only supply the network with an idea of how well it is

doing overall, we believe that the supervised approach best suits our domain. Supervised

learning algorithms require some \error function" for quantifying the amount by which

the neural net's output di�ers from the expected output. All the learning algorithms we

employ are \batch algorithms" (they change the network's weights only after evaluating

the network's performance over the entire training set, as opposed to \online algorithms"

Chapter 5. Building Neural Nets to Locate Authorship Changes 106

which change weights upon seeing each component pattern). All our algorithms also use

a \sum of squares" error function, so that

E =
MX
k=1

(Ok � Tk)
2 (5.2)

where Tk is the target output on the k-th pattern, Ok is the observed output, and there

are M patterns in the training set. The various learning algorithms we employed di�er

in the way they apply this error function to changing the weights of the network. We

describe them and our reasons for testing them at a high level in subsequent sections.

5.1.2 Why Neural Nets?

Tweedie et al [33] adduce several reasons for the increase in the use of neural nets among

researchers who use stylistic statistics. In contrast to systems involving the de�nition of

complex|and necessarily subjective|heuristics by the researcher or some expert in the

area, neural nets learn directly from data. For our study this characteristic is critical; a

priori, we have no clear notion even of how one might come to arrive at a set of rules

for di�erentiating between authors' styles, let alone any speci�c set of rules in mind for

testing. The problem is too complicated and multifaceted for such an approach to hold

out much promise. Neural nets have a substantial advantage over more conventional clas-

si�cation techniques such as regression analysis in their ability to generalize. By modern

standards, even our 750; 000-word corpus is not large; to make any claim of a generally-

applicable result, we must avail ourselves of a technique which has proved successful at

classifying data based on fundamental|and likely highly non-linear|interactions be-

tween input variables, not simply on details of the training set. Recognizing that our

data are far from noiseless, replete as they are with unidenti�ed quotes, mis-tagged words

and un-removed signatures, our classi�catory system must also be highly fault tolerant.

Neural nets possess this property, having been known to train successfully even on quite

Chapter 5. Building Neural Nets to Locate Authorship Changes 107

noisy data.

Other even less traditional learning algorithms that display similar properties have

been tried in this and related �elds: Hatzivassiloglou et al [6] have used a rule-induction

system, Holmes et al [8] genetic algorithms. However, an advantage of using a mature

technique like neural networks is that much research and development will have gone

into producing a large amount of high-quality software. A simple Internet search for

neural net software yielded well over sixty separate hits. Even given our limitation to

software that can run (or be compiled to run) on the Linux platform, the number scarcely

diminished. After examining the high-level documentation for several packages, and

reading various FAQ's such as that from the Paci�c Northwest National Laboratory [2],

we concluded that the best piece of neural net software available is the SNNS (Stuttgart

Neural Network Simulator) system from the University of Stuttgart and the University

of T�ubingen [29]. This powerful, versatile and singularly reliable system alone lends

considerable justi�cation for our choice of neural nets for our classi�catory mechanism.

5.1.3 General Course of the Experiments

Not only does SNNS support well over a dozen di�erent neural net architectures, a

score of learning algorithms and several di�erent activation and error functions, it also

contains a powerful scripting language that permits the automatic construction, training

and testing of all manner of neural nets. It is to the power of this software and of the

machines we ran it on that we owe the number and comprehensiveness of the experiments

we were able to carry out.

All of our experiments have at least �ve phases in common: the creation of training

and test pattern sets, the construction and initialization of the network to be tested, and

the training and testing of the network. We have automated all of these phases, and we

discuss them and the general evaluation strategy we employ in the rest of this subsection.

Many approaches have been used to evaluate how well a neural net is performing

Chapter 5. Building Neural Nets to Locate Authorship Changes 108

on a given problem. The most methodologically-satisfying involves the division of data

into training, validation and test sets. The network is trained on the training set, which

usually contains 80% of the data. Periodically, its performance is evaluated on the

validation set, which usually contains 10% of the data. Once the error observed on the

validation set reaches some threshold, or begins to rise as the network begins to over�t to

its training data, training is stopped and the �nal performance of the network is evaluated

by testing it against the test set, which contains the �nal 10% of the data.

Since, by modern standards at least, our corpus is not vast, we did not feel we

could sacri�ce 10% of our data to a validation set. Though other methods, such as

jackknife testing [32] exist for conserving training data while allowing for some measure

of validation, we have chosen the simpler approach of simply using a training set and a

test set. While this might well be fatal to a study hoping to design a network to predict

a response for real data for which no correct answer is known, our work is more at the

proof-of-concept phase so that it is probably su�cient simply to exhibit a network which

we can demonstrate performs well on data it has not been trained upon.

Before performing any of our experiments, we divided our data into training and test

sets. Since all our networks are trained and tested on data derived from the same subsets

of our corpus, the results obtained from them will be more directly comparable. Recalling

our decision in the last phase to keep the data derived from di�erent �les of our original

corpus in separate �les, we chose simply to select 10% of the �les (22 out of 221) for

inclusion in our test set, leaving the rest for training. We used the same pseudorandom

approach as we did when testing our quotation-identifying procedure, and it happened

that the �les we selected were larger than average, so that we ended up having 1729 data

patterns in our test set and only 13829 pattern in our training set; i.e. our test set in

fact represents 1=9 of our data.

Our decision to maintain the division of our data into �les is motivated by several

factors. First, each �le is, in the broadest sense, not a completely arti�cial document;

Chapter 5. Building Neural Nets to Locate Authorship Changes 109

that is, the articles have their original structure (minus quotations) and are in their

original order, so that often articles on similar topics will be found consecutively, making

our networks' task more realistic. To randomly pull paragraphs from anywhere in the

corpus to assemble a test set would have destroyed this structure and compromised this

element of realism|not to mention making our job of using the database of contribution

boundaries that we computed in the �rst phase of the experiment far more di�cult.

Though our training and test pattern sets will be assembled into single �les for all of our

networks, the fact that they will be composed of a known set of �les will make the task

of relating our networks' performance to the original data much easier. Though we have

not had time to examine any of our networks in great detail, should we have the desire

and be in a position to do so this would constitute a signi�cant advantage.

In SNNS, a complete pattern simply comprises two lines, the �rst line containing

the input, the second the corresponding (target) output. We view an input pattern as

consisting of a subset of the data we compute for each of two consecutive paragraphs

in our corpus; we extend \consecutive" so that, if one �le's issue number immediately

follows that of another (as re
ected in their �le names) in either our test or training set,

then the �rst paragraph of the former consecutively follows the last paragraph of the

latter. Our output pattern simply consists of a binary value re
ecting the absence or

presence of a contribution boundary|that is, whether the consecutive paragraphs have

been written by the same author or by di�erent authors, respectively|as determined

by examining our database of contribution boundaries. We are primarily interested in

subsets of the data that correspond to some or all of the lines comprising our records for

each paragraph. Hence, the script we have written automatically to generate the pattern

�les takes line numbers (refer to section 3.15 for details) of lines to be included in the

input patterns as input, along with details such as the location of the data �les and of

the contribution boundary database. There are cases, particularly involving statistics for

which we have frequencies and a cumulative average, such as syllable frequencies or word

Chapter 5. Building Neural Nets to Locate Authorship Changes 110

lengths, for which we would like to be able to disassemble individual lines. In spite of

this suboptimality, this approach's ease of implementation combined with the fact that

we have a plethora of other tests to perform convinced us that a more general approach

would not have been practical. We are extremely con�dent in the performance of this

script, never having seen evidence of an error in it.

In addition to its graphical user interface, SNNS contains command-line tools for

generating large neural nets. In spite of their documentation, which is sometimes quite

inconsistent|especially so in the case of time-delay neural nets, where we were forced to

rely upon trial and error|we used these tools to create all of our networks. In the next

three sections we will discuss the precise topologies and architectures we used these tools

to evaluate.

Initialization, training and testing of the networks are handled very well by SNNS's

built-in scripting language. Except in a few instances which we note below, all of our

networks were initialized with weights randomly selected between �1 and 1. This is

commonly done in neural net research when there is no prior information available as

to what values weights should have; its purpose is to ensure that di�erent parts of the

network are a�ected di�erently by the data, so that learning is encouraged. The interval

we have chosen is often selected because it allows for both excitatory and inhibitory

weights|that is, it ensures that not all activations in lower layers will bias units in upper

layers towards activation, so that the network can learn either to ignore irrelevant parts

of the data or that certain parts of the data inversely correlate with the correct network

output. On several occasions, we have used several di�erent random initializations to

train networks with the same topology. This is often done because, if the learning process

is viewed as trying to �nd the global minimum on an \error surface", then the network

may become \stuck" in local minima if learning is started from a suboptimal starting

position. Thus, several di�erent starting positions are often tried in hopes that the global

minimum of the surface is reachable from one of them.

Chapter 5. Building Neural Nets to Locate Authorship Changes 111

Commands are provided in the scripting language both to train the network with

whatever learning algorithm is in e�ect, and to test the network. Our strategy at �rst

had been to train the network for several \cycles" (complete propagations of the input

data through the network and computations of the sum of squared error), then test

the network and end the script. In all cases, we have used the \mean squared error",

the sum of squared error divided by the number of patterns, as an indication of the

network's performance; the smaller the MSE, the better the network. We eventually

realized that our original approach to training was ine�cient, since we had no information

about whether our network was over�tting to the data. Therefore, for most of our later

experiments we train the network for a �xed number of cycles, recording the MSE on

each cycle, and then we test it, again recording the test MSE. We repeat this procedure

some �xed number of times, or until we realize the network is over�tting to the data or

is stuck, and we abort the script.

SNNS also permits the production of \result �les", which contain the output produced

by the neural net for all given input patterns in an pattern �le. We use these result �les

to gain other indications of how well our network is performing. We have developed a

script for calculating precision, recall, fallout, accuracy and error from these result �les

and their corresponding pattern �les; we discuss some of the results we obtained using

these scripts below.

5.2 Simple Multilayer Perceptrons

Whereas a network with no hidden layer is often referred to as a \perceptron", one with

one or more hidden layers is a \multilayer perceptron". Largely because this approach

was the most obvious, our �rst set of experiments involved a simple multilayer perceptron

(containing one hidden layer) whose inputs were the entire data sets generated for two

consecutive paragraphs. Despite our best e�orts, which we recount below in hopes of

Chapter 5. Building Neural Nets to Locate Authorship Changes 112

learning something about the problem from the failure of such diverse approaches, we

had very little success with this architecture.

One of the strongest criticisms that can be levelled against the neural net movement is

that very often, designing a successful network is quite as much an art as a science. Even

if one restricts oneself to a particular architecture, there are no hard-and-fast rules that

dictate how the parameters|such as the number of hidden units|of any architecture

can be optimally determined; even if one uses a pruning algorithm to eliminate useless

units, one is certainly not guaranteed to �nd an optimal con�guration. And when the

architecture and topology have been �xed, there is an array of learning algorithms from

which to choose, all making similar claims about speed and robustness, each coming

complete with a set of parameters of its own that must be speci�ed in advance. There-

fore, to comprehensively evaluate this simple architecture, we have felt it necessary to

experiment in all three dimensions|topology, choice of learning algorithm and learning

algorithm parameters.

One of the oldest, and probably the most famous, learning algorithms used in neural

nets is backpropagation. The algorithm is quite simple, conceptually: batch backpropa-

gation simply involves propagating all the input patterns in the set through the network,

computing the sum of squared errors for all patterns and adjusting the weights to attempt

to minimize each of their individual contributions to the overall error. This minimiza-

tion is e�ected by computing the derivative of the error function with respect to each

individual weight in the network and using this information to determine each weight's

contribution to the entire error. The algorithm's name derives from the fact that the

computation of the weights' contributions to the overall error and their subsequent ad-

justment is made from the output layer back through the lower layers of the network.

Interpreted spatially, the algorithm involves taking steps along the error surface in the

direction of the steepest descent from any particular point.

Since backpropagation has been used for such a long time, researchers have had

Chapter 5. Building Neural Nets to Locate Authorship Changes 113

much time to make improvements to it. One reasonably simple improvement is to add

a \momentum term" to the adjustments made to the weights. A particularly intuitive

explanation for the e�ect this has is provided by analogizing the learning process with

the progress made by a marble placed on a hilly surface. If the marble begins to roll down

a long, gradual slope, it picks up speed. Conversely, if the marble begins to roll uphill,

it quickly loses speed and its direction will change. If the marble encounters an area

with sloping sides and a narrow bottom with a shallow downward slope, it will oscillate

between the sides for a time but will gradually converge to the centre of the \valley",

and thus begin to make faster progress downhill.

Though there is a good mathematical underpinning behind this modi�cation, we refer

the reader to Bishop [3] or any other good text for the details. The intuitive description

provided above, combined with the fact that this is a widely-accepted and well-known

algorithm, should su�ce to explain our preference of this algorithm as the �rst with

which to experiment. Since our network had 266 input units|there are 133 statistics, in

total, for each paragraph|we felt that 100 hidden units should be at least su�cient to

produce some interesting results. Since the momentum parameter of the algorithm is the

most critical, we made several experiments with di�erent values of this parameter and

of the learning rate; all of which, much to our chagrin, led within 25 cycles to a network

which produced a constant output of between 0:212 and :270, depending on parameter

values, regardless of the input! Though this produced a satisfying training MSE of 0:193

(see section 5.5 below for a comparison), and a test MSE of approximately 0:185, it was

painfully obvious that a constant result was not desirable.

After pondering this problem at length, we realized this situation might be caused

by weights with very large magnitudes within the network. Upon examination, the

trained networks commonly exhibited weights with magnitude > 105, and sometimes

as great as 109. When we recall that all our weights were initialized with magnitudes

� 1, it becomes clear that the momentum term introduced into the adjustment phase

Chapter 5. Building Neural Nets to Locate Authorship Changes 114

of the learning algorithm was producing vastly negative e�ects. Even after trying some

relatively small values for momentum and learning rate (0:1 and 0:2 respectively), these

symptoms persisted, so we abandoned the backpropagation with momentum approach

for this particular network topology.

Another modi�cation of backpropagation is designed precisely to counter situations in

which training results in unreasonably large weights. This approach, \backpropagation

with weight decay", introduces a \decay term" into the weight adjustment. This causes

the magnitude of weights to be decreased automatically at each iteration of the algorithm.

Adopting this learning algorithm and reducing the number of hidden units to 50 (it

seemed clear that 100 hidden units was far too many), we trained a network for 1500

cycles with learning rate 0:3 and weight decay parameter 0:05. While the output of

the resultant network was in fact in
uenced by the input, the training MSE rose to a

staggering 0:22 and the test MSE to 0:217. Increasing both the learning rate and the

weight decay factor slightly produced an even poorer network, with a training MSE

close to 0:23 and a test MSE over 0:22. Returning the weight decay factor to 0:05, and

decreasing the learning rate to 0:05 eventually produced a network with training MSE

around 0:21 and a slightly higher test MSE. An examination of the weights of this network

demonstrated that virtually all of them had decayed to virtually 0. This prompted us

to train a network with weight decay parameter set to 0:005 with the learning rate still

set to 0:05; this produced, after around 70 cycles, the slightly encouraging training MSE

of 0:198. Reducing the learning rate to 0:01 and leaving all other parameters unchanged

produced a training MSE of approximately 0:195 and a very encouraging test MSE of

0:181. Since this network was very far from over�tted, we increased the hidden layer's

size back to 100 units, and received a training MSE of approximately 0:194 and a test

MSE of about 0:182|results as easily explicable by the network having started from a

di�erent position as by the notion that 100 hidden units was better than 50. But since

the values output by the network varied considerably|all the way from 0:2 to 0:33|we

Chapter 5. Building Neural Nets to Locate Authorship Changes 115

decided to further increase the size of the hidden layer to 150 units, only to �nd the

network trained no better and the test MSE increased to 0:189. Admitting that moving

further in this direction was pointless, we created a network with a slim 25-unit hidden

layer, which trained to an MSE of 0:197 and a test MSE of 0:2012 after nearly 250 cycles.

These disheartening and ominous results can be explained in several ways. Most

importantly, while even in the smallest network there are over 6; 000 separate weights,

we have only 13; 829 patterns in our training set; clearly our networks are not nearly

su�ciently constrained. While valid, this argument su�ers from the fact that its logic

would predict that our networks should over�t to the data, whereas in fact their train-

ing MSE's are almost always higher than their test MSE's. More convincingly, it can

also be argued that this network architecture is simply insu�ciently structured, that it

completely obscures important aspects of the organization of the data, both in terms of

their separation into two halves and into several internally cohesive sets (corresponding

to the lines in which we store the data, as described in section 3.15) within and between

those halves. With thousands of weights it is also true that the error surface will likely

be extraordinarily complex, so that any particular starting position is likely to lead to an

extremely suboptimal local minimum. Finally, as we noted above, the design of neural

networks is not a clear-cut business; so these results may simply re
ect the fact that we

had yet to develop an intuition as to what topology and learning parameters best work

in this domain.

5.3 Committees of Experts

5.3.1 Motivation

Bishop [3] discusses two related neural network architectures which he calls \committees

of networks" and \mixtures of experts". By the �rst term he refers to groupings of

identical (or closely-related) networks which have been trained on the same data from

Chapter 5. Building Neural Nets to Locate Authorship Changes 116

di�erent starting weights, or with di�erent learning algorithm parameters, and whose

results are combined by some weighting system to produce an overall output. Such

systems are used in cases where di�erent network trainings yield networks which perform

at varying levels, and is used in place of the usual practice of throwing away all but the

best network in order to produce a system displaying better generalization characteristics.

Mixtures of experts, according to Bishop, are collections of networks trained on di�erent

aspects (or subsets) or the data, whose outputs are used by a \gating network", which

uses the entire data set to determine which expert is likely to be the most trustworthy

given some input pattern. This network architecture is commonly used in situations

where there is some structure to the data, but the interactions between various data

components are not well-understood. Jacobs et al [9] describe a similar system where the

gating network actively selects which expert it will consult for a particular data pattern,

which also has the advantage of being useful in training, allowing changes to be localized

to the selected expert and the gating network.

Our data sets certainly do contain structure; our various frequency statistics, for ex-

ample, are obviously correlated. Thus, designing an expert network to operate on our

data appeared to hold out substantial promise, particularly in view of the dismal per-

formance of a simple multilayer perceptron. But neither of the above approaches was

applicable: the �rst because our networks are already massive; to attempt to use several

simultaneously would have been computationally prohibitive. The second approach is

very interesting theoretically, but it would have been di�cult to design the necessary

network with SNNS|though SNNS supports the ability to combine several existing net-

works so that their outputs feed into another network, it has no facilities for allowing

this upper network to have direct access to the data.

So we adopted a simple compromise. We trained ten separate \experts", one for each

of the subsets of our data that we identi�ed in section 3.15. Once trained, we set about

creating various gating networks that were trained using the outputs of various combi-

Chapter 5. Building Neural Nets to Locate Authorship Changes 117

nations of these experts, while the weights of the trained expert networks themselves

remained unchanged. Not only does this approach possess some of the advantages of

committees of networks and mixtures of experts, in that it permits independent trends

in di�erent subsets of the data to be independently utilized, but it also provides us with

an opportunity to scrutinize the usefulness of each of our data subsets alone. In the next

subsection, we describe our experiences while constructing each of the ten subnetworks.

We close the section by showing the results of using all these networks together, as well

as in selected combinations.

5.3.2 Results with Individual Experts

Word-Length-Frequency Expert

Since we had had some success with backpropagation with weight decay in the previ-

ous experiments, our �rst network, containing 12 hidden units, used this algorithm. We

quickly abandoned this approach after receiving training and test MSE's of around 0:216,

even after training this network with several thousand cycles. Switching to backpropaga-

tion with momentum, with the learning rate set to 0:2 and momentum to 0:1 yielded the

highly encouraging training MSE of 0:1839, test MSE of 0:1770. Unfortunately, further

training of this network yielded the classic symptoms of over�tting|the training error

decreased slightly and the test error increased sharply. Even these encouraging results

came with a caveat: the network's outputs tended only to vary from 0:14 to 0:33, even

though the magnitudes of all weights were less than 100.

Increasing the number of hidden units to 18 elicited a network with training MSE at

0:184 and test MSE of 0:178. Though it might have been highly useful to have decreased

the size of the hidden layer, particularly in light of the results we present below for

time-delay networks, we were convinced by the tendency of the networks we had tested

to over�t or stall after reaching test MSE's of around 0:178 that no further experiments

Chapter 5. Building Neural Nets to Locate Authorship Changes 118

Num. Hidden Units Num. Cycles Training MSE Test MSE

8 2000 0.1842 0.176

3000 0.1839 0.177

4000 0.1839 0.1779

11 700 0.186 {

6 2000 0.1842 0.1764

8 3000 0.1833 0.1763

4000 0.1832 0.1764

8000 0.1831 0.177

11000 0.1832 0.1834

Table 5.1: Results obtained for various networks used to test syllable frequencies.

The table is given in chronological order of testing, and each set of values bounded by

horizontal bars represents the results for a single network; a dash represents a value that

was not recorded.

with our word-length data were needed. For the purposes of the combinations we describe

below, we used a word-length expert with a test MSE around 0:1832 since its training

MSE was very low and we were not readily able to recreate a network with a smaller test

MSE at that time.

Syllable-Frequency Expert

A priori, we had hoped for somewhat better results from our syllable-frequency statistics

than from our word-length statistics, so we used more combinations of tests on this

network. We summarize our results in table 5.1. Since we had had reasonable results

with the backpropagation with momentum approach in the word-length expert, we used

it unchanged throughout these evaluations; i.e. the learning rate set at 0:2, momentum

to 0:1.

Chapter 5. Building Neural Nets to Locate Authorship Changes 119

As can be seen from table 5.1, the results we obtained were certainly good, compared

with those for the amorphous networks, but were not signi�cantly better than for the

word-length expert. However, the distribution of values output by the network was much

more satisfactory, ranging between 0:007 and 0:51. Also, weights within the networks

continued to be relatively small, even in those with extremely long training sessions. For

the purposes of the expert committees, we regenerated the 8-unit network with 8000

iterations of training noted in the last element of the table.

Average Sentence-Length Expert

In spite of our skepticism as to its usefulness, we expended considerable e�ort attempt-

ing to design a network to use sentence lengths at all e�ectively. The results of these

experiments are presented in table 5.2.

Since backpropagation with momentum had proven reasonably e�ective in the past,

we used it �rst again in this series of experiments. As table 5.2 makes clear, its results

were hardly spectacular in this case; in spite of varying the number of hidden units and

permitting incredibly long training sessions, these results are considerably worse than for

either of the two previous tests. More disturbing was the fact that, upon examination,

we discovered that in the �rst round of tests, whatever the network size the results

were almost constant regardless of the data. Reducing momentum to 0:05 did not help:

the value produced by the network simply got smaller|a result easily reducible to a

di�erent starting con�guration. Weight decay certainly was not the answer; the table

makes it plain how ine�ective this algorithm proved. So we were obliged to halt our

examination of this type of network, and conclude that sentence length averages are

indeed a poor predictor of authorship contribution boundaries; for the purposes of future

expert committees that would incorporate these statistics, we regenerated the network

corresponding to the �rst line in the table.

Chapter 5. Building Neural Nets to Locate Authorship Changes 120

Learning Num. of Cycles Training Test

Algorithm Hidden Units MSE MSE

Backpropagation 4 2500 0.1892 0.1821

with Momentum 4 2500 0.1893 0.1814

6 2500 0.1893 0.183

4 5000 0.1893 0.182

Backpropagation 4 2500 0.1894 0.1823

with Momentum

Backpropagation 4 5000 0.222 0.214

with Weight Decay 15000 0.222 0.220

Table 5.2: The results we obtained with networks trained on the average sentence length

statistics we computed for each paragraph.

Each line in the table represents the results obtained with a particular network; where

the number of hidden units is not given, training was continued on the same network as

in the preceding line, and the number of cycles is cumulative. Each section bounded by

horizontal lines represents the results achieved with a constant set of parameters used in

a particular learning algorithm. As in table 5.1, dashes represent values that were not

recorded.

Chapter 5. Building Neural Nets to Locate Authorship Changes 121

Num. Hidden Units Num. Cycles Training MSE Test MSE

30 2500 0.1363 0.175

1250 0.1435 0.1722

200 0.1570 0.1684

100 0.1612 0.1638

25 100 0.1612 0.1740

35 100 0.1612 0.1658

10000 0.1254 0.2020

Table 5.3: Results obtained for various networks used to test part-of-speech frequencies.

The table is given in chronological order of testing, and each set of values bounded by

horizontal bars represents the results for a single network. Throughout testing we used

backpropagation with momentum, learning rate set to 0:2, momentum to 0:1.

Part-of-Speech-Frequency Expert

As disappointing as the results have proved to be for average sentence lengths, the same

can certainly not be said for part-of-speech frequencies. As table 5.3 demonstrates, even

the poorest results we observed with this category of statistic are superior to the best

results we had yet observed.

The �rst and most heartening point about these results is that they demonstrate

clearly and for the �rst time that we have created a network which can model the training

set very well. We view this as important because, in all previous experiments, even when

we experimented using ridiculously long training sessions, we were unable to get MSE's

signi�cantly lower than our best baseline; thus, concern had to be raised about whether

neural nets could even in principle model the data (i.e. the data appeared to be very

nearly random). Secondly, the best test results are over 10% better than the best baseline,

and considerably better than any we had previously seen. Finally, even on test data the

network output a very wide range of values|all the way from 0:00 to 0:81.

Chapter 5. Building Neural Nets to Locate Authorship Changes 122

We cannot explain why three di�erent networks trained to exactly the same level

after 100 cycles. We also cannot deny that to experiment with multiple di�erent starting

positions for any particular topology would have been highly interesting. However, since

we had achieved a very encouraging result as it was, we thought it best to press on with

our investigation and return if we observed no better results.

Function-Word-Frequency Expert

Results obtained with function words were also encouraging. We made only two tests

with function words, both using the familiar backpropagation with momentum learning

algorithm with the accustomed parameters. The �rst attempt was with a network with

25 hidden units, which elicited a training MSE of 0:1720 and a test MSE of 0:1725 after

1250 cycles, and considerable over�tting thereafter. To improve generalization, we also

tried to use a network with only 20 units; this produced a training MSE of 0:1728 and

a test MSE of 0:1731. Taking these results as a positive indication, and planning to

do more testing if we observed no better results, we moved on to the next data subset,

using the 25-unit network we had �rst generated as one of the subnets in our expert

committees.

Punctuation-Frequency Expert

As with our examination of function words, we did comparatively little testing with

punctuation frequencies. Indeed, since our �rst guess at the appropriate size of the

hidden layer had proven reasonable in the previous two experiments, we did not even

experiment with this parameter; here we simply initialized a single network with 16

hidden units and viewed its performance on training sessions of various lengths. Our

results, obtained again using backpropagation with momentum, are shown in table 5.4.

We use network with the lowest test MSE in the expert committees we describe below;

the performance of this network was quite good enough for this purpose.

Chapter 5. Building Neural Nets to Locate Authorship Changes 123

Num. Cycles Training MSE Test MSE

2000 0.1565 0.1708

1000 0.1580 0.1734

500 0.1607 0.1684

250 0.1636 0.1693

150 0.1659 0.1664

Table 5.4: Results obtained for various networks used to test punctuation frequencies.

The table is given in chronological order of testing. The fall in test error between 1000

and 2000 cycles appears to be anomalous; the general trend is in the reverse direction.

Entropy Expert

Entropy proved to be a far less fruitful �eld than the previous three data categories.

While we did not experiment with many networks (only three di�erent networks were

used), it is di�cult to imagine that our largest network, containing 32 hidden units,

would not have been able to train to a better level than it did if such were possible;

if there were any signi�cant patterns in the data to be detected, this network should

have at least hinted at them. Unlike the cases of word lengths and syllable frequencies,

where the presence of an overall average could have biased the network (since the overall

average has much greater magnitude than any of the frequencies), both entropy statistics

habitually display similar values. Hence, these networks' poor performance is di�cult to

explain but by the fact that entropy, however measured, is a poor measure upon which

to discriminate authors' contributions given small data sizes. Table 5.5 summarizes our

�ndings. We used the �rst network we generated in subsequent experiments.

Vocabulary-Richness Expert

Of all the experts we had yet examined, in the few tests we conducted vocabulary rich-

ness proved the least e�ective. Our �rst test, using our standard backpropagation with

Chapter 5. Building Neural Nets to Locate Authorship Changes 124

Num. Hidden Units Num. Cycles Training MSE Test MSE

8 2000 0.1883 0.1779

16 2000 0.1884 0.1779

32 2000 0.1883 0.1781

Table 5.5: Results obtained for various networks used to test entropies.

Again, backpropagation with momentum was used to train all networks.

momentum approach, produced a training MSE of 0:1929 and a test MSE of 0:1803 af-

ter 200 cycles, and very slightly worse results after 2000 cycles. Taking these results as

indicative of what the backpropagation with momentum approach was capable of, and

deciding, in view of our previous results, that adjusting the size of the hidden layer would

likely not avail much (we set the hidden layers of these networks to 20 units throughout

this trial), we decided to change the learning algorithm. Since backpropagation with

weight decay seemed to o�er nothing, and we needed an algorithm able to escape local

minima with signi�cant probability, we decided to try simulated annealing.

Annealing is the process by which materials, particularly metal or glass, are raised to a

high temperature and then slowly cooled. From a physics standpoint, this treatment can

make the material more regular because, when the temperature is raised, the individual

molecules have substantial freedom to rearrange themselves. However, as the temperature

is slowly decreased, they will tend to align in con�gurations requiring the least energy:

as the temperature falls, the \energy threshold" a molecule has to overcome to move

from one con�guration to another rises, so that fewer and fewer stable structures have

their con�gurations changed as time progresses, while less stable structures|with lower

energy thresholds|become less frequent.

The analogy for neural networks is straightforward: at the beginning of the exper-

iment, weights are randomly initialized. At any particular time step, a new weight

con�guration is randomly computed, and the error (in our case a squared error) is cal-

Chapter 5. Building Neural Nets to Locate Authorship Changes 125

culated. If it is less than the old error the new con�guration is accepted; if it is greater,

it will be accepted with a probability decreasing with time, according to an exponential

distribution. Error and energy being treated as analogs, it is hoped that this procedure

will result in a network with a low error level just as the physical process can result in a

material with low energy.

Like all learning algorithms, this one has various parameters that seem to require

experience to set properly. Chief among these are the minimum and maximum values

which weights are permitted to attain. Setting these to �50 and 50 respectively yielded

results that were worse than ridiculous (over 0:6 for training!) Setting them to �10 and

10 respectively produced the far more acceptable training MSE of 0:1889 and test MSE

of 0:1814 after 10000 cycles and an appropriate setting of the parameters governing \tem-

perature" and \cooling rate". Still the results are very poor, so we did no further testing

with this data. We kept the last network for the purposes of our expert committees,

since its outputs varied more than the network we had trained with backpropagation

with momentum.

Hapax Expert

Table 5.6 summarizes the results we obtained while working with the hapax legomena

and hapax dislegomena statistics that we computed. As the table shows, these results are

better than those obtained with vocabulary richness statistics, but the improvement is

not marked. It is particularly interesting to note how little in terms of training MSE the

network bene�ted from an extremely long training session and a very large hidden layer;

clearly this casts doubt on the usefulness of this type of statistic. For the purposes of our

expert committees discussed in the next subsection, we kept the �rst network referred to

in the table.

Chapter 5. Building Neural Nets to Locate Authorship Changes 126

Learning Num. of Cycles Training Test

Algorithm Hidden Units MSE MSE

Backpropagation 7 2000 0.1878 0.1781

with Momentum 40 10000 0.1877 0.1803

Simulated Annealing 7 10000 0.1881 0.1819

with Squared Error

Table 5.6: The results we obtained with networks trained on the hapax statistics we

computed for each paragraph.

Each line in the table represents the results obtained with a particular network. Each

section bounded by horizontal lines represents the results achieved with a constant set

of parameters used in a particular learning algorithm.

Waring-Herdan Expert

Having viewed the Waring-Herdan model as holding out considerable promise, we tested

several networks trained with the statistics computed with it. The results of these ex-

periments are presented in table 5.7, and as can be readily seen are not encouraging.

Largely because the di�erences between the last network and the best are not signi�cant,

we used the last network in the expert committees we discuss in the next section.

Summary

Table 5.8 gives the best results we achieved with each of the ten data subsets. While

we postpone a detailed discussion of the results until chapter 6, we note two interesting

facts. First, all of our statistics performed better than any of the simple multilayer

perceptrons we discussed in section 5.2. Second, the table clearly shows that our best

results were derived from statistics measuring syntactic facets of a text rather than from

those purporting to measure its lexical choice or to describe its author's vocabulary.

Chapter 5. Building Neural Nets to Locate Authorship Changes 127

Learning Num. of Cycles Training Test

Algorithm Hidden Units MSE MSE

Backpropagation 16 2000 0.1914 0.1801

with Momentum 16 { 0.1985 0.1868

Simulated Annealing 16 10000 0.1912 0.1798

with Squared Error

Backpropagation 16 5000 0.1911 0.1814

with Momentum

Table 5.7: The results we obtained with networks trained on the Waring-Herdan statistics

we computed for each paragraph.

Each line in the table represents the results obtained with a particular network. Each

section bounded by horizontal lines represents the results achieved with a constant set of

parameters (except in the case of the second backpropagation with momentum network,

for which we increased the momentum parameter from 0:1 to 0:5 to speed up learning)

used in a particular learning algorithm. Dashes in the table represent values which were

not recorded.

Chapter 5. Building Neural Nets to Locate Authorship Changes 128

Expert Name Number Best MSE Best MSE

during Training during Test

Word-Length Frequencies 1 0.1836 0.1770

Syllable Frequencies 2 0.1831 0.1763

Average Sentence Length 3 0.1892; 0.1814

Part-of-Speech Frequencies 4 0.1612 0.1638

Function-Word Frequencies 5 0.1720 0.1725

Punctuation Frequencies 6 0.1659 0.1664

Entropy Statistics 7 0.1883 0.1779

Vocabulary richness 8 0.1929 0.1803

Hapax Statistics 9 0.1878 0.1781

Waring-Herdan Statistics 10 0.1912 0.1798

Table 5.8: The lowest test MSE's and corresponding training MSE's that were obtained

with each of the ten \expert" networks that we trained on subsets of our data.

Chapter 5. Building Neural Nets to Locate Authorship Changes 129

Num. of Cycles Training Test

Hidden Units MSE MSE

40 2000 0.1861 0.1781

* 5000 0.1867 0.1794

200 5000 0.1858 0.1774

8500 0.1859 0.1794

Table 5.9: The results we obtained with committees comprising all ten networks we

describe having trained in the last subsection, with a gating network of a certain size.

The number of hidden units here refers to the number of hidden units present in the

gating network. Each line in the table represents the results obtained with a particular

network. The line with the * entry represents a network where training was continued

with the learning rate increased from 0:2 to 0:3.

5.3.3 The Full Committee of Experts

We now turn to describing our �rst attempt to design a committee of experts to capitalize

on the results discussed in the previous subsection. A priori, it seems to be reasonable to

expect that it should be possible to design a gating network that would use each of the

networks we trained in the previous subsection to achieve an accuracy at least as great as

any of those component networks, and likely much greater. Unfortunately, as table 5.9

shows, this expectation may not have been realistic.

As described in subsection 5.3.1, we simply created a multilayer perceptron with ten

input units, and connected this network with our pre-existing trained experts. We then

trained this larger network, being careful to ensure that the experts' weights were frozen

and that the gating network's weights had already been initialized.

We cannot but imagine that, given su�ciently many initializations, a con�guration in

the gating network would be produced that would lead to reasonable performance. That

the networks we did create performed poorly seems to show that the dimensionality of the

Chapter 5. Building Neural Nets to Locate Authorship Changes 130

weight space is simply too large for the training data, and possibly also that information

provided by each of the experts is often contradictory. We have resigned ourselves to the

fact that using the whole of our data set is likely not useful; so, we spent much more

e�ort in trying to create a \best" committee of experts using the three best experts as

shown in subsection 5.3.4 below.

5.3.4 The \Best" Committee of Experts

Without question, the architecture from which we thought we would derive the best

performance was the \best" committee of experts. Constructed exactly like the full com-

mittee of experts described in the previous subsection, except that it contained only

the three most promising networks from subsection 5.3.2 (the part-of-speech-frequency

expert, the function-word-frequency expert and the punctuation-frequency expert), this

architecture seemed to get around most of the problems of contradictory information

and weight-space dimension that were the primary explanations for the failure of the

full committee. However, as table 5.10 shows, in spite of extensive testing this commit-

tee produced results only moderately better than did the full committee, bettering the

performance of only one of its component networks.

The main division in table 5.10|represented by the double horizontal lines|occurs

between experiments where the weights of the gating network were initialized between�1

and 1, and where they were initialized between 0 and 1. Clearly, the latter initialization

is better because the experts should produce higher outputs with greater probability for

contribution boundaries than for non-boundaries, so that it makes sense that there need

be no inhibitory connections in the gating network. Indeed, were it not for the fact that

we believe that using the full array of statistics is fundamentally not pro�table, it might

have been interesting to use this initialization on the full committee of experts.

Since we have used the scaled conjugate gradient, or SCG, algorithm to compute

some of the results that we present in table 5.10, some explanation of the algorithm is

Chapter 5. Building Neural Nets to Locate Authorship Changes 131

Learning Num. of Cycles Training Test

Algorithm Hidden Units MSE MSE

Backpropagation 50 5000 0.1852 0.1776

with Momentum

Simulated Annealing 50 10000 0.2021 0.1853

with Squared Error 13400 0.2519 0.2360

Backpropagation 50 200 0.1715 0.1680

with Momentum 2400 0.1791 0.1725

* 50 200 0.1885 0.1776

50 200 0.1858 0.1779

** 50 5000 0.1844 0.1796

* 150 5000 0.1847 0.1793

SCG 50 4800 0.1870 0.1792

Table 5.10: The results we obtained with the \best" committee of experts.

Each line in the table represents the results obtained with a particular network. Lines

with no entry for hidden units refer to continuations in training of the network from

the previous line, and the number of cycles is cumulative. Each section bounded by

horizontal lines represents the results achieved with a constant set of parameters (except

in the case of the the entries marked *, where the learning rate and momentum were

set to 0:1; 0:05 respectively, and the line labelled **, where those parameters were set to

0:04; 0:02) used in a particular learning algorithm. The double horizontal line divides the

�rst and second set of \correct" experiments.

Chapter 5. Building Neural Nets to Locate Authorship Changes 132

Num. of Cycles Training Test

Hidden Units MSE MSE

50 550 0.1465 0.1605

50 1300 0.1380 0.1584

Table 5.11: The results we obtained with the \best" committee of experts when we failed

to freeze the experts' internal weights.

in order. Whereas simple backpropagation relies only on the �rst derivative of the error

with respect to weights to determine the direction in which the weight vector should

be adjusted, SCG uses an approximation to the matrix of second derivatives plus a

scaling factor, to make its estimate. This method was very successfully employed by

Tweedie et al [33]. Its principal advantage is that it is guaranteed to reach the minimum

of the error surface with regard to the initial starting position; the algorithm can also

terminate automatically, unlike backpropagation methods which continue until stopped

by some external criterion.

But, neither a more intelligent weight initialization scheme nor the use of a promising

learning algorithm was able to raise this network's performance even to the level of two

of its component networks. However, as so often happens in science, a simple error

on the part of the experimenter led to a highly interesting result. While testing our

network with backpropagation with momentum, we accidentally neglected to freeze the

internal weights of the component experts. Since the results produced by this error were

surprisingly promising, we conducted several further tests in which we made the mistake

intentionally; the results are shown in table 5.11.

No doubt we should have performed more experiments, but since the second network

in table 5.11 unequivocally produced better results than any of its component networks,

we felt that our approach had been vindicated and that we could return to the problem

if we saw no better results with our last architecture. We believe that the excellent

Chapter 5. Building Neural Nets to Locate Authorship Changes 133

performance of this network relative to the \properly" trained expert committee can be

explained simply by the fact that the internal weights of the experts are reasonably well-

adapted, but the network can further adjust them to make up for the poor (i.e. random)

initialization of the weights in the gating network. Clearly, the gating network is useful,

since this network outperforms any of its constituents; it seems the training simply allows

the experts to be a bit more helpful, given the arbitrary position on the error surface

from which the gating network begins training.

5.4 Time-Delay Neural Networks

5.4.1 Motivation

Notwithstanding the good performance of our best committee of experts discussed in the

last subsection, we had one more network architecture we wanted to investigate. Time-

delay neural networks are a comparatively recent invention: the SNNS documentation

cites a paper written in 1989 as having been �rst to propose them. In certain problem

domains, such as process control, one often has time-dependent data from which one

must determine an optimal response. Since the data are time-dependent, it may be

highly useful to look not only at the current set of data but also at the data produced in

several preceding time intervals, because the patterns upon which the prediction should

be based will be discernible only through the data's evolution over time. If the data

sets are themselves ordered, so that each particular datum in a set is produced by the

same process that generated that datum in previous time intervals, one could expect

performance to be optimized if this homogeneity in the data could be incorporated in

the predictive model.

Time-delay neural networks were conceived to use precisely this sort of data|that

is, data that are time-dependent and for which corresponding data items from di�erent

sets measure the same underlying feature. Time-delay networks accomplish these tasks

Chapter 5. Building Neural Nets to Locate Authorship Changes 134

by grouping their input units into sets corresponding to each data set, so that the entire

input layer has access to two or more data sets simultaneously. Weights for input units

that are connected with the same feature in di�erent data sets are coupled; the learning

algorithm computes the derivative of the error function with respect to each weight in

a standard fashion, but coupled weights are updated according to the average of the

changes that would have been made to each weight were it independent. The term

coupled should not be construed to mean that there are only two such weights; if data

from two time intervals preceding the current one are being considered, then three coupled

weights would exist between input units for each feature and each unit in the next layer.

Other than having coupled weights, these networks may have arbitrary topologies, and

may even have coupled units in their hidden layers which act in much the same way as

in the input layer.

Intuitively, it is easy to cast our experiment to �t this model. Since the later para-

graphs of a contribution must depend on earlier paragraphs, if we analogize time with

sequence then there is a time-dependence to our data. Secondly, because our data sets

are consistently ordered, we automatically have that each data item from one set mea-

sures the same underlying feature as the corresponding item from any preceding set.

Therefore, it seemed very natural to us that time-delay networks represented a network

architecture we should examine in detail.

Largely due to time considerations|training time-delay networks takes longer than

training similarly-sized regular multilayer perceptrons because of the need to compute

many averages|all of the time-delay networks we constructed have a fairly simple topol-

ogy. All such networks only deal with two consecutive data sets. Further, at most one

hidden layer is used, and no coupled weights are used in this hidden layer. Nonetheless,

as we reveal below, we were able to obtain some highly interesting results.

Chapter 5. Building Neural Nets to Locate Authorship Changes 135

5.4.2 The \Best" Time-Delay Network

Having already produced encouraging results, and also noting that this architecture seems

never to have been applied previously in this �eld, we approached our investigation from

the perspective of proving the null hypothesis|that is, that this architecture would

produce results no better than those we had already observed. In this spirit, we decided

to test it �rst on the three categories of statistics which, when combined in our \best"

committee of experts, had given the best results we had seen. Table 5.12 shows that the

null hypothesis was wrong, and that this type of network consistently produces superior

results to any of those we have examined above.

The absence of variations of learning algorithms in the tests described in table 5.12

is simply due to the fact that SNNS only supports a variation of simple backpropagation

for time-delay networks. For all of the networks described in the table, we used a very

slow learning rate of 0:05, this having produced good results in our \best" committee of

experts. We should also note that the network with 0 hidden units is a simple perceptron

with a time-delay architecture.

Table 5.12 is interesting in many respects. Not only do most of the networks have

better test results than any we have seen previously|the best over 5% better than the

peak of our \best" committee of experts|but those results are very consistent, even

arising with very small networks. Even a network with 2 hidden units performs quite

well, although it required an absurdly long training session and its training error is still

quite high. The performance of the 4-unit network is indeed quite acceptable. On the

other hand, the simple perceptron performs quite poorly, worse even than our expert

committees. This implies that the information the networks are using to make their

predictions is nonlinear (simple perceptrons are known only to be able to make linear

discriminations) but is also not nearly as extensive as we might have predicted. We treat

these promising results further in the conclusion.

Chapter 5. Building Neural Nets to Locate Authorship Changes 136

Num. of Cycles Training Test
Hidden Units MSE MSE
96 150 0.1405 0.1496

950 0.0871 0.1722
72 150 0.1399 0.1515

850 0.0945 0.1769
48 150 0.1412 0.1497

300 0.1300 0.1543
32 150 0.1420 0.1500

850 0.1053 0.1660
24 250 0.1350 0.1510

400 0.1273 0.1564
20 225 0.1380 0.1495

3000 0.0744 0.2107
16 100 0.1460 0.1506

4225 0.0744 0.2231
12 175 0.1427 0.1501

2600 0.1045 0.1832
8 275 0.1394 0.1499

4350 0.1133 0.1831
6 275 0.1415 0.1501

5000 0.1236 0.1701
4 275 0.1415 0.1501

1850 0.1291 0.1615
2 4825 0.1473 0.1504
0 5000 0.1600 0.1619

Table 5.12: The results we obtained with the �rst time-delay neural network architecture
that we tested.
As in the previous tables, each section bounded by horizontal bars represents the results
achieved for a particular network, and each line where the number of hidden units is
omitted indicates that training of the network of the previous line was continued, so that
the number of cycles is cumulative.

Chapter 5. Building Neural Nets to Locate Authorship Changes 137

5.4.3 Other Time-Delay Neural Networks

The success of the application of time-delay networks to our three best statistical cat-

egories made us curious as to their e�cacy on other combinations of statistics, and

particularly how they would compare with the more traditional network architectures we

have already employed. We performed several experiments in this vein and we deal with

them brie
y in this subsection.

Our �rst attempt was to train a time-delay network using all of our statistical cate-

gories. After 5000 cycles, we found that the training MSE of this network was 0:1874 and

its test MSE was 0:1804. While it is true that this network's learning rate was slow|we

were still using the learning rate of 0:05 that had served us well throughout our other

time-delay network trials|and our hidden layer was quite small, only 30 units, we did no

further training on this network because progress, though apparent, was far too slow to

make an interesting result likely. These results are indeed better than those we achieved

with the simple multilayer perceptrons that we described in section 5.2, they are slightly

inferior to the full committee of experts that we described in subsection 5.3.3.

We also decided to create time-delay networks for several individual categories of

statistics. Still hoping to salvage some reasonable performance from our vocabulary rich-

ness statistics, they were the �rst we tested. This network's results were in�nitesimally

better than those of our best simple network: a training MSE of 0:1888 and a test MSE

of 0:1806 after 5000 training cycles. The performance of the time-delay network we con-

structed to test our syllable frequencies was a more signi�cant improvement over that

of its predecessor: our lowest test MSE, observed after 1375 training cycles, was 0:1739

with a corresponding training MSE of 0:1832. The network we created for part-of-speech

frequencies also performed better than any we had previously constructed for this subset

of our data, attaining a test MSE of 0:1592 and a test MSE of 0:1544 after 925 cycles.

Disturbingly, however, the network's training error had only decreased to 0:1478 after

5000 cycles, in spite of the network having 8 hidden units.

Chapter 5. Building Neural Nets to Locate Authorship Changes 138

Feeling that we had exhibited a general, if not terribly signi�cant, trend, we con-

structed no further networks. The results presented in this section do tend to support the

claim that time-delay networks are generally better at predicting contribution boundaries

than are simpler architectures, but for single categories the di�erence is not dramatic.

5.5 How Good is Our Best?

Up until this point, we have discussed our results mainly in relation to each other, and

only using the abstract concept of mean squared error. To arrive at some sense of whether

our results are good, we must compare them with some baseline tests. Using measures

other than mean squared error to characterize our results might also give us some valuable

insights. In this section we attempt to reach both these goals.

Three possible baseline tests have suggested themselves. The �rst, and simplest, is

always to guess that there is no contribution boundary. This is motivated by the fact

that the ratio of contribution boundaries to non-boundaries is almost exactly 1 to 3 in

the entirety of our corpus; thus, an algorithm that always guesses 0 (no boundary) will

produce a comparatively good mean squared error. Another possible baseline test would

be to use this ratio of breaks to non-breaks to calculate the mean squared error for

an algorithm which always guesses a single, optimal value. A third option is to design

a simple algorithm that guesses 1 and 0 with appropriate probabilities, but makes its

guesses randomly.

The �rst of these tests results in a mean squared error of 0:2552 for our entire corpus,

and 0:2359 on the test set alone. Plainly, all of our networks perform substantially

better than this|even those which output very nearly constant values independent of

their input. This test does serve to highlight the di�erence between our test set and

the overall corpus: our test set is substantially \easier" because there are proportionally

fewer contribution boundaries. Whereas the entire corpus is almost exactly 1 to 3, the

Chapter 5. Building Neural Nets to Locate Authorship Changes 139

test set's ratio is just above 3 to 10. This fact should address the concern the careful

reader will have been pondering for most of this chapter, namely why the performance of

most of our poorer networks on training data has been considerably worse than on test

data.

To calculate the single number that will produce the optimal MSE, we simply mini-

mize the expression

r(1� x)2 + wx2

r + w

where r is the number of contribution boundaries and w the number of non-boundaries,

with respect to x. This produces the general result

x =
r

r + w

so that x = 0:2552 for the entire corpus and x = 0:2359 in the test corpus. This easily

leads to an optimal MSE of 0:1901 on the entire corpus and 0:1801 on the test corpus.

While these di�er in magnitude by only 5%, the optimal test MSE is very close to the

results obtained for all of the networks trained on all data, as well as to several data

categories. It is plain that this result calls into question the signi�cance of all but our

very best networks.

Neither of these tests is amenable to producing a wider range of statistics than MSE's.

For instance, since each is constant valued, it is not meaningful to compute precision,

recall, or fallout statistics. It is more interesting to compute these sorts of statistics for

our third baseline test, even though its MSE tends to be very high, usually around 0:37.

Table 5.13 gives the results we obtained with one particular run of this test.

While the statistics presented in this table are a tri
e nonstandard, they do illustrate

that we got about 1=4 of the boundaries there were to get, and about 1=4 of what we got

were actually contribution boundaries (and similarly for non-boundaries), precisely as we

would have expected. In contrast to these results, we present a table of selected values

Chapter 5. Building Neural Nets to Locate Authorship Changes 140

Percent Correct Percent Wrong

Contribution Boundaries 25.68 73.75

Non-Contribution Boundaries 75.29 25.28

Total: 62.62 37.38

Table 5.13: Results computed on one particular run of the third baseline test.

The results are characteristic of all other runs we have made. The percentages of

correctly-identi�ed entities are relative to the total number to be identi�ed (recall in

the top row) and the incorrect column percentages are relative to the total guesses made.

generated from the very best network, from an MSE perspective, that we produced|

the 20-hidden unit time-delay network operating on the three best statistical categories.

These results are shown in table 5.14.

Several things about this table are noteworthy. First, we are able, simultaneously,

to achieve better than 50% precision and recall. Table 5.13 would seem to indicate that

such a result for a random process, even one having knowledge of the relative frequency

of contribution boundaries, is highly improbable indeed. The accuracy of the random

process was 62%, while that of our best network is nearly 80% at its peak. Clearly this

is a very wide di�erence: indeed, even in the baseline that always guesses that no article

boundary is present, the accuracy on the test set is only 76:4%, considerably lower than

that of our best network.

We performed one more test to try to gain more con�dence that our network is

generating results that correlate with our data. Although neither the distribution of

the outputs of our networks nor the distribution of the observed values is even close

to normal, we decided to apply a standard t-test to these distributions to see if they

correlated signi�cantly. Somewhat surprisingly, the results we obtained were so strong

they were far o� the scale for a sample size of over 1000, implying that the distributions

were extremely similar. It seems clear that this result is mainly attributable to the

Chapter 5. Building Neural Nets to Locate Authorship Changes 141

Threshold Precision Recall Fallout Accuracy Error
0.0500 0.2867 0.9191 0.2937 0.4413 0.5587
0.1000 0.3333 0.8211 0.4928 0.5703 0.4297
0.1500 0.3670 0.7402 0.6056 0.6374 0.3626
0.2000 0.4130 0.6691 0.7063 0.6975 0.3025
0.2500 0.4598 0.6029 0.7812 0.7392 0.2608
0.3000 0.5124 0.5564 0.8365 0.7704 0.2296
0.3100 0.5127 0.5441 0.8403 0.7704 0.2296
0.3200 0.5314 0.5392 0.8531 0.7791 0.2209
0.3300 0.5335 0.5270 0.8577 0.7796 0.2204
0.3400 0.5394 0.5196 0.8630 0.7820 0.2180
0.3500 0.5443 0.5123 0.8675 0.7837 0.2163
0.3600 0.5565 0.5074 0.8751 0.7883 0.2117
0.4000 0.5780 0.4632 0.8955 0.7935 0.2065
0.4500 0.5850 0.4216 0.9076 0.7929 0.2071
0.4600 0.5944 0.4167 0.9122 0.7953 0.2047
0.4700 0.6036 0.4069 0.9175 0.7970 0.2030
0.4800 0.6084 0.3922 0.9220 0.7970 0.2030
0.4900 0.6129 0.3725 0.9273 0.7964 0.2036
0.5000 0.6183 0.3652 0.9304 0.7970 0.2030
0.5100 0.6223 0.3554 0.9334 0.7970 0.2030
0.5200 0.6221 0.3309 0.9379 0.7947 0.2053
0.5300 0.6172 0.3162 0.9394 0.7924 0.2076
0.5400 0.6117 0.3088 0.9394 0.7906 0.2094
0.5500 0.6000 0.2941 0.9394 0.7872 0.2128
0.6000 0.6562 0.2574 0.9584 0.7929 0.2071
0.6500 0.6693 0.2083 0.9682 0.7889 0.2111
0.7000 0.7083 0.1667 0.9788 0.7872 0.2128
0.7500 0.7258 0.1103 0.9871 0.7802 0.2198
0.8400 0.8696 0.0490 0.9977 0.7739 0.2261
0.8800 0.9167 0.0270 0.9992 0.7698 0.2302
0.9000 0.8333 0.0123 0.9992 0.7663 0.2337
0.9200 1.0000 0.0074 0.0000 0.7658 0.2342

Table 5.14: Selected results computed by running our best time-delay network on our
test suite.
The \threshold" is the value below which the network outputs are considered to be 0,
above which they are taken to be 1.

Chapter 5. Building Neural Nets to Locate Authorship Changes 142

fact that the conditions for the t-test's application were violated, but it does add at

least in�nitesimally to the body of evidence in support of the contention that our best

networks are indeed capable of predicting the correct output with signi�cant probability.

Chapter 6

Conclusions and Future Work

Having just set forth the results that we obtained from our various experiments in the

preceding chapter, we now turn to the task of using them to draw some general conclu-

sions. After examining the theoretical and practical questions upon which our results

seem to shed light, we note the outcome of a concurrent experiment that tried to solve

our problem using very di�erent techniques. We close the chapter by pointing to some

avenues for future research.

6.1 Conclusion

In this ambitious project, we have undertaken several di�erent investigations. Firstly and

most importantly, we have demonstrated that it is possible to design a system which,

with probability signi�cantly better than even an intelligent baseline test, can infer the

presence of contribution boundaries using stylistic statistics, notwithstanding the fact

that those statistics are computed over very small units of text. We have also shown that

this is best done by statistics which capture a high-level element of style. Punctuation

frequencies and part-of-speech frequencies, two of our best categories, appear to measure

directly either an author's use of punctuation or his/her preferences of grammatical con-

structions. Function-word frequencies also proved reasonably e�ective and are thought to

143

Chapter 6. Conclusions and Future Work 144

capture information concerning the phrase structures and modes of expression preferred

by an author.

On the other hand, and probably just as usefully, we have shown that several cate-

gories of stylistic statistics seem to perform very poorly on short text lengths. Vocabulary

richness, Waring-Herdan frequencies and hapax legomena and dislegomena all appear to

o�er virtually nothing. While this is hardly surprising for these measures|intuitively it

is easy to imagine that vocabulary richness is only measurable with su�cient text to char-

acterize a vocabulary|more surprising was the failure of our entropy statistics. Juola's

measure in particular has been reported to work very well with samples only slightly

larger than our average paragraph. It might be argued that our combination of Juola's

measure with the admittedly unlikely lexical entropy may have destroyed the usefulness

of Juola's statistic. Had we not chosen a neural net architecture, and tested these two

statistics in isolation and with networks with large hidden layers, this argument might

be sustainable; however, in light of our procedure we must conclude that Juola's statistic

either is not useful for these purposes or simply requires more data.

Unsurprisingly, sentence-length statistics proved quite unhelpful. However, word-

length frequencies and syllable frequencies showed at least a modicum of promise, par-

ticularly when a time-delay architecture was trained with them. This performance is

particularly interesting considering that these tests are not at all well-designed, since

we test both frequencies and overall averages simultaneously (hence the unnormalized

averages must predominate over the very small frequencies).

Our results add force to the contention that neural networks are a useful tool in

stylometry. While it certainly does not seem that simple multilayer perceptrons trained

on amorphous sets of stylistic data are useful, we have exhibited several architectures

which have produced quite impressive results. Committees of experts produced excellent

results, particularly when the training of the gating network was combined with that of

the individual pretrained experts. Along the way, we have shown that there is pro�t in

Chapter 6. Conclusions and Future Work 145

combining categories of stylistic statistics together, if it is known in advance that those

categories themselves perform quite well.

Perhaps our most original contribution has been the application of time-delay net-

works to our problem. We are not aware of any literature in stylometry in which this

network architecture has been used. The fact that these networks have consistently

proven to give better results than even complex multilayer perceptrons or committees of

experts should serve as a beacon to others that this learning paradigm deserves consider-

ably more attention than it has been accorded to date. Indeed, in any enterprise where

a document is being sequentially examined|such as to discover redundant information

in a document assembled by automatic information-retrieval|it is not at all di�cult to

imagine that these networks could prove to be a singularly valuable tool.

It is true that even our best results are never able to recover much more than 50% of

the contribution boundaries with much better precision than 50%. What is far less clear

is how well any technique relying strictly on whatever stylistic information could ever per-

form. Due to the high proportion of articles by a small number of contributors (especially

the list's moderator) to comp.risks, it is very likely that a signi�cant number of adjacent

contributions share the same author. Recalling the genre- and domain-restrictions inher-

ent in the corpus, it is also not at all di�cult to envision instances in which the styles

of contributions by separate authors are simply not distinguishable even by a human ex-

pert. With these factors in mind, it seems quite conceivable that we might have found far

more than 50% of the boundaries that could in principle be discovered. Since we cannot

rule out intra-sample discrepancies, such as those created by unidenti�ed quotations, it

is reasonable to conjecture that our precision may be considerably better than 50% as

well.

Whatever importance one attaches to these hypothetical or unquanti�ed factors, in

view of the di�culty of the problem and the multiple directions in which we have broken

new ground, it seems fair to claim that our project was successful. Had our data, partic-

Chapter 6. Conclusions and Future Work 146

ularly our part-of-speech frequencies, been more reliable, our results might be expected

to have been much better. Even so, we contend that we have made both practical and

theoretical advances, and that our work could serve as a cornerstone for a system to

make simpler the jobs of those people who must assemble vast, collaboratively-written

documents.

6.2 Related Work

Concurrent with this work has been a series of experiments undertaken by Bhaskara

Marthi. These experiments utilize the data we produced in the �rst phase of this study,

and compute from them vectors composed of letter-bigram frequencies.

Based on some work published in 1994 that applied bigram frequencies to the Fed-

eralist Papers, the goal of this study was to determine whether this technique could be

applied to small text samples. The experiment worked by computing letter-bigram fre-

quencies for each sample and using a simple cosine measure to determine the distance

between two consecutive samples' vectors.

Unfortunately, despite some interesting attempts at weighting vectors according to

the size of the samples from which they were derived, the results do not appear to be

signi�cantly better than random. For instance, it is never possible to obtain precisions

higher than 0:6, and for most threshold values the precision is around 0:25, as one would

predict for a random guess. Using a technique wherein recall is plotted against one

minus fallout (we de�ne fallout as the ratio of correct identi�cations of non-boundaries

to the total number of non-boundaries), it can be shown that the results do not di�er

signi�cantly from chance. Thus, in spite of the creative experiments, it does not seem

that letter bigrams capture su�cient stylistic information in such small samples to make

them useful.

Chapter 6. Conclusions and Future Work 147

6.3 Future Directions

Given the results we have obtained, several obvious lines of research seem to o�er in-

teresting possibilities. Chief among them is that leading further along the primary path

this research was to carve out: it now seems that an attempt to develop a system to

advise humans on the creation of stylistically-homogeneous documents is potentially fea-

sible. Many hurdles need to be overcome, of course, not least exactly how statistical

information about stylistic inconsistencies could be shaped into a human-comprehensible

form. Also looming is the problem that neural networks are inherently extremely di�cult

to understand, and understanding the workings of a successful network would seem to

be a prerequisite for designing such an interactive system|no other avenues of �nding

stylistic inconsistencies than that involving neural nets appear to promise comparable

success.

One small step along this long road might be to examine our most successful networks

in detail. This could be done both with a view to determining which statistics, or

statistical subsets, seem to be most signi�cant and also to attempting to �nd patterns

within and between contributions that are treated well by the network. Both these

tasks are extremely arduous, but if such patterns in the data or the network could be

determined it might well be a critical advance for the design of interactive software.

A more mundane task would be to conduct further experiments with the data we have

used here. Particularly with regard to the three most promising statistical categories,

considerable insight might be had by testing various subsets of these categories together

and independently. For example, it might be useful to know whether low-frequency

function words help, or whether certain punctuation marks or part of speech tags can

safely be ignored. Other methods of predicting contribution boundaries from the statistics

could also be tried, such as correspondence analysis, rule induction, decision trees or even

genetic algorithms. It might also be worthwhile to see whether windows larger than two

parts might prove useful, particularly in the context of time-delay networks. We avoided

Chapter 6. Conclusions and Future Work 148

this topic because it is too computationally intensive to be attempted within our limited

time; however, it might prove highly instructive to experiment with varying window sizes.

Clearly, a user-oriented system would have to be vastly more e�cient and robust than

our multi-phase procedure, and this too would necessitate considerable development, if

little new research.

Setting aside all these technical issues, several more fundamental questions still require

an answer. Glover and Hirst [5] have indeed shown that humans can use authors' styles

to di�erentiate collaboratively-written works from those with a single author. Yet, their

work gives hardly any insight into how this is done: just what characteristics of the text

of a document do humans associate with stylistic inconsistency? It may well be that

the cues our algorithm uses to identify stylistic inconsistency would be overlooked by a

human reader, while factors which would detract markedly from a reader's comprehension

or enjoyment of a work pass undetected by our method. Certainly, these questions would

have to be answered by any e�ort intent on designing a usable style advisor; their answers,

though, would be very interesting in their own right.

A distinct set of questions concerns whether human perceptions of stylistic inconsis-

tency are so subjective that no general algorithm to detect such inconsistencies could

ever be developed. Baljko and Hirst [1] have investigated these questions by asking a

number of subjects to read a set of paragraphs, all written on a di�cult philosophical

problem and produced by several di�erent authors, and then independently to organize

them into stylistically-similar groups. They show that there is a signi�cant correlation

amongst the resultant groupings, but that the groupings do not always correlate with

authorship. Even though great care was taken, through choosing the domain of discourse

of the writing so as to be highly esoteric to ensure that the content of the samples did

not in
uence the humans' groupings, it seems very hard to believe that this could have

succeeded completely. Nonetheless, this study does lend support to the idea that the

concept of objective stylistic inconsistency does exist. However, we are inclined to doubt

Chapter 6. Conclusions and Future Work 149

its conclusions regarding a lack of connection between authorship and stylistic inconsis-

tency, both because of our concerns regarding the in
uence of content and because of

the small size and domain speci�city of the samples. Further research on this matter is

imperative.

An experiment to contrast our algorithm's performance in recognizing stylistic in-

consistencies with the perceptions of humans would also be very much in order. The

di�culties inherent in such an experiment should not be underestimated, however: for

instance, our corpus would not be usable for this purpose because
uctuations in style

will inevitably coincide with changes in topic, focus, or perspective. While these content

changes will not be su�ciently dramatic to in
uence our statistically-based methods, no

human exists who has the mental discipline to consistently ignore them when reading for

stylistic inconsistencies. Either the data used by Glover and Hirst or that from the Baljko

and Hirst study might be somewhat more valuable, but in either case the corpus's small

size and restricted domain would limit the general applicability of whatever conclusions

were drawn.

What would be required is some set of reasonably large documents, each generally

regarded as not being stylistically cohesive, which a group of humans could be set to

read and note where they felt stylistic inconsistencies occurred, and possibly asked for

their reasoning. While collaboratively-written documents are obvious candidates for such

work, single authors are quite capable of producing stylistic inconsistencies|as anyone

who has tried to write a long document over an extended period will doubtless attest|

so that documents written by one person but containing apparent inconsistencies could

also be considered. Nor does it seem necessary that a \right" answer exist|that is,

that some set of style boundaries should be recognized in advance. Indeed, such right

answers, like those in our study, not only will often coincide with content changes that

human readers will unavoidably perceive, but may also not be right at all|some authors'

styles, especially in such a constrained domain as ours, may simply not be distinguishable

Chapter 6. Conclusions and Future Work 150

by any means.

Whether the human readers were required to provide reasoning or not, undoubtedly

the most interesting aspect of this experiment's results would be to investigate how

well the humans' identi�cations clustered and correlated with the output of ours or a like

algorithm. A wide degree of disagreement among humans would run counter to the results

of Baljko and Hirst, and suggest that the problem of identifying stylistic inconsistencies

is intrinsically subjective, and thus the best computer algorithm could never be expected

to do more than suggest areas of possible inconsistency. Disagreement between humans

and the algorithm would indicate that the techniques used by our algorithm to detect

auctorial changes, while successful for this purpose, are not related to humans' perception

of style. Close correlation between the humans and the computer, or general correlation

with exceptions, would be the most favorable result, and would allow for an examination

of precisely what sorts of inconsistencies are identi�ed by what statistical categories as

well as how inconsistencies might be described. In any event, such a study would give an

idea of an upper bound on the performance to be hoped for in any algorithm|an upper

bound that we do not currently possess.

Turning to the �eld of learning techniques, we would be remiss not to take this oppor-

tunity to strongly advise more work with time-delay networks. This novel architecture

could have applications in many �elds of natural language processing in addition to

stylometry, and their impressive performance in this study certainly appears to merit

additional study. Indeed, complex multilayer perceptrons like those employed in our

committees of experts show promise themselves, and should also be examined further.

Finally, this study seems to throw strong support behind the assertion that, partic-

ularly for small text samples, high-level statistics hold far more information than lower-

level statistics. If part of speech tags perform so well, it must be asked whether even

higher-level statistics such as frequencies of noun phrases of various lengths, proportion

of prepositional phrases, etc. might not be even more useful. Both Stamatatos et al [27]

Chapter 6. Conclusions and Future Work 151

and Hatzivassiloglou et al [6] have successfully demonstrated applications for these sorts

of statistics, and a study linking these ideas with powerful neural net architectures might

prove very interesting. Whatever may eventually become of the idea of an automatic

style advisor, it is apparent that this thesis has opened the door to many potentially

fruitful veins of research.

Bibliography

[1] Baljko, Melanie and Hirst, Graeme, \Subjectivity in Stylistic Assessment", Text

Technology (to appear, 2000).

[2] Battelle Memorial Institute, Paci�c Northwest National Laboratory,

\Neural Networks: Freeware and Shareware Tools" (Available at:

http://www.emsl.pnl.gov:2080/proj/neuron/web/neural/systems/-

shareware.html).

[3] Bishop, Christopher M., Neural Networks for Pattern Recognition (Oxford Univer-

sity Press, 1995).

[4] Brill, Eric, \Transformation-Based Error-Driven Learning and Natural Language

Processing: A Case Study in Part-of-Speech Tagging", Computational Linguistics,

21(4), 1995, 543-565.

[5] Glover, Angela and Hirst, Graeme, \Detecting Stylistic Inconsistencies in Collabo-

rative Writing", in Sharples, Mike and van der Geest, Thea, Eds., The New Writing

Environment: Writers at Work in a World of Technology (Springer-Verlag, 1996),

147-168.

[6] Hatzivassiloglou, Vasileios, Klavans, Judith L. and Eskin, Eleazar, \Detecting Text

Similarity over Short Passages: Exploring Linguistic Feature Combinations via Ma-

chine Learning", Proceedings of the 1999 Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, 1999, 203-212.

152

Bibliography 153

[7] Holmes, David I., \Authorship Attribution", Computers and the Humanities, 28(2),

April 1994, 87-106.

[8] Holmes, David I. and Forsyth, Richard S., \The Federalist Revisited: New Directions

in Authorship Attribution", Literary and Linguistic Computing, 10, 1995, 111-127.

[9] Jacobs, R.A., Jordan, M.I., Nowlan, S.E., and Hinton, G.E., \Adaptive Mixtures of

Local Experts", Neural Computation, 3(1), 1991.

[10] Juola, Patrick, \Cross-Entropy and Linguistic Typology", Proceedings of New Meth-

ods in Language Processing 3, Sydney, Australia, 1998.

[11] Juola, Patrick, \What Can We Do with Small Corpora? Document Categorization

Via Cross-Entropy", Proceedings of an Interdisciplinary Workshop on Similarity

and Categorization, Department of Arti�cial Intelligence, University of Edinburgh,

Edinburgh, UK, 1997.

[12] Karlgren, Jussi, \Stylistic Variation in an Information Retrieval Experiment", Pro-

ceedings of New Methods in Language Processing 2, 1996.

[13] Karlgren, Jussi, and Cutting, Douglas, \Recognizing Text Genres with Simple Met-

rics Using Discriminant Analysis", Proceedings of the 15th International Conference

on Computational Linguistics (COLING 94), Kyoto, 1994, 1071-1075.

[14] Kessler, Brett, Nunberg, Geo�rey, and Sch�utze, Hinrich, \Automatic Detection of

Text Genre", Proceedings of the 35th Annual Meeting of the Association for Com-

putational Linguistics and the 8th Conference of the European Chapter of the Asso-

ciation for Computational Linguistics, Madrid, 1997, 32-38.

[15] Ku�cera, Henry and Francis, W. Nelson, Computational Analysis of Present-Day

American English (Brown University Press, Providence, Rhode Island, 1967).

Bibliography 154

[16] Lancashire, Ian, \Probing Shakespeare's Idiolect in Troilus and Cressida", University

of Toronto Quarterly, 68(3), Summer 1999, 728-67.

[17] Levin, Beth, English Verb Classes and Alternations: A Preliminary Investigation

(University of Chicago Press, 1993).

[18] Manning, Christopher and Sch�utze, Hinrich, Foundations of Statistical Natural Lan-

guage Processing (The MIT Press, Cambridge, MA, 1999).

[19] Mason, Oliver, \QTAG", (Birmingham University, 1998).

[20] Matthews, Robert A. J. and Merriam, Thomas V. N., \Distinguishing Literary

Styles Using Neural Networks", in Fiesler, Emile and Beale, Russell, Eds., Handbook

of Neural Computation (CD-ROM Edition, Oxford University Press, Release 97/1,

Section G8.1).

[21] Mealand, David L., \Measuring Genre Di�erences in Mark with Correspondence

Analysis", Literary and Linguistic Computing, 12(4), 1997, 227-245.

[22] Mitton, Roger, \Spelling Checkers, Spelling Correctors and the Misspellings of Poor

Spellers", Information Processing and Management, 23(5), 1987, 495-505.

[23] Mosteller, Frederick and Wallace, David L., Inference and Disputed Authorship: The

Federalist, (Addison-Wesley Publishing Company, Inc., Reading, MA., 1964).

[24] Ratnaparkhi, Adwait, \A Maximum Entropy Part-Of-Speech Tagger", Proceedings

of the Conference on Empirical Methods in Natural Language Processing, May, 1996,

University of Pennsylvania.

[25] Santorini, Beatrice, \Part-of-Speech Tagging Guidelines for the Penn Treebank

Project" (University of Pennsylvania, 1995).

[26] Schmid, Helmut, \TreeTagger|a Language Independent Part-of-speech Tagger",

(Institut f�ur Maschinelle Sprachverarbeitung (IMS) Universit�at Stuttgart, 1995).

Bibliography 155

[27] Stamatatos, Efstathios, Fakotakis, Nikos and Kokkinakis, George, \Automatic Au-

thorship Attribution", Proceedings of the 9th Conference of the European Chapter

of the Association for Computational Linguistics, Bergen, June 1999, 158-164.

[28] Stamatatos, Efstathios, Michos, S., Fakotakis, Nikos and Kokkinakis, George, \A

User-Assisted Business Letter Generator Dealing with Text's Stylistic Variations",

Proceedings of the 9th IEEE International Conference on Tools with Arti�cial Intel-

ligence, 1997.

[29] \Stuttgart Neural Network Simulator", University of Stuttgart, Institute for Par-

allel and Distributed High Performance Systems (IPVR), Stuttgart, Fed. Rep. of

Germany, 1990-95, and University of T�ubingen, Wilhelm-Schickard Institute for

Computer Science, T�ubingen, Germany, 1996-98.

[30] Teahan, William J., Modelling English Text, (Ph.D. Thesis, Department of Com-

puter Science, Waikato University, 1997).

[31] Thede, Scott M., Parsing and Tagging Sentences Containing Lexically Ambiguous

and Unknown Tokens (Ph.D. Thesis, Purdue University, August 1999).

[32] Tweedie, Fiona J., Singh, Sameer and Holmes, David I., \An Introduction to Neural

Networks in Stylometry", in Research in Humanities Computing, 5, (Oxford Univer-

sity Press, 1996), 249-263.

[33] Tweedie, Fiona, Singh, Sameer and Holmes, David, \Neural Network Applications

in Stylometry: The Federalist Papers", Computers and the Humanities, 39(1), 1996,

1-10.

[34] van Halteren, Hans, Zavrel, Jakub, and Daelemans, Walter, \Improving Data Driven

Wordclass Tagging by System Combination", Proceedings of the 36th Annual Meet-

ing of the Association For Computational Linguistics and the 17th Annual Confer-

ence on Computational Linguistics, COLING/ACL, Montreal, 1998, 491-497.

Bibliography 156

[35] Wilson, Michael,MRC Psycholinguistic Database: Machine Usable Dictionary, Ver-

sion 2.00 (Informatics Division, Science and Engineering Research Council, Ruther-

ford Appleton Laboratory, 1987).

